
A Time-Sensitive IoT Data Analysis Framework

Harindu Korala, Dimitrios Georgakopoulos, Ali Yavari, Prem Prakash Jayaraman

Swinburne University of Technology, Australia

{hkorala, dgeorgakopoulos, ayavari, pjayaraman}@swin.edu.au

Abstract
 This paper proposes a Time-Sensitive IoT Data

Analysis (TIDA) framework that meets the time-bound

requirements of time-sensitive IoT applications. The

proposed framework includes a novel task sizing and

dynamic distribution technique that performs the
following: 1) measures the computing and network

resources required by the data analysis tasks of a time-

sensitive IoT application when executed on available

IoT devices, edge computers and cloud, and 2)

distributes the data analysis tasks in a way that it meets

the time-bound requirement of the IoT application. The

TIDA framework includes a TIDA platform that

implements the above techniques using Microsoft’s

Orleans framework. The paper also presents an

experimental evaluation that validates the TIDA

framework’s ability to meet the time-bound
requirements of IoT applications in the smart cities

domain. Evaluation results show that TIDA outperforms

traditional cloud-based IoT data processing

approaches in meeting IoT application time-bounds and

reduces the total IoT data analysis execution time by

46.96%.

 1. Introduction

Internet of Things (IoT) is a new evolution of the

Internet that connects a variety of sensors, industrial

machines, video cameras, and mobile phones (which we

refer to all these as IoT devices) that can communicate

with each other over the internet [1, 2]. In recent times,

data produced from IoT devices (we refer this data as

IoT data) have increased tremendously and a lot of

attention has been given to extract valuable insights

from this data [3]. To achieve this, IoT applications

gather IoT data, analyze them and produce high value

information.
In this paper we focus on IoT applications that

require the results of their data analysis to be produced

within a specific time bound, otherwise the produced

information will not be useful. We refer such

applications as Time-Sensitive IoT (TS-IoT)

applications and the requirements of data analysis as

time-bound requirements. For example, a vehicle

accident prediction application must analyse IoT data

collected from traffic and on-board cameras and

sensors, predict a possible accident and prevent the

accident by informing the corresponding driver in near

real-time (e.g., within a 30ms time bound). If there is

any extra time (i.e., more than the time bound) involved

in completing the data analysis, the predicted accident

information will not be useful to prevent the accident.

To discuss further the problem of addressing time-

bound requirements, consider that TS-IoT applications

are comprised of a set of data analysis tasks. Each of

these tasks may need to perform one of the following:
consume IoT data from heterogeneous IoT devices,

perform data processing ranging from basic stream

processing to resource-intensive machine learning and

statistics, manage the data queues required for stateful

data analysis, and produce information that is used by

other tasks in the same IoT application. Currently, TS-

IoT applications, which are comprised of such data

analysis tasks, are executed in distributed IoT

environments.

Guaranteeing the time-bound requirements of TS-

IoT applications heavily depend on the total application
execution time. This can be measured as the summation

of total data processing time and the total data

communication time. The total data processing time is

influenced by the resource where the data analysis is

performed whilst the total data communication time is

influenced by the relevant network delays involved in

transferring IoT data to corresponding resources.

Therefore, satisfying time-bound requirements heavily

depends on the selection of appropriate resources from

the IoT environment. However, the decision to select

which cloud, edge [4], and/or IoT device resources to
execute a TS-IoT application has its trade-offs.

Processing IoT data on the IoT devices offers the lowest

communication delays, but IoT devices have very

limited computing resources. Edge computers have

more computing resources than IoT devices, but they are

subject to more communication delays than IoT devices.

The cloud offers virtually unlimited resources [4] but

suffers from significant communication delays when

transferring IoT data to the cloud. Furthermore, each

task has different resource requirements as well.

Therefore, while it is often possible to meet the time-

bound requirements of each TS-IoT application by
distributing tasks for execution in the IoT devices, edge

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 7185
URI: https://hdl.handle.net/10125/71486
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

and cloud resources, we must determine the best

possible distribution of tasks from the perspective of

communication and computing resource constraints.

However, determining the task distribution for TS-IoT

applications is more difficult than any other application
due to the volatile nature of the IoT environment.

Because of this, it has become a major challenge to

address this problem.

In this paper, we propose a novel Time-Sensitive

IoT Data Analysis (TIDA) framework that utilises the

computing resources available at the IoT devices, edge

computers and cloud in meeting the time-bound

requirements of each TS-IoT application when the entire

pool of available computing resources is sufficient to

collectively achieve this. The main contributions of the

TIDA framework and this paper are:

1. A novel dynamic distribution algorithm for
(possibly inter-dependent) IoT data analysis tasks

that maintains distributions of such tasks across

cloud, edge and IoT devices resources in a way the

TS-IoT application meets its time bounds.

2. A TIDA platform that implements the above

algorithms, as well as related task measuring,

distribution, and migration techniques using

Microsoft’s Orleans Actor framework.

3. An experimental evaluation that shows that the

TIDA platform outperforms existing cloud-based

IoT data analysis solutions in a smart city
application that requires maintaining a totally

accurate count of all passengers that are currently

being transported in all the buses of the public

transport network of Sydney, Australia.

The remainder of the paper is organised as follows.

Section 2 presents a motivating use case scenario,

Section 3 describes the system model and problem

formulation, Section 4 discusses the dynamic task

distribution, Section 5 presents the design and

implementation of TIDA framework. Section 6 presents

the experimental evaluation results, Section 7 presents

the related work and Section 8 concludes the paper and
outlines potential future work.

2. Smart city passenger counting

application - Motivating scenario

Let us consider a smart city application that requires

an accurate count of passengers for a public transport

system in near real-time. The passenger count

information is used by transport service to improve

planning and scheduling of buses, allocate busses or

trains to meet the actual demand, and to respond to

unplanned incidents such as bus breakdowns and

1 https://orbbec3d.com/product-persee/

accidents. To count passengers in this smart city

environment we utilized the following IoT devices, edge

computers and cloud resources:

1. Orbbec Persee1 IoT devices providing a

combination of RGB, and infrared cameras with a
fully functioning onboard computer were mounted

above the doors of each bus. We use these devices

to count the passengers stepping in and out of each

bus at each bus stop in the transport network. The

IoT data generated by these IoT devices included:

1) video data (i.e., RGB), 2) depth sensor data, and

3) infrared data at 30 frames per second. In addition

to generating a large volume and variety of IoT data

form their sensors, the Orbbec Persee devices

provide internal computing and storage resources

consisting of a Quad-core Cortex A17 processor

(which has a processing speed of 1.8GHz), 2GB
RAM and 8GB internal storage.

2. Edge computers at bus stops and train stations

included cisco 807 industrial service routers2.

These edge computers act as gateways for IoT

devices and connect to the cloud data center via

internet. Furthermore, the edge computers include

additional computing and storage resources that can

be used for IoT data analysis as well.

3. A Cloud data center with virtually unlimited

computing resources.

In this IoT environment, the IoT devices, edge
computers, and cloud are connected with each other via

different networks (e.g., NB-IoT, 4G, broadband). The

Orbbec Persee IoT devices incorporate Wi-Fi cards and

via this they can connect to the edge computer at each

bus stop. In addition, these IoT devices can also be

directly connected to the cloud via 4G during the entire

bus journey. However, the IoT devices can connect to

edge computers only when they are near bus stops or

train stations. Edge computers and cloud data center are

connected via broadband internet.

To compute the occupancy of each bus and the total

occupancy, this TS-IoT application must perform the
following: 1) capture passenger data while stepping in

and out of each bus, 2) analyze the collected

RGB/infrared/depth data and to recognize individual

passengers, and 3) compute the occupancy of each bus

at each bus stop and the entire transport network. This

task may involve the following sub-tasks: 1) pre-

processing the collected RGB/infrared/depth data, 2)

classifying passengers as entering or existing by

applying classification techniques such as Haar-cascade

classifier. (Please note that in this paper, we consider the

classifier to be an already trained classifier, hence
training the classifier is not considered to be an IoT data

analysis task and it is not discussed further in this paper)

2 https://www.cisco.com

Page 7186

and 3) calculating the total occupancy of the bus, and 4)

computing the total occupancy of all the busses in the

transport network. Figure 1 illustrates the motivating

scenario, computing resources, and IoT data analysis

tasks in this TS-IoT application.

The IoT passenger count application has a variable

timebound that is hard to meet, i.e., fails to meet its time

bound requirement when any bus reaches the next bus

stop before its occupancy information from the previous

bus stop is counted. Meeting time-bound requirements
in IoT often depends on the selection of computing and

networking resources for each TS-IoT application. In

passenger counting IoT application, though we perform

the entire data analysis quickly in the cloud, this may

involve significant communication delay to collect all

the passenger RGB/infrared/depth data. Offloading the

collected passenger data to edge computers and

performing the data analysis in edge computer is another

option. However, the only limited time to transfer the

passenger data to the edge computer, many buses may

be near each bus stop, and the computing resources in

edge computers are more limited than in the cloud.
Processing data in an IoT device itself is another option

that is viable only if an IoT device has enough

computing resources available for the tasks of the IoT

application at hand.

Therefore, to meet the time-bound requirements of

this and any other TS-IoT application, we must

determine the best possible distribution of the data

analysis tasks that comprise the TS-IoT application from

the perspective of providing enough computing

resources and communication capacity and compute the

assigned analysis tasks in a way that the entire TS-IoT
application meets its time bound(s).

3. System model & problem formulation

Due to the trade-offs between IoT resources in the

distributed IoT environment, it is necessary to generate

a task distribution plan (which meets the application’s

time-bounds requirement) by determining relevant

communication delays involved and needed computing

resources capacities for each task. To address this, first

we present a formal description of the resources in the
IoT environment and the TS-IoT applications. Then we

formulate the tasks distribution problem as an

optimization problem.

Resource model. Computing resources (i.e., IoT

devices, edge computers and cloud) and network

resources in the distributed IoT environment form a

graph 𝐺𝑅𝑒𝑠 = (𝐶𝑜𝑚𝑝_𝑅𝑒𝑠 , 𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝑅𝑒𝑠), where

𝐶𝑜𝑚𝑝_𝑅𝑒𝑠 represent the distributed computing

resources and 𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝑅𝑒𝑠 represent the network
links between computing resources. A single computing

resource of 𝐺𝑅𝑒𝑠 can be denoted 𝑐𝑟𝑖, where 𝑐𝑟𝑖 ∈
𝐶𝑜𝑚𝑝_𝑅𝑒𝑠 and 𝑖 ∈ 1 … 𝑚, m is the total number of

computing resources in 𝐺𝑅𝑒𝑠. Each 𝑐𝑟𝑖, has an attribute

called 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑅𝑒𝑠𝑐𝑟𝑖
, which is the amount of

resources available at 𝑐𝑟𝑖. Further, 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑅𝑒𝑠𝑐𝑟𝑖

can be represented as a tuple of ⟨𝑐𝑝𝑢𝑐𝑟
𝑖 , 𝑟𝑎𝑚𝑐𝑟

𝑖 ⟩.

 A single network link of the 𝐺𝑅𝑒𝑠 represents the
network resources of a network link between two

computing resources, 𝑐𝑟𝑖 and 𝑐𝑟𝑗 . This can be denoted as

𝑛𝑟𝑖𝑗 ∈ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝑅𝑒𝑠, where i and j denote the

corresponding indexes of the two computing resources

that are connected via network link 𝑛𝑟𝑖𝑗 . Each 𝑛𝑟𝑖𝑗 has

the following attribute: 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝐵𝑎𝑛𝑑𝑛𝑟𝑖𝑗
 is the

amount of available bandwidth of the network resource

link 𝑛𝑟𝑖𝑗 . Furthermore, 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝐵𝑎𝑛𝑑𝑛𝑟𝑖𝑗
 is

captured by a tuple ⟨𝑢𝑝
𝑖𝑗 , 𝑑𝑜𝑤𝑛

𝑖𝑗⟩ where 𝑢𝑝
𝑖𝑗 is the

amount of upload bandwidth available and 𝑑𝑜𝑤𝑛
𝑖𝑗 is

the amount of download bandwidth available in 𝑛𝑟𝑖𝑗 .

Application model. A TS-IoT application is comprised

of a set of (possibly inter-dependent) tasks that interact

via data exchanges. A TS-IoT application can be

represented as a directed acyclic graph (DAG), 𝐺𝐴𝑝𝑝 =

 (𝑇𝑎𝑠𝑘𝑠 , 𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤𝑠), where 𝑇𝑎𝑠𝑘𝑠 represent the

tasks of the TS-IoT application and 𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤𝑠

represent the data flows between Tasks. Each TS-IoT

application has a time-bound requirement and we denote

it as 𝑇𝐵𝐴𝑝𝑝.

A single task of the 𝐺𝐴𝑝𝑝 can be denoted as 𝑡𝑖,

where, 𝑡𝑖 ∈ 𝑇𝑎𝑠𝑘𝑠 and 𝑖 ∈ 1 … 𝑛, where 𝑛 is the total

number of tasks in 𝐺𝐴𝑝𝑝. Each task can be of two types:

Stateful tasks and stateless tasks. Stateful tasks require

to buffer a certain number of data items before

processing them. We identify the number of data items

required to buffer in a stateful task as queue size and

denote this as 𝑞𝑡𝑖
. Stateless tasks do not require to buffer

data items during their data processing, therefore we

consider 𝑞𝑡𝑖
 of stateless tasks to be 1. Furthermore, to

Figure 1. Illustration of motivating scenario

Page 7187

identify whether a task is stateful or not, we denote the

following binary attribute, 𝑖𝑠_𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙𝑡𝑖
:

𝑖𝑠_𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙𝑡𝑖
=1 if task 𝑡𝑖 is a stateful task and

𝑖𝑠_𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙𝑡𝑖
=0 otherwise. With the current proposed

model, we assume that the tasks run continuously, hence

we don’t consider any loop variables (i.e., control

variables) for this model at this stage.

 Each 𝑡𝑖, has the following attributes: 𝑇𝑎𝑠𝑘_𝑅𝑒𝑠𝑡𝑖
 is

the amount of computing resources required for the

execution of 𝑡𝑖 . 𝑃𝑟𝑜𝑐_𝑡𝑖𝑚𝑒𝑡𝑖
 denotes the time taken to

process the IoT data at a specific computing resource.

This depends on the computing resource where the task

gets executed. A 𝑡𝑖, is associated with two delays as

well. We denote them as 𝑆𝑡𝑎𝑟𝑡_𝐷𝑒𝑙𝑎𝑦𝑡𝑖
 and

𝑊𝑎𝑖𝑡_𝐷𝑒𝑙𝑎𝑦𝑡𝑖
. Time taken to produce the first data item

during IoT data processing is denoted by 𝑆𝑡𝑎𝑟𝑡_𝐷𝑒𝑙𝑎𝑦𝑡𝑖

and the delay between producing data items is denoted

as 𝑊𝑎𝑖𝑡_𝐷𝑒𝑙𝑎𝑦𝑡𝑖
. We assume that the aforementioned

attributes can be obtained by measurements.

 A single dataflow of 𝐺𝐴𝑝𝑝 represents the dataflow

(i.e., data transfer) between the predecessor tasks 𝑡𝑖 and

successor task 𝑡𝑗 , and this can be denoted as 𝑑𝑖𝑗 , where

𝑑𝑖𝑗 ∈ 𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤𝑠. i and j denote the indexes of the

corresponding tasks. In our model, we assume that data

is transferred piece by piece. Each 𝑑𝑖𝑗 , has the following

attributes: 𝐷𝑎𝑡𝑎𝑑𝑖𝑗
 is the size of a single data piece

transferred through 𝑑𝑖𝑗 . The amount of time to send a

single piece of data via a network link is denoted as

𝐶𝑜𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗
.

The above model is based on the following

assumptions:

1. We assume that cloud data centres in the IoT

environment to have unlimited computing (CPU,

memory, and storage) resources, whilst IoT devices

and edge computers to have limited computing and

storage resources.
2. We assume the bandwidth of all the network links

to be limited in capacity and static.

3. We assume the 𝑇𝑎𝑠𝑘_𝑅𝑒𝑠𝑡𝑖
 can be obtained by

measurements via executing the corresponding task
on a reference computing resource.

4. We assume the 𝑃𝑟𝑜𝑐_𝑡𝑖𝑚𝑒𝑡𝑖
 on a computing

resource can be obtained by estimating based on

previous measurements.

5. We assume the 𝐺𝑅𝑒𝑠, is developed by considering

the amount of computing resources and their

networks available in the IoT environment.

Problem formulation Our objective is to generate an

application-specific, time-bound satisfying task

distribution plan for the IoT environment within the

available resources. To realise this, we need to generate

a task distribution plan in an IoT environment in a way

that the end-to-end response time of the TS-IoT

application is within the time-bound requirement of the

application. Furthermore, in this model we consider TS-

IoT application graphs with multiple paths and to

capture this we consider the end-to-end response time of
the critical path in the graph. We define this critical path

of the application graph as a set of tasks and dataflows,

forming a path, for which the end-to-end response time

is maximal. We refer to this end-to-end response time of

the application as Total Application Execution Time and

denote it as 𝑇𝑜𝑡𝑎𝑙_𝐸𝑥𝑒𝑐𝐴𝑝𝑝 . Given this definition, we can

formulate the following equation:

where 𝑃𝑎𝑡ℎ_𝐸𝑥𝑒𝑐_𝑇𝑖𝑚𝑒𝑝 is the end-to-end execution

time along the path 𝑝 and 𝑃𝑎𝑡ℎ𝑠 is the total number of

paths in 𝐺𝐴𝑝𝑝. For any path 𝑝, we can calculate the

𝑃𝑎𝑡ℎ_𝐸𝑥𝑒𝑐_𝑇𝑖𝑚𝑒𝑝, as the summation of execution

times (i.e., summation of data processing time at tasks

and delays involved in bringing data to task, buffering

data at tasks etc.) of each task that is in that path 𝑝.

Given this definition, we obtain the following:

where 𝑌 is the total number of tasks in the path 𝑝 , and

𝑇𝑎𝑠𝑘_𝐸𝑥𝑒𝑡𝑗
 is the execution time of the 𝑗𝑡ℎ task in the

path p of 𝐺𝐴𝑝𝑝. 𝑇𝑎𝑠𝑘_𝐸𝑥𝑒𝑡𝑗
 can be calculated from the

following:

 In equation 03, 𝑃𝑟𝑜𝑐_𝑡𝑖𝑚𝑒𝑡𝑗
 is the amount of time

taken to process IoT data by 𝑡𝑗 . 𝐶𝑜𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗
 is the

amount of time taken to transfer a single data item from

the predecessor task 𝑡𝑖, to the task at hand 𝑡𝑗 , via 𝑑𝑖𝑗 .

To capture the total 𝐶𝑜𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗
, we multiply this

with the queue size of 𝑡𝑗 , which we denoted as 𝑞𝑡𝑗
. Note

in here we don’t need to consider the maximum of

𝐶𝑜𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗
, because we apply this equation on a

single path of the graph, and at the end the critical path

is chosen using equation 01. We assume, 𝐶𝑜𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗

to be 0, if the two tasks (i.e., 𝑡𝑖 and 𝑡𝑗) are executed in

the same computing resource. 𝑆𝑡𝑎𝑟𝑡_𝑑𝑒𝑙𝑎𝑦𝑡𝑖
is the time

taken to produce the first data item by the predecessor

task 𝑡𝑖, and 𝑊𝑎𝑖𝑡_𝑑𝑒𝑙𝑎𝑦𝑡𝑖
 is the delay between

producing data items at the predecessor task 𝑡𝑖. For

stateful tasks to capture the total 𝑊𝑎𝑖𝑡_𝑑𝑒𝑙𝑎𝑦𝑡𝑖
 , this

gets multiplied by 𝑞𝑡𝑗
 (i.e., the queue size of task 𝑡𝑗).

𝐶𝑜𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗
 can be calculated using the following:

𝑇𝑎𝑠𝑘_𝐸𝑥𝑒𝑡𝑗
 = 𝑃𝑟𝑜𝑐_𝑡𝑖𝑚𝑒𝑡𝑗

 + 𝐶𝑜𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗
. 𝑞𝑡𝑗

+

𝑊𝑎𝑖𝑡_𝑑𝑒𝑙𝑎𝑦𝑡𝑖
. 𝑞𝑡𝑗

+ 𝑆𝑡𝑎𝑟𝑡_𝑑𝑒𝑙𝑎𝑦𝑡𝑖

(03)

𝑃𝑎𝑡ℎ_𝐸𝑥𝑒𝑐_𝑇𝑖𝑚𝑒𝑝 = ∑ 𝑇𝑎𝑠𝑘_𝐸𝑥𝑒𝑡𝑗

𝑌

𝑗=1 (02)

𝑇𝑜𝑡𝑎𝑙_𝐸𝑥𝑒𝑐𝐴𝑝𝑝 = max
𝑝 ∈ 1…𝑃𝑎𝑡ℎ𝑠

(𝑃𝑎𝑡ℎ_𝐸𝑥𝑒𝑐_𝑇𝑖𝑚𝑒𝑝) (01)

Page 7188

where, 𝐷𝑎𝑡𝑎𝑑𝑖𝑗
 , denotes the size of a single data piece

that need to be sent to 𝑡𝑗 from predecessor task 𝑡𝑖 via

𝑑𝑖𝑗 , that is placed on network link 𝑛𝑟𝑖𝑗 , and

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝐵𝑎𝑛𝑑𝑛𝑟𝑖𝑗
 is available bandwidth of the 𝑛𝑟𝑖𝑗.

 Decision variables: We define the decision variables

that form the task distribution plan as follows: First

decision variable 𝛼𝑡𝑗

𝑐𝑟𝑖 denotes whether a task 𝑡𝑗 is

distributed on a computing resource 𝑐𝑟𝑖 or not. The next

decision variable 𝛾𝑑𝑖𝑗

𝑛𝑟𝑖 denotes whether a dataflow 𝑑𝑖𝑗 is

placed on a network resource 𝑛𝑟𝑖 or not.

 Constraints: First, the task distribution on computing

resources and dataflow placement on network link

resources must not exceed the available resources of

those corresponding computing and network resources.

A task 𝑡𝑗 can be distributed in the computing resource

𝑐𝑟𝑖, if 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑅𝑒𝑠𝑐𝑟𝑖
 is at least equal to or more than

 𝑇𝑎𝑠𝑘_𝑅𝑒𝑠𝑡𝑗
 of 𝑡𝑗 . We can formally denote it as follows:

 ∀ 𝑐𝑟𝑖 ∈ 𝐶𝑜𝑚𝑝_𝑅𝑒𝑠 ,

Each network link can only transfer data that is

within its available bandwidth and we can formally

denote it as follows:
∀ 𝑛𝑟𝑖𝑗 ∈ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝑅𝑒𝑠,

where 𝐷𝑎𝑡𝑎𝑑𝑖𝑗
, denotes the amount of data transfer

between task 𝑡𝑖 and 𝑡𝑗 via network link 𝑛𝑟𝑖𝑗 , and 𝛾
𝑑𝑖𝑗

𝑛𝑟𝑖𝑗 is

the binary variable denoting whether a dataflow 𝑑𝑖𝑗 is

placed on a network resource 𝑛𝑟𝑖𝑗 or not.

As for the second constraint, TS-IoT applications

must satisfy their time-bound requirements. We can

formally denote it as follows:

 Objective function: Objective of the task distribution

problem is to devise a task distribution plan in IoT

environment that yields the minimum application

execution time while satisfying time-bound and
resource constraints. We formally denote it as follows:

However, solving this problem tends to be NP hard,

hence we aim to solve this problem using a novel task

sizing technique and a greedy heuristic approach

described in the next section.

4. Dynamic task distribution

 Dynamic task distribution consists of two main

components, the task sizing technique and greedy task

distribution algorithm. Contrast to the traditional cloud-

based IoT data processing approach, in here the

proposed techniques explore how tasks can exploit the

resources found at IoT devices as well as nearby edge

computers to reduce the communication delay. Another
possibility of the proposed techniques is that, we can

execute this multiple time to produce different task

distribution plans in instances where certain computing

resources are disconnected from the IoT environment.

4.1 Task sizing technique

Task sizing technique is used for measuring the

computing and network resources required by the tasks

when they are executed in the available IoT devices,

edge computers and cloud. This gets executed whenever
the underlying IoT environment changes, thus allows us

to obtain IoT environment specific measurements for

each task in the TS-IoT application. This technique

takes 𝐺𝐴𝑝𝑝, 𝐺𝑅𝑒𝑠 as inputs. As the first main step, the

algorithm creates a TaskList, by traversing through the

task graph 𝐺𝐴𝑝𝑝 in breadth first search (BFS) manner.

Then it creates a ResourceList, from the resource graph

𝐺𝑅𝑒𝑠. Then for each resource in the ResourceList, every

task is executed. Then during the execution, the

computing and network resources required by each task

and the execution time for each task is measured and

recorded in the measurement table. This process is

repeatedly done until the end of resources in the

resource list. The output of the task sizing technique is

a measurement table, which is comprised of computing
and network resources required for each task on each

resource. Figure 2 illustrates the pseudocode for the task

sizing technique.

∑ 𝑇𝑎𝑠𝑘_𝑅𝑒𝑠𝑡𝑗
∗

𝑇𝑎𝑠𝑘𝑠

𝑡𝑗

 𝛼𝑡𝑗

𝑐𝑟𝑖 ≤ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑅𝑒𝑠𝑐𝑟𝑖
 (05)

𝑇𝑜𝑡𝑎𝑙_𝐸𝑥𝑒𝐴𝑝𝑝 ≤ 𝑇𝐵𝐴𝑝𝑝 (07)

∑ 𝐷𝑎𝑡𝑎𝑑𝑖𝑗
∗

𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤𝑠

𝑑𝑖𝑗

 𝛾
𝑑𝑖𝑗

𝑛𝑟𝑖𝑗 ≤ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝐵𝑎𝑛𝑑𝑛𝑟𝑖𝑗
 (06)

Minimize:
𝑇𝑜𝑡𝑎𝑙_𝐸𝑥𝑒𝑐𝐴𝑝𝑝= max

𝑝 ∈ 1…𝑃𝑎𝑡ℎ𝑠
(𝑃𝑎𝑡ℎ_𝐸𝑥𝑒𝑐_𝑇𝑖𝑚𝑒𝑝)

Subject to: Eq (05), Eq (06) and Eq (07)

(08)

𝐶𝑜𝑚𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗
=

𝐷𝑎𝑡𝑎𝑑𝑖𝑗

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝐵𝑎𝑛𝑑𝑛𝑟𝑖𝑗

 (04)

Figure 2. Pseudocode for the task sizing
techniques

Page 7189

4.2 Greedy task distribution algorithm

In this section, we discuss the proposed greedy task

distribution algorithm to solve the problem formulated
in section 3.2. In here, we follow a greedy heuristic

approach that aims to incrementally solve the task

distribution problem and finally generate a task

distribution plan. Figure 3 illustrates the pseudocode of

the proposed greedy algorithm.

The algorithm takes the task list, resource list,

measurement records and 𝑇𝐵𝐴 as inputs. Then for each

task in the task list, the algorithm finds an eligible (i.e.,

has enough capacity to fulfil the resources required by

the task) computing resource, that yields the lowest

execution time for that task from a sorted resources map.

To construct the sorted resources map for the first task

in the TaskList, the algorithm uses only the computing
resources that are closer to the IoT data source. To find

such resources the algorithm uses the

GetResourcesCloserToDataSource() function. Therefore,

the first task of the application will always get assigned

to a computing resource that is closer to the data source,

provided it has enough resource capacity (lines 7-8). On

the other hand, to construct the sorted resources map for

tasks that have predecessor tasks, the algorithm retrieves

the tuples of the corresponding task from the

measurement table and constructs a sorted resources

map using the data in the tuples. The map consists of the
resources and the corresponding execution time

measured for that task. Furthermore, the map is sorted

based on the measured execution times and we consider

that one computing resource can host multiple tasks if it

has enough resource capacity (lines 9 - 10).

Once the sorted resources map is created, the
algorithm iterates through each item in sorted resources

map until it finds an eligible computing resource. When

the algorithm identifies an eligible computing resource,

it first assigns that resource to the corresponding task via

updating task distribution map, then update the available

resources of the selected resource, update the

𝑇𝑜𝑡𝑎𝑙_𝐸𝑥𝑒𝐴𝑝𝑝 based on the estimated execution time,

exists the while loop and move to the next task in the

task list (lines13-23). The algorithm iteratively
determines eligible computing resources in a greedy

manner (i.e., picks the resource that would yield the

lowest execution time) for each task in the task list. If a

task couldn’t find any eligible computing resource or

𝑇𝑜𝑡𝑎𝑙_𝐸𝑥𝑒𝑐𝐴𝑝𝑝 exceeds 𝑇𝐵𝐴𝑝𝑝, the algorithm stops

executing and indicates that the TS-IoT application

cannot meet its 𝑇𝐵𝐴𝑝𝑝 with the current available

resources or else the tasks will be distributed according

to the task distribution map (steps 27-30).

5. TIDA framework

To overcome the challenges of meeting time-bound
requirements of TS-IoT applications, we introduce a

novel time-sensitive IoT data analysis (TIDA)

framework that utilizes cloud, edge and IoT devices

resources. In this section, we discuss design and

implementation of the framework via scalable and

efficient distributed task management.

5.1. Architecture of the TIDA framework

 We propose the following architecture for the

framework, which is illustrated in figure 4. In this

section, we discuss each component of the architecture.

Transformation Engine: To execute any TS-IoT

application irrespective to its underlying application

model, we propose a transformation technique, which

transforms data analysis tasks of any TS-IoT application

into a set of common executable units of the framework.

We refer to these executable units as “actors”. Each

Figure 3. Pseudocode for the dynamic task
distribution algorithm

Figure 4. Architecture of the framework

Page 7190

actor has the following characteristics: 1) represents a

data analysis task of the TS-IoT application, 2)

functionally equivalent to its corresponding data

analysis task, and 3) independent of any application

model. The transformation engine is responsible for this
functionality of the framework and it takes any TS-IoT

application specification as an input and transforms its

data analysis tasks into a set of functionally equivalent

actors that can be executed by the framework.

Task Distribution Engine: This is responsible for

efficiently managing the distribution of tasks. The task

distribution engine is comprised of two modules. They

are distribution planner module and distribution

invocator module. Distribution planner can

accommodate different task distribution algorithms.

Task distribution algorithms (such as dynamic task

distribution algorithm discussed in section 04) generate
task distribution plans. Then these task distribution

plans are sent to the distribution invocator, which then

distributes the tasks to the corresponding resources

according to the plan and invoke their executions.

Monitoring Engine: This engine continuously

monitors the execution landscape in terms of resource

utilization (CPU and RAM) and execution progress of

tasks. It is comprised of two modules: Monitoring and

Analyzer. Monitoring module monitors and collects

resource usage and execution information and forward

them to analyzer module. Analyzer analyses the
monitored data and identifies whether the time-bounds

can be met with the current execution or not.

5.2. Implementation of the TIDA platform

A proof of concept implementation of TIDA

platform [5] was implemented using Microsoft’s

Orleans Actor framework [6]. Orleans actors are

developed to scale in an elastic way and they can run on

any operating system that has .NET core installed.

Therefore, we decided to implement TIDA platform’s
underlying executable units as Orleans actors. This

facilitated us to develop a highly scalable and efficient

task management system that led us to develop a proof

of concept task distribution engine. Furthermore, we

implemented the discussed greedy dynamic task

distribution algorithm as part of the task distribution

engine. In addition to the greedy algorithm, we

implemented a random task distribution algorithm that

generates random task distribution plans. The

transformation engine was implemented as a .NET

CORE class library. For the proof of concept

implementation of this research, we developed a
wrapper that can be used to read a workflow

specification file modelled using camunda [7] workflow

modeler. The monitoring engine was implemented as an

Orleans start-up service, which gets activated when

TIDA is up and running. The monitoring engine

periodically (every second) collects metrics such as

CPU utilization percentage, RAM utilization percentage

and the execution progress of tasks. The collected

metrics are stored in a database via Orleans’s persistent
capabilities. PostgreSQL [8] relational database was

used as our storage provider. This stores performance

metrics, application specific data and information of the

resources such as health of each resource etc.

6. Evaluation

In this section, we discuss how the TIDA was

evaluated and present the results.

6.1. Methodology for Experiments

In this evaluation, we considered the IoT

environment to be static throughout the evaluation.

Therefore, the proposed task sizing technique is

executed only once before the start of the task

distribution, thus the evaluation is solely focused on the

greedy distribution algorithm of TIDA.

Testbed configurations: We created a testbed in the

cloud using NECTAR research cloud [9].The testbed
consists of a cluster of four cloud instances. To emulate

edge and IoT devices, we created two cloud instances

with similar system configurations of real world edge

and IoT devices. For this purpose, we considered the

system configurations of cisco 807 industrial services

router for the edge device and Orbbec Persee camera’s

system configurations for the IoT device. We created a

PostgreSQL database server in another cloud instance

that is responsible for storage and cluster membership.

Before we ran our experiments, we installed our

platform’s runtime on each instance of the testbed.
Table 1 illustrates the system configurations of the

computing resources used in the testbed.

IoT application, Dataset and Task Distribution

Plans: We developed the IoT application as a workflow

application. To model the application, we used camunda

workflow modeler. The application consists of three

tasks 1) pre-processing 2) classification and 3) counting.

We developed each of these three tasks as a C# program

and we utilized OpenCV library for the preprocessing

Table 1. System configurations of
computing resources

Computing

Resources

CPU RAM

Cloud server
2.5GHz Intel Core Processor

4 VCPUs

12 GB

Edge device
2.29GHz Intel Core

Processor 2 VCPUs

4 GB

IoT device
2.29GHz Intel Core

Processor 1 VCPUs

2 GB

Page 7191

task and classification task. For the dataset, we used real

video data collected using an Orbbec Persee camera

during a trial project carried out in Sydney, Australia

[10]. For this experiment, we used a RGB video file,

which is 20 seconds long and that has a resolution of 640
x 480 and 30 FPS (frames per second). We executed the

IoT application multiple times under different task

distribution plans provided by five task distribution

algorithms including the greedy dynamic task

distribution algorithm, which was discussed in section

4. Table 2 illustrates the five task distribution algorithms

and how tasks were distributed in the computing

resources.

Experimental evaluation metrics: We measured the

following performance metrics during the execution of

the application.

• Total application execution time

• Total data communication time during the

application execution

• Total data processing time of the application.

(i.e., time taken to analyze the IoT data)

• Data processing time of each data analysis

task.

6.2. Experimental evaluation results

Figure 5 compares the total data processing time,

total data communication time and total application

execution time of the passenger counting IoT

application under each task distribution algorithm.

(Note in here, we have taken the average values for the

comparison.)

Although, executing all the tasks in IoT devices
resulted in zero data communication time, this has

recorded the highest total data processing time, due to

the limited computing resources in IoT devices. On the

other hand, executing all the tasks in the cloud or edge

devices have notably improved the total data processing

time compared to that of IoT devices. However, the total

application execution time hasn’t improved much in

both occasions (i.e., all tasks at cloud and edge), due to

the data communication time involved in sending data

to the edge device and the cloud server. Random task

distribution algorithm generates different tasks
distribution plans for the application randomly without

considering the IoT environment or IoT application

requirements such as time-bound requirements,

resource requirements for tasks etc. Therefore, by

looking at the results, we can see that the task

distribution plans generated by random task distribution

algorithm shows mediocre results. The greedy dynamic

task distribution algorithm aims to generate time-bound

satisfying, application and IoT environment specific

task distribution plans. Therefore, we can notice that

compared to the other four task distribution algorithms,

the greedy dynamic task distribution algorithm has
significantly improved the total data processing time,

total data communication time and total application

execution time. Furthermore, if we make a comparison

between executing all of the tasks in the cloud, which is

the traditional way of IoT application execution, and

executing tasks based on the task distribution plans

generated by greedy dynamic task distribution

algorithm, we can observe that, greedy algorithm has

improved the total data processing time by 8.59%, the

total data communication time by 82.81% and the total

application execution time by 46.96%.
Figure 6 illustrates the data processing times for

each task. This figure shows that the classification tasks’

Table 2. Task distribution algorithms
Task distribution

algorithm

Description

Cloud only All tasks to the cloud server

Edge only All tasks to the edge device

IoT device only All tasks to the IoT device

Random distribution
Randomly generate a task distribution

plan

Greedy dynamic

task distribution

Use greedy dynamic task distribution

algorithm to task distribution plan

Figure 6. Comparison of data processing
times of each task under each task

distribution algorithm

Figure 5. Comparison of total data
processing time, total data communication
time and total application execution time
under each task distribution algorithm

Page 7192

data processing time and the computing resource where

it takes place significantly influences the total data

processing time of the IoT application compared to the

other two data analysis tasks (i.e., pre-processing task

and count task). Furthermore, we can notice that the
lowest data processing time for the classification task

results when the greedy dynamic task distribution

algorithm is used.

In summary, the evaluation demonstrated TIDA’s

capability in distributing tasks of a TS-IoT application

in IoT devices, edge devices and cloud resources. The

evaluation results showed that the task distribution plans

generated by the greedy dynamic task distribution

algorithm of the TIDA has improved the total

application execution time of the passenger counting

IoT application by 46.96% and reduced the IoT data

communication overhead by 82.81%, compared to the
traditional cloud-based approach in executing IoT

applications. Moreover, we noticed that only the task

distribution plans generated by the greedy dynamic task

distribution algorithm met the time-bound requirement

of the passenger counting IoT application, whilst the

others failed to guarantee the time-bound requirement.

7. Related Work

Meeting the time-bound requirements of TS-IoT

applications is challenging due to the heterogenous and

volatile nature of the IoT environment and the time-

bound requirements of such applications [4]. In [5] we

proposed an approach for dealing with these challenges

that involves distributing TS-IoT applications in a

collection of interrelated tasks and selecting the

appropriate IoT computing and network resources to

execute the tasks of each application in a way that they

collectively meet the application’s time-bound

requirements. To enable such task distribution, we
proposed the use of task sizing techniques for estimating

the computing and network resources required by the

tasks of TS-IoT applications. Related work in

determining the most suitable IoT resources for

computing IoT application tasks includes [11] and [12]

that investigated 1) how to estimate the computing

resources required by cloud-based IoT applications

based on historical performance metrics, and 2)

evaluated various techniques for doing this via the

Cloudsim simulator. [13] proposed a technique for

measuring the performance of computing resources
when different IoT application tasks are executed there,

while [14] introduced a platform to experimentally

evaluate performance of TS-IoT applications.

Most related research in task distribution has

considered this problem as an optimization problem and

proposed various optimization techniques (such as

linear programming, non-linear programming, and

heuristic techniques) for that. For example, [15]

proposed a technique for efficient distribution of

application tasks across cloud, edge resources in a

resource-aware manner. [16] proposed an optimization

technique that generates task distribution plan for IoT
applications. [17] introduces a technique for optimizing

the scheduling IoT application tasks in edge devices.

[18] formulates IoT application distribution as an

Integer Non-Linear Problem (INLP). It then used INLP

to minimize the cost of resource usage while satisfying

QoS requirements of the applications. The optimization

techniques proposed by [19, 20] determines appropriate

computing resource selection for meeting the QoS

requirements of IoT applications. Related computing

frameworks and tools, such as [21], [22] and [23], have

employed similar techniques to manage the distribution

of TS-IoT applications while a QoS simulation-based
tool for IoT applications. [24] proposed a recommender

system for dealing with the heterogeneity of cloud

computing resources

In summary, task sizing techniques found in the

literature have relied on simulation tools [11, 12] or

include limited testbeds [13] for sizing tasks. Such

techniques cannot effectively estimate the resources

needed by TS-IoT application tasks because they do

deal with the heterogeneity and dynamic nature of the

IoT environment. Most of the task distribution

techniques in the literature employ complex
optimization techniques [17,18,19,20] to device task

distribution plans and most of them do not consider task

sizing and they are expensive to compute. Due to these

reasons, these techniques are not suitable for TS-IoT

applications that have demanding time-bound

requirements. On contrary, TIDA presents a novel

dynamic task distribution technique that includes 1) task

sizing that measures the computing and network

resources required by the tasks when they are executed

in the IoT environment, and 2) a greedy algorithm that

uses the task sizing information to generate time-bound

satisfying task distribution plans to distribute tasks in
IoT environment. Furthermore, TIDA has been

implemented by extending Microsoft Orleans and the

greedy algorithm has been evaluated using a real world

smart city application.

8. Conclusion and future work

In this work, we proposed a novel time-sensitive
IoT data analysis (TIDA) framework for meeting time-

bound requirements of TS-IoT applications. We first

defined a formal system model for TS-IoT applications

and IoT environment. Next, we formulated the task

distribution problem as an optimization problem and

proposed a novel task sizing technique and a dynamic

task distribution algorithm to solve the task distribution

Page 7193

problem. We implemented TIDA platform that

implements the above algorithms and Microsoft’s

Orleans framework. We evaluated the TIDA by

developing a passenger counting IoT application,

executing the application in a cloud-based testbed under
different task distribution plans provided by five task

distribution algorithms and assessing how well each of

these task distribution plans enable the application to

meet its time-bound requirements. The results showed

that the TIDA on average improves the total application

execution time by 46.96% and total data communication

time by 82.81%, compared to traditional cloud-based

processing of the passenger counting IoT application.

Moreover, the dynamic task distribution algorithm of

TIDA successfully met the time-bound requirement of

the passenger counting IoT application in each

execution iteration as well. In our future work, we plan
to develop cost effective dynamic task adaptation

techniques to deal with possible time-bound violations

and to compare TIDA platform’s ability to meet time-

bound requirements with existing solutions.

9. References

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M.
Aledhari, and M. Ayyash, "Internet of Things: A survey
on Enabling Technologies, Protocols, and Applications,"
in IEEE Communications Surveys & Tutorials, vol. 17,
no. 4, pp. 2347-2376, 2015.

[2] D. Georgakopoulos and P. P. Jayaraman, "Internet of
things: from internet scale sensing to smart services,"
Computing, vol. 98, no. 10, pp. 1041-1058, 2016.

[3] J. Chen et al., "Big data challenge: a data management
perspective," Frontiers of Computer Science, vol. 7, no.
2, pp. 157-164, 2013.

[4] R. K. Naha et al., "Fog Computing: Survey of trends,
architectures, requirements, and research directions,"
IEEE Access, vol. 6, pp. 47980-48009, 2018.

[5] H. Korala, A. Yavari, D. Georgakopoulos, and P. P.
Jayaraman, "Design and Implementation of a Platform
for Managing Time-Sensitive IoT Applications," in 2020
IEEE 6th International Conference on Collaboration and
Internet Computing (CIC), December 2020.

[6] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and
J. Thelin, "Orleans: cloud computing for everyone," in
2nd ACM Symposium on Cloud Computing, pp. 1-14,
New York, Oct 2011.

[7] Camunda.org. , "Camunda.", https://camunda.com/

[8] The PostgreSQL Global Development Group,
"PostgreSQL", https://www.postgresql.org/

[9] National Research Infrastructure for Australia" Nectar
Cloud." https://nectar.org.au/research-cloud/

[10] I. Moser et al., "A Methodology for Empirically
Evaluating Passenger Counting Technologies in Public
Transport," in 41st Australasian Transport Research
Forum (ATRF), Canberra, Oct 2019.

[11] M. Aazam and E. Huh, "Dynamic resource provisioning
through Fog micro datacenter," in 2015 IEEE
International Conference on Pervasive Computing and
Communication Workshops (PerCom workshops), pp.
105-110, St.Louis, Mar 2015.

[12] M. Aazam, M. St-Hilaire, C. Lung, and I. Lambadaris, "
MeFoRE: QoE based resource estimation at Fog to
enhance QoS in IoT," in 2016 23rd International
Conference on Telecommunications (ICT), pp. 1-5,
Thessaloniki, May 2016.

[13] M. Arlitt, M. Marwah, G. Bellala, A. Shah, J. Healey, and
B. Vandiver, "IoTAbench: an Internet of Things
Analytics Benchmark," in 6th ACM/SPEC International
Conference on Performance Engineering, pp. 133-144,
New York, Jan 2015.

[14] H. Korala, P. P. Jayaraman, A. Yavari, and D.
Georgakopoulos, "APOLLO: A Platform for
Experimental Analysis of Time Sensitive Multimedia
IoT Applications," in 18th International Conference on
Advances in Mobile Computingand Multimedia (MoMM
’20), Chiang Mai, December 2020.

[15] M. Taneja and A. Davy, "Resource aware placement of
IoT application modules in Fog-Cloud Computing
Paradigm," in 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pp. 1222-1228,
Lisbon, May 2017.

[16] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner,
"Resource Provisioning for IoT Services in the Fog,"in
2016 IEEE 9th international conference on service-
oriented computing and applications (SOCA), pp. 32-39,
Macau, Nov 2016.

[17] H. Hong, P. Tsai, and C. Hsu, "Dynamic module
deployment in a fog computing platform," in 2016 18th
Asia-Pacific Network Operations and Management
Symposium (APNOMS), pp. 1-6, Kanazawa, Oct 2016.

[18] A. Yousefpour et al., " FOGPLAN: A Lightweight QoS-
Aware Dynamic Fog Service Provisioning Framework,"
in IEEE Internet of Things Journal, vol. 6, no. 3, pp.
5080-5096, June 2019.

[19] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar,
"Towards QoS-Aware Fog Service Placement," in 2017
IEEE 1st international conference on Fog and Edge
Computing (ICFEC), pp. 89-96, Madrid, May 2017.

[20] L. Li, S. Li, and S. Zhao, "QoS-Aware Scheduling of
Services-Oriented internet of Things," in IEEE
Transactions on Industrial Informatics, vol. 10, no. 2, pp.
1497-1505, May 2014.

[21] E. Yigitoglu, M. Mohamed, L. Liu, and H. Ludwig,
"Foggy: A Framework for Continuous Automated IoT
Application Deployment in Fog Computing," in 2017
IEEE International Conference on AI & Mobile Services
(AIMS), pp. 38-45, Honolulu, June 2017.

[22] P. Michalák and P. Watson, "PATH2iot: A Holistic,
Distributed Stream Processing System," in 2017 IEEE
International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 25-32, Hong
Kong, Dec 2017.

[23] A. Brogi and S. Forti, "QoS-Aware Deployment of IoT
Applications Through the Fog," in IEEE Internet of
Things Journal, vol. 4, no. 5, pp. 1185-1192, Oct 2017.

[24] M. Zhang, R. Ranjan, A. Haller, D. Georgakopoulos, and
P. Strazdins, "Investigating decision support techniques
for automating Cloud service selection," in 4th IEEE
International Conference on Cloud Computing
Technology and Science Proceedings, pp. 759-764,
Taipei, Dec 2012.

Page 7194

