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Abstract 
    This paper proposes a Time-Sensitive IoT Data 

Analysis (TIDA) framework that meets the time-bound 

requirements of time-sensitive IoT applications. The 

proposed framework includes a novel task sizing and 

dynamic distribution technique that performs the 
following: 1) measures the computing and network 

resources required by the data analysis tasks of a time-

sensitive IoT application when executed on available 

IoT devices, edge computers and cloud, and 2) 

distributes the data analysis tasks in a way that it meets 

the time-bound requirement of the IoT application. The 

TIDA framework includes a TIDA platform that 

implements the above techniques using Microsoft’s 

Orleans framework. The paper also presents an 

experimental evaluation that validates the TIDA 

framework’s ability to meet the time-bound 
requirements of IoT applications in the smart cities 

domain. Evaluation results show that TIDA outperforms 

traditional cloud-based IoT data processing 

approaches in meeting IoT application time-bounds and 

reduces the total IoT data analysis execution time by 

46.96%. 

 1. Introduction  

Internet of Things (IoT) is a new evolution of the 

Internet that connects a variety of sensors, industrial 

machines, video cameras, and mobile phones (which we 

refer to all these as IoT devices) that can communicate 

with each other over the internet [1, 2]. In recent times, 

data produced from IoT devices (we refer this data as 

IoT data) have increased tremendously and a lot of 

attention has been given to extract valuable insights 

from this data [3]. To achieve this, IoT applications 

gather IoT data, analyze them and produce high value 

information.  
In this paper we focus on IoT applications that 

require the results of their data analysis to be produced 

within a specific time bound, otherwise the produced 

information will not be useful. We refer such 

applications as Time-Sensitive IoT (TS-IoT) 

applications and the requirements of data analysis as 

time-bound requirements. For example, a vehicle 

accident prediction application must analyse IoT data 

collected from traffic and on-board cameras and 

sensors, predict a possible accident and prevent the 

accident by informing the corresponding driver in near 

real-time (e.g., within a 30ms time bound). If there is 

any extra time (i.e., more than the time bound) involved 

in completing the data analysis, the predicted accident 

information will not be useful to prevent the accident. 

To discuss further the problem of addressing time-

bound requirements, consider that TS-IoT applications 

are comprised of a set of data analysis tasks. Each of 

these tasks may need to perform one of the following: 
consume IoT data from heterogeneous IoT devices, 

perform data processing ranging from basic stream 

processing to resource-intensive machine learning and 

statistics, manage the data queues required for stateful 

data analysis, and produce information that is used by 

other tasks in the same IoT application. Currently, TS-

IoT applications, which are comprised of such data 

analysis tasks, are executed in distributed IoT 

environments. 

Guaranteeing the time-bound requirements of TS-

IoT applications heavily depend on the total application 
execution time. This can be measured as the summation 

of total data processing time and the total data 

communication time. The total data processing time is 

influenced by the resource where the data analysis is 

performed whilst the total data communication time is 

influenced by the relevant network delays involved in 

transferring IoT data to corresponding resources. 

Therefore, satisfying time-bound requirements heavily 

depends on the selection of appropriate resources from 

the IoT environment. However, the decision to select 

which cloud, edge [4], and/or IoT device resources to 
execute a TS-IoT application has its trade-offs. 

Processing IoT data on the IoT devices offers the lowest 

communication delays, but IoT devices have very 

limited computing resources. Edge computers have 

more computing resources than IoT devices, but they are 

subject to more communication delays than IoT devices. 

The cloud offers virtually unlimited resources [4] but 

suffers from significant communication delays when 

transferring IoT data to the cloud. Furthermore, each 

task has different resource requirements as well. 

Therefore, while it is often possible to meet the time-

bound requirements of each TS-IoT application by 
distributing tasks for execution in the IoT devices, edge 
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and cloud resources, we must determine the best 

possible distribution of tasks from the perspective of 

communication and computing resource constraints. 

However, determining the task distribution for TS-IoT 

applications is more difficult than any other application 
due to the volatile nature of the IoT environment. 

Because of this, it has become a major challenge to 

address this problem. 

In this paper, we propose a novel Time-Sensitive 

IoT Data Analysis (TIDA) framework that utilises the 

computing resources available at the IoT devices, edge 

computers and cloud in meeting the time-bound 

requirements of each TS-IoT application when the entire 

pool of available computing resources is sufficient to 

collectively achieve this. The main contributions of the 

TIDA framework and this paper are:  

1. A novel dynamic distribution algorithm for 
(possibly inter-dependent) IoT data analysis tasks   

that maintains distributions of such tasks across 

cloud, edge and IoT devices resources in a way the 

TS-IoT application meets its time bounds.  

2. A TIDA platform that implements the above 

algorithms, as well as related task measuring, 

distribution, and migration techniques using 

Microsoft’s Orleans Actor framework. 

3. An experimental evaluation that shows that the 

TIDA platform outperforms existing cloud-based 

IoT data analysis solutions in a smart city 
application that requires maintaining a totally 

accurate count of all passengers that are currently 

being transported in all the buses of the public 

transport network of Sydney, Australia.  

The remainder of the paper is organised as follows. 

Section 2 presents a motivating use case scenario, 

Section 3 describes the system model and problem 

formulation, Section 4 discusses the dynamic task 

distribution, Section 5 presents the design and 

implementation of TIDA framework. Section 6 presents 

the experimental evaluation results, Section 7 presents 

the related work and Section 8 concludes the paper and 
outlines potential future work. 

2. Smart city passenger counting 

application - Motivating scenario 

Let us consider a smart city application that requires 

an accurate count of passengers for a public transport 

system in near real-time. The passenger count 

information is used by transport service to improve 

planning and scheduling of buses, allocate busses or 

trains to meet the actual demand, and to respond to 

unplanned incidents such as bus breakdowns and 

                                                
1 https://orbbec3d.com/product-persee/ 

accidents. To count passengers in this smart city 

environment we utilized the following IoT devices, edge 

computers and cloud resources:   

1. Orbbec Persee1 IoT devices providing a 

combination of RGB, and infrared cameras with a 
fully functioning onboard computer were mounted 

above the doors of each bus. We use these devices 

to count the passengers stepping in and out of each 

bus at each bus stop in the transport network. The 

IoT data generated by these IoT devices included: 

1) video data (i.e., RGB), 2) depth sensor data, and 

3) infrared data at 30 frames per second. In addition 

to generating a large volume and variety of IoT data 

form their sensors, the Orbbec Persee devices 

provide internal computing and storage resources 

consisting of a Quad-core Cortex A17 processor 

(which has a processing speed of 1.8GHz), 2GB 
RAM and 8GB internal storage. 

2. Edge computers at bus stops and train stations 

included cisco 807 industrial service routers2. 

These edge computers act as gateways for IoT 

devices and connect to the cloud data center via 

internet. Furthermore, the edge computers include 

additional computing and storage resources that can 

be used for IoT data analysis as well.  

3. A Cloud data center with virtually unlimited 

computing resources.  

In this IoT environment, the IoT devices, edge 
computers, and cloud are connected with each other via 

different networks (e.g., NB-IoT, 4G, broadband). The 

Orbbec Persee IoT devices incorporate Wi-Fi cards and 

via this they can connect to the edge computer at each 

bus stop. In addition, these IoT devices can also be 

directly connected to the cloud via 4G during the entire 

bus journey. However, the IoT devices can connect to 

edge computers only when they are near bus stops or 

train stations. Edge computers and cloud data center are 

connected via broadband internet.  

To compute the occupancy of each bus and the total 

occupancy, this TS-IoT application must perform the 
following: 1) capture passenger data while stepping in 

and out of each bus, 2) analyze the collected 

RGB/infrared/depth data and to recognize individual 

passengers, and 3) compute the occupancy of each bus 

at each bus stop and the entire transport network. This 

task may involve the following sub-tasks: 1) pre-

processing the collected RGB/infrared/depth data, 2) 

classifying passengers as entering or existing by 

applying classification techniques such as Haar-cascade 

classifier. (Please note that in this paper, we consider the 

classifier to be an already trained classifier, hence 
training the classifier is not considered to be an IoT data 

analysis task and it is not discussed further in this paper) 

2 https://www.cisco.com  
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and 3) calculating the total occupancy of the bus, and 4) 

computing the total occupancy of all the busses in the 

transport network. Figure 1 illustrates the motivating 

scenario, computing resources, and IoT data analysis 

tasks in this TS-IoT application. 

The IoT passenger count application has a variable 

timebound that is hard to meet, i.e., fails to meet its time 

bound requirement when any bus reaches the next bus 

stop before its occupancy information from the previous 

bus stop is counted. Meeting time-bound requirements 
in IoT often depends on the selection of computing and 

networking resources for each TS-IoT application. In 

passenger counting IoT application, though we perform 

the entire data analysis quickly in the cloud, this may 

involve significant communication delay to collect all 

the passenger RGB/infrared/depth data. Offloading the 

collected passenger data to edge computers and 

performing the data analysis in edge computer is another 

option. However, the only limited time to transfer the 

passenger data to the edge computer, many buses may 

be near each bus stop, and the computing resources in 

edge computers are more limited than in the cloud. 
Processing data in an IoT device itself is another option 

that is viable only if an IoT device has enough 

computing resources available for the tasks of the IoT 

application at hand. 

Therefore, to meet the time-bound requirements of 

this and any other TS-IoT application, we must 

determine the best possible distribution of the data 

analysis tasks that comprise the TS-IoT application from 

the perspective of providing enough computing 

resources and communication capacity and compute the 

assigned analysis tasks in a way that the entire TS-IoT 
application meets its time bound(s). 

3. System model & problem formulation 

Due to the trade-offs between IoT resources in the 

distributed IoT environment, it is necessary to generate 

a task distribution plan (which meets the application’s 

time-bounds requirement) by determining relevant 

communication delays involved and needed computing 

resources capacities for each task.  To address this, first 

we present a formal description of the resources in the 
IoT environment and the TS-IoT applications. Then we 

formulate the tasks distribution problem as an 

optimization problem. 

Resource model. Computing resources (i.e., IoT 

devices, edge computers and cloud) and network 

resources in the distributed IoT environment form a 

graph 𝐺𝑅𝑒𝑠  =  (𝐶𝑜𝑚𝑝_𝑅𝑒𝑠 , 𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝑅𝑒𝑠 ), where 

𝐶𝑜𝑚𝑝_𝑅𝑒𝑠 represent the distributed computing 

resources and 𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝑅𝑒𝑠 represent the network 
links between computing resources. A single computing 

resource of 𝐺𝑅𝑒𝑠 can be denoted 𝑐𝑟𝑖, where 𝑐𝑟𝑖  ∈
𝐶𝑜𝑚𝑝_𝑅𝑒𝑠 and 𝑖 ∈ 1 … 𝑚, m is the total number of 

computing resources in 𝐺𝑅𝑒𝑠. Each 𝑐𝑟𝑖, has an attribute 

called 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑅𝑒𝑠𝑐𝑟𝑖
, which is the amount of 

resources available at 𝑐𝑟𝑖. Further, 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑅𝑒𝑠𝑐𝑟𝑖
 

can be represented as a tuple of ⟨𝑐𝑝𝑢𝑐𝑟
𝑖  , 𝑟𝑎𝑚𝑐𝑟

𝑖 ⟩. 

    A single network link of the 𝐺𝑅𝑒𝑠 represents the 
network resources of a network link between two 

computing resources, 𝑐𝑟𝑖 and 𝑐𝑟𝑗 . This can be denoted as 

𝑛𝑟𝑖𝑗  ∈ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝑅𝑒𝑠, where i and j denote the 

corresponding indexes of the two computing resources 

that are connected via network link 𝑛𝑟𝑖𝑗 . Each 𝑛𝑟𝑖𝑗  has 

the following attribute: 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝐵𝑎𝑛𝑑𝑛𝑟𝑖𝑗
 is the 

amount of available bandwidth of the network resource 

link 𝑛𝑟𝑖𝑗 . Furthermore,  𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝐵𝑎𝑛𝑑𝑛𝑟𝑖𝑗
 is 

captured by a tuple ⟨𝑢𝑝 
𝑖𝑗  , 𝑑𝑜𝑤𝑛 

𝑖𝑗⟩ where 𝑢𝑝 
𝑖𝑗  is the 

amount of upload bandwidth available and 𝑑𝑜𝑤𝑛 
𝑖𝑗 is 

the amount of download bandwidth available in 𝑛𝑟𝑖𝑗 .  

Application model. A TS-IoT application is comprised 

of a set of (possibly inter-dependent) tasks that interact 

via data exchanges. A TS-IoT application can be 

represented as a directed acyclic graph (DAG), 𝐺𝐴𝑝𝑝  =

 (𝑇𝑎𝑠𝑘𝑠 , 𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤𝑠 ), where 𝑇𝑎𝑠𝑘𝑠  represent the 

tasks of the TS-IoT application and 𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤𝑠  

represent the data flows between Tasks. Each TS-IoT 

application has a time-bound requirement and we denote 

it as 𝑇𝐵𝐴𝑝𝑝. 

A single task of the 𝐺𝐴𝑝𝑝 can be denoted as 𝑡𝑖, 

where, 𝑡𝑖  ∈ 𝑇𝑎𝑠𝑘𝑠 and 𝑖 ∈ 1 … 𝑛, where 𝑛 is the total 

number of tasks in 𝐺𝐴𝑝𝑝.  Each task can be of two types: 

Stateful tasks and stateless tasks. Stateful tasks require 

to buffer a certain number of data items before 

processing them. We identify the number of data items 

required to buffer in a stateful task as queue size and 

denote this as 𝑞𝑡𝑖
. Stateless tasks do not require to buffer 

data items during their data processing, therefore we 

consider 𝑞𝑡𝑖
 of stateless tasks to be 1. Furthermore, to 

Figure 1. Illustration of motivating scenario 
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identify whether a task is stateful or not, we denote the 

following binary attribute,  𝑖𝑠_𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙𝑡𝑖
: 

𝑖𝑠_𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙𝑡𝑖
=1 if task 𝑡𝑖  is a stateful task and 

𝑖𝑠_𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙𝑡𝑖
=0 otherwise. With the current proposed 

model, we assume that the tasks run continuously, hence 

we don’t consider any loop variables (i.e., control 

variables) for this model at this stage.  

    Each 𝑡𝑖, has the following attributes: 𝑇𝑎𝑠𝑘_𝑅𝑒𝑠𝑡𝑖
 is 

the amount of computing resources required for the 

execution of 𝑡𝑖 . 𝑃𝑟𝑜𝑐_𝑡𝑖𝑚𝑒𝑡𝑖
 denotes the time taken to 

process the IoT data at a specific computing resource. 

This depends on the computing resource where the task 

gets executed.  A 𝑡𝑖, is associated with two delays as 

well. We denote them as 𝑆𝑡𝑎𝑟𝑡_𝐷𝑒𝑙𝑎𝑦𝑡𝑖
 and 

𝑊𝑎𝑖𝑡_𝐷𝑒𝑙𝑎𝑦𝑡𝑖
. Time taken to produce the first data item 

during IoT data processing is denoted by 𝑆𝑡𝑎𝑟𝑡_𝐷𝑒𝑙𝑎𝑦𝑡𝑖
 

and the delay between producing data items is denoted 

as 𝑊𝑎𝑖𝑡_𝐷𝑒𝑙𝑎𝑦𝑡𝑖
. We assume that the aforementioned 

attributes can be obtained by measurements.  

    A single dataflow of 𝐺𝐴𝑝𝑝 represents the dataflow 

(i.e., data transfer) between the predecessor tasks 𝑡𝑖   and 

successor task 𝑡𝑗   , and this can be denoted as 𝑑𝑖𝑗  , where 

𝑑𝑖𝑗  ∈ 𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤𝑠. i and j denote the indexes of the 

corresponding tasks. In our model, we assume that data 

is transferred piece by piece. Each 𝑑𝑖𝑗 ,  has the following 

attributes: 𝐷𝑎𝑡𝑎𝑑𝑖𝑗
 is the size of a single data piece 

transferred through 𝑑𝑖𝑗 . The amount of time to send a 

single piece of data via a network link is denoted as 

𝐶𝑜𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗
.  

The above model is based on the following 

assumptions: 

1. We assume that cloud data centres in the IoT 

environment to have unlimited computing (CPU, 

memory, and storage) resources, whilst IoT devices 

and edge computers to have limited computing and 

storage resources.  
2. We assume the bandwidth of all the network links 

to be limited in capacity and static.  

3. We assume the 𝑇𝑎𝑠𝑘_𝑅𝑒𝑠𝑡𝑖
 can be obtained by 

measurements via executing the corresponding task 
on a reference computing resource.  

4. We assume the 𝑃𝑟𝑜𝑐_𝑡𝑖𝑚𝑒𝑡𝑖
 on a computing 

resource can be obtained by estimating based on 

previous measurements.  

5. We assume the 𝐺𝑅𝑒𝑠, is developed by considering 

the amount of computing resources and their 

networks available in the IoT environment. 

Problem formulation Our objective is to generate an 

application-specific, time-bound satisfying task 

distribution plan for the IoT environment within the 

available resources. To realise this, we need to generate 

a task distribution plan in an IoT environment in a way 

that the end-to-end response time of the TS-IoT 

application is within the time-bound requirement of the 

application. Furthermore, in this model we consider TS-

IoT application graphs with multiple paths and to 

capture this we consider the end-to-end response time of 
the critical path in the graph. We define this critical path 

of the application graph as a set of tasks and dataflows, 

forming a path, for which the end-to-end response time 

is maximal. We refer to this end-to-end response time of 

the application as Total Application Execution Time and 

denote it as 𝑇𝑜𝑡𝑎𝑙_𝐸𝑥𝑒𝑐𝐴𝑝𝑝 . Given this definition, we can 

formulate the following equation: 

where 𝑃𝑎𝑡ℎ_𝐸𝑥𝑒𝑐_𝑇𝑖𝑚𝑒𝑝 is the end-to-end execution 

time along the path 𝑝 and 𝑃𝑎𝑡ℎ𝑠 is the total number of 

paths in 𝐺𝐴𝑝𝑝. For any path 𝑝, we can calculate the 

𝑃𝑎𝑡ℎ_𝐸𝑥𝑒𝑐_𝑇𝑖𝑚𝑒𝑝, as the summation of execution 

times (i.e., summation of data processing time at tasks 

and delays involved in bringing data to task, buffering 

data at tasks etc.) of each task that is in that path 𝑝. 

Given this definition, we obtain the following:  

where 𝑌 is the total number of tasks in the path 𝑝 , and 

𝑇𝑎𝑠𝑘_𝐸𝑥𝑒𝑡𝑗
 is the execution time of the 𝑗𝑡ℎ task in the 

path p of 𝐺𝐴𝑝𝑝.  𝑇𝑎𝑠𝑘_𝐸𝑥𝑒𝑡𝑗
 can be calculated from the 

following:  

      In equation 03,  𝑃𝑟𝑜𝑐_𝑡𝑖𝑚𝑒𝑡𝑗
 is the amount of time 

taken to process IoT data by 𝑡𝑗 . 𝐶𝑜𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗
 is the 

amount of time taken to transfer a single data item from 

the predecessor task 𝑡𝑖,  to the task at hand 𝑡𝑗 , via 𝑑𝑖𝑗 .  

To capture the total 𝐶𝑜𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗
, we multiply this 

with the queue size of  𝑡𝑗 , which we denoted as 𝑞𝑡𝑗
. Note 

in here we don’t need to consider the maximum of 

𝐶𝑜𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗
, because we apply this equation on a 

single path of the graph, and at the end the critical path 

is chosen using equation 01. We assume, 𝐶𝑜𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗
 

to be 0, if the two tasks (i.e., 𝑡𝑖 and 𝑡𝑗) are executed in 

the same computing resource.  𝑆𝑡𝑎𝑟𝑡_𝑑𝑒𝑙𝑎𝑦𝑡𝑖
is the time 

taken to produce the first data item by the predecessor 

task 𝑡𝑖, and 𝑊𝑎𝑖𝑡_𝑑𝑒𝑙𝑎𝑦𝑡𝑖
 is the delay between 

producing data items at the predecessor task 𝑡𝑖. For 

stateful tasks to capture the total 𝑊𝑎𝑖𝑡_𝑑𝑒𝑙𝑎𝑦𝑡𝑖
 , this 

gets multiplied by 𝑞𝑡𝑗
 (i.e., the queue size of task 𝑡𝑗). 

𝐶𝑜𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗
 can be calculated using the following: 

𝑇𝑎𝑠𝑘_𝐸𝑥𝑒𝑡𝑗
  = 𝑃𝑟𝑜𝑐_𝑡𝑖𝑚𝑒𝑡𝑗

 + 𝐶𝑜𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗
. 𝑞𝑡𝑗

+  

𝑊𝑎𝑖𝑡_𝑑𝑒𝑙𝑎𝑦𝑡𝑖
. 𝑞𝑡𝑗

+ 𝑆𝑡𝑎𝑟𝑡_𝑑𝑒𝑙𝑎𝑦𝑡𝑖
 

(03) 

 

𝑃𝑎𝑡ℎ_𝐸𝑥𝑒𝑐_𝑇𝑖𝑚𝑒𝑝  =  ∑ 𝑇𝑎𝑠𝑘_𝐸𝑥𝑒𝑡𝑗
 

𝑌  

𝑗=1   (02) 
 

 
 

 

 

𝑇𝑜𝑡𝑎𝑙_𝐸𝑥𝑒𝑐𝐴𝑝𝑝 = max
𝑝 ∈ 1…𝑃𝑎𝑡ℎ𝑠

( 𝑃𝑎𝑡ℎ_𝐸𝑥𝑒𝑐_𝑇𝑖𝑚𝑒𝑝) (01) 
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where, 𝐷𝑎𝑡𝑎𝑑𝑖𝑗
 , denotes the size of a single data piece 

that need to be sent to 𝑡𝑗  from predecessor task 𝑡𝑖  via 

𝑑𝑖𝑗 , that is placed on network link 𝑛𝑟𝑖𝑗  , and 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝐵𝑎𝑛𝑑𝑛𝑟𝑖𝑗
 is available bandwidth of the 𝑛𝑟𝑖𝑗.   

    Decision variables: We define the decision variables 

that form the task distribution plan as follows: First 

decision variable 𝛼𝑡𝑗

𝑐𝑟𝑖  denotes whether a task 𝑡𝑗  is 

distributed on a computing resource 𝑐𝑟𝑖 or not. The next 

decision variable 𝛾𝑑𝑖𝑗

𝑛𝑟𝑖  denotes whether a dataflow 𝑑𝑖𝑗  is 

placed on a network resource 𝑛𝑟𝑖 or not.  

    Constraints: First, the task distribution on computing 

resources and dataflow placement on network link 

resources must not exceed the available resources of 

those corresponding computing and network resources.  

A task 𝑡𝑗  can be distributed in the computing resource 

𝑐𝑟𝑖, if  𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑅𝑒𝑠𝑐𝑟𝑖
 is at least equal to or more than 

 𝑇𝑎𝑠𝑘_𝑅𝑒𝑠𝑡𝑗
 of 𝑡𝑗  . We can formally denote it as follows: 

 ∀ 𝑐𝑟𝑖 ∈  𝐶𝑜𝑚𝑝_𝑅𝑒𝑠 ,  

Each network link can only transfer data that is 

within its available bandwidth and we can formally 

denote it as follows: 
∀ 𝑛𝑟𝑖𝑗 ∈  𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝑅𝑒𝑠, 

where 𝐷𝑎𝑡𝑎𝑑𝑖𝑗
, denotes the amount of data transfer 

between task 𝑡𝑖 and 𝑡𝑗  via network link 𝑛𝑟𝑖𝑗 , and 𝛾
𝑑𝑖𝑗

𝑛𝑟𝑖𝑗  is 

the binary variable denoting whether a dataflow 𝑑𝑖𝑗 is 

placed on a network resource 𝑛𝑟𝑖𝑗 or not.  

As for the second constraint, TS-IoT applications 

must satisfy their time-bound requirements. We can 

formally denote it as follows: 

    Objective function: Objective of the task distribution 

problem is to devise a task distribution plan in IoT 

environment that yields the minimum application 

execution time while satisfying time-bound and 
resource constraints. We formally denote it as follows:  

However, solving this problem tends to be NP hard, 

hence we aim to solve this problem using a novel task 

sizing technique and a greedy heuristic approach 

described in the next section. 

4. Dynamic task distribution 

    Dynamic task distribution consists of two main 

components, the task sizing technique and greedy task 

distribution algorithm. Contrast to the traditional cloud-

based IoT data processing approach, in here the 

proposed techniques explore how tasks can exploit the 

resources found at IoT devices as well as nearby edge 

computers to reduce the communication delay. Another 
possibility of the proposed techniques is that, we can 

execute this multiple time to produce different task 

distribution plans in instances where certain computing 

resources are disconnected from the IoT environment. 

4.1 Task sizing technique  

Task sizing technique is used for measuring the 

computing and network resources required by the tasks 

when they are executed in the available IoT devices, 

edge computers and cloud. This gets executed whenever 
the underlying IoT environment changes, thus allows us 

to obtain IoT environment specific measurements for 

each task in the TS-IoT application. This technique 

takes 𝐺𝐴𝑝𝑝, 𝐺𝑅𝑒𝑠 as inputs. As the first main step, the 

algorithm creates a TaskList, by traversing through the 

task graph 𝐺𝐴𝑝𝑝 in breadth first search (BFS) manner. 

Then it creates a ResourceList, from the resource graph 

𝐺𝑅𝑒𝑠. Then for each resource in the ResourceList, every 

task is executed. Then during the execution, the 

computing and network resources required by each task 

and the execution time for each task is measured and 

recorded in the measurement table. This process is 

repeatedly done until the end of resources in the 

resource list. The output of the task sizing technique is 

a measurement table, which is comprised of computing 
and network resources required for each task on each 

resource. Figure 2 illustrates the pseudocode for the task 

sizing technique. 

∑ 𝑇𝑎𝑠𝑘_𝑅𝑒𝑠𝑡𝑗
∗ 

𝑇𝑎𝑠𝑘𝑠

𝑡𝑗

 𝛼𝑡𝑗

𝑐𝑟𝑖   ≤ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑅𝑒𝑠𝑐𝑟𝑖
   (05) 

 

 

 

 

 

𝑇𝑜𝑡𝑎𝑙_𝐸𝑥𝑒𝐴𝑝𝑝  ≤  𝑇𝐵𝐴𝑝𝑝 (07) 
 

 
 

 

 

∑ 𝐷𝑎𝑡𝑎𝑑𝑖𝑗
∗ 

𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤𝑠

𝑑𝑖𝑗

 𝛾
𝑑𝑖𝑗

𝑛𝑟𝑖𝑗 ≤  𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝐵𝑎𝑛𝑑𝑛𝑟𝑖𝑗
  (06) 

 

Minimize:  
𝑇𝑜𝑡𝑎𝑙_𝐸𝑥𝑒𝑐𝐴𝑝𝑝= max

𝑝 ∈ 1…𝑃𝑎𝑡ℎ𝑠
( 𝑃𝑎𝑡ℎ_𝐸𝑥𝑒𝑐_𝑇𝑖𝑚𝑒𝑝) 

Subject to:   Eq (05), Eq (06) and Eq (07) 

(08) 

   

 

𝐶𝑜𝑚𝑚_𝑑𝑒𝑙𝑎𝑦𝑑𝑖𝑗
=  

𝐷𝑎𝑡𝑎𝑑𝑖𝑗
 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝐵𝑎𝑛𝑑𝑛𝑟𝑖𝑗

 (04) 
 

 

 

Figure 2. Pseudocode for the task sizing 
techniques 
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4.2 Greedy task distribution algorithm 

In this section, we discuss the proposed greedy task 

distribution algorithm to solve the problem formulated 
in section 3.2. In here, we follow a greedy heuristic 

approach that aims to incrementally solve the task 

distribution problem and finally generate a task 

distribution plan. Figure 3 illustrates the pseudocode of 

the proposed greedy algorithm.  

The algorithm takes the task list, resource list, 

measurement records and 𝑇𝐵𝐴 as inputs. Then for each 

task in the task list, the algorithm finds an eligible (i.e., 

has enough capacity to fulfil the resources required by 

the task) computing resource, that yields the lowest 

execution time for that task from a sorted resources map. 

To construct the sorted resources map for the first task 

in the TaskList, the algorithm uses only the computing 
resources that are closer to the IoT data source. To find 

such resources the algorithm uses the 

GetResourcesCloserToDataSource() function. Therefore, 

the first task of the application will always get assigned 

to a computing resource that is closer to the data source, 

provided it has enough resource capacity (lines 7-8). On 

the other hand, to construct the sorted resources map for 

tasks that have predecessor tasks, the algorithm retrieves 

the tuples of the corresponding task from the 

measurement table and constructs a sorted resources 

map using the data in the tuples. The map consists of the 
resources and the corresponding execution time 

measured for that task. Furthermore, the map is sorted 

based on the measured execution times and we consider 

that one computing resource can host multiple tasks if it 

has enough resource capacity (lines 9 - 10). 

Once the sorted resources map is created, the 
algorithm iterates through each item in sorted resources 

map until it finds an eligible computing resource. When 

the algorithm identifies an eligible computing resource, 

it first assigns that resource to the corresponding task via 

updating task distribution map, then update the available 

resources of the selected resource, update the 

𝑇𝑜𝑡𝑎𝑙_𝐸𝑥𝑒𝐴𝑝𝑝  based on the estimated execution time, 

exists the while loop and move to the next task in the 

task list (lines13-23). The algorithm iteratively 
determines eligible computing resources in a greedy 

manner (i.e., picks the resource that would yield the 

lowest execution time) for each task in the task list. If a 

task couldn’t find any eligible computing resource or 

𝑇𝑜𝑡𝑎𝑙_𝐸𝑥𝑒𝑐𝐴𝑝𝑝  exceeds 𝑇𝐵𝐴𝑝𝑝, the algorithm stops 

executing and indicates that the TS-IoT application 

cannot meet its 𝑇𝐵𝐴𝑝𝑝 with the current available 

resources or else the tasks will be distributed according 

to the task distribution map (steps 27-30). 

5. TIDA framework  

To overcome the challenges of meeting time-bound 
requirements of TS-IoT applications, we introduce a 

novel time-sensitive IoT data analysis (TIDA) 

framework that utilizes cloud, edge and IoT devices 

resources. In this section, we discuss design and 

implementation of the framework via scalable and 

efficient distributed task management. 

5.1. Architecture of the TIDA framework  

    We propose the following architecture for the 

framework, which is illustrated in figure 4. In this 

section, we discuss each component of the architecture. 

Transformation Engine: To execute any TS-IoT 

application irrespective to its underlying application 

model, we propose a transformation technique, which 

transforms data analysis tasks of any TS-IoT application 

into a set of common executable units of the framework. 

We refer to these executable units as “actors”. Each 

Figure 3. Pseudocode for the dynamic task 
distribution algorithm 

Figure 4. Architecture of the framework 
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actor has the following characteristics: 1) represents a 

data analysis task of the TS-IoT application, 2) 

functionally equivalent to its corresponding data 

analysis task, and 3) independent of any application 

model. The transformation engine is responsible for this 
functionality of the framework and it takes any TS-IoT 

application specification as an input and transforms its 

data analysis tasks into a set of functionally equivalent 

actors that can be executed by the framework. 

Task Distribution Engine: This is responsible for 

efficiently managing the distribution of tasks. The task 

distribution engine is comprised of two modules. They 

are distribution planner module and distribution 

invocator module. Distribution planner can 

accommodate different task distribution algorithms. 

Task distribution algorithms (such as dynamic task 

distribution algorithm discussed in section 04) generate 
task distribution plans. Then these task distribution 

plans are sent to the distribution invocator, which then 

distributes the tasks to the corresponding resources 

according to the plan and invoke their executions. 

Monitoring Engine: This engine continuously 

monitors the execution landscape in terms of resource 

utilization (CPU and RAM) and execution progress of 

tasks. It is comprised of two modules: Monitoring and 

Analyzer. Monitoring module monitors and collects 

resource usage and execution information and forward 

them to analyzer module. Analyzer analyses the 
monitored data and identifies whether the time-bounds 

can be met with the current execution or not.  

5.2. Implementation of the TIDA platform 

A proof of concept implementation of TIDA 

platform [5] was implemented using Microsoft’s 

Orleans Actor framework [6]. Orleans actors are 

developed to scale in an elastic way and they can run on 

any operating system that has .NET core installed. 

Therefore, we decided to implement TIDA platform’s 
underlying executable units as Orleans actors. This 

facilitated us to develop a highly scalable and efficient 

task management system that led us to develop a proof 

of concept task distribution engine. Furthermore, we 

implemented the discussed greedy dynamic task 

distribution algorithm as part of the task distribution 

engine. In addition to the greedy algorithm, we 

implemented a random task distribution algorithm that 

generates random task distribution plans. The 

transformation engine was implemented as a .NET 

CORE class library. For the proof of concept 

implementation of this research, we developed a 
wrapper that can be used to read a workflow 

specification file modelled using camunda [7] workflow 

modeler. The monitoring engine was implemented as an 

Orleans start-up service, which gets activated when 

TIDA is up and running. The monitoring engine 

periodically (every second) collects metrics such as 

CPU utilization percentage, RAM utilization percentage 

and the execution progress of tasks. The collected 

metrics are stored in a database via Orleans’s persistent 
capabilities. PostgreSQL [8] relational database was 

used as our storage provider. This stores performance 

metrics, application specific data and information of the 

resources such as health of each resource etc. 

6. Evaluation  

In this section, we discuss how the TIDA was 

evaluated and present the results.  

6.1. Methodology for Experiments 

In this evaluation, we considered the IoT 

environment to be static throughout the evaluation. 

Therefore, the proposed task sizing technique is 

executed only once before the start of the task 

distribution, thus the evaluation is solely focused on the 

greedy distribution algorithm of TIDA.  

Testbed configurations: We created a testbed in the 

cloud using NECTAR research cloud [9].The testbed 
consists of a cluster of four cloud instances. To emulate 

edge and IoT devices, we created two cloud instances 

with similar system configurations of real world edge 

and IoT devices. For this purpose, we considered the 

system configurations of cisco 807 industrial services 

router for the edge device and Orbbec Persee camera’s 

system configurations for the IoT device. We created a 

PostgreSQL database server in another cloud instance 

that is responsible for storage and cluster membership. 

Before we ran our experiments, we installed our 

platform’s runtime on each instance of the testbed. 
Table 1 illustrates the system configurations of the 

computing resources used in the testbed. 

IoT application, Dataset and Task Distribution 

Plans: We developed the IoT application as a workflow 

application. To model the application, we used camunda 

workflow modeler. The application consists of three 

tasks 1) pre-processing 2) classification and 3) counting. 

We developed each of these three tasks as a C# program 

and we utilized OpenCV library for the preprocessing 

Table 1. System configurations of 
computing resources 

Computing 

Resources 

CPU  RAM 

Cloud server 
2.5GHz Intel Core Processor 

4 VCPUs 

12 GB 

Edge device 
2.29GHz Intel Core 

Processor 2 VCPUs 

4 GB 

IoT device 
2.29GHz Intel Core 

Processor 1 VCPUs 

2 GB 

 

 

Page 7191



task and classification task. For the dataset, we used real 

video data collected using an Orbbec Persee camera 

during a trial project carried out in Sydney, Australia 

[10]. For this experiment, we used a RGB video file, 

which is 20 seconds long and that has a resolution of 640 
x 480 and 30 FPS (frames per second). We executed the 

IoT application multiple times under different task 

distribution plans provided by five task distribution 

algorithms including the greedy dynamic task 

distribution algorithm, which was discussed in section 

4. Table 2 illustrates the five task distribution algorithms 

and how tasks were distributed in the computing 

resources. 

Experimental evaluation metrics: We measured the 

following performance metrics during the execution of 

the application. 

• Total application execution time  

• Total data communication time during the 

application execution 

• Total data processing time of the application. 

(i.e., time taken to analyze the IoT data)  

• Data processing time of each data analysis 

task.  

6.2. Experimental evaluation results 

Figure 5 compares the total data processing time, 

total data communication time and total application 

execution time of the passenger counting IoT 

application under each task distribution algorithm. 

(Note in here, we have taken the average values for the 

comparison.)  

Although, executing all the tasks in IoT devices 
resulted in zero data communication time, this has 

recorded the highest total data processing time, due to 

the limited computing resources in IoT devices. On the 

other hand, executing all the tasks in the cloud or edge 

devices have notably improved the total data processing 

time compared to that of IoT devices. However, the total 

application execution time hasn’t improved much in 

both occasions (i.e., all tasks at cloud and edge), due to 

the data communication time involved in sending data 

to the edge device and the cloud server. Random task 

distribution algorithm generates different tasks 
distribution plans for the application randomly without 

considering the IoT environment or IoT application 

requirements such as time-bound requirements, 

resource requirements for tasks etc. Therefore, by 

looking at the results, we can see that the task 

distribution plans generated by random task distribution 

algorithm shows mediocre results. The greedy dynamic 

task distribution algorithm aims to generate time-bound 

satisfying, application and IoT environment specific 

task distribution plans. Therefore, we can notice that 

compared to the other four task distribution algorithms, 

the greedy dynamic task distribution algorithm has 
significantly improved the total data processing time, 

total data communication time and total application 

execution time. Furthermore, if we make a comparison 

between executing all of the tasks in the cloud, which is 

the traditional way of IoT application execution, and 

executing tasks based on the task distribution plans 

generated by greedy dynamic task distribution 

algorithm, we can observe that, greedy algorithm has 

improved the total data processing time by 8.59%, the 

total data communication time by 82.81% and the total 

application execution time by 46.96%.  
Figure 6 illustrates the data processing times for 

each task. This figure shows that the classification tasks’ 

Table 2. Task distribution algorithms 
Task distribution 

algorithm 

Description 

Cloud only All tasks to the cloud server 

Edge only All tasks to the edge device 

IoT device only All tasks to the IoT device 

Random distribution 
Randomly generate a task distribution 

plan  

Greedy dynamic 

task distribution 

Use greedy dynamic task distribution 

algorithm to task distribution plan  

 

 

Figure 6. Comparison of data processing 
times of each task under each task 

distribution algorithm 

Figure 5. Comparison of total data 
processing time, total data communication 
time and total application execution time 
under each task distribution algorithm 
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data processing time and the computing resource where 

it takes place significantly influences the total data 

processing time of the IoT application compared to the 

other two data analysis tasks (i.e., pre-processing task 

and count task). Furthermore, we can notice that the 
lowest data processing time for the classification task 

results when the greedy dynamic task distribution 

algorithm is used.  

In summary, the evaluation demonstrated TIDA’s 

capability in distributing tasks of a TS-IoT application 

in IoT devices, edge devices and cloud resources. The 

evaluation results showed that the task distribution plans 

generated by the greedy dynamic task distribution 

algorithm of the TIDA has improved the total 

application execution time of the passenger counting 

IoT application by 46.96% and reduced the IoT data 

communication overhead by 82.81%, compared to the 
traditional cloud-based approach in executing IoT 

applications. Moreover, we noticed that only the task 

distribution plans generated by the greedy dynamic task 

distribution algorithm met the time-bound requirement 

of the passenger counting IoT application, whilst the 

others failed to guarantee the time-bound requirement.   

7. Related Work 

Meeting the time-bound requirements of TS-IoT 

applications is challenging due to the heterogenous and 

volatile nature of the IoT environment and the time-

bound requirements of such applications [4]. In [5] we 

proposed an approach for dealing with these challenges 

that involves distributing TS-IoT applications in a 

collection of interrelated tasks and selecting the 

appropriate IoT computing and network resources to 

execute the tasks of each application in a way that they 

collectively meet the application’s time-bound 

requirements. To enable such task distribution, we 
proposed the use of task sizing techniques for estimating 

the computing and network resources required by the 

tasks of TS-IoT applications. Related work in 

determining the most suitable IoT resources for 

computing IoT application tasks includes [11] and [12] 

that investigated 1) how to estimate the computing 

resources required by cloud-based IoT applications 

based on historical performance metrics, and 2) 

evaluated various techniques for doing this via the 

Cloudsim simulator. [13] proposed a technique for 

measuring the performance of computing resources 
when different IoT application tasks are executed there, 

while [14] introduced a platform to experimentally 

evaluate performance of TS-IoT applications.  

Most related research in task distribution has 

considered this problem as an optimization problem and 

proposed various optimization techniques (such as 

linear programming, non-linear programming, and 

heuristic techniques) for that. For example, [15] 

proposed a technique for efficient distribution of 

application tasks across cloud, edge resources in a 

resource-aware manner. [16] proposed an optimization 

technique that generates task distribution plan for IoT 
applications. [17] introduces a technique for optimizing 

the scheduling IoT application tasks in edge devices. 

[18] formulates IoT application distribution as an 

Integer Non-Linear Problem (INLP). It then used INLP 

to minimize the cost of resource usage while satisfying 

QoS requirements of the applications. The optimization 

techniques proposed by [19, 20] determines appropriate 

computing resource selection for meeting the QoS 

requirements of IoT applications. Related computing 

frameworks and tools, such as [21], [22] and [23], have 

employed similar techniques to manage the distribution 

of TS-IoT applications while a QoS simulation-based 
tool for IoT applications. [24] proposed a recommender 

system for dealing with the heterogeneity of cloud 

computing resources 

In summary, task sizing techniques found in the 

literature have relied on simulation tools [11, 12] or 

include limited testbeds [13] for sizing tasks. Such 

techniques cannot effectively estimate the resources 

needed by TS-IoT application tasks because they do 

deal with the heterogeneity and dynamic nature of the 

IoT environment. Most of the task distribution 

techniques in the literature employ complex 
optimization techniques [17,18,19,20] to device task 

distribution plans and most of them do not consider task 

sizing and they are expensive to compute. Due to these 

reasons, these techniques are not suitable for TS-IoT 

applications that have demanding time-bound 

requirements. On contrary, TIDA presents a novel 

dynamic task distribution technique that includes 1) task 

sizing that measures the computing and network 

resources required by the tasks when they are executed 

in the IoT environment, and 2) a greedy algorithm that 

uses the task sizing information to generate time-bound 

satisfying task distribution plans to distribute tasks in 
IoT environment. Furthermore, TIDA has been 

implemented by extending Microsoft Orleans and the 

greedy algorithm has been evaluated using a real world 

smart city application. 

8. Conclusion and future work  

In this work, we proposed a novel time-sensitive 
IoT data analysis (TIDA) framework for meeting time-

bound requirements of TS-IoT applications. We first 

defined a formal system model for TS-IoT applications 

and IoT environment. Next, we formulated the task 

distribution problem as an optimization problem and 

proposed a novel task sizing technique and a dynamic 

task distribution algorithm to solve the task distribution 
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problem. We implemented TIDA platform that 

implements the above algorithms and Microsoft’s 

Orleans framework. We evaluated the TIDA by 

developing a passenger counting IoT application, 

executing the application in a cloud-based testbed under 
different task distribution plans provided by five task 

distribution algorithms and assessing how well each of 

these task distribution plans enable the application to 

meet its time-bound requirements. The results showed 

that the TIDA on average improves the total application 

execution time by 46.96% and total data communication 

time by 82.81%, compared to traditional cloud-based 

processing of the passenger counting IoT application. 

Moreover, the dynamic task distribution algorithm of 

TIDA successfully met the time-bound requirement of 

the passenger counting IoT application in each 

execution iteration as well. In our future work, we plan 
to develop cost effective dynamic task adaptation 

techniques to deal with possible time-bound violations 

and to compare TIDA platform’s ability to meet time-

bound requirements with existing solutions.  
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