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Abstract

We propose HoneyCode, an architecture for the
generation of synthetic software repositories for cyber
deception. The synthetic repositories have the
characteristics of real software, including language
features, file names and extensions, but contain no real
intellectual property. Fake repositories can be used as
a honeypot or form part of a deceptive environment.
Existing approaches to software repository generation
lack scalability due to reliance on hand-crafted structures
for specific languages. Our approach is language
agnostic and learns the underlying representations of
repository structures, filenames and file content through
a novel Tree Recurrent Network (TRN) and two recurrent
networks respectively. Each stage of the sequential
generation process utilizes features from prior steps,
which increases the honey repository’s authenticity and
consistency. Experiments show TRN generates tree
samples that reduce degree mean maximal distance
(MMD) by 90-92% and depth MMD by 75-86% to a
held out test data set in comparison to recent deep graph
generators and a baseline random tree generator. In
addition, our RNN models generate convincing filenames
with authentic syntax and realistic file content.

1. Introduction
Cyber attacks are growing by 10% per annum

and costing on average $13 million per attack [1],
posing a significant threat to corporate and government
organisations. Deception is an increasingly important
aspect of defending against these attacks, providing a
number of benefits [2]. The most apparent of these is
discovery of a breach through the alert generated when
an attacker interacts with a honeypot [3]. However,
deception can also provide insight into the intent
and tactics, techniques and procedures (TTPs) of an
attacker. These benefits come from high interaction
deceptions, where the attacker is allowed to engage with
the deception. The key to successful high interaction
deceptions is realism, which provides greater scope

for the adversary to express their intentions through
their choice of actions and exercise their TTPs. The
interactions must take place in an environment that,
while realistic, exposes little or nothing of the defending
organisation’s real data or intellectual property.

This paper proposes HoneyCode, a machine learning
system that creates a deceptive software repository that
has the characteristics of a real repository. It has similar
folder structure, file names and files with recognisable
language features but, critically, does not contain any
actual compilable source code or intellectual property.
Such a repository, trained on an organisation’s own or
open source code, can serve as a honeypot, protecting
software which may be fundamental to the company’s
core intellectual property [4, 5]. In addition, a repository
on a network or a workstation is immensely valuable as
an element of a larger deception system - the ”pocket
litter” essential to sustaining the illusion around a
honeypot or sandbox[6].

Content based deception was famously successful
when Clifford Stoll uncovered the location of an
intruder on the Lawrence Berkeley National Laboratory
network in the 1980s[7] 1 by creating an entire fictitious
department, complete with emails, reports and forms to
fill in. Stoll engaged the attention of the intruder and kept
him online for long enough to allow international law
enforcement efforts to pinpoint his location and arrest
him. An intrusion detection system based on honeyfiles
- fake document honeypots - was described by Yuill[9].
Subsequent efforts have developed methods to automate
the creation of honeyfiles[10, 11] to allow for large scale
deployment in document repositories.

Creating fake software repositories extends this work
in two senses: the range of document types is increased to
include plausible source code, and the entire structure of a
repository file system and file names must be synthesized.
The structure of a repository depends on its purpose and
the conventions of the dominant programming language.
A repository is also likely to contain a diverse range of
files that use different syntactic patterns based on their

1described at length in the very readable The Cuckoo’s Egg [8]
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languages.
To address these challenges, we introduce a

triple neural network architecture, HoneyCode, based
on learning and generating representations of these
components. We introduce a novel Tree Recurrent
Network (TRN) to synthesize directed rooted trees to
represent the folder and file structures of a new repository,
a name generator network that generates files and folder
names for each node, and a file content generator network
that synthesises source code. Steps in the process are
conditioned on features from previous steps to increase
the realism and consistency of the overall repository.

We demonstrate that our architecture, in particular
TRN, is superior in generating trees with samples
that reduce degree mean maximal distance (MMD) by
90-92% and depth MMD by 75-86% to a held out
test data set in comparison to a recent deep graph
generative model and a random tree generator. These
tests mainly follow the approach in [12]. Furthermore,
we visually compare the filenames and file content of our
RNN models to their authentic counter-parts and show
that these models generate convincing filenames with
authentic syntax and realistic file content.

In summary, this paper makes the following three
novel contributions

1. TRN, a novel directed rooted tree generator that
synthesizes the structure of a software repository.

2. HoneyCode, a scalable triple network architecture
that improves authenticity and consistency through
conditional features. 2

3. An evaluation of the capabilities of conditional
character-level RNN models as a tool for software
repository name and content generation.

In Section 2, we review existing approaches which
serve as the foundation for our work and briefly cover
theoretical concepts related to graphs and metrics. We
cover our architecture in detail in Section 3, which
describes each of the three models that generate the key
components of a honey repository. In Section 4, TRN is
evaluated visually and quantitatively against other deep
generative models. Samples of filenames and contents
are visually assessed based on their syntactic patterns in
comparison to their authentic repository counterparts.

2. Related work
Our architecture is based on the creation of three key

components: a repository structure, file names and file
content. In this section we discuss the foundations for
these components: graph generation, language models
and source code generation.

2The HoneyCode implementation can be found at https://
github.com/dngu7/honeycode.

2.1. Graph Generation
Graph generation has been studied for many potential

applications in network science [13], protein/molecular
construction [14] and drug discovery [15]. Modelling
and generating graphs is challenging due to the
high-dimensional distributions underlying graph
structure and non-local dependencies between edges.
The majority of early methods focused on hand-crafting
models for graphs with well defined aggregate
properties [16, 17]. In recent years, however, the
focus has shifted to modelling graphs by learning
from a set of observed graphs, in particular using deep
learning [18, 19]. One of the early non-sequential deep
learning models proposed a variational autoencoder
(VAE) based approach, however this idea is limited
to single, small graphs with 40 or fewer nodes [20].
Grover [18] proposed using a node-embedding based
approach and a graph neural network to learn a graph
structure, but the approach is limited to a fixed set of
nodes.

GraphRNN [21] applies a recurrent neural network to
adjacent matrix representations of graphs to approximate
the complex dependencies and distributions over
real-world graph structures. GRAN [22] builds on
this approach by utilising graph attention mechanisms
to improve performance, scalability and reduce
computation bottlenecks caused by sequential hidden
states in GraphRNN.

This paper builds on these approaches for generating
directed graphs, or more specifically direct rooted trees,
to represent the folder and file structures of software
repositories. We find that GRAN performs well, but is
unable to consistently generate trees, even when trained
exclusively on trees due to its dependence on a mixture
Bernoulli distribution in edge prediction. Our novel tree
generator is a modification of GRAN and is presented in
Section 3.3.3.

Existing tree based learners, such as Recursive
Neural Network[23] and RNN Grammars[24] focus on
exclusively parse trees. Parse trees are binary trees;
where a parent node has two or less child nodes. In
a software repository, folders can have one or more child
nodes therefore parse tree models were not considered
suitable for our problem.

2.2. Language Models
The state of the art in language generation are

dominated by attention based models like GPT [25].
Such models are typically trained on a very large corpus
and then fine-tuned on a modest amount of data to
specific tasks. Software, however, is unlike natural
language, so this approach would require very large
language specific source code data set to train base
models.
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Character based language models have a minimal
vocabulary and can generally be trained on relatively
small datasets. They are thus a good choice for training
a model on a smaller code repository. A number of well
implemented RNN based character models appeared in
response to Karpathy’s influential blog post [26], and
so provide a basis for further development below [27].
The RNN based models, usually built on LSTM [28] or
GRU [29] units, can increase their capacity and effective
memory by increasing the number and size of the layers,
and can be somewhat tuned to the availability of language
specific training data.

2.3. Source Code Generation
The task of generating realistic source code has

elements of the complexity of natural language and strict
syntactic formality of programming languages. The
use of neural network based probabilistic code models
trained on large code bases have yielded natural samples
[30] with focus on formal semantics and modality [31].
Code can be modelled as sequences of characters or
abstract syntax trees (AST). Sequential models produce
more visually realistic code while abstract syntax trees
approaches focus on syntax accuracy and compilable
qualities [31].

Sequential models predict the next character or code
token based on the existing passage by learning the
distribution of code patterns and relationships found in
large code bases. There have been several papers that
successfully generate realistic-looking scripts for a single
programming language through large quantities of data
[32, 33].

Software repositories, however, are highly likely
to contain a diverse group of languages including
Turing-complete languages, markup languages and
serialization formats. Some programming languages
also vary in their patterns depending on their directory
locations, such as serialization data formats. Since only
a subset of files in software repositories use abstract
syntax trees, our paper mainly focuses on investigation
the application of sequential models.

2.4. Terminology
In our approach, the repository structure is treated as

a directed, rooted tree, sometimes formally known as an
arborescence. Throughout this paper, the term tree will
refer to this structure, described briefly below. We rely
on the unique properties of the tree structure to create an
effective generation model.

2.4.1. Arborescence
An arborescence is an acyclic directed tree, G =

(V,E), with directed edges oriented away from a single
designated node called the root r [34]. This implies that

an arborescence with root node r, has a unique path from
node r to any other node v 2 V \ r. A consequence of
this construction is that all non-root nodes only have one
inward edge, formally:

8u . u 2 V \ r ) |Ein(u)| = 1 (1)

2.4.2. Graph metrics
To compare samples of arborescences, we use

degree and depth to compare populations of graphs
quantitatively. Depth of node u 2 V , formally dep(u),
is the number of nodes �1 in the shortest path between
the root node r and node u.

Populations of graphs can be compared by using the
univariate distribution of depth and degrees which will
be investigated in Section 4.

3. Approach
We start with an brief discussion of the requirements

for deceptive code repositories, followed by an overview
of the architecture, HoneyCode, in Section 3.2, and
descriptions of data pre-processing and each of the core
neural network models used to generate the components
of a repository.

3.1. Requirements
Any deception has a limited lifespan and ability

to withstand scrutiny, and should be evaluated with
respect to the expected observer and the tools available
to them. As an example from deception in the physical
domain, a well camouflaged soldier is hard to see with
the naked eye, but vulnerable to detection with infra-red
technology or a sniffer dog. To evaluate HoneyCode
we make the following assumptions in our model of the
adversary: The attacker has gained a foothold on the
network with the aim of exfiltrating information related
to a specific topic or topics (which we do not know
but would like to discover). The attacker is a member
of an intrusion team, but not a software engineer or
other topic specialist, does not know the exact locations
or extent of the information they seek, and is time
constrained. The interfaces available to the attacker
are a command line that allows search of file systems
with Unix tools, standard filesystem browsers (like File
Explorer on Windows) and document and code repository
search engines via a browser interface (similar to the
Github search interface, for example).

Under these assumptions, HoneyCode should
generate content that passes the following tests. (1)
Structure: a directory listing or file browser navigation
of the repository should reveal a plausibly realistic
looking folder tree, with typical locations for resource
types and appropriate filenames. (2) Searchability:
an intruder searching using keywords should discover
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content that mimics real code, contains similar variable
names and other indications of content like data types.
Training the HoneyCode model on the real source code
being protecting makes this element of realism more
convincing. (3) Local context: generated code has to
pass cursory inspection by a time constrained malicious
actor seeing the response to searched keywords. This is
because a search engine or grep process will typically
display a few lines around the search result. This code
block should look correct in terms of syntax, layout and
indentation, at least to the casual inspection of someone
who is not a language expert.

It is, of course, also possible to hand-craft deceptive
content. Such efforts can be time consuming and
expensive, so the generation process must be automated
and scalable. With these requirements in mind, then, we
examine the components of HoneyCode.

3.2. Triple Network Overview
We approach the construction of a system capable of

generating synthetic software repositories by factoring
the problem into three separate components: repository
structures, names and file content. This decision to
separate the tasks was motivated by their different
underlying structures and representations. The proposed
system architecture thus uses a separate neural network
to learn a model of each component, and uses them
sequentially to generate synthetic repositories. At each
step, subsequent networks can utilize a conditional
property from prior network samples to improves the
overall consistency of the result.

We introduce a novel deep tree generative
model called Tree Recurrent Network (TRN). TRN
effectively generates the structure of a repository
representing the folder and files. A conditional RNN
called, Name Generator, creates explicit names for files
and folders while another RNN, the Content Generator,
creates file content for a variety of file extensions.

3.3. Tree Recurrent Attention Network
Our TRN architecture is a variant of the Graph

Recurrent Attention Network (GRAN) [21]. We
introduce several modifications to GRAN to better
address tree generation, rather than general graphs.
The most significant change is the replacement of the
Bernoulli mixture by a multinomial to represent the
probability distribution of all possible inward edges
between a new node and set of existing nodes.

To illustrate, given an existing tree with k nodes,
TRN generates a multinomial distribution with k possible
events. At every step, the new node’s inward edge is
sampled from this distribution. This simple idea was
motivated by the observation that all nodes of trees only
have one inward edge (see Equation 1). Furthermore,

this approach matches the generator output with the exact
structure of the required graph. This removes the need
for post-sample processing and filtering as required in
obtaining trees from general graph based algorithms such
as GRAN.

Another significant property is the introduction of
a new depth feature into the node state and messages,
represented by a one-hot vector. This helps differentiate
edge prediction distributions based on the distance
of the node from the root. It can be interpreted as
introducing node type or heterogeneity to the tree’s
overall representation.

In the remainder of this section, we detail our
approach to tree representation, hidden node/message
states and edge prediction.

3.3.1. Representing trees as topologically sorted
directed matrices

A directed rooted tree can be represented by an
adjacency matrix S⇡ with node ordering ⇡. If we

Figure 1. A tree directed adjacency matrix with an
empty lower left sub-diagonal L⇡ and upper right

sub-diagonal R⇡

enforce a topological ordering of nodes the first node
of ⇡ must always be the root. Trees sorted topologically
can be completely represented using only the upper right
triangle R⇡ of an entire adjacency matrix S⇡, as shown
in figure 1.

This allows us to define the reconstruction of R⇡ as
the goal of our generation problem. The representation of
R⇡ importantly provides the distribution of all possible
outgoing edges E⇤

out(⇡(v)) for all nodes:

p(R⇡) ⌘ p(E⇤
out(⇡(v))) 8v 2 V. (2)

Computing the distribution of all outgoing edges of a
new node may work, but is challenging because a node
can have zero or more outgoing edges.

Our approach simplifies this problem by taking
advantage of the property in Equation 1 and, instead,
learning the transposition of R⇡ which is represented
as L⇡. This is equivalent to the distribution of inward
edges for each node, p(E⇤

in(⇡(v))), formalized as:

p(R⇡) ⌘ p((L⇡)T ) ⌘ p(E⇤
in(⇡(v))) 8v 2 V. (3)

Page 6948



As Equation 3 shows, we can recreate the intended
R⇡ by re-transposing final output L⇡. By using this
simple trick, each node’s row is a one-hot vector where
the index of the one value represents the parent’s
node. This new representation is leveraged to generate
input-label pairings as demonstrated in Figure 2. From a
single tree, L⇡ is sub-graphed at various indexes to learn
the distribution underlying the entire matrix.

Figure 2. Using L⇡ as the base matrix allows
creation of input-label pairings where, importantly,

each label is a one-hot vector.

This change enables us sample a new inward edge
using a multinomial which, as we will demonstrate
in section 4, boosts sample quality significantly and
guarantees a valid tree that satisfies Equation 1.

3.3.2. Message feature set

Constructing a rich message feature set is key
to building an effective graph neural network. The
message encodes the node’s state transition and is
passed throughout the node’s neighborhood. Using only
inward and onward edges as node state, demonstrated
in several deep generative models [21, 12], can be
supplemented by introducing additional features such
as node type. In TRN, the node state is supplemented
by a depth-based feature which helps the model
differentiate edge prediction patterns in the underlying
representational space.

Edge-based features During experimentation, we
found that combining L⇡ and its transposition LT

generates better performance in comparison to only using
L⇡. We will denote the addition of these two matrices
as A⇡. This new matrix could be as seen as sending a
message that encodes both the node’s inward and outward
edges which would be important in edge prediction.
Depth-based feature We utilize depth as a feature set

which improves the sample quality, particularly in depth
MMD. The depth feature set acts as a representation of
the node’s location on the overall tree, thus introducing
new distributions at different depths.

This feature is represented as a one-hot vector where
the depth of the root node is one and newly generated
nodes is zero. Newly generated nodes are nodes where,
for the current training or generation step, we are
predicting the inward edge from existing nodes.

3.3.3. GRAN Variant
Depth-based Message Passing Framework We use
a message framework which converts a feature set F into
a message and uses self-attention to vary the strength
of each feature during propagation. This mechanism,
modified from [21], has shown to effectively share
information across a node’s neighborhood, which allows
us to learn the underlying representation of a tree. At
each propagation step, each node’s hidden representation
is updated using the self-attention messages through
an LSTM module. The initial hidden representation
h0
v for node v is a linear mapping of A⇡ discussed in

section 3.3.2. For a given node u, the hidden state can be
represented as:

h0
u = WhA

⇡
u + bh (4)

During the k-th round of message propagation, the
message from node v to node u is calculated as:

mk
vu = [f(hk

v � hk
u), OHdep(u)] (5)

where hk
v is the hidden representation for node v at

propagation step k and OHdep(u) is the one hot vector of
node depth, dep(u). The message function f is a 2-layer
neural network with ReLU activation function.
LSTM module TRN uses an LSTM module to
approximate the state of each node, which we found
to perform marginally better in comparison to a GRU
module. The main difference between the two RNN
variants is that an LSTM has an initial cell state c0 and
hidden state h0 where as GRU only has a hidden state
h0. We allow the cell state to become a map of A⇡ by
applying a linear layer demonstrated as:

c0 = WcA
⇡ + bc (6a)

During the k-th round of message propagation, these
states are updated by self-attentive messages via the
LSTM module. These self-attentive messages combine
the attention weights arv of node v over its neighborhood
of nodes N(v):

ĥk+1
v , ĉk+1

v = LSTM(hk
v , c

k
v ,

X

u2N(v)

arvum
r
vu) (7)

3.3.4. Edge prediction with multinomial
distribution

Once all node states hK are updated with K
propagation steps, we use these state representations to
calculate the probability distribution of all potential edges
p(E⇤

in(v)) for new node v. To calculate the probability of
an edge between new node v and the existing nodes
u 2 V we take the difference between their states
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and apply function fs with an output of size V which
represents the number of nodes in the existing graph.
Softmax is applied to the output and creates a probability
distribution over all possible edges which is shown in the
equation below:

p(E⇤
in(v)) = Softmax(fs(hK

v � hK
u )) 8u 2 V. (8)

where fs is a feed forward network with output size of
V and p(E⇤

in(v)) 2 R is a vector of size V .
Due to the observation of Equation 1, we introduce

a hard constraint by sampling with a multinomial using
p(E⇤

in(v)) to select a single Ein(v) for node v.
This new edge is added to the existing graph and

adjacency matrix R⇡ and used for the next training step
allowing us to create the intended learning framework:

p(R⇡) =
NY

k=1

p(R⇡
k | R⇡

0:k�1) (9)

where k is the generation step and N the maximum
number of nodes. This generation process is summarized
in Figure 3 where, at each step, a new node is generated
and the model predicts the inward edge from the set of
existing nodes.

Figure 3. The growth of a tree and its corresponding
adjacency matrix where ? represents the location of

potential new edges.

3.4. Folder and File Name Generator
The goal of vanilla character level language model

is to learn the probability of the next character cn+1

conditioned on the previous characters (c1, ..., cn). Our
approach utilizes additional conditional features which
yield more realistic filenames and repository names. We
propose the use of a conditional character level GRU
model, since there is a negligible performance difference
in comparison to an LSTM, and it requires only one

hidden state. The hidden states of the name generator are
initialized to zero.

HoneyCode uses the repository structure G as input
to the Name Generator Network. For the remainder of
the section, a list of characters of length N representing
a partially generated name will be denoted with a capital
CN = (c1, c2, ..., cn).

3.4.1. Features and conditionals
The naming convention of repository nodes is heavily

affected by whether the node is a file or a folder and
where the node is located in the overall repository. For
these reasons, given CN for node v, the list of features
used to predict ci are: (1) Prior character, ci�1, (2) Depth
of current node, dep(v) and (3) Node type (based on
node outdegrees, degout(v)). The node type of v is a file
if degout(v) = 0 and is a folder if degout(v) > 0.

The set of possible characters is mapped to an
embedding layer Emc. The depth of the current node
dep(v) is mapped to embedding layer Emdep. The node
type feature, formally nt(v) for node v, is mapped to a
binary set where files are zeros and folders are ones. This
feature was also mapped to an embedding layer Emnt.

3.4.2. Network architecture
The input to the GRU neural network is a matrix,

inpall, computed as the concatenation of all 3 embedding
layers outputs discussed in the previous section:
inpc, inpdep and inpnt. The hidden layer ht of the GRU
network is initialized as a matrix of zeroes with a size of
y. The output of the GRU network is passed through a
final linear layer creating a new vector of size P .

3.5. Content Generator
The approach for the Content Generator is very

similar to the Name Generator. The main difference is
that the Content Generator uses file extensions as its only
conditional feature. The reason for this approach is that
the syntax structure of file content differs significantly
depending on file extensions.

The Content Generator use embedding layers,
character-level modelling and conditional stacked GRU
architecture, which is exactly the same as the name
generation model approach. The Content Generator,
however, produces significantly more characters than the
name generation network. The model also only applies
to nodes which are files, which is determined by the set
of nodes which follow:

Eout(v) = 0, 8v 2 V.

Given a file for node v containing existing characters
CT , the list of features used to predict ct+1 are: (1) The
prior character in C, ci�1 and (2) extension type, ext(u).
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The number of available file extension types EXT
per GRU network is limited. Above 4 extensions per
network, the quality of samples begins to deteriorate
based on our observations. Given sufficient compute
power, one could simply add more networks horizontally
to add more file extensions.

4. Evaluation
In this section we evaluate the performance of

HoneyCode by sampling components of each model
and performing visual and statistical tests in comparison
to their authentic counterparts. We train and test
our architecture on 3254 publicly available software
repositories from Github. The primary language of these
repositories is Julia, however they contain of a wide range
of formats and languages including markdown, XML and
TOML.

4.1. Tree Recurrent Network

Figure 4. Graph visualization of folder structures
from the test data set

We evaluate the performance of TRN compared to
GRAN and a baseline random generator model using
Mean Maximal Distance (MMD) [35] as a framework
to assess the quality of each model’s samples. We
consider a random generator as a benchmark because
it demonstrates that TRN can learn the underlying
representational distribution of the data, as opposed to
randomly choosing any parent node at every decision
step. GRAN is used as a benchmark to demonstrate
that the modifications applied to TRN result in direct
improvement in generative performance for direct rooted
trees.

We use the Total Variance (TV) as the MMD kernel
which is significantly faster than the alternative Earth
Mover Distance (EMD) kernel and provides similar
results. To compare populations of graphs, we use the
univariate distribution of degree and depth. Several other
metrics are proposed by graph generation authors [21, 12]
including orbital count, clustering coefficient and spectral
properties however these are not applicable to tree
structures. We also visually inspect and compare several

Metrics GRAN Random TRN
Tree (%) 13.6 100 100
Degreemmd 0.1232 0.1309 0.0110
Depth Densitymmd 0.1007 0.1913 0.0259

Table 1. A comparison of the 160 samples from
multiple models to the test data set after 100 epochs
of training using the MMD framework. Smaller is

better.

samples from each model to the test data set shown in
Figure 4.

The best performing TRN, within hardware
constraints, is a graph neural network with an LSTM
module containing 7 layers and performing 1 propagation
step of messages. The dimension size for each feature
are fdim = 512 and mdim = 512.

For comparative purposes, we use similar hyper
parameters where possible for the baseline GRAN.
GRAN works primarily on undirected graphs so we
adapt their model for directed graphs by allowing edge
predictions for both inward and outward edges for every
new generated node.

The random generator model enforces the key
property described in Equation 1, one inward edge per
node. At each generation step, the new inward edge is
selected using a pseudo-random choice between existing
nodes. This model is referred to as Random in Table 1.

One of the major difference between the three models
is the percentage of samples that satisfy the properties
of a tree. This is calculated under the metric Tree (%),
in Table 1. GRAN achieves less than 100% because the
model computes the edge prediction distribution as a
Bernoulli mixture, and does not enforce the constraint
that the graph must be a tree. It thus generates general
graphs despite having been trained exclusively on trees.
This property is apparent in Figure 5, which shows
GRAN generates graphs with isolated nodes and nodes
with more than one inward edge. Upon further inspection,
the largest graph in the population of valid trees was
three nodes connected by two edges to form a single
line. These visualizations show that GRAN’s base
model is not suitable for generating direct rooted trees.
Other general graph generators, such as DeepGMG
[19] and GraphRNN [12], are likely to suffer from the
same problem because their decoders do not follow the
property described in Equation 1.

In our model, edge prediction is modelled as a
multinomial distribution which ensures that only 1
inward edge is generated per new node. This is
demonstrated in Table 1 where all samples satisfy the
properties of a tree. Furthermore, this model produces
samples that have a smaller degree distribution mmd and
depth density distribution mmd in comparison to both
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Figure 5. Visualization of samples from GRAN
generative model trained over 100 epochs

Figure 6. Visualization of samples from TRN
generator trained over 100 epochs

GRAN and the random generator. This indicates that the
sample’s depth and degree distributions fit closer to the
test data set in comparison to other models.

4.2. Name Generator
In this section, we evaluate samples from the

Name Generator by comparing their outputs to the
test data set. We also explore the importance of
our conditional approach by comparing samples across
various conditional features. It will become apparent
that without a conditional approach, the filenames and
folder names would not be consistent with an authentic
software repository and would likely be detected as fake
by an adversary simply viewing directory listings.

The data-based hyper-parameters used for the
evaluation model are Cdim = 512, depdim = 128
and ntdim = 128. The model uses 1500 hidden units
and three stacked layers of GRUs to reduce training
times within our restricted time constraints. These
hyper-parameters produce sufficiently good samples for
production purposes, as we will see below.

The model is sampled using various conditional
combinations of node types (folder, file) and node depths,
up to 5. The samples for folders and files can be found
in Tables 2 and 3.

In Table 2, we find that the majority of folder name
samples with depth=0 have an end pattern ’.jl’ which is
consistent with the names of Julia repositories found on

Github. Furthermore, the samples have human readable
words with the exception of number four.

With folder name samples of depth=1, the quality
continues to be very high as the folder names, ’src’,
’contrib’, ’examples’ and ’test’, commonly appear as
the first folders of Julia repositories. Most importantly,
we can tell the depth conditional features provide useful
information because the ’.jl’ pattern no longer exists for
folders greater than 0. At depths between 2 and 4, the
names are human-readable and realistic although we note
that there is a repeated folder name ’examples’.

Samples of filenames in Table 3 display the same
pattern of quality seen in samples of folder names. The
quality of filenames at depths between 0 and 3 are
high. For example, the model produces names such as
’LICENSE.md’, ’README.md’ at depth 1 which are
very commonly found in Github repositories. At depth
2, the samples all contain the extension ’.jl’ and have
descriptive readable names, such as ’runtests.jl’ which are
consistent with julia scripts. However, at depth 4 and 5,
we begin to see the beginnings of some deterioration with
invalid file extensions such as ’berlin-mitter-med.000150’
and ’60000 by 1000000 run3’. This is likely due to that
fact that the majority of files appear at depths lower than
5.

Despite these limitations, its still important to note
that the model learns to always generate file extensions, a
critical characteristic of realistic file names. Furthermore,
the Repository Structure Generator produces trees where
⇡ 99% of files and folders exist at depths less than 5. It
is unlikely that these poorer quality samples would be
generated by the name model in large quantities.

4.3. Content Generator
In this section, we evaluate the performance of the

Content Generator by visually inspecting the quality of
generated samples. Due to space constraints, we limit our
analysis to one file extension, despite actually training
the generator with four different file extensions (Julia,
Markdown, TOML, YAML).

The embedding layer dimension sizes used for the
evaluation model are Cdim = 512 and Extdim = 128.
The model uses 2000 hidden units and three stacked
layers of GRU to reduce training times within our
restricted time constraints.
Julia Language As shown in Figure 7, the Content
Generator model learned key syntactic patterns found in
the Julia language such as function and type definitions,
variable assignment and for loops. The code sample is
also visually similar to an authentic Julia script due to the
indentation structure, one of the most important visual
characteristics. Upon closer inspection, a human with
basic programming capabilities should be able to quickly
identify that the function will not compile.
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Depth 1 2 3 4 5
0 common.jl NetworkParallelLemes.jl JSONLDD.jl qquisites network.jl
1 deps src contrib examples test
2 examples HLF2 yem utils figs
3 ALA flux pales figs base Optimizer
4 58 vim opt pathing pages
5 page vid prob plans gitchety

Table 2. Samples of folder names from the name generator. The left-column represents folder depth and the
top-row represents the depth’s respective sample id. Samples of depth=0 represents the names of parent

repository folder.

Depth 1 2 3 4 5
1 Project.toml LICENSE.md appveyor.yml README.md observables.jl
2 ehsely.jl runtests.jl dataframes.jl tools.jl vtkFieldData.jl
3 negmres test.jl test observables consts.jl foda.html sort.jl commands.txt
4 yorian terminal.jl BasicRJCHP.jl berlin-mitter-med.0015 t722.xml sets.jl
5 5.png 60000 by 1000000 run3 helper.h page.html amount.txt

Table 3. Samples of filenames from name generator. The left-column represents file depth and the corresponding
box contains 5 samples in random order. Depth of size 1 represents files in the parent repository folder.

function sparse !(d :: AbstractMixtureModel, x)
K = ncomponentwise logpdf!(Matrix{eltype(x)}(undef, nd, n) , one(x))
logc0 = /x * detach( l )
logc0 = max(length(I0)*length (J)+1

for i = 1:( length (Acolptr ) <= 1)
VR = similar (A[1], T, nrows, ncols )

elseif size (X, 2) == 1
logX = log(u)
cm2 /= sqrt (1 − abs2(z) /2) * sqrt (z2)
alpha3 = max(unsqueezeb, Tuple{Float64})
$fname(pp, pos, durbin , sort )

return ( false , Int [])
end

else
if ! in single quotes

const prop profitable (buf) == 0 && return false
write ( buffer , ' ')

end
end
return nothing
return write project (env)

end

Figure 7. A Julia sample from the content
generation network.

Malicious adversaries with access to internal systems
would likely using a text-based search engine that returns
short snippets of code. If we benchmark this model
against the task of deceiving this adversary, then this
model performs sufficiently well in this regard as it
creates visually authentic code. While there remain
several obvious variable declarations omissions in the
code, an adversary could consider that the variables
were declared elsewhere in the environment or as a
programming mistake by a novice programmer. Such
investigations by the malicious adversary would require
copying or opening several files or compiling the
repository which should ideally trigger the appropriate
detection systems.
Limitations The existing content generator network
displays fragility when trained with over 4 file extensions.
Additional complexity, such as filename conditionals,

would have deteriorated performance further, thus
for future work we plan to explore more stable and
potentially larger neural network architecture such as
GPT-2.

5. Conclusion
We propose a new architecture, HoneyCode,

to automate the generation of synthetic software
repositories for cyber deception. This language agnostic
approach generates a rich set of authentic repository
structures, convincing human-readable names and file
content that can be used as a honeypot or part of a larger
deception environment. This automated and scalable
technique can become invaluable in efforts to detect and
gain insight into attacker’s intent, tactics, techniques and
procedures. Experiments demonstrate that our novel Tree
Recurrent Network (TRN) generates superior repository
structures that reduces degree MMD by 90-92% and
depth MMD by 75-86% on a test data set against recent
deep generative graph models and baseline random
models.

As future work, we plan to investigate further
techniques to improve the authenticity of honey
repositories such as inter-file dependency relationships
and filename to content consistency. Files in authentic
repositories can be linked by imports and relative
references which can be represented as a large directed
multi-graph intertwined with the existing folder structure.
This structure could be exploited to generate file
content with a higher degree of authenticity across
the honey repository. Furthermore, it is self-evident
that the contents of a file have a relationship to its
filename. Consistency can be improved by investigating
whether the filename or local group of filenames can be
introduced into the file content generator as a conditional
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