

Insight from a Containerized Kubernetes Workload Introspection

Thomas Watts

The SSI Group, LLC

Thomas.Watts@ssigroup.com

David Bourrie

The University of South Alabama

dbourrie@southalabama.edu

Ryan Benton

The University of South Alabama

rbenton@southalabama.edu

Jordan Shropshire

Uversity of South Alabama

jshropshire@southalabama.edu

Abstract

Developments in virtual containers, especially in

the cloud infrastructure, have led to diversification of

jobs that containers are used to support, particularly

in the big data and machine learning spaces. The

diversification has been powered by the adoption of

orchestration systems that marshal fleets of containers

to accomplish complex programming tasks. The

additional components in the vertical technology

stack, plus the continued horizontal scaling have led

to questions regarding how to forensically analyze

complicated technology stacks. This paper proposed a

solution through the use of introspection.

An exploratory case study has been conducted on

a bare-metal cloud that utilizes Kubernetes, the

introspection tool Prometheus, and Apache Spark. The

contribution of this research is two-fold. First, it

provides empirical support that introspection tools

can acquire forensically viable data from different

levels of a technology stack. Second, it provides the

ground work for comparisons between different

virtual container platforms.

1. Introduction

Virtual containers, which are an iteration of the

concept of virtual machines, are frequently used in the

cloud. Where a virtual machine is a complete

operating system on top of virtualized hardware, a

container is a lightweight silo for running an

application on a host operating system [1]; they

contain only the software needed to accomplish a

specific task. They are used to accelerate processing in

data processing frameworks such as Apache Spark [2].

Orchestrating containers through popular frameworks

such as Kubernetes [3] or Apache YARN [4] has

grown as a research area over the past several years.

Flexera’s 2020 State of the Cloud survey [5]

underscores how popular adoption of Kubernetes is

with a ten percent adoption rate increase from forty-

eight to fifty-eight percent from 2019 to 2020. That is

coupled with an overall container adoption growth

from fifty-seven to sixty-five percent. Forbes also

pointed out that over fifty percent of respondents to the

2020 survey expected to use more cloud in response to

the global Coronavirus pandemic. [6]

As container adoption expands throughout the

cloud, concerns surrounding the detection of security

problems arise from both practitioners and

academicians [7-11]. Alert Logic, a big data security-

as-a-service company, published a 2015 report that

stated “businesses using cloud environments are

largely considered a ‘fruit-bearing jackpot’ for

hackers” [12]. The speed with which containers

execute is a key concern since containers can perform

their function in seconds [13], as they are typically

destroyed once a task is done. Therefore, data about

containers must be collected while they are performing

their tasks. Introspection tools such as Prometheus

[14] and Datadog [15] have been created to gather this

data as an orchestrated containerized environment is

running.

These concerns in both the cloud and with

containers specifically prompts the hypothesis that

introspection tools can be expanded to gather

forensically useful data from larger, orchestrated

containerized workloads. Subsidiary questions

identified as part of this research are as follows:

1. Which levels of an orchestrated containerized

system does an introspection tool have access?

2. How can data be saved away from the running

system?

3. How can this data be visualized for ease of

examination?

The research contribution of this paper is an

analysis of the data that an introspection tool can

gather in a multi-server orchestrated containerized

environment running a variety of machine learning

workloads. The paper is structured as follows. Section

2 discusses the research surrounding the intersection

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 6955
URI: https://hdl.handle.net/10125/71457
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

mailto:Thomas.Watts@ssigroup.com
mailto:dbourrie@southalabama.edu
mailto:rbenton@southalabama.edu
mailto:jshropshire@southalabama.edu

of cloud computing, big data, and container

orchestration software. Section 3 presents the

experimental methodology and design. Section 4

examines the results of a series of experiments

designed to determine what data is captured from an

introspection tool from a series of containerized

workloads. Section 5 draws conclusions and presents

future work.

2. Related work

The National Institute of Standards and

Technology [16] (NIST) lists five essential

characteristics of cloud computing: on-demand self-

service, broad network access, resource pooling, rapid

elasticity or expansion, and measured service. NIST

also describes four deployment models: private,

community, public and hybrid. These definitions have

standardized cloud computing nomenclature since

their publication in 2009.

Big data and the cloud have become intertwined as

the two technologies have matured. Yang et. al [17]

pointed out the challenges and opportunities of these

two ideas. After defining several sources of big data

such as the Internet of Things and business, the

researchers point out how cloud computing ideas can

be leveraged to help provide insight into these two

evolving realms through data transmission and

management as well as analysis. Some of the

challenges that are underscored throughout the survey

are scalability and quality of service on large-scale big

data jobs. Finally, the paper concludes with several

ideas for a research agenda focused on risk

management, big data mining, and interdisciplinary

collaboration to solve pressing issues.

One of the major players in container orchestration

in a virtual is Kubernetes. Burns et. al [18] wrote about

the development arc surrounding Borg [19], Omega

[20], and Kubernetes. The authors were integral to the

various container orchestration platforms at Google.

Their 2016 work describes the history of container

orchestration at Google, which started with Borg.

Omega was their second-generation orchestration

system within their closed-source data center

operations and incorporated lessons learned from

Borg. The paper also describes what Kubernetes, their

latest generation container orchestrator that was

released to the public, obtained from Google’s internal

development efforts. One key point stressed by Burns

et. al [18] is how containers have lightened the OS load

across the fleet of Google machines and permitted data

centers to be converted into application focused

processing engines.

Where Yang et. al and Burns et. al were working

on systems to unite overarching concepts in the

virtualization world, Casalicchio and Percibali [21]

focused specifically on virtual containers. They sought

to determine if tools built for a non-virtual

environment collected the same information as tools

built to focus on the cloud. The researchers tested a

battery of traditional Linux metrics including iostat

and mpstat. cAdvisor [22], a container specific

introspection tool suite was used as a comparison

platform for specific Docker [23] statistics. Both

Prometheus [14] and Grafana [24] for utilized for

statistics collection. Tests centered upon CPU and

Disk I/O intensive workloads. They determined

different tools present similar but not completely equal

results.

Watts et. al [25] also examined containers, but that

research was focused on detecting malware through

introspection tools. The researchers introduced a

known piece of malware to an Apache server container

and ran a series of tests to determine what differences,

if any, appeared in the metrics that the introspection

tool Prometheus produced. Through a total five

different experiments, nine different metrics were

identified that allowed the user to identify if a

container was infected or normal.

Examining performance and resource management

was the focus of Medel et. al [26]. They built a two

node Kubernetes cluster on a pair of servers, and tested

container creation and termination time with CPU and

I/O intensive workloads, with the goal of measuring

the system time required to perform the tasks. There

were several drawbacks to their approach, beginning

with the fact their cluster was composed of only two

nodes, one of which was the master node. This is a

concern, as Kubernetes does not allow for scheduling

of work on the master node unless explicitly

configured to deployed jobs on the master node. Even

with that limitation, their initial work was one of the

first to use an actual Kubernetes deployment as

opposed to the popular Minikube [27]. Minikube is

single node Kubernetes that is meant for personal

computer resources as opposed to server compute

resources that are seen in clouds; as a result,

comparisons done on Minikube do not necessarily

reflect typical Kubernetes deployments.

Shah et. al [28] used microservices such as

WordPress to show deployment patterns through a

combination of Docker [23], Kubernetes [3], and the

Google Cloud Platform [29]. The paper delineates

how Docker can be used to make deployments faster,

while Kubernetes on the Google Cloud Platform can

control the scaling of a given application. They also

compare Docker Swarm, a Kubernetes-like platform

designed to work natively with Docker, to Kubernetes.

The paper does an excellent job explaining the

Page 6956

deployment patterns along with the tradeoffs and

strengths of the different containerized systems.

Managing a stateful application across a container

orchestration platform can be a challenge. Kubernetes

attempts to address this via StatefulSets [30], which is

designed to augment the Kubernetes orchestration

layer by introducing persistent identifiers to sets of

containers. An alternative approach was presented by

Netto et. al [31], who built a coordinator-as-a-service

application called Koordinator to add some fault

tolerance to Kubernetes. The authors built a service

layer on-top of Kubernetes as opposed to augmenting

the Kubernetes orchestration layer. The Koordinator

layer sits behind the proxy servers that Kubernetes

configures for its CoreDNS [32] protocols to create the

Kubernetes virtual network, and CoreDNS itself.

Traffic is routed through that service layer if there are

many requests to an application made up of many

containers. Koordinator adds a read on top of a write,

but experimental tests showed that there was hardly

any changeover. The system was tested with sixteen

writers with eight thousand simultaneous requests as

well as 256 readers sending eighty thousand requests.

The resource consumption was also shown.

Understanding how efficient parts of the overall

system are as Kubernetes diversifies will require

vigilance, and Kratzke et. al [33] worked on the

networking side of Kubernetes. The research had a

series of test cases ranging from a non-virtualized

system to a fully containerized system using the

software-defined network Weavenet [34], a popular

networking framework for Kubernetes. The

benchmark mapped pings between hosts, and then

created a series of line graphs which compared the

non-virtual system with the fully containerized one.

Their research admitted that the tool for benchmarking

was limited, but it was able to augment the classical

iperf [35], uperf [36] by extending their usage into

Kubernetes.

A major question surrounding large virtual

containerized platforms is scaling the necessary

monitoring tools without an extreme performance

cost. Stelly et al. [37] deal with this issue via the

containerization of the digital forensics process with

their SCARF toolkit. They focused on scalability

across large platforms using Docker Swarm, and

attempted to demonstrate that high throughput to

empower scalability. The group ran tests on both a

legacy cluster, and a cluster with cutting edge

hardware and found that several of the components of

the SCARF system, such as Yahoo’s OpenNSFW

network [38], had large throughput gains when

comparing the two systems, and could potential scale

into the big data realm.

Containerization has expanded from purely

computational researchers into the world writ large.

One of the more interesting use-cases fuses

bioinformatics, which has already been heavily

involved in using cloud compute, such as Agapito et.

al’s [39] simulation of vessel reconstruction, with

Kubernetes. Moreno et. al [40] combined Kubernetes

with Galaxy developed by Afgan et. al [41] to

containerize the framework to scale bioinformatics

workloads into the cloud. They manipulate the

workflow through a Helm [42] chart in order to allow

for configuration ease. While the paper itself is short,

Monero et. al provide links to both the code as well as

robust documentation for configuring the product.

Containerization research has focused on solving

specific problems with a specific component within an

orchestrated container system. This research struggles

outside of Minikube which obfuscates many core

functionalities of Kubernetes in favor of ease of use.

There has been minimal investigation of distributed

container processing utilizing cutting edge tools in a

forensic context to examine how various big data

workloads are processed throughout a technology

stack.

3. Methodology

This research investigates building a data pipeline

in a cluster setup with an eye toward forensic analysis.

The data can be used for event reconstruction across

multiple servers, or as an early warning of problems

across a cluster. The research is classified as an

exploratory study according to Oates since it is an

attempt to understand the overall research problem

[43]. It expands the framework proposed in Watts et.

al [25] to collect data through the stack, rather than

focusing on a single container.

3.1. Experimental testing environment

The experiment is conducted on three Dell R440

1U servers. Each server has one terabyte of storage,

and 168 gigabytes of RAM. The master server has a

pair of Intel Xeon processors that provides forty-eight

processing cores; the two slave servers have sixteen

cores apiece. All three servers use the CentOS 7 [44]

operating system. These servers support the Hadoop

Distributed File System (HDFS) [45], Yet Another

Resource Negotiator (YARN) [35], Kubernetes [3],

Apache Spark [2], HiBench [46], Prometheus [14],

Helm [42], and Docker [23]. An additional virtual

machine was provisioned on a fourth server, which

served to store the data collected. This virtual machine

has eight gigabytes of RAM, eighty gigabytes of

storage, and four cores and is used to house InfluxDB

Page 6957

[47], and Chronograf [48]. InfluxDB is used to store

the data collected during the experiments and

Chronograf is used to create some of the

visualizations.

The Hadoop Distributed File System [45] is the

storage portion of the popular Apache Hadoop

platform. It is open source, and allows networked

servers to share storage between them. In the

experiments that will be conducted, the work and data

storage will be shared between the single master and

the two data nodes, which matches the configuration

used in other distributed systems [49-52].

Yet Another Resource Negotiator [35] is another

part of the Apache Hadoop platform, but, where HDFS

focuses on storage, YARN focuses on providing

compute resources for data stored on HDFS. YARN

will be used to oversee and allocate computational

resources for the scripts that prepare input data for the

types of computational loads the experiment runs

through the CentOS [44] command line interface.

Kubernetes [3] is an open-source container

orchestration software that came out of Google. The

platform breaks orchestration large processing jobs

into a variety of layers, and the various layers allow

for expansive data gathering. The open source

introspection tool Prometheus [14] works through a

series of targets and configuration files and that

functionality can be leveraged to empower the

multiple level data gathering that this experiment

seeks to generate. The package manager Helm [42], a

package manager for Kubernetes similar to Linux’s

APT, is used to build and customize Prometheus for

the Kubernetes orchestrator; it enables Prometheus to

utilize the endpoints that each container exposes

through the Kubernetes APIs.

Docker [23] is open source container software

that runs on top of multiple host operating systems.

Kubernetes interfaces with Docker to schedule jobs

and distribute them across a containerized

environment.

YARN and Apache Spark [2] are interrelated, but

YARN originated as a batch processing engine, while

Spark was an in-memory analytics engine. A

containerized version of Apache Spark is what

actually runs the HiBench benchmarks once they have

been generated using internal YARN scripting.

HiBench [46] is an Intel developed project meant

to allow for a variety of computational loads to be

measured on Spark clusters. It provides the initial

input data throughout these experiments, and runs four

different types: TeraSort [53], WordCount [54],

Singular Value Decomposition [55], and Random

Forest [56]. Hadoop’s TeraGen, RandomTestWriter,

RandomForestDataGenerator and SVDDataGenerator

provide the input data through HiBench.

InfluxDB is a time-series database that takes

advantage of the Prometheus HTTP API in order to

permanently store each benchmarking test in its own

database for easier comparisons. Putting InfluxDB in

its own virtual environment also provides an

independent data store away from the experimental

system. Once the data is pulled from the experiments,

Chronograf is used to explore the data through a series

of visualizations. Figure 1 illustrates the experimental

tech stack in which data flows omnidirectionally

unless otherwise indicated.

Figure 1. Experimental stack

3.2. Experimental methodology

The experiment itself combines all of the

disparate elements together to build twenty different

databases. Each database represents one test. There

were four separate benchmarking workloads:

TeraSort, WordCount, Singular Value Decomposition

(SVD), and Random Forest (RF) that were each run

five times. Prometheus was routed to a different

database each time through the Helm package

manager, and the Spark job was reformulated as

necessary to go between benchmarking workloads.

Once the baseline system is built and configured

so that everything is properly connected, the

Prometheus Helm chart is modified between each

experimental task; this modification ensures the data

for an experiment is written to the proper database. In

order to update Prometheus, Helm’s

stable/Prometheus-operator chart pull went through

several iterations. First, one of the Helm configuration

files, promop.values were updated to send the

Prometheus UI to a nodePort, as opposed to a

ClusterIP, and give it a port. The experiment used

32322 for ease for use, but any high port will function.

The Prometheus UI will allow for data to be spot-

checked during a test, and there is a configuration tab

within the UI that prints out the underlying

configuration file. That configuration file shows where

Page 6958

the remote_write of Prometheus is routed, and is

configured through the remoteWrite portion of the

values file. In order to activate remote_write, add url:

http://InfluxDB-

IP:8086/api/v1/prom/write?db=<DBNAME> inside

of the brackets next to remoteWrite. The DBNAME

was updated between experiments to be the name of

the workload being run, and numbered one to five.

Loading Prometheus from this modified repository

will deploy Prometheus throughout the Kubernetes

cluster, and populate approximately nine hundred

different metric tables.

The spark-submit queries are all variations on a

theme. The Terasort query is: “./bin/spark-submit --

verbose --master

k8s://https://<KubernetesMasterIP>:6443 --deploy-

mode cluster --name spark-terasort --class

com.intel.hibench.sparkbench.micro.ScalaTeraSort --

conf

spark.kubernetes.container.image=<repo><tag> --

conf spark.kubernetes.driver.pod.name=spark-

terasort --conf

spark.kubernetes.authenticate.driver.serviceAccount

Name=<username> --conf

spark.executor.memory=12g --conf

spark.executor.memoryoverhead=16g

local:///opt/spark/bin/sparkbench/assembly/target/sp

arkbench-assembly-7.1-SNAPSHOT-dist.jar "hdfs://

<HDFS IP>:9000/HiBench/Terasort/Input" "hdfs://

<HDFS IP>:9000/HiBench/Terasort/Output."”

Each part has a specific function within the query

itself. The “—verbose” was for debugging ease

throughout development. It outputs a more detailed

log to the screen throughout the beginning of the

query. In order for Spark to utilize Kubernetes, it has

to be passed a Kubernetes IP:port combination, as well

as a name for any kubectl commands. The container

image is what allows Spark to run on Kubernetes, and

the various properties beyond that allow for tweaking.

The final two HDFS lines are the parameters of the

TeraSort function.

The RF spark-submit is: ./bin/spark-submit --

verbose --master k8s://https://

<KubernetesMasterIP> --deploy-mode cluster --

name spark-RF --class

com.intel.hibench.sparkbench.ml.RandomForestClas

sification --conf

spark.kubernetes.container.image=<repo><tag> --

conf spark.kubernetes.driver.pod.name=spark-rf --

conf

spark.kubernetes.authenticate.driver.serviceAccount

Name=<username> --conf

spark.executor.memory=24g --conf

spark.executor.memoryoverhead=32g

local:///opt/spark/bin/sparkbench/assembly/target/sp

arkbench-assembly-7.1-SNAPSHOT-dist.jar

"hdfs://<HDFS IP>:9000/HiBench/RF/Input."

WordCount is ./bin/spark-submit --verbose --

master k8s://https:// <KubernetesMasterIP> --

deploy-mode cluster --name spark-wordcount --class

com.intel.hibench.sparkbench.micro.ScalaWordCoun

t --conf

spark.kubernetes.container.image=<repo><tag> --

conf spark.kubernetes.driver.pod.name=spark-

wordcount --conf

spark.kubernetes.authenticate.driver.serviceAccount

Name=<username> --conf

spark.executor.memory=12g --conf

spark.executor.memoryoverhead=16g

local:///opt/spark/bin/sparkbench/assembly/target/sp

arkbench-assembly-7.1-SNAPSHOT-dist.jar "hdfs://

<HDFS IP>:9000/HiBench/Wordcount/Input"

"hdfs:// <HDFS

IP>:9000/HiBench/Wordcount/Output.”

SVD is ./bin/spark-submit --verbose --master

k8s://https://<KubernetesMasterIP> --deploy-mode

cluster --name spark-svd --class

com.intel.hibench.sparkbench.ml.SVDExample --conf

spark.kubernetes.container.image=<repo><tag> --

conf spark.kubernetes.driver.pod.name=spark-svd --

conf

spark.kubernetes.authenticate.driver.serviceAccount

Name=<username> --conf

spark.executor.memory=24g --conf

spark.executor.memoryoverhead=32g

local:///opt/spark/bin/sparkbench/assembly/target/sp

arkbench-assembly-7.1-SNAPSHOT-dist.jar --

numFeatures 2000 --numSingularValues 1500 "hdfs://

<HDFS IP>:9000/HiBench/SVD/Input."

The Prometheus Helm chart is taken down

between each test, and the values updated with the new

remote_write parameters. Each job is run as the only

thing within the Kubernetes ecosystem beyond the

protected kube-system namespace which oversees the

various containers which make up Kubernetes itself.

4. Results and discussion

The results presented below are a selection from

the twenty runs. The nine hundred metrics were culled

down to a handful to illustrate differences between

different workloads and how those differences are

visualized at various points in the stack. These

visualizations are the result of queries to InfluxDB

through the Chronograf visualization engine that were

built off of Prometheus metrics.

Page 6959

4.1. Memory statistics

Prometheus is able to gather memory allocation

metrics at the node level of an experimental stack. The

two metrics shown are a total from an individual run,

the fourth TeraSort, as well as an allocation calculated

every minute throughout the run of several workloads.

The total shows the system was allocating memory,

but it never went down since it is a total. That was

consistent across every experimental test. The

individual metrics showed large differences and spikes

across various nodes as processing was allocated in a

cluster environment. The workloads perform different

things, so differing numbers across their runtimes,

which themselves were also different, is an expected

behavior. This is illustrated in Figures 2 and 3.

Figure 2. Terasort 4

go_memstats_alloc_bytes_total

Figure 3. Terasort 4

go_memstats_alloc_bytes

Figures 4 through 6 illustrate difference

workloads. As shown, the performance characteristics

for TeraSort differs from Random Forest; this tells us

that it is possible to infer different types of jobs on a

running cluster. TeraSort requires a large amount of

memory to store, and write out, compared to Random

Forest. Wordcount and Singular Value Decomposition

also have different memory profiles.

4.2. Node load statistics

Where memory statistics show differences across

allocations in node memory, node load is primary

concerned with processes that are currently running,

plus the queued processes that follow along in order to

complete a job. An important note is that these

visualizations show the IP addresses [57] of the three

nodes. 199.33.133.25 is the Kubernetes master node.

199.33.133.15 & 16 are the two slave nodes. Figures 7

though 10 are a selection of Terasorts and Random

forests to show how node load changes between

different experimental runs. Again, the differing

behavior in the experiments show differences in

processes counts, but these metrics also show potential

differences between the individual experiments in

terms of which servers run processes throughout

runtimes. That type of information is valuable in event

reconstruction due to being able to pinpoint when

something went amiss during a security event.

Figure 4. Random Forest 1

go_memstats_alloc_bytes

Figure 5. Singular Value Decomposition 2

go_memstats_alloc_bytes

Figure 6. Wordcount 3

go_memstats_alloc_bytes

Figure 7. Terasort 5 node_load

Page 6960

Figure 8. Tersort 2 node_load

Figure 9. Random Forest 2 node_load

Figure 10. Random Forest 3 node_load

 4.3. Namespace and container level

filesystem statistics

Kubernetes itself is split into different levels. The

main structure that Kubernetes surrounds containers

with is called a namespace, and system administrators

can use namespaces to spread out work between

different users, or different tasks, depending on

overarching policy. In a forensic context, jobs can be

divided in such a way as to make pinpointing problems

succinct. The namespaces hold individual containers,

and Prometheus can gather both of these metrics.

4.3.1. Container_fs_usage_bytes This metric

shows how the file system is utilized throughout

execution of one of the experimental workload. They

show how small the kube-system namespace is

compared to the major running processes within the

default namespace executing Spark. The development

namespace holds the various parts of Prometheus.

Figures 11 and 13 are namespace level metrics from

Terasort 3 and Random Forest 4, and Figures 12 and

14 are container level pulls of those two experiments.

4.3.2. Container_memory_usage_bytes The

other part of the system, memory, is shown in this

metric. The two experiments shown are Terasort 5 and

Random Forest 1. Interestingly, the major dip in

Random Forest one is potentially a process

changeover, or a large memory release as the classifier

works through the input data. Even knowing that there

was a dip has some bearing on potential event

reconstruction since the data is timestamped and split

amongst both namespace and containers. Figures 15

and 17 show namespace level metrics, and Figures 16

and 18 show container level metrics.

Figure 11. Namespace level Terasort 3

container_fs_usage_bytes

Figure 12. Namespace level Random

Forest 4 container_fs_usage_bytes

Figure 13. Container level Terasort 3

container_fs_usage_bytes

Figure 14. Container level Random Forest

4 container_fs_usage_bytes

Page 6961

Figure 15. Namespace level Terasort 5
container_memory_usage_bytes

Figure 16. Namespace level Random

Forest 1 container_memory_usage_bytes

Figure 17. Container level Terasort 5
container_memory_usage_bytes

Figure 18. Container level Random Forest

1 container_memory_usage_bytes

5. Conclusions and future work

This research proposed three subsidiary research

questions to determine whether introspection tools can

be expanded across a multi-server technology stack

with a container orchestrator at its heart. The first

investigates which levels an introspection tool has

access. The introspection tool Prometheus has access

to multiple levels of a technology stack. It can pull data

from the namespace and container level of

Kubernetes, as well as multiple different node metrics

to provide a multi-variate stream of data representing

execution within the environment. The data set itself

over multiple experiments contains twenty

experiments of data compiled in over nine hundred

separate metrics. The scaling suggests that

introspection tools can be used to generate historical

records for event reconstruction, or other collection

surrounding processing of large amounts of data.

The second subsidiary research question dealt

with constructing a one-way pipe to store data away

from the orchestrated containerized experimental

platform. The inclusion of InfluxDB, and the ability

for Prometheus to remotely write out its metrics as

they are being compiled demonstrates that it is

possible to pull data out in a straightforward way, and

save it outside of the running system.

The size of the data set, over nine hundred

metrics, did precipitate using a visualization tool to go

through them. Chronograf, built to directly interface

with an InfluxDB database, was useful in answering

this third and final subsidiary research question.

The answers to these subsidiary research

questions show that introspection tools can expand to

a large, diverse technology stack to gather relevant

data for event reconstruction. No matter the workload

that the orchestrated containerized system is running,

Prometheus has access to relevant metrics. The

metrics shown in the paper are from multiple levels in

the technology stack, and show totals as well as peaks

and valleys are the various pieces of the orchestrated

containerized system went about the business of

executing a complex, multi-server workload.

Additionally, the metrics themselves have some

level of interoperability since the namespace and

container level metrics look at the groupings of

containers that execute a given job, as well as the

individual containers themselves. That level of

granularity is key to event reconstruction at the

individual container level.

Future work is focused on diversification, and

analysis at horizontal and vertical scale. The complex

system has clear lines of demarcation between the

various systems so removing one part and replacing it

with a similar piece is straightforward. These

comparisons have value for workload modeling, as

well as studying individual parts for potential forensic

analysis pitfalls. For instance, there are other container

orchestrators than Kubernetes. With Docker

Enterprise [58] coming for free with every copy of

Window Server 2019 [59], and configured to default

to Windows containers, the Azure Service Fabric [60]

could be substituted. Utilizing the Service Fabric

Mesh [61], which focuses on microservices on Azure,

could provide a highly focused look at microservices,

Page 6962

and solving some of the analytical challenges inherent

in that paradigm. Mirantis’s Docker Enterprise

Container Cloud [62] is based on the notion of

clustered containers managing other clusters of

containers to allow for seamless, multi-level scaling

either horizontally or vertically on an ad-hoc basis.

The dataset has potential applications outside of

forensics, such as resource management of large

distributed systems. There were over nine hundred

metrics, and targeted examinations in CPU utilization,

or memory I/O, or how utilizing graphic processing

unit architecture’s such as Nvidia’s Ampere [63] effect

resource utilization are future work.

6. Acknowledgments

This work was partially supported by the National

Science Foundation Grant No. CNS-1726069.

7. References

[1] Gerend, J. Containers vs. virtual machines. 2020;

https://docs.microsoft.com/en-

us/virtualization/windowscontainers/about/contai

ners-vs-vm.

[2] Foundation, A.S. Apache Spark™ - Unified Analytics

Engine for Big Data. 2020;

https://spark.apache.org/.

[3] Google. What is Kubernetes? 2018;

https://kubernetes.io/docs/concepts/overview/wha

t-is-kubernetes/.

[4] Foundation, A.S. Apache Hadoop 2.9.1 The YARN

Timeline Service v.2.

https://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop-yarn-site/TimelineServiceV2.html.

[5] 2020 State of the Cloud Survey from Flexera. 2020;

https://info.flexera.com/SLO-CM-REPORT-

State-of-the-Cloud-2020.

[6] Msv, J. 10 Key Takeaways From RightScale 2020 State

Of The Cloud Report From Flexera. 2020;

https://www.forbes.com/sites/janakirammsv/2020

/05/02/10-key-takeaways-from-rightscale-2020-

state-of-the-cloud-report-from-flexera/.

[7] Ab Rahman, N.H. and K.-K.R. Choo, A survey of

information security incident handling in the

cloud. Computers & Security, 2015. 49: p. 45-69.

[8] Agrawal, B., T. Wiktorski, and C. Rong, Adaptive real‐

time anomaly detection in cloud infrastructures.

Concurrency and Computation: Practice and

Experience, 2017. 29(24).

[9] Osanaiye, O., K.-K.R. Choo, and M. Dlodlo, Distributed

denial of service (DDoS) resilience in cloud:

review and conceptual cloud DDoS mitigation

framework. Journal of Network and Computer

Applications, 2016. 67: p. 147-165.

[10] Cahyani, N.D.W., N.H.A. Rahman, W.B. Glisson, and

K.-K.R. Choo, The Role of Mobile Forensics in

Terrorism Investigations Involving the Use of

Cloud Storage Service and Communication Apps.

Mobile Networks and Applications, 2017. 22(2):

p. 240-254.

[11] Grispos, G., W.B. Glisson, and T. Storer, Chapter 16 -

Recovering residual forensic data from

smartphone interactions with cloud storage

providers, in The Cloud Security Ecosystem, R.K.-

K.R. Choo, Editor. 2015, Syngress: Boston. p.

347-382.

[12] Palmer, D. Hackers see cloud as 'a fruit-bearing

jackpot' for cyber attacks | Computing. 2015.

[13] Vaughan-Nichols, S.J. What is Docker and why is it so

darn popular? 2018;

https://www.zdnet.com/article/what-is-docker-

and-why-is-it-so-darn-popular/.

[14] Presmeg, N.C. Prometheus - Monitoring system & time

series database. 2018; https://prometheus.io/.

[15] Datadog, Infrastructure & Application Monitoring as a

Service | Datadog. 2015.

[16] Mell, P. and T. Grance, The NIST definition of cloud

computing. National Institute of Standards and

Technology, 2009. 53(6): p. 50.

[17] Yang, C., Q. Huang, Z. Li, K. Liu, and F. Hu, Big Data

and cloud computing: innovation opportunities

and challenges. International Journal of Digital

Earth, 2017. 10(1): p. 13-53.

[18] Burns, B., B. Grant, D. Oppenheimer, E. Brewer, and J.

Wilkes, Borg, omega, and kubernetes. Queue,

2016. 14(1): p. 70-93.

[19] Verma, A., L. Pedrosa, M. Korupolu, D. Oppenheimer,

E. Tune, and J. Wilkes. Large-scale cluster

management at Google with Borg. in Proceedings

of the Tenth European Conference on Computer

Systems. 2015.

[20] Schwarzkopf, M., A. Konwinski, M. Abd-El-Malek,

and J. Wilkes. Omega: flexible, scalable

schedulers for large compute clusters. in

Proceedings of the 8th ACM European

Conference on Computer Systems. 2013.

[21] Casalicchio, E. and V. Perciballi. Measuring docker

performance: What a mess!!! in Proceedings of

the 8th ACM/SPEC on International Conference

on Performance Engineering Companion. 2017.

ACM.

[22] Google. google/cadvisor - Docker Hub. 2018;

https://hub.docker.com/r/google/cadvisor/.

[23] Docker. Docker. 2018; https://www.docker.com/.

[24] Grafana. Grafana - The open platform for analytics and

monitoring. 2018; https://grafana.com/.

[25] Watts, T., R. Benton, W. Glisson, and J. Shropshire.

Insight from a Docker Container Introspection. in

Proceedings of the 52nd Hawaii International

Conference on System Sciences. 2019.

[26] Medel, V., O. Rana, J.Á. Bañares, and U. Arronategui.

Modelling performance & resource management

in kubernetes. in Proceedings of the 9th

International Conference on Utility and Cloud

Computing. 2016.

[27] Install Minikube. 2020;

https://kubernetes.io/docs/tasks/tools/install-

minikube/.

Page 6963

https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://spark.apache.org/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/TimelineServiceV2.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/TimelineServiceV2.html
https://info.flexera.com/SLO-CM-REPORT-State-of-the-Cloud-2020
https://info.flexera.com/SLO-CM-REPORT-State-of-the-Cloud-2020
https://www.forbes.com/sites/janakirammsv/2020/05/02/10-key-takeaways-from-rightscale-2020-state-of-the-cloud-report-from-flexera/
https://www.forbes.com/sites/janakirammsv/2020/05/02/10-key-takeaways-from-rightscale-2020-state-of-the-cloud-report-from-flexera/
https://www.forbes.com/sites/janakirammsv/2020/05/02/10-key-takeaways-from-rightscale-2020-state-of-the-cloud-report-from-flexera/
https://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
https://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
https://prometheus.io/
https://hub.docker.com/r/google/cadvisor/
https://www.docker.com/
https://grafana.com/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/

[28] Shah, J. and D. Dubaria. Building modern clouds: using

docker, kubernetes & Google cloud platform. in

2019 IEEE 9th Annual Computing and

Communication Workshop and Conference

(CCWC). 2019. IEEE.

[29] Google. Cloud Computing Services | Google Cloud.

2020; https://cloud.google.com/.

[30] Foundation, A.S. StatefulSets. 2020;

https://kubernetes.io/docs/concepts/workloads/co

ntrollers/statefulset/.

[31] Netto, H.V., A.F. Luiz, M. Correia, L. de Oliveira Rech,

and C.P. Oliveira. Koordinator: A Service

Approach for Replicating Docker Containers in

Kubernetes. in 2018 IEEE Symposium on

Computers and Communications (ISCC). 2018.

IEEE.

[32] Authors, C. CoreDNS. 2020;

https://github.com/coredns/coredns.

[33] Kratzke, N. and P.-C. Quint. A visualizing network

benchmark for microservices. in Proceedings of

the 6th International Conference on Cloud

Computing and Services Science (CLOSER).

2016.

[34] Weaveworks. Weave Net. 2020;

https://www.weave.works.

[35] Gueant, V. iPerf - The TCP, UDP and SCTP network

bandwidth measurement tool. 2020;

https://iperf.fr/.

[36] Microsystems, S. Uperf - A network performance tool.

2020; http://uperf.org/.

[37] Stelly, C. and V. Roussev, SCARF: A container-based

approach to cloud-scale digital forensic

processing. Digital Investigation, 2017. 22: p.

S39-S47.

[38] Open NSFW. 2018;

https://github.com/yahoo/open_nsfw.

[39] Agapito, G., B. Calabrese, and P.H. Guzzi. Parallel and

Cloud-Based Analysis of Omics Data: Modelling

and Simulation in Medicine. in 2017 25th

Euromicro International Conference on Parallel,

Distributed and Network-based Processing

(PDP). 2017. IEEE.

[40] Moreno, P., L. Pireddu, and P. Roger, Galaxy-

Kubernetes integration: scaling bioinformatics

workflows in the cloud. BioRxiv, 2018: p. 488643.

[41] Afgan, E., D. Baker, and B. Batut, The Galaxy platform

for accessible, reproducible and collaborative

biomedical analyses: 2018 update. Nucleic Acids

Research, 2018. 46(W1): p. W537-W544.

[42] Foundation, C.N.C. Helm. 2020; https://helm.sh/.

[43] Oates, B.J., Researching information systems and

computing. 2005: Sage.

[44] Project, T.C. About CentOS. 2020;

https://www.centos.org/about/.

[45] Foundation, A.S. HDFS Architecture Guide. 2020;

https://hadoop.apache.org/docs/r1.2.1/hdfs_desig

n.html.

[46] Intel. Intel Bigdata -HiBench. 2020;

https://github.com/Intel-bigdata/HiBench.

[47] InfluxData. InfluxDB 1.X: Open Source Time Series

Platform | InfluxData. 2020;

https://www.influxdata.com/time-series-

platform/.

[48] InfluxData. Chronograf: Complete Dashboarding

Solution for InfluxDB | InfluxData. 2020;

https://www.influxdata.com/time-series-

platform/chronograf/.

[49] Vrancic, A., Synchronization of distributed systems.

2006, Google Patents.

[50] Shao, G., F. Berman, and R. Wolski. Master/slave

computing on the grid. in Proceedings 9th

Heterogeneous Computing Workshop (HCW

2000)(Cat. No. PR00556). 2000. IEEE.

[51] Durillo, J.J., A.J. Nebro, F. Luna, and E. Alba. A study

of master-slave approaches to parallelize NSGA-

II. in 2008 IEEE international symposium on

parallel and distributed processing. 2008. IEEE.

[52] Marquette, B.N., M.B. Stevens, M.L. Williams, and

J.D. Wilson, Master/slave architecture for a

distributed chat application in a bandwidth

constrained network. 2002, Google Patents.

[53] MapR. TeraSort Benchmark Comparison for YARN |

MapR. 2020;

https://mapr.com/whitepapers/terasort-

benchmark-comparison-yarn/.

[54] Foundation, A.S. MapReduce Tutorial. 2020;

https://hadoop.apache.org/docs/r1.2.1/mapred_tut

orial.html.

[55] Foundation, A.S. SVD - Singular Value Decomposition.

2020; https://mahout.apache.org/users/basics/svd-

--singular-value-decomposition.html.

[56] Wang, Y., W. Goh, L. Wong, G. Montana, and A.s.D.N.

Initiative, Random forests on Hadoop for genome-

wide association studies of multivariate

neuroimaging phenotypes. BMC Bioinformatics,

2013. 14(S16): p. S6.

[57] Griffith, E. How to Find Your IP Address. 2020;

https://www.pcmag.com/how-to/how-to-find-

your-ip-address.

[58] Mirantis. Docker Enterprise | Mirantis. 2020;

https://www.mirantis.com/software/docker/docke

r-enterprise/.

[59] Windows Server 2019 | Microsoft. 2020;

https://www.microsoft.com/en-us/windows-

server.

[60] Azure Service Fabric—Building Microservices |

Microsoft Azure. 2020;

https://azure.microsoft.com/en-

us/services/service-fabric/.

[61] Overview of Azure Service Fabric Mesh - Azure Service

Fabric Mesh. 2020;

https://docs.microsoft.com/en-us/azure/service-

fabric-mesh/service-fabric-mesh-overview.

[62] Mirantis. Docker Enterprise Container Cloud |

Mirantis. 2020;

https://www.mirantis.com/software/docker/docke

r-enterprise-container-cloud/.

[63] Nvidia. NVIDIA Ampere Architecture: The Heart of the

Modern Data Center. 2020;

https://www.nvidia.com/en-us/data-center/nvidia-

ampere-gpu-architecture/.

Page 6964

https://cloud.google.com/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://github.com/coredns/coredns
https://www.weave.works/
https://iperf.fr/
http://uperf.org/
https://github.com/yahoo/open_nsfw
https://helm.sh/
https://www.centos.org/about/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://github.com/Intel-bigdata/HiBench
https://www.influxdata.com/time-series-platform/
https://www.influxdata.com/time-series-platform/
https://www.influxdata.com/time-series-platform/chronograf/
https://www.influxdata.com/time-series-platform/chronograf/
https://mapr.com/whitepapers/terasort-benchmark-comparison-yarn/
https://mapr.com/whitepapers/terasort-benchmark-comparison-yarn/
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://mahout.apache.org/users/basics/svd---singular-value-decomposition.html
https://mahout.apache.org/users/basics/svd---singular-value-decomposition.html
https://www.pcmag.com/how-to/how-to-find-your-ip-address
https://www.pcmag.com/how-to/how-to-find-your-ip-address
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.microsoft.com/en-us/windows-server
https://www.microsoft.com/en-us/windows-server
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/service-fabric/
https://docs.microsoft.com/en-us/azure/service-fabric-mesh/service-fabric-mesh-overview
https://docs.microsoft.com/en-us/azure/service-fabric-mesh/service-fabric-mesh-overview
https://www.mirantis.com/software/docker/docker-enterprise-container-cloud/
https://www.mirantis.com/software/docker/docker-enterprise-container-cloud/
https://www.nvidia.com/en-us/data-center/nvidia-ampere-gpu-architecture/
https://www.nvidia.com/en-us/data-center/nvidia-ampere-gpu-architecture/

