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Abstract

Strong authentication is crucial as wireless
networks become more widespread and relied upon.
The robust physical layer features produced by
advanced communication networks lend themselves
to accomplishing physical layer authentication by
using channel state information (CSI). The use of
deep learning with neural networks is well suited
for classification tasks and can further the goal of
enhancing physical layer security. To that end, we
propose a semi-supervised generative adversarial
network to differentiate between legitimate and
malicious transmitters and accurately identify devices
for authentication across a range of signal to noise
ratio conditions. Our system leverages multiple input
multiple output CSI across orthogonal frequency
division multiplexing subcarriers using a small
percentage of labeled training data.

1. Introduction

Efficient and effective security measures are
required to ensure modern and future communication
systems perform to their full potential.  Security
is commonly and successfully accomplished using
key-based cryptography, however as networks grow
and become more complex, key distribution and
management may not scale without causing undue user
delays [1, 2]. The latest iterations of IEEE 802.11
WiFi standards and 5th generation New Radio (5G-NR)
mobile networks leverage several techniques at the
physical layer to provide high data rate communications
to multiple users [3]. The features created by these
techniques create opportunities for the employment of
physical layer security.

Physical layer security is accomplished at the bottom
of the Open Systems Interconnection (OSI) stack.
Thus, when an illegitimate device attempts to create a
secure connection, the expenditure of undue resources
is reduced in the higher layers. This is especially
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important for devices that are computationally or energy
constrained, such as those in the Internet of Things (IoT)
realm [4].

In this work, we explore physical layer
authentication and deep learning to ensure strong
authentication on a variety of devices with disparate
applications. The goal in this paper is to prevent
illegitimate devices from authenticating and then
correctly identify legitimate devices based on features
observed at the physical layer. These features are
realized in a particular environment based on the
system characteristics, such as carrier frequencies,
using multiple transmitter and receiver antennas, and
the use of multiple subcarriers through such methods as
orthogonal frequency-division multiplexing (OFDM).
Although no approach can guarantee prevention of
an intruder authenticating, using the uniqueness of
CSI for physical layer authentication can improve
the overall security of a network. Devices that use
no authentication strategy at all offer an attractive
vulnerability for an adversary.

In this paper we use a generative adversarial network
(GAN) to determine which of several transmitters
should be authenticated or denied access. Specifically,
we employ a GAN model with semi-supervised learning
known as a semi-supervised GAN (SGAN) [5] where
only a small portion of the training dataset is labeled.

The literature proposes two broad categories to
distinguish legitimate from illegitimate devices at the
physical layer without the use of a pre-shared secret,
cryptography, user-provided credentials, or higher
OSlI-layer processing. The first category relies on unique
imperfections of the transmitter hardware that manifest
as radio frequency (RF) fingerprints or signatures [6].
Based on manufacturing processes and designs, the
transmitted signal will be uniquely distorted from device
to device, even if only slightly. The second category
leverages the stochastic nature of the wireless channel to
take advantage of multi-path fading environments. The
temporally and spatially-unique impulse or frequency
response can be used to identify the transmitter [7].
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Our proposed method is based on research using the
second category. The effects of the multipath channel
can be described in the channel state information (CSI)
matrix. The elements of the CSI matrix are attributes
of the fading channel and are therefore unique to
the pairwise position of the receiver and transmitter
in line-of-sight (LOS) and non-line-of-sight (NLOS)
multipath environments. While there is merit in using
the RF fingerprinting method in the first category, these
characteristics are observable by a malicious actor and
can be spoofed. Contrast with using the channel-based
approach, an adversary cannot directly measure the
CSI between two entities and create a transmission to
mimic a legitimate signal. In dynamic conditions with a
mobile transmitter, receiver, and/or significant reflective
or absorbing objects, the CSI is also time-variant. The
focus of this paper is on the static case, and using a
technique as described by [8] can be adopted to account
for scenarios where motion is expected to change the
CSI. We use the static channel here to explore the use of
both the magnitude and phase of the CSI.

To simulate multiple-input multiple-output (MIMO)
millimeter wave OFDM subchannels, we take advantage
of the DeepMIMO dataset [9], based on ray-tracing
data from the Remcom Insite tool [10]. The
DeepMIMO dataset is configurable to a variety of
wireless applications, and we use it to create samples
that train and test the SGAN in a 4 x4 MIMO
environment operating with a 60 GHz carrier frequency
with 16 pilot subcarriers from a 512 OFDM subcarrier
system in an urban setting. Although the Deep MIMO
dataset scenario is based on an urban environment, more
fully appropriate use-cases for static channels might
include an uninhabitable industrial setting, or a in a
remote, deployed sensor network.

In this paper, we use a SGAN to identify malicious
users who attempt to spoof the CSI of legitimate users
and prevent them from authenticating. We also identify
legitimate users and correctly categorize them. The
contributions of this paper are:

e We introduce analysis illustrating how the
received CSI matrix elements and measurement
error over multiple subcarriers can be used for
physical layer authentication.

e We propose a discriminative model that processes
both legitimate samples from a trusted source
and faked samples created by the generative
model to determine whether a transmitter should
be authenticated using complex-valued CSI
elements.

e We propose four classifier neural network models
that determine the identity of a transmitter based

on associated CSI matrix samples at various levels
of signal to noise ratio (SNR)

e In Section 6, we use a SGAN architecture
to accurately classify MIMO CSI as a basis
of physical layer authentication for multiple
transmitters. We use small amounts of
labeled training data to perform physical layer
authentication. By not relying on a fully labeled
dataset, we benefit by using a method to reduce
authentication overhead.

e Distinguishing from previous research, our
proposal takes advantage of the SGAN-trained
discriminator’s performance across different SNR
levels to prevent illegitimate transmitters from
authenticating while minimizing the number of
required labeled samples. The SGAN-trained
classifier then accurately identifies samples from
legitimate transmitters.

This paper discusses the channel model and previous
work in the application of machine learning within
the RF domain in Section 2. Next we present the
development of the SGAN in Section 3. Section 4
describes the DeepMIMO dataset and how we use it to
create CSI samples. The system model for the SGAN is
illustrated in Section 5, and simulation results are shown
in Section 6. Finally, we summarize our observations
and discuss future work in Section 7. With respect
to notation, unless otherwise addressed, vectors are
indicated with bold lower-case letters, and matrices with
bold upper-case letters.

2. Background and related research

This section introduces the channel model, the use
of GANSs for RF tasks, the model for measured CSI, and
the architecture of a semi-supervised GAN.

2.1. Channel Model

By taking advantage of the randomness and
uniqueness inherent in the RF communication channel,
physical layer information provided by the channel can
be used to conduct authentication [11]. The nature
of the wireless medium affects the transmitted signal
as it propagates to the receiver. The single subcarrier
narrowband model of the wireless channel is given by

y=Hx+n (1)

where y is the received signal, x is the transmitted signal,
H is the time-varying CSI or channel response, and n is
the noise vector. For a Rayleigh faded channel, H is an
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N x M matrix of circularly symmetric complex-valued
Gaussian random variables. The number of transmitter
antennas is M and the number of receiver antennas
is . Each complex element within H, hy, ., is
composed of real and imaginary zero-mean independent
Gaussian random variables with identical variance [12].
Jakes’ uniform scattering model [13] states that antennas
spatially separated more than two carrier wavelengths
from each other will observe sufficiently independent
fading channels due to rapid decorrelation of the signal
envelope among receivers.

Although the CSI elements may be independent
for a single subcarrier, that does not necessarily hold
true when there are multiple subcarriers, such as in an
OFDM system. For K subcarriers, we extend (1) by
adding an additional dimension as a superscript where
k=1,2,..., K is the sampled subcarrier, resulting in

y¥ = H*%" + n* 2)

where H* is a three-dimensional tensor of size
N x M x K. Fading across the subcarrier channels
will be correlated if the coherence bandwidth is
large [14], resulting in correlated CSI elements across
subchannels, for example, h’f,l. To illustrate this, Fig. 1

depicts the magnitude of h’fl over 512 subcarriers in an
OFDM system with 16 pilot subcarriers with correlated
fading. There is correlation between adjacent OFDM
channels, but not across the entire band of subcarriers or
adjacent pilots channels.

2.2. Authentication with measured CSI

A receiver continues to authenticate a transmitter if
the received CSI varies less than a threshold applied
to the received CSI from previous transmissions. This
requires some method of initial authentication, such
as the use of cryptographic methods or physical layer

magnitude of CS| element

05
1 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
subcarrier

Figure 1. CSI element magnitude vs. subcarrier.

authentication using RF fingerprinting from transmitter
imperfections. During initial authentication, the receiver
makes CSI measurements of the channel and stores that
information for future authentication.

During channel measurement, even in a stable
static environment, the receiver imparts noise to the
received signal, resulting in variation to the measured
CSI elements. This error, €, is modeled as an
additive complex zero-mean Gaussian process on each
subcarrier, CN(0,X.), where the covariance of the
sample mean is Xz = 3./s for s samples during the
measurement. Therefore, the ¢th CSI measured by the

. . ~k ..
receiver at subcarrier k, H, , is given as

H =H'1e 1=12..,s 3)
where H” is the true CSI from (2) and €¥ is a complex
N x M x K tensor with independent identically
distributed elements. Since e,’f is zero-mean, H”, can
be estimated with a variety of techniques including
least squares estimation, minimum mean-square error

estimation, and through successive measurements and

~k
element-wise averaging of H, for ¢t = {1,2,...,s} as
demonstrated in [15].

2.3. Machine learning applied to the RF
Domain

Since the received CSI relies on the position of the
transmitter, the receiver, and reflecting and absorbing
materials in the environment, researchers have used
machine learning to successfully resolve localization
challenges. By collecting and recording CSI and known
transmitter locations in advance, machine learning
provided accurate a posteriori transmitter positions [16,
17, 18]. The use of machine learning and location
information has been used to make an authentication
decision using CSI [19, 20, 21]. In [21], Pan et al.
showed that authentication performance was better in
scenarios with stationary systems, abundant multi-path
effects, and separation of transmitter antennas by more
than one-half wavelength.

Introduced by Goodfellow et al. [22], the
GAN framework trains two artificial neural network
models called the discriminator and the generator as
they compete against each other in an adversarial
competition.  Although used extensively in image
processing fields, GANs have been shown useful for
investigations in the RF field as well.

O’Shea et al. [23] used a GAN to determine
the optimal modulation scheme in a given channel,
showing how GANs can allow for adaptation to the RF
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environment. Based on earlier work by O’Shea et al.
for radio modulation classification [24], Li et al. [25]
employed a SGAN to classify 11 different modulation
types and improve the classification performance over a
convolutional neural network model. In an adversarial
situation such as jamming and spoofing, Roy [26]
proposed the use of GANs for building a robust
system that can determine legitimate transmitters from
illegitimate ones based on the imbalance of in-phase and
quadrature components of a symbol constellation.

Our contribution to this area is the application of
an SGAN to the complex-valued CSI elements for
classification. Whereas previous works that research
physical layer authentication with CSI use a channel
gain coefficient matrix or use a method that normalizes
the channel response, we retain the real and imaginary
parts of the CSI elements in an effort to retain as much
information as possible from the channel. We also
examine the performance of the SGAN and additional
neural networks across a range of SNR.

3. Semi-Supervised GAN

Semi-supervised learning for neural networks
requires that only a portion of the training data be
labeled. As opposed to supervised learning where all
the training data is labeled or unsupervised learning
where there are no labels and the networks must find
their own way to organize the data, semi-supervised
algorithms attempt to correctly identify samples when
only a small portion of the training data is labeled.
This can be very helpful when the dataset is large and
it would be laborious and time-intensive for an expert
to correctly label every sample manually. In our case,
the labeled data comes from the CSI samples recorded
during the initial authentication session. If more data is
required, the overhead will increase.

When training a vanilla GAN in an unsupervised
learning architecture, the discriminative model, D, is
a binary classifier that receives unlabeled authentic
samples from the training data or fake samples generated
by the generative model, G. The generative model
creates fake samples based on a function with random
seed input, and the parameters in G. The discriminative
model assigns a probability from zero to one based on
its perception of whether the sample is fake (0.0) or
authentic (1.0). The value function that describes this
relationships from the original work by Goodfellow [22]
is given by

mgn max V(D,G) = Eppora(a)llog D(x)]

+ Eonp. (»[log(l — D(G(2)))]
“4)

where D(z) is the probability that z came from the
data distribution pgu:, (%) containing authentic training
samples, and D(G(z)) is the estimate of the probability
that the discriminator incorrectly identifies the fake
instance as authentic. The generator network attempts
to maximize D(G(z)), while the discriminator network
tries to minimize it. The generator creates samples,
G(z), based on the parameter values in G and
the random seed values z provided to the generator
consistent with p,(z). Adversarial data, the output of
the generator, is not random, however the generator
makes use of random data to produce an output. The
generator output is shaped by the parameters of the
generator and the binary cross entropy loss based on
the discriminator output when the generator creates
samples.

With semi-supervised learning, a small percentage
of the training data is labeled, and instead of using
a binary classifier, the discriminator is a multi-class
classifier. For N classes, the model requires N + 1
outputs to account for all the authentic classes plus
one additional class for the fake generated class. This
can be implemented in a variety of ways. Following
Salimans et al. [27], we can build an N-class classifier
network, C, with output logits {l1,ls,...,Ix} prior
to the softmax activation for C. The logits vector
is then used as the input to the activation function

Z(x)
Z(xz)+1°

for D, which is given as D(z) = where

Z(x) = 2521 exp|l,(z)]. Because D and C share the
same weights, both networks act as a single network,
D/C, that is updated during backpropagation based on
their respective loss functions, J ®) and J©). The
generator loss function is given by .J(9).

Fig. 2 shows a functional depiction of a SGAN in
training. The training dataset is partially labeled and
provided to the D/C model for classification by C.
The remainder of the training dataset as well as the
generated samples from G are used as input to D/C for
discrimination where D will predict whether the sample

Training Dataset

Figure 2. Training a semi-supervised generative
adversarial network with N classes.
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came from the training dataset or if it was created by G.
4. The DeepMIMO dataset

Using the Remcom Insite ray-tracing tool [10],
Alkhateeb developed the DeepMIMO dataset generation
framework [9]. The framework allows researchers
to tailor parameters in a MATLAB [28] program to
suit the need of their machine learning based wireless
application. This section discusses the setting we use to
obtain our training and testing data, and the parameters
we selected for our model.

4.1. Target data and labels

The target data for our proposed SGAN is the
received 4 x 4 MIMO CSI from a transmitter to 14
distinct user locations, {User0,Userl,...,Userl3},
across 16 subcarriers. The transmitter and receivers
operate at 60 GHz using 512 OFDM subcarriers.
Each of the 16 pilot subcarriers are evenly spaced 32
subcarriers apart. A single target sample consists of 256
complex numbers, accounting for 16 CSI elements in
each of their respective 16 subcarriers.

For each CSI target sample created in the dataset,
there is an accompanying target label, denoting the user.
During training, the goal for the SGAN classifier will be
to differentiate among the legitimate users. The SGAN
discriminator will attempt to categorize these legitimate
users as “Real”, and categorize the generator-created
samples as “Fake”.

During testing for the discriminator, an additional
user, representing a malicious actor will be added
to the test dataset. The discriminator will not
have seen this data during testing, but will need to
identify samples from the malicious user’s CSI as
“Fake” to prevent authentication. The classifier will
attempt to assign the correct label for each user’s
CSI from the test dataset, however the classifier will
not be exposed to the malicious user’s CSI, since
in application, the discriminator would have already
prevented authentication.

4.2. DeepMIMO scenario

The setting used for the scenario is denoted “O1”
and is described in detail in [9]. The “O1” scenario
is an outdoor urban setting with a variety of possible
transmitter base station locations and user locations on
the streets surrounded by buildings of various heights.
Fig. 3 shows the position of the 14 legitimate users
denoted by blue circles and the red square indicating
the malicious user in the white patch above the “User
Grid 3” label. Base station 7 (BS7) is the transmitter for

. Legi

licious

timate|

Figure 3. DeepMIMO scenario “O1”. After [9]

Table 1. DeepMIMO dataset parameters

Base Station 7

First row of users 4528

Last row of users 4531

Center frequency 60 GHz
Antenna spacing 1 wavelength
System bandwidth 8.64 GHz
OFDM channels 512

OFDM channel interval | 32

Number of paths 3

our case, circled in white and is across the intersection
from the users. Both streets are 40 m wide, and the
user positions are centered in the street going in the
X direction and 7 m from the street going in the Y
direction. There are 10 cm between adjacent users, and
each user as well as BS7 has four antennas.

4.3. DeepMIMO parameters

The parameters chosen were made to emulate
advanced wireless communication technologies, but
they are not intended to model any specific standard.
Table 1 summarizes the parameters used. Advanced
technologies refers to communications systems using
millimeter wavelengths and multiple antennas for
transmitting and receiving signals. We believe that such
devices will become adopted and more commonplace
in the future. While the parameters chosen do not
match any particular technology, they are analogous to
those described by IEEE standards recently released or
currently in draft.

S. System model

We consider a 4x4 wireless MIMO
communications channel using 512 OFDM subchannels
with 16 pilots. There are 14 trusted users and some
unknown number of untrusted users, some of the
latter group are malicious adversaries. The adversaries
have resources available to change their antenna
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characteristics, transmitter RF path timing, output
power, and/or present reflectors between themselves
and the receiver. Thus, they are able to change their
CSI as measured by the receiver and may have an
accomplice receiver to provide feedback as described
by Shi et al. in [29]. Although the adversaries have the
ability to change their CSI, they do not have accurate
advanced knowledge of the CSI required to spoof
the user. A user becomes a victim if the malicious
adversary is able to create CSI that is authenticated as
the transmitter by the user.

To defeat this scenario, the discriminative model
at the receiver is trained by a generative model
that creates authentic looking CSI samples. By
training with increasingly high quality “fake” samples,
the discriminative network learns the features of
transmitters that should be authenticated and the features
of those that should not be authenticated. Parallel to the
adversarial training between D and G, the classifier, C,
learns the correct labels assigned to the 14 trusted users.

During an initial authentication session by other
means, the pilot subcarriers from the transmitters are
measured and recorded for training the SGAN. Initially
authenticating by other means, higher protocol layers
are used, however for subsequent packet transfers,
authenticating at the physical layer reduces the workload
on these higher-layer protocols as discussed in [30].
An attack during the initial authentication is certainly
a vulnerability, but corruption in the training data may
cause authentication to fail shortly after communication
begins. This is an aspect to be explored in future
research.

The classifier provides identification only after
the discriminator successfully authenticates.  The
discriminator authenticates when a sample is assessed
to be “Real”. The discriminator may make an incorrect
authentication decision (denying authentication when
the sample is “Real” or authenticating when the sample
was actually faked), therefore we explored how SNR can
affect discriminator accuracy.

5.1. SGAN architecture

The adversarial competition in the SGAN is
a minimax game described by (4) where the
discriminative model attempts to correctly identify
authentic training samples from a distribution produced
by CSI matrix elements, pgqta (fn,m ), and fake training
samples created by the generator.

As D and G adversarially train each other, they
learn to improve their individual performance. When
the discriminative model correctly identifies fake
samples created by the generative model, the generative

network will update its parameter weights through
backpropagation to make more realistic samples.
Likewise, the discriminative model will update its
parameter weights when it incorrectly identifies real
or fake samples. The results of this training are a
generator neural network adept at creating data that
closely mimics training data, a discriminator neural
network that can identify all but the best fakes, and
a classifier neural network that can determine which
trusted transmitter produced the received CSI.

Additionally, C is trained on labeled samples from
the training dataset. Although C does not directly
receive unlabeled authentic or fake samples, the weights
of C are affected since it shares weights with D in the
D/C implementation.

Best practices from GAN researchers [31] were
used to create the SGAN. The architecture for the
discriminator and classifier was chosen to enable feature
extraction from the input tensor. A reverse architecture
was used for the generator to create realistic-looking
samples.

5.2. Discriminative Model

The discriminator estimates the probability that a
sample came from the training data, rather than the
generator. When training begins, the discriminator
won’t know pgu:a(z), so the accuracy of correctly
assigning authentic and fake samples will be near 0.5.
The accuracy will increase with more iterations of
samples and backpropagation as the authentic data
distribution is learned until the generator network
creates samples such that the fake sample distribution,
pg(z) optimally matches pgq,(z). At this point,
the accuracy of correctly assigning authentic and
fake samples will return to 0.5 since for the
optimal discriminator D*, and fixed generator, G,

Pdata () When pgata(z) = p.(2),

D& () = o
D& (z) = 0.5. [22]

5.3. Generative Model

Without having direct access to pgaia(z), the
generator attempts to capture this distribution through
feedback based on the probabilities the discriminator
assigns to generated fake samples [22]. The weights of
the generator network are updated via the loss function
J(&) 50 that the generator will create better samples.

5.4. Classifier Model

The classifier shares all but the final activation layer
with the discriminator and is trained to determine which
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of the 14 trusted transmitters will be authenticated. The
weights of D/C are iteratively updated as D and C are
trained.

6. Simulation

This section describes the simulation of the system
model from Section 5. The dataset for the SGAN is
described and results are presented.

6.1. Dataset

A dataset of 224,000 authentic samples was created,
where each sample was a 4 X 4 x 16 complex tensor.
The training dataset was allocated 70% of the greater
dataset, while the remaining 30% was set aside for
testing. Every sample started as a position-dependent
4 x 4 x 16 tensor created by the DeepMIMO dataset.
For each of the samples, 1,000 additional samples of
measurement error in the form of 16 different levels of
SNR were generated. Simulating thermal noise in the
receiver, decreasing amounts of AWGN were combined
with the original signal to produce the 16 different levels
of SNR ranging from -10 dB to 20 dB in steps of 2 dB.
This was inspired by the technique used by O’Shea et al.
to create distortion for the modulation classification task
in [24], except we used MATLAB instead of Python and
GNU Radio libraries.

The SGAN processed 16 subcarriers in a MIMO
4 x 4 configuration with 14 trusted transmitters.
Therefore, the classifier model would need to have
16 x 16 complex inputs and 1 real output for each
transmitter label. However, we separated the real
and imaginary parts for processing through the
neural networks, resulting in inputs tensors of shape
16 x 2 x 16. The discriminative model also has inputs
of shape 16 x 2 x 16 and 1 real output denoting “Real”
or “Fake”, while the generative model has 1 real input
and 16 x 2 x 16 outputs. Additionally, the values of
the real and imaginary parts are preprocessed to scale
[—1, 1] to allow for the tanh activation function range in
the generator network as mentioned in the Section 6.2.

To mimic the malicious user’s attempt to fool a
legitimate user, CSI is generated for a user position in
the center of the group of legitimate users, as shown in
Fig. 3. This sample is preprocessed as before, to include
creating 1,000 samples of 16 different levels of SNR.
These samples are then added to the testing dataset,
remaining unknown to the SGAN until testing following
the completion of training.

6.2. SGAN development

The SGAN was implemented using the Python
programming language, Keras [32] front-end, and
Tensorflow [33] back-end. Additionally, Numpy, and
Matplotlib Python libraries were used. The dataset was
created using MATLAB and Python.

The discriminator/classifier network, D/C, is a
dense or fully connected deep neural network (DNN)
with 16 inputs of size 2 x 16 merged into one
Concatenated layer.  Each input has 2 nodes to
accommodate the real and imaginary parts of the
complex CSI matrix element. Nine additional fully
connected layers with LeakyReLU activations (alpha
= 0.3) follow. All hidden layers use Dropout of 0.5
to prevent overfitting. Prior to the output layers,
a fully connected layer of 14 is used to capture
the number of transmitters to be classified. The
discriminator output layer of size 1 is fully connected

Z(z)

m . where

and uses a custom activation D(z) =

Z(x) = 25:1 exp|l, ()] to provide values [0.0, 1.0) as
discussed in Section 3. The classifier output is a softmax
activation connected to the 14 node layer. The learning
rate for D/C was 0.00009 using the Adam [34] optimizer
and training was done with batches of 128 samples.

The generator network, G, has a single input
with 5 nodes fully connected to the first hidden layer of
size 16. Seven additional hidden layers are again fully
connected using LeakyReLU (alpha = 0.3). The last
hidden layers are 16 fully connected layers of size 32
followed by tanh activations. Finally, the output is
reshaped to produce 16 output layers of size 2 x 16.
The learning rate for G was 0.00009 using the Adam
optimizer.

6.3. Results

Training was conducted over the course of 20
epochs. Of the 156,800 samples in the training dataset,
just over 10% (15,988) were labeled. These labeled
samples trained the classifier to identify the legitimate
user. When selecting the labeled samples, care was
taken to ensure an equal distribution of samples for
each of the 14 legitimate users, however the SNR
levels in the samples for each of the users was left to
chance. All the training samples as well as those created
by the generator were used to train the discriminator.
Following training, the classifier and discriminator
networks and their respective weights were saved. For
testing, the classifier and discriminator networks and
weights were reloaded and presented with the test
dataset.
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Figure 4. SGAN dense discriminator performance
with SNR levels at (a) -10 dB, (b) -4 dB, (c) 2 dB,
(d) 4 dB.

The test dataset for the discriminator contained
additional samples associated with the malicious user.
Figs. 4 and 5 show that the discriminator performs
well for SNR levels greater than 2 dB. The confusion
matrices in Fig. 4 show the discriminator labeled the
malicious user’s CSI as “Real” for low SNR levels,
but gradually began to correctly categorize them as
“Fake” as the SNR level increases. At each SNR level,
there are 1,000 “Fake” samples, however the number
of “Real” samples varies slightly due to the random
split of the original dataset into training and testing
components. For authentication, if there is an error it is
likely more favorable to have a false negative rather than
a false positive. Although this can be frustrating for the
authentic user denied authentication and result in lower
throughput rates because of restarting the authentication
process, malicious users are kept out of the system.

The SGAN-trained densely connected discriminator
was accurately able to differentiate “Real” from “Fake”
at SNR values above 4 dB. This result shows the
limitations of the SGAN approach. The quality of
the generator is one aspect that determines how well
the discriminator will perform. Training a traditional
standalone neural network to differentiate “Real” from
“Fake” without a robust generator requires ‘“Fake”
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samples from another source. ~While this can be
obtained, it is likely not feasible to sample every
possible fake CSI sample. The SGAN does not need
these negative examples because it creates its own and
still performs well provided a sufficient SNR.

The test dataset without the CSI samples from the
malicious user was then used to obtain the performance
for the classifier. As shown in Fig. 6, the confusion
matrices indicate accurate classification performance
even at low SNR values. Accuracy is measured by
dividing the correctly classified samples by the sum
of the correctly and incorrectly classified samples.
Fig. 6(a) shows that the classifier attained classification
accuracy above 90% for most of the users at -10 dB
SNR, and Fig. 6(b) shows 100% accuracy at -4 dB SNR.

6.4. Additional networks

To compare the performance of the SGAN dense
classifier, we constructed three additional networks.
First, we used another SGAN classifier, but use
convolutional layers instead of fully connected layers.
This gives us a SGAN convolutional neural network
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(CNN) classifier. ~ Next, instead of training in a
SGAN architecture, we created a standalone dense
classifier. This classifier uses the same parameters as
our SGAN dense classifier, C. Finally, we implemented
a standalone CNN classifier, using the same parameters
of the SGAN CNN classifier.

By training the SGAN CNN classifier we also
trained a SGAN CNN discriminator. Unfortunately the
CNN discriminator did not perform as well as the SGAN
dense discriminator. As shown in Fig. 7, the CNN
discriminator did not correctly identify all the legitimate
users as “Real”. However, at all SNR values, the CNN
was able to identify the malicious user CSI as “Fake”, so
there may be a use case where this is desirable behavior
even though it prevents some number of users from
successfully authenticating when they should.

Fig. 8 shows the results of the various classifier
testing after training. All the neural networks
reach 100% accuracy with sufficient SNR. The
standalone dense classifier trained for 125 epochs and
obtained almost 100% accuracy for all SNR levels
except -10 dB. At-10 dB, the standalone dense classifier
was 99.929% accurate. The standalone CNN classifier
trained for 667 epochs and had very similar performance
to the SGAN dense classifier. Finally, the SGAN CNN
classifier trained for 30 epochs, and lagging the others,
reached 100% accuracy at 6 dB.

Where the discriminators were not able to
differentiate between legitimate and generator-produced
samples with increased noise levels, the classification
results show that the classifiers are able to differentiate
among users at these same SNR values. The reason for
this is that the generators’ samples at low SNR closer
approximate the sample distribution from the authentic
dataset, making training difficult for the discriminators.
Contrast with the classifiers’ training where they only
receive samples from the dataset and learns the features
relevant to the 14 transmitters’ CSI.

7. Conclusion and future work

We showed how the use of a SGAN can be
used to discriminate and classify transmitters by

multiple-subcarrier MIMO CSI as a method to provide
physical layer authentication. Our simulation results
illustrated that with a very small percentage of
labeled CSI samples, accurate discrimination between
legitimate and adversary transmitters as well as
classification can be made with a SGAN dense classifier
for SNR values greater than 4 dB. An adversary may
achieve a high degree of accuracy when spoofing a
legitimate transmitter, but by retaining the magnitude
and phase of the CSI elements, we have shown that our
system can differentiate transmitter CSI from positions
10 cm apart.

We saw that the SGAN-trained classifiers required
less epochs to train, however the standalone dense
classifier had the best performance overall. However,
the standalone classifiers only classify legitimate
transmitters, while the SGAN is able to first discriminate
and then classify. We explored the use of a GAN-trained
classifier to discover if this is a more accurate method
for classification based on CSI at varying SNR levels.
Future research includes interference by an adversary
during the authentication process where the original
training dataset would be built. Additionally, we
intend to explore transfer learning from a SGAN-trained
classifier to a standalone network in an attempt to reduce
the training time of the standalone classifer, while
increasing overall performance.
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