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Abstract 

 
Developments in virtual containers, especially in 

the cloud infrastructure, have led to diversification of 

jobs that containers are used to support, particularly 

in the big data and machine learning spaces. The 

diversification has been powered by the adoption of 

orchestration systems that marshal fleets of containers 

to accomplish complex programming tasks. The 

additional components in the vertical technology 

stack, plus the continued horizontal scaling have led 

to questions regarding how to forensically analyze 

complicated technology stacks. This paper proposed a 

solution through the use of introspection. 

An exploratory case study has been conducted on 

a bare-metal cloud that utilizes Kubernetes, the 

introspection tool Prometheus, and Apache Spark. The 

contribution of this research is two-fold. First, it 

provides empirical support that introspection tools 

can acquire forensically viable data from different 

levels of a technology stack. Second, it provides the 

ground work for comparisons between different 

virtual container platforms. 

1. Introduction  

Virtual containers, which are an iteration of the 

concept of virtual machines, are frequently used in the 

cloud. Where a virtual machine is a complete 

operating system on top of virtualized hardware, a 

container is a lightweight silo for running an 

application on a host operating system [1]; they 

contain only the software needed to accomplish a 

specific task. They are used to accelerate processing in 

data processing frameworks such as Apache Spark [2]. 

Orchestrating containers through popular frameworks 

such as Kubernetes [3] or Apache YARN [4] has 

grown as a research area over the past several years. 

Flexera’s 2020 State of the Cloud survey [5] 

underscores how popular adoption of Kubernetes is 

with a ten percent adoption rate increase from forty-

eight to fifty-eight percent from 2019 to 2020. That is 

coupled with an overall container adoption growth 

from fifty-seven to sixty-five percent. Forbes also 

pointed out that over fifty percent of respondents to the 

2020 survey expected to use more cloud in response to 

the global Coronavirus pandemic. [6] 

As container adoption expands throughout the 

cloud, concerns surrounding the detection of security 

problems arise from both practitioners and 

academicians [7-11]. Alert Logic, a big data security-

as-a-service company, published a 2015 report that 

stated “businesses using cloud environments are 

largely considered a ‘fruit-bearing jackpot’ for 

hackers” [12]. The speed with which containers 

execute is a key concern since containers can perform 

their function in seconds [13], as they are typically 

destroyed once a task is done. Therefore, data about 

containers must be collected while they are performing 

their tasks. Introspection tools such as Prometheus 

[14] and Datadog [15] have been created to gather this 

data as an orchestrated containerized environment is 

running.  

These concerns in both the cloud and with 

containers specifically prompts the hypothesis that 

introspection tools can be expanded to gather 

forensically useful data from larger, orchestrated 

containerized workloads. Subsidiary questions 

identified as part of this research are as follows: 

1. Which levels of an orchestrated containerized 

system does an introspection tool have access? 

2. How can data be saved away from the running 

system? 

3. How can this data be visualized for ease of 

examination? 

The research contribution of this paper is an 

analysis of the data that an introspection tool can 

gather in a multi-server orchestrated containerized 

environment running a variety of machine learning 

workloads. The paper is structured as follows. Section 

2 discusses the research surrounding the intersection 
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of cloud computing, big data, and container 

orchestration software. Section 3 presents the 

experimental methodology and design. Section 4 

examines the results of a series of experiments 

designed to determine what data is captured from an 

introspection tool from a series of containerized 

workloads. Section 5 draws conclusions and presents 

future work.  

2. Related work 

The National Institute of Standards and 

Technology [16] (NIST) lists five essential 

characteristics of cloud computing: on-demand self-

service, broad network access, resource pooling, rapid 

elasticity or expansion, and measured service. NIST 

also describes four deployment models: private, 

community, public and hybrid. These definitions have 

standardized cloud computing nomenclature since 

their publication in 2009. 

Big data and the cloud have become intertwined as 

the two technologies have matured. Yang et. al [17] 

pointed out the challenges and opportunities of these 

two ideas. After defining several sources of big data 

such as the Internet of Things and business, the 

researchers point out how cloud computing ideas can 

be leveraged to help provide insight into these two 

evolving realms through data transmission and 

management as well as analysis. Some of the 

challenges that are underscored throughout the survey 

are scalability and quality of service on large-scale big 

data jobs. Finally, the paper concludes with several 

ideas for a research agenda focused on risk 

management, big data mining, and interdisciplinary 

collaboration to solve pressing issues. 

One of the major players in container orchestration 

in a virtual is Kubernetes. Burns et. al [18] wrote about 

the development arc surrounding Borg [19], Omega 

[20], and Kubernetes. The authors were integral to the 

various container orchestration platforms at Google. 

Their 2016 work describes the history of container 

orchestration at Google, which started with Borg.  

Omega was their second-generation orchestration 

system within their closed-source data center 

operations and incorporated lessons learned from 

Borg. The paper also describes what Kubernetes, their 

latest generation container orchestrator that was 

released to the public, obtained from Google’s internal 

development efforts. One key point stressed by Burns 

et. al [18] is how containers have lightened the OS load 

across the fleet of Google machines and permitted data 

centers to be converted into application focused 

processing engines. 

Where Yang et. al and Burns et. al were working 

on systems to unite overarching concepts in the 

virtualization world, Casalicchio and Percibali [21] 

focused specifically on virtual containers. They sought 

to determine if tools built for a non-virtual 

environment collected the same information as tools 

built to focus on the cloud. The researchers tested a 

battery of traditional Linux metrics including iostat 

and mpstat. cAdvisor [22], a container specific 

introspection tool suite was used as a comparison 

platform for specific Docker [23] statistics. Both 

Prometheus [14] and Grafana [24] for utilized for 

statistics collection. Tests centered upon CPU and 

Disk I/O intensive workloads. They determined 

different tools present similar but not completely equal 

results. 

Watts et. al [25] also examined containers, but that 

research was focused on detecting malware through 

introspection tools. The researchers introduced a 

known piece of malware to an Apache server container 

and ran a series of tests to determine what differences, 

if any, appeared in the metrics that the introspection 

tool Prometheus produced. Through a total five 

different experiments, nine different metrics were 

identified that allowed the user to identify if a 

container was infected or normal.  

Examining performance and resource management 

was the focus of Medel et. al [26]. They built a two 

node Kubernetes cluster on a pair of servers, and tested 

container creation and termination time with CPU and 

I/O intensive workloads, with the goal of measuring 

the system time required to perform the tasks. There 

were several drawbacks to their approach, beginning 

with the fact their cluster was composed of only two 

nodes, one of which was the master node. This is a 

concern, as Kubernetes does not allow for scheduling 

of work on the master node unless explicitly 

configured to deployed jobs on the master node. Even 

with that limitation, their initial work was one of the 

first to use an actual Kubernetes deployment as 

opposed to the popular Minikube [27]. Minikube is 

single node Kubernetes that is meant for personal 

computer resources as opposed to server compute 

resources that are seen in clouds; as a result, 

comparisons done on Minikube do not necessarily 

reflect typical Kubernetes deployments.  

Shah et. al [28] used microservices such as 

WordPress to show deployment patterns through a 

combination of Docker [23], Kubernetes [3], and the 

Google Cloud Platform [29]. The paper delineates 

how Docker can be used to make deployments faster, 

while Kubernetes on the Google Cloud Platform can 

control the scaling of a given application. They also 

compare Docker Swarm, a Kubernetes-like platform 

designed to work natively with Docker, to Kubernetes. 

The paper does an excellent job explaining the 
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deployment patterns along with the tradeoffs and 

strengths of the different containerized systems.   

Managing a stateful application across a container 

orchestration platform can be a challenge.  Kubernetes 

attempts to address this via StatefulSets [30], which is 

designed to augment the Kubernetes orchestration 

layer  by introducing persistent identifiers to sets of 

containers.  An alternative approach was presented by 

Netto et. al [31], who built a coordinator-as-a-service 

application called Koordinator to add some fault 

tolerance to Kubernetes. The authors built a service 

layer on-top of Kubernetes as opposed to augmenting 

the Kubernetes orchestration layer. The Koordinator 

layer sits behind the proxy servers that Kubernetes 

configures for its CoreDNS [32] protocols to create the 

Kubernetes virtual network, and CoreDNS itself. 

Traffic is routed through that service layer if there are 

many requests to an application made up of many 

containers. Koordinator adds a read on top of a write, 

but experimental tests showed that there was hardly 

any changeover. The system was tested with sixteen 

writers with eight thousand simultaneous requests as 

well as 256 readers sending eighty thousand requests. 

The resource consumption was also shown.  

Understanding how efficient parts of the overall 

system are as Kubernetes diversifies will require 

vigilance, and Kratzke et. al [33] worked on the 

networking side of Kubernetes. The research had a 

series of test cases ranging from a non-virtualized 

system to a fully containerized system using the 

software-defined network Weavenet [34], a popular 

networking framework for Kubernetes. The 

benchmark mapped pings between hosts, and then 

created a series of line graphs which compared the 

non-virtual system with the fully containerized one. 

Their research admitted that the tool for benchmarking 

was limited, but it was able to augment the classical 

iperf [35], uperf [36] by extending their usage into 

Kubernetes. 

A major question surrounding large virtual 

containerized platforms is scaling the necessary 

monitoring tools without an extreme performance 

cost. Stelly et al. [37]  deal with this issue via the 

containerization of the digital forensics process with 

their SCARF toolkit. They focused on scalability 

across large platforms using Docker Swarm, and 

attempted to demonstrate that high throughput to 

empower scalability. The group ran tests on both a 

legacy cluster, and a cluster with cutting edge 

hardware and found that several of the components of 

the SCARF system, such as Yahoo’s OpenNSFW 

network [38], had large throughput gains when 

comparing the two systems, and could potential scale 

into the big data realm. 

Containerization has expanded from purely 

computational researchers into the world writ large. 

One of the more interesting use-cases fuses 

bioinformatics, which has already been heavily 

involved in using cloud compute, such as Agapito et. 

al’s [39] simulation of vessel reconstruction, with 

Kubernetes. Moreno et. al [40] combined Kubernetes 

with Galaxy developed by Afgan et. al [41] to 

containerize the framework to scale bioinformatics 

workloads into the cloud. They manipulate the 

workflow through a Helm [42] chart in order to allow 

for configuration ease. While the paper itself is short, 

Monero et. al provide links to both the code as well as 

robust documentation for configuring the product. 

Containerization research has focused on solving 

specific problems with a specific component within an 

orchestrated container system. This research struggles 

outside of Minikube which obfuscates many core 

functionalities of Kubernetes in favor of ease of use. 

There has been minimal investigation of distributed 

container processing utilizing cutting edge tools in a 

forensic context to examine how various big data 

workloads are processed throughout a technology 

stack. 

3. Methodology 

This research investigates building a data pipeline 

in a cluster setup with an eye toward forensic analysis. 

The data can be used for event reconstruction across 

multiple servers, or as an early warning of problems 

across a cluster. The research is classified as an 

exploratory study according to Oates since it is an 

attempt to understand the overall research problem 

[43]. It expands the framework proposed in Watts et. 

al [25] to collect data through the stack, rather than 

focusing on a single container.  

3.1. Experimental testing environment  

The experiment is conducted on three Dell R440 

1U servers. Each server has one terabyte of storage, 

and 168 gigabytes of RAM. The master server has a 

pair of Intel Xeon processors that provides forty-eight 

processing cores; the two slave servers have sixteen 

cores apiece. All three servers use the CentOS 7 [44] 

operating system. These servers support the Hadoop 

Distributed File System (HDFS) [45], Yet Another 

Resource Negotiator (YARN) [35], Kubernetes [3], 

Apache Spark [2], HiBench [46], Prometheus [14], 

Helm [42], and Docker [23]. An additional virtual 

machine was provisioned on a fourth server, which 

served to store the data collected. This virtual machine 

has eight gigabytes of RAM, eighty gigabytes of 

storage, and four cores and is used to house InfluxDB 
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[47], and Chronograf [48]. InfluxDB is used to store 

the data collected during the experiments and 

Chronograf is used to create some of the 

visualizations. 

The Hadoop Distributed File System [45] is the 

storage portion of the popular Apache Hadoop 

platform. It is open source, and allows networked 

servers to share storage between them. In the 

experiments that will be conducted, the work and data 

storage will be shared between the single master and 

the two data nodes, which matches the configuration 

used in other distributed systems [49-52].   

Yet Another Resource Negotiator [35] is another 

part of the Apache Hadoop platform, but, where HDFS 

focuses on storage, YARN focuses on providing 

compute resources for data stored on HDFS. YARN 

will be used to oversee and allocate computational 

resources for the scripts that prepare input data for the 

types of computational loads the experiment runs 

through the CentOS [44] command line interface. 

Kubernetes [3] is an open-source container 

orchestration software that came out of Google. The 

platform breaks orchestration large processing jobs 

into a variety of layers, and the various layers allow 

for expansive data gathering. The open source 

introspection tool Prometheus [14] works through a 

series of targets and configuration files and that 

functionality can be leveraged to empower the 

multiple level data gathering that this experiment 

seeks to generate. The package manager Helm [42], a 

package manager for Kubernetes similar to Linux’s 

APT, is used to build and customize Prometheus for 

the Kubernetes orchestrator; it enables Prometheus to 

utilize the endpoints that each container exposes 

through the Kubernetes APIs.  

Docker [23] is open source container software 

that runs on top of multiple host operating systems. 

Kubernetes interfaces with Docker to schedule jobs 

and distribute them across a containerized 

environment.  

YARN and Apache Spark [2] are interrelated, but 

YARN originated as a batch processing engine, while 

Spark was an in-memory analytics engine. A 

containerized version of Apache Spark is what 

actually runs the HiBench benchmarks once they have 

been generated using internal YARN scripting.  

HiBench [46] is an Intel developed project meant 

to allow for a variety of computational loads to be 

measured on Spark clusters. It provides the initial 

input data throughout these experiments, and runs four 

different types: TeraSort [53], WordCount [54], 

Singular Value Decomposition [55], and Random 

Forest [56]. Hadoop’s TeraGen, RandomTestWriter, 

RandomForestDataGenerator and SVDDataGenerator 

provide the input data through HiBench. 

InfluxDB is a time-series database that takes 

advantage of the Prometheus HTTP API in order to 

permanently store each benchmarking test in its own 

database for easier comparisons. Putting InfluxDB in 

its own virtual environment also provides an 

independent data store away from the experimental 

system. Once the data is pulled from the experiments, 

Chronograf is used to explore the data through a series 

of visualizations.  Figure 1 illustrates the experimental 

tech stack in which data flows omnidirectionally 

unless otherwise indicated. 

 

 
Figure 1. Experimental stack 

 

3.2. Experimental methodology  

The experiment itself combines all of the 

disparate elements together to build twenty different 

databases. Each database represents one test. There 

were four separate benchmarking workloads: 

TeraSort, WordCount, Singular Value Decomposition 

(SVD), and Random Forest (RF) that were each run 

five times. Prometheus was routed to a different 

database each time through the Helm package 

manager, and the Spark job was reformulated as 

necessary to go between benchmarking workloads.  

Once the baseline system is built and configured 

so that everything is properly connected, the 

Prometheus Helm chart is modified between each 

experimental task; this modification ensures the data 

for an experiment is written to the proper database. In 

order to update Prometheus, Helm’s 

stable/Prometheus-operator chart pull went through 

several iterations. First, one of the Helm configuration 

files, promop.values were updated to send the 

Prometheus UI to a nodePort, as opposed to a 

ClusterIP, and give it a port. The experiment used 

32322 for ease for use, but any high port will function. 

The Prometheus UI will allow for data to be spot-

checked during a test, and there is a configuration tab 

within the UI that prints out the underlying 

configuration file. That configuration file shows where 
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the remote_write of Prometheus is routed, and is 

configured through the remoteWrite portion of the 

values file. In order to activate remote_write, add url: 

http://InfluxDB-

IP:8086/api/v1/prom/write?db=<DBNAME> inside 

of the brackets next to remoteWrite. The DBNAME 

was updated between experiments to be the name of 

the workload being run, and numbered one to five. 

Loading Prometheus from this modified repository 

will deploy Prometheus throughout the Kubernetes 

cluster, and populate approximately nine hundred 

different metric tables.  

The spark-submit queries are all variations on a 

theme. The Terasort query is: “./bin/spark-submit  --

verbose --master 

k8s://https://<KubernetesMasterIP>:6443  --deploy-

mode cluster --name spark-terasort  --class 

com.intel.hibench.sparkbench.micro.ScalaTeraSort --

conf 

spark.kubernetes.container.image=<repo><tag> --

conf spark.kubernetes.driver.pod.name=spark-

terasort --conf 

spark.kubernetes.authenticate.driver.serviceAccount

Name=<username> --conf 

spark.executor.memory=12g --conf 

spark.executor.memoryoverhead=16g 

local:///opt/spark/bin/sparkbench/assembly/target/sp

arkbench-assembly-7.1-SNAPSHOT-dist.jar "hdfs:// 

<HDFS IP>:9000/HiBench/Terasort/Input" "hdfs:// 

<HDFS IP>:9000/HiBench/Terasort/Output."” 

Each part has a specific function within the query 

itself. The “—verbose” was for debugging ease 

throughout development. It outputs a more detailed 

log to the screen throughout the beginning of the 

query. In order for Spark to utilize Kubernetes, it has 

to be passed a Kubernetes IP:port combination, as well 

as a name for any kubectl commands. The container 

image is what allows Spark to run on Kubernetes, and 

the various properties beyond that allow for tweaking. 

The final two HDFS lines are the parameters of the 

TeraSort function. 

The RF spark-submit is: ./bin/spark-submit  --

verbose --master k8s://https:// 

<KubernetesMasterIP>  --deploy-mode cluster --

name spark-RF  --class 

com.intel.hibench.sparkbench.ml.RandomForestClas

sification --conf 

spark.kubernetes.container.image=<repo><tag> --

conf spark.kubernetes.driver.pod.name=spark-rf --

conf 

spark.kubernetes.authenticate.driver.serviceAccount

Name=<username> --conf 

spark.executor.memory=24g --conf 

spark.executor.memoryoverhead=32g 

local:///opt/spark/bin/sparkbench/assembly/target/sp

arkbench-assembly-7.1-SNAPSHOT-dist.jar 

"hdfs://<HDFS IP>:9000/HiBench/RF/Input."  

WordCount is ./bin/spark-submit  --verbose --

master k8s://https:// <KubernetesMasterIP>  --

deploy-mode cluster --name spark-wordcount  --class 

com.intel.hibench.sparkbench.micro.ScalaWordCoun

t --conf 

spark.kubernetes.container.image=<repo><tag> --

conf spark.kubernetes.driver.pod.name=spark-

wordcount --conf 

spark.kubernetes.authenticate.driver.serviceAccount

Name=<username> --conf 

spark.executor.memory=12g --conf 

spark.executor.memoryoverhead=16g 

local:///opt/spark/bin/sparkbench/assembly/target/sp

arkbench-assembly-7.1-SNAPSHOT-dist.jar "hdfs:// 

<HDFS IP>:9000/HiBench/Wordcount/Input" 

"hdfs:// <HDFS 

IP>:9000/HiBench/Wordcount/Output.” 

SVD is ./bin/spark-submit  --verbose --master 

k8s://https://<KubernetesMasterIP> --deploy-mode 

cluster --name spark-svd  --class 

com.intel.hibench.sparkbench.ml.SVDExample --conf 

spark.kubernetes.container.image=<repo><tag> --

conf spark.kubernetes.driver.pod.name=spark-svd --

conf 

spark.kubernetes.authenticate.driver.serviceAccount

Name=<username> --conf 

spark.executor.memory=24g --conf 

spark.executor.memoryoverhead=32g 

local:///opt/spark/bin/sparkbench/assembly/target/sp

arkbench-assembly-7.1-SNAPSHOT-dist.jar --

numFeatures 2000 --numSingularValues 1500 "hdfs:// 

<HDFS IP>:9000/HiBench/SVD/Input." 

The Prometheus Helm chart is taken down 

between each test, and the values updated with the new 

remote_write parameters. Each job is run as the only 

thing within the Kubernetes ecosystem beyond the 

protected kube-system namespace which oversees the 

various containers which make up Kubernetes itself. 

4. Results and discussion  

The results presented below are a selection from 

the twenty runs. The nine hundred metrics were culled 

down to a handful to illustrate differences between 

different workloads and how those differences are 

visualized at various points in the stack. These 

visualizations are the result of queries to InfluxDB 

through the Chronograf visualization engine that were 

built off of Prometheus metrics. 
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4.1. Memory statistics 

Prometheus is able to gather memory allocation 

metrics at the node level of an experimental stack. The 

two metrics shown are a total from an individual run, 

the fourth TeraSort, as well as an allocation calculated 

every minute throughout the run of several workloads. 

The total shows the system was allocating memory, 

but it never went down since it is a total. That was 

consistent across every experimental test. The 

individual metrics showed large differences and spikes 

across various nodes as processing was allocated in a 

cluster environment. The workloads perform different 

things, so differing numbers across their runtimes, 

which themselves were also different, is an expected 

behavior. This is illustrated in Figures 2 and 3.  

 

 
Figure 2. Terasort 4 

go_memstats_alloc_bytes_total 
 

 
Figure 3. Terasort 4 

go_memstats_alloc_bytes 
 

Figures 4 through 6 illustrate difference 

workloads. As shown, the performance characteristics 

for TeraSort differs from Random Forest; this tells us 

that it is possible to infer different types of jobs on a 

running cluster. TeraSort requires a large amount of 

memory to store, and write out, compared to Random 

Forest. Wordcount and Singular Value Decomposition 

also have different memory profiles. 

4.2. Node load statistics 

Where memory statistics show differences across 

allocations in node memory, node load is primary 

concerned with processes that are currently running, 

plus the queued processes that follow along in order to 

complete a job. An important note is that these 

visualizations show the IP addresses [57] of the three 

nodes. 199.33.133.25 is the Kubernetes master node. 

199.33.133.15 & 16 are the two slave nodes. Figures 7 

though 10 are a selection of Terasorts and Random 

forests to show how node load changes between 

different experimental runs. Again, the differing 

behavior in the experiments show differences in 

processes counts, but these metrics also show potential 

differences between the individual experiments in 

terms of which servers run processes throughout 

runtimes. That type of information is valuable in event 

reconstruction due to being able to pinpoint when 

something went amiss during a security event. 

 
 

 
Figure 4. Random Forest 1 

go_memstats_alloc_bytes 
 

 
Figure 5. Singular Value Decomposition 2 

go_memstats_alloc_bytes 
 

 
Figure 6. Wordcount 3 

go_memstats_alloc_bytes 
 

 
Figure 7. Terasort 5 node_load 
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Figure 8. Tersort 2 node_load 

 

 
Figure 9. Random Forest 2 node_load 

 

 
Figure 10. Random Forest 3 node_load 

 4.3. Namespace and container level 

filesystem statistics 

Kubernetes itself is split into different levels. The 

main structure that Kubernetes surrounds containers 

with is called a namespace, and system administrators 

can use namespaces to spread out work between 

different users, or different tasks, depending on 

overarching policy. In a forensic context, jobs can be 

divided in such a way as to make pinpointing problems 

succinct. The namespaces hold individual containers, 

and Prometheus can gather both of these metrics.  

 

4.3.1. Container_fs_usage_bytes This metric 

shows how the file system is utilized throughout 

execution of one of the experimental workload. They 

show how small the kube-system namespace is 

compared to the major running processes within the 

default namespace executing Spark. The development 

namespace holds the various parts of Prometheus.  

Figures 11 and 13 are namespace level metrics from 

Terasort 3 and Random Forest 4, and Figures 12 and 

14 are container level pulls of those two experiments. 

  

4.3.2. Container_memory_usage_bytes The 

other part of the system, memory, is shown in this 

metric. The two experiments shown are Terasort 5 and 

Random Forest 1. Interestingly, the major dip in 

Random Forest one is potentially a process 

changeover, or a large memory release as the classifier 

works through the input data. Even knowing that there 

was a dip has some bearing on potential event 

reconstruction since the data is timestamped and split 

amongst both namespace and containers. Figures 15 

and 17 show namespace level metrics, and Figures 16 

and 18 show container level metrics. 

 

 
Figure 11. Namespace level Terasort 3 

container_fs_usage_bytes 
 

 
Figure 12. Namespace level Random 

Forest 4 container_fs_usage_bytes 
 

 
Figure 13. Container level Terasort 3 

container_fs_usage_bytes 
 

 
Figure 14. Container level Random Forest 

4 container_fs_usage_bytes 
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Figure 15. Namespace level Terasort 5 
container_memory_usage_bytes 

 

 
Figure 16. Namespace level Random 

Forest 1 container_memory_usage_bytes 
 

 
Figure 17. Container level Terasort 5 
container_memory_usage_bytes 

 

 
Figure 18. Container level Random Forest 

1 container_memory_usage_bytes 

 

5. Conclusions and future work  

This research proposed three subsidiary research 

questions to determine whether introspection tools can 

be expanded across a multi-server technology stack 

with a container orchestrator at its heart. The first 

investigates which levels an introspection tool has 

access. The introspection tool Prometheus has access 

to multiple levels of a technology stack. It can pull data 

from the namespace and container level of 

Kubernetes, as well as multiple different node metrics 

to provide a multi-variate stream of data representing 

execution within the environment. The data set itself 

over multiple experiments contains twenty 

experiments of data compiled in over nine hundred 

separate metrics.  The scaling suggests that 

introspection tools can be used to generate historical 

records for event reconstruction, or other collection 

surrounding processing of large amounts of data.  

The second subsidiary research question dealt 

with constructing a one-way pipe to store data away 

from the orchestrated containerized experimental 

platform. The inclusion of InfluxDB, and the ability 

for Prometheus to remotely write out its metrics as 

they are being compiled demonstrates that it is 

possible to pull data out in a straightforward way, and 

save it outside of the running system. 

The size of the data set, over nine hundred 

metrics, did precipitate using a visualization tool to go 

through them. Chronograf, built to directly interface 

with an InfluxDB database, was useful in answering 

this third and final subsidiary research question. 

The answers to these subsidiary research 

questions show that introspection tools can expand to 

a large, diverse technology stack to gather relevant 

data for event reconstruction. No matter the workload 

that the orchestrated containerized system is running, 

Prometheus has access to relevant metrics. The 

metrics shown in the paper are from multiple levels in 

the technology stack, and show totals as well as peaks 

and valleys are the various pieces of the orchestrated 

containerized system went about the business of 

executing a complex, multi-server workload.  

Additionally, the metrics themselves have some 

level of interoperability since the namespace and 

container level metrics look at the groupings of 

containers that execute a given job, as well as the 

individual containers themselves. That level of 

granularity is key to event reconstruction at the 

individual container level. 

Future work is focused on diversification, and 

analysis at horizontal and vertical scale. The complex 

system has clear lines of demarcation between the 

various systems so removing one part and replacing it 

with a similar piece is straightforward. These 

comparisons have value for workload modeling, as 

well as studying individual parts for potential forensic 

analysis pitfalls. For instance, there are other container 

orchestrators than Kubernetes. With Docker 

Enterprise [58] coming for free with every copy of 

Window Server 2019 [59], and configured to default 

to Windows containers, the Azure Service Fabric [60] 

could be substituted. Utilizing the Service Fabric 

Mesh [61], which focuses on microservices on Azure, 

could provide a highly focused look at microservices, 
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and solving some of the analytical challenges inherent 

in that paradigm. Mirantis’s Docker Enterprise 

Container Cloud [62] is based on the notion of 

clustered containers managing other clusters of 

containers to  allow for seamless, multi-level scaling 

either horizontally or vertically on an ad-hoc basis. 

The dataset has potential applications outside of 

forensics, such as resource management of large 

distributed systems. There were over nine hundred 

metrics, and targeted examinations in CPU utilization, 

or memory I/O, or how utilizing graphic processing 

unit architecture’s such as Nvidia’s Ampere [63] effect 

resource utilization are future work.  
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