
Security Analysis of a Medical IoT Device: Data Leakage to an
Eavesdropper

Stephanie L. Long
Air Force Institute of Technology

Stephanie.Long@afit.edu

Richard Dill
Air Force Institute of Technology

Richard.Dill@afit.edu

Barry E. Mullins
Air Force Institute of Technology

Barry.Mullins@afit.edu

Abstract

Embedded technology known as the Internet of
Things (IoT) has been integrated into everyday life,
from the home, to the farm, industry, enterprise, the
battlefield, and even for medical devices. With the
increased use of networked devices comes an increased
attack surface for malicious actors to gather and inject
data, putting the privacy of users at risk. This
research considers the Masimo MightySat fingertip
pulse oximeter and the companion Masimo Professional
Health app from a security standpoint, analyzing the
Bluetooth Low Energy (BLE) communication from the
device to the application and the data leakage between
the two. It is found that with some analysis of a
personally owned Masimo MightySat Rx through the use
of an Ubertooth BLE traffic sniffer, static analysis of the
HCI snoop.log and application data, and dynamic
analysis of the app, data could be reasonably captured
for another MightySat and interpret it to learn user
health data.

1. Introduction

The Internet of Things (IoT) technology has greatly
advanced in the past decade. Security Today reported
26.7 billion IoT devices in use, with an estimated 35
billion to be expected by 2021 and 75 billion by 2025
[1]. The amount of technological advancement and
investment being put into these networked devices is
shifting the way everyday life is conducted. While no
official definition of the IoT exists, this paper adopts the
following set forth by the Government Accountability
Office, “the set of Internet-capable devices, such as
wearable fitness devices and smartphones, that interact
with the physical environment and typically contain
elements for sensing, communicating, processing, and
actuating” [2].

1.1. Background

The first conceptual usage of networked embedded
technology was in 1982 when a group of computer
science students connected a Coca-Cola machine to the
network in order to monitor the supply of cold drinks
[3]. From this idea, coined the term “Internet of Things”
by Kevin Ashton during a presentation for Procter &
Gamble [4]. Since then, IoT has risen in popularity in
all facets of technology.

Industrial Control Systems (ICS) use IoT protocols
to communicate in order to share system status updates
and to be controlled remotely [5]. Residential homes
and businesses have integrated wireless cameras to
provide security, remote lighting controls to control light
levels, and even sensors to monitor temperature and
movement in an office to conserve energy [6]. The
agricultural industry uses IoT devices to maintain soil
pH levels for optimum crop growth and to monitor
health and location of the animals [7]. Furthermore,
hospitals and health care providers’ IoT devices keep
track of patient health data, and monitor the health of
residential patients with portable IoT devices [8].

1.2. IoT Composition

Networked embedded devices differ from traditional
computer systems in a few ways; due to their specialized
functions and unique architectures, patient data and
unauthorized access security is difficult [9]. IoT
manufacturers employ custom operating systems and
take novel approaches to developing IoT devices, often
at the expense of security best practices. Many IoT
devices are designed to be low-powered devices that
conserve battery life, and due to their small nature, use
low-speed CPUs and/or have limited memory. Due
to these architectural constraints, the ability to use
cryptographic algorithms is limited, which results in
unencrypted data transmission [10].

IoT devices utilize a variety of communication
protocols. Some of the most common include Wi-Fi,
Bluetooth Classic, Bluetooth Low Energy (BLE),

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 6893
URI: https://hdl.handle.net/10125/71448
978-0-9981331-4-0
(CC BY-NC-ND 4.0)



Message Queuing Telemetry Transport (MQTT), and
Zigbee [11].

1.3. Target Device & Protocol

This research looks at the Masimo MightySat Rx,
serial number 1822689309 [12]. It is a fingertip
pulse oximeter that records the oxygen saturation,
pulse rate, perfusion index, and pleth variability
index of the wearer. The device uses BLE as the
communication protocol. In order to understand the
security implications of BLE, a brief explanation of how
the protocol works is required.

Bluetooth Low Energy is a lightweight, low-power
protocol that is used to transmit small amounts of data
from a peripheral device, such as the Masimo MightySat
Rx, to a central device, such as a smartphone [13].
The BLE protocol stack is unique (Figure 1), and the
important components to understand in this research are
the Generic Access Profile (GATT) and the Attribute
Protocol (ATT). GATT is the general specification used
for sending and receiving attributes. The ATT then
exists below the GATT and Generic Attribute Profile
on the protocol stack. Each attribute consists of a
unique 128-bit string ID known as a Universally Unique
Identifier (UUID). ATT is responsible for transporting
services and characteristics. A characteristic is a single
value and contains a descriptor to describe that value. A
service is a collection of characteristics, such as a heart
rate monitor which would include characteristics such as
the heart rate measurement [14].

Figure 1. The BLE Protocol Stack [14]

1.4. BLE Attack Surface

BLE is susceptible to several different types
of attacks, but the most pervasive are passive
eavesdropping and a man-in-the-middle (MITM).
Passive eavesdropping can be accomplished by a
third-party entity monitoring the traffic transmissions
between devices. If this information is sent in clear text,
credentials and command text can be easily gleaned.
Even if the data is encrypted, a clever attacker can use
clues present in the packets to crack the key, dependent
on the cryptographic scheme used. A MITM attack
occurs when passive eavesdropping is taken a step
further and the attacker intercepts the data between
the devices and acts as a proxy, making himself a
middle-man and posing as the peripheral device to the
central and vice versa. The attacker can modify the
traffic and inject malicious code instead of the intended
data from the peer device.

In the case of a device collecting medical data,
information leakage violates the expectation of privacy.
While it may not inherently seem dangerous to leak
pulse rates or oxygen levels, this information may be
used to diagnose an ongoing medical condition, and
corrupt data could result in misdiagnosing a patient so
they do not receive the proper treatment. OWASP lists
insecure data transfer as one of the top ten vulnerabilities
facing IoT devices [15]. Sniffing the data may alert the
malicious actor to a medical issue that the user has that
should be private, and may also allow the attacker the
possibility to compromise the integrity of the data. This
research seeks to determine the data leakage of the target
device from the perspective of a security analyst.

1.5. Structure

The structure of this paper details related work
in Section II, where it reviews research on the
security of the BLE protocol and wearable IoT devices,
as well as on dynamic analysis of applications.
Section III generalizes the methodology employed in
this research and the dependent tools. Section IV
examines the results of this methodology applied to
the Masimo MightySat Rx device and its corresponding
manufacturer application. Sections V and VI then
propose future work a researcher could do to further
examine this device and other like devices, then
concludes with key findings.

Page 6894



2. Related Work

2.1. BLE Security

Ryan’s research on BLE was monumental in
reverse engineering the relatively new protocol and
evaluating its security [16]. He determined that the
BLE Special Interest Group (SIG) chose to use a
custom key exchange protocol instead of a well-known
and well-trusted mechanism such as Elliptic Curve
Diffie-Hellman (ECDH) key exchange. Using an
Ubertooth [17], which ported the network traffic to
Wireshark [18], Ryan captured data from several
devices, though not specified. From these, he
generalized the data and deduced that there were four
unique values necessary to follow a connection; hop
interval, hop increment, unique access address, and
cyclic redundancy check (CRC) init, all sent in the
protocol data unit (PDU) of a BLE Packet (Figure 2).

Table 1. BLE Packet Structure[16]
Preamble Access Address Protocol Data Unit (PDU) CRC
2 Bytes 4 Bytes 2-257 Bytes 3 Bytes

The unique access address was observable in the
packet data following the BLE standard access address,
and the CRC init value was calculable from the CRC at
the end of the packet. The hop interval and increment
were both calculated based on observing the network
traffic and the time between packets on a specific
channel.

Table 2. Pairing Modes for BLE
Pairing Mode TK Value
Just Works 0
6-Digit Pin 0-999,999
Out of Band 128 value exchanged out of band

With these values, Ryan determined that three keys
were used to encrypt the conversation, the temporary
key (TK), the short-term key (STK), and the long-term
key (LTK). The TK is calculable based on knowledge
of the pairing method possible values, shown in Table
1, for BLE by brute forcing the possibilities. Cracking
the TK allowed the STK then LTK to be cracked and the
communication to be decrypted.

Ryan also wrote firmware as a contribution from
his research for the Ubertooth sniffer to automatically
parse out the necessary data, calculate the needed values,
and follow the connection of a specified MAC address.
His findings are vital to further research on security for
IoT devices using BLE, and to understanding the packet
structure of data flowing on the network layer.

2.2. BLE Traffic Sniffing and Injection Attack

During his presentation at DEFCON 2016, Gutierrez
outlined a process for hacking BLE using a sniffer to
gather clear text data from a thermostat [19]. The
thermostat, the HOBO MX1101, was the same model
that the Salisbury Cathedral boasted of using to secure
the environment for a historical artifact, the Magna
Carta. He was able to find the password in plain text
within the sniffed traffic, which was used to authenticate
with the device and to control the temperature settings.
Using this password and the packet structure for sending
commands, Gutierrez was able to impersonate the app
interacting with the device and even force a reset
for the entire system. Furthermore, he was able to
catch a firmware update for the device and determine
the mechanism to administer an update. With this
information, he remotely flashed new firmware to make
the temperature gauge instead be a heart rate monitor.
His research illustrates what effects data leakage allows
a malicious actor to have on a device.

2.3. Wearable IoT Security

Research done in the following works both examine
the security of wearable fitness and health devices.
Haperin et al. analyzed an implantable cardioverter
defibrillator (ICD) that communicated patient health
data wirelessly [20]. The team determined that the
medical information, such as the patient’s name, date
of birth and cardiac values, was sent unencrypted and
could be intercepted by a malicious actor. Furthermore,
the researchers were able to exploit a testing interface to
replay communication to the ICD in order to induce a
shock to the patient’s heart. This attack could result in
death to a victim of the man-in-the-middle attack, and
the device had no security measures in place to stop such
an attack. Rahman et al. analyzed the poor security
design utilized in the Fitbit (version unspecified) that
allowed an attacker to reverse engineer the protocol and
inject false fitness data to the online tracker [21]. One
of the security flaws the researchers discovered was that
the network traffic showed user credentials were passed
across the network in clear text upon authenticating
with the software. Furthermore, the data for the log
files were also sent unencrypted, giving access to the
actual health data. The researchers then analyzed the
possible attacks on the system and developed an attack
framework against the device.

Wang et al. discovered wrist-wearable BLE IoT
devices, such as fitness monitors, could be used to
extrapolate Personal Identification Numbers (PIN) [22].
The researchers were able to determine the PINs based

Page 6895



on two methods: sniffing attacks and an internal attack
by putting malware on the user’s app device. Data
collected from the accelerometer was directly mapped
to the key pushed on an Automatic Teller Machine
(ATM) machine or a door entry keypad. The data
pulled from the devices and the development of a
distance-estimation algorithm allowed the attackers to
determine the user’s PIN with an 80% accuracy upon a
one-time key entry and 90% upon a three-time key entry.

2.4. Mobile Application Security

Chen et al. developed an automatic fuzzing
framework to test memory corruption vulnerabilities in
IoT devices [23]. Fuzzing is a security method that
sends random data to a device in order to find edge cases
that may crash the device or cause it to act in a way
that the developers did not intend [24]. Because pulling
firmware on IoT devices may not always be possible or
the tools may not be available, the researchers chose
fuzzing as an alternative to test the security of the IoT
device. This still comes with challenges for access
to the device and understanding the unique protocols
that IoT devices use. The team determined that if they
identified the functions in the companion application for
the device, these functions were candidates for fuzzing.
Using this knowledge, the researchers were able to use
taint analysis, which identifies every source of user data
and the various input combinations [25], to change the
values and identify vulnerabilities that crash the IoT
devices. This research demonstrates that the companion
application for an IoT device can provide vital data to
determining the security of the IoT device itself.

3. Methodology

The methodology used in this paper combines BLE
protocol sniffing between the device and phone, analysis
of the phone’s Bluetooth log, and static and dynamic
analysis of the mobile application. The methodology is
broken into three main steps:

1. Network Traffic Collection

• Use lescan [26] or LightBlue [27]
to locate device of interest and the
corresponding MAC address

• Use Ubertooth [17] hardware with
ubertooth-btle [17] command-line
tool to follow connection and capture traffic

• Analyze in Wireshark [18] and search for
plain text data

2. Static Analysis

• Use Mobile Security Framework (MobSF)
[28] or jadx [29] to inspect Android
Application Package (APK) of the
application

• Determine function(s) of interest
• Collect HCI Snoop.log using adb on

Android phone & analyze in Wireshark

3. Dynamic Analysis

• Use Frida [30] to hook into function(s) of
interest

• Pull pertinent values out of function(s) of
interest and attempt to correlate Wireshark
capture data

Table 2 includes the tools required in the methodology
and a brief description.

Table 3. Toolset Used in Methodology
Tool Description
Ubuntu v18.04 Linux operating system
lescan [26] Part of BlueZ protocol stack to scan for BLE devices
Ubertooth [17] Wireless development platform for BLE signal collection
ubertooth-btle [17] Command-line tool to interface with Ubertooth device
Wireshark v2.6.10 [18] Open source network protocol analyzer
LightBlue v1.7.0 [27] Mobile application for testing and simulation of BLE devices
ADB v1.0.39 [31] Command-line tool for mobile debugging
jadx v11.0.7 [29] Android dex and APK decompiler for Java source code
Frida v12.8.20 [30] Dynamic code instrumentation toolkit for mobile apps
MobSF v3.0.9 [28] Mobile application security assessment framework

This methodology is designed from the perspective
of an attacker for what information might be gleaned
without the victim’s knowledge through data leakage
between the device and the phone. A security analyst
should determine this data leakage before an attacker
has the opportunity to do so. Figure 3 provides the
experimental configuration.

The static and dynamic sections assume that the
phone must be rooted to allow the user full access to
the phone and directories. This is required for dynamic
analysis using Frida and to pull the relevant files
in an efficient manner. The developer’s options must
also be configured to enable universal serial bus (USB)
debugging and for the Bluetooth and BLE activity logs
on the phone present in the host controller interface
HCI snoop.log file.

3.1. Network Traffic Collection as a Passive
Listener

The research model employed here consists first of
gathering data. The researcher must use the Ubertooth
platform with the ubertooth-btle command line
tool to capture the traffic and send it to Wireshark for
analysis. As detailed by Ryan [16], the initial pairing
process must be captured. The CONN REQ packet
includes the unique access address to the conversation,

Page 6896



Figure 2. Security Analysis Methodology Diagram

the hop interval and increment, and the CRC init. If
this information is sniffed, the Ubertooth automatically
follows the connection of a specified MAC address. If
the collected traffic is encrypted, the attacker would
likely select a new victim. However, if the data is in
plain text, it provides an easy target for the attacker to
see if there are any passwords or important data values
available. Even if the data is obfuscated in a manner
that may not be obvious at first, a determined attacker
can parse through the data to interpret it.

BLE uses the client-server model where the device
requesting the information, such as a phone, would
be considered the client and the device providing the
readings and data is the server. In the standard BLE
model, when the client wishes to request new data or
a value update, it sends a Read Request to the Value
Attribute of a particular characteristic within the service
it resides in on the BLE server [19]. The GATT on
the server then interprets the request based on its UUID
and sends the relevant attribute data. A handle is also
assigned to a specific attribute. Wireshark parses out the
data and identifies the service and characteristic UUID,
as well as that attribute’s handler, used in a BLE packet.

The researcher examined the Wireshark capture from
the Ubertooth and parsed through the traffic between the
phone and Masimo MightySat using the btatt filter.
The overall flow consisted of ATT protocol packets
where a Write Request was sent to handle 0x0018, a
Write Command to handle 0x0015, and then Handle
Value Notifications to handle 0x0017. These packets

sent the health data from the device to the phone. With
this in mind, the next step in the methodology is static
analysis.

LightBlue [27] was used to pull the advertised name,
MAC address, manufacturer data, the model number
string, and the serial number string. This information
was freely advertised, and the device required no pairing
to request the data. This data leakage gives vital
information necessary for open search research into
the device. The HCI snoop.log file was pulled
for inspection and filtered by the btatt protocol
in order to see the attributes. While the Ubertooth
capture did not specify who was sending or receiving
a particular packet, the HCI log showed that the Sent
Write Command and Sent Write Request to handles
0x0015 and 0x0018, respectively, were sent from
the phone to the device requesting an update. After
this, the target device responded with similar packets
labeled as Rcvd Handle Value Notification to handle
0x0017. The values in these packets, as in the
Ubertooth capture, varied in structure and were not
easily parsable to determine which fields contained the
pertinent data updates.

3.2. Static Analysis

The next steps in the methodology, static analysis
of the Android phone log and dynamic analysis of
the companion application, are both done assuming
use of a rooted Android phone, the IoT device, and
the corresponding mobile app. Each application on
an Android phone is stored in an APK file. MobSF
and jadx both analyze an application and decompile
the .dex files in the APK into a version of the Java
source code. The analyst can use these tools to identify
functions of interest in the APK. For this research, the
functions to identify were those that took in the BLE
data to send it to be displayed in the app, used for
average statistics, and storage.

The HCI snoop.log file, which is enabled
through the developer’s options on an Android phone,
captures the communication to the device through the
phone’s host controller interface. This log includes
all communication between the phone and the device,
and does not require the user to do anything other
than enable the logging capability. This file captures
all commands to and from the phone BLE interface
and can be examined in a network analyzer such as
Wireshark. Like in the first step of the methodology,
this analysis in Wireshark includes the type of protocol
packets (ATT, L2CAP, etc.), the opcode (read request,
write request, notification, command, etc.), and the
handle value that specifies the part of the characteristic

Page 6897



the data is coming from. Another tool useful for static
analysis is LightBlue. It is an application used for
testing and simulation of BLE devices. If the device is
broadcasting, LightBlue can connect to the device and
request advertised data.

For static analysis, both MobSF and jadx were
used in tandem. This is because jadx has an easily
searchable GNU user interface (GUI) that allows
the analyst to search for specific strings and find
where it is used in the APK. MobSF provides a
breakdown of the activities, services, files, and potential
security vulnerabilities present in the APK. Using
both allowed correlation of the classes and functions
highlighted in MobSF and jadx to find usage.
Through static analysis of the APK, the researcher
determined BluetoothLEConnection.java
was a file of interest because it extended the
BluetoothGattCallback class. Four main
functions exist to be analyzed dynamically:
MyBluetoothGattCallback.onConnectionSt
ateChanged(), MyBluetoothGattCallback.
onServicesDiscovered(), MyBluetooth
GattCallback.onDescriptorWrite(), and
MyBluetoothGattCallback.onCharacterist
icChanged().

3.3. Dynamic Analysis

Once functions of interest are identified statically,
the next step is to pull data in real-time. Frida
is a mobile application dynamic analysis tool that
dynamically injects Javascript code into an executing
process. Hooking the functions of interest allowed
examination of what argument types and values into
stack functions and how the application processed user
data. MobSF provides standard scripts to pull standard
data such as a file trace or to monitor APIs. Scripts
available through MobSF were utilized, as well as
custom scripts to hook specific functions for BLE data
transfer.

The dynamic analysis was accomplished through
use of a custom script utilizing the Frida framework.
An exerpt of the code used to gather the values
of interest is included in Figure 3. The researcher
hooked onCharacteristicChanged() under
com.masimo.harrier.library.classes’s
BluetoothLEConnection.MyBluetoothGatt
Callback. BluetoothGatt and Bluetooth
GattCharacteristic arguments are passed into
the function. Values from the characteristic are able
to be pulled such as the UUID, values, descriptor, and
services. The values passed into this function are in
an array by default, so the researcher wrote a function

to convert the array to hex values in order to better
correlate with the values from the Ubertooth capture
and HCI snoop.log. The output resulted in several
arrays starting with the value 0x77 and occasional
arrays starting with 0x0f. The arrays that began with
0x0f showed recognizable values consistent with
oxygen levels and pulse rate values.

Figure 3. Hooking Code Example

Filtering the script to only show the arrays beginning
with 0x0f repeatedly showed that the eighth and
tenth bytes were updated with the oxygen and pulse
rate readings from the device. The hex value of
the array resulted in a value with the content of
0f05000000000063004a100a005f00f5, where
the values 63 and 4a represent the oxygen level of 99
and pulse rate of 74, consistent with the data shown on
both the device and in the GUI.

4. Results and Discussion

Upon completing the methodology outlined, the
analyst was able to determine the device had data
leakage. Table 3 outlines the relation between the
Ubertooth capture, the HCI snoop.log on the phone,
and the data gleaned from Frida hooking into the
vendor application. Once the packet structure was
determined using Frida, the HCI and Ubertooth pcap
files were examined to look for a similar composition.
Since the manufacturer did not employ encryption, the
security examiner was able to determine the location
of the bytes that correspond to the health statistics
in the network packet. The HCI snoop.log and
values from the application are identical for the first 13
bytes. The significance for the last bytes are currently
undetermined, but would not be required to know this
in order to sniff the traffic and find the health statistics
of interest. The Ubertooth capture traffic value was
the same as the HCI log, save with 0x77 at the

Page 6898



Table 4. Structure of Health Statistics
BluetoothLEConnection Function Hooked HCI snoop.log Ubertooth Sniffed Traffic

Info Field Value of BluetoothGattCharacteristic Rcvd Handle Value Notification UnknownDirection Handle Value Notification
Handle N/A 0x0017 0x0017
UUID 54c210022a72004b4f11e49fe20002a5d5 54c210022a72004b4f11e49fe20002a5d5 54c210022a72004b4f11e49fe20002a5d5
Value 0f05000000000063004c14ff206100ad 0f05000000000063004c14ff206000b8 770f05000000000063004c14ff206000b8

Packet Length N/A 28 bytes 43 bytes

beginning. Furthermore, the packet size for the HCI log
was predictable at 28 bytes for each packet that included
the information, and the sniffed traffic had a length of
43 bytes. Knowing this information would allow the
attacker to easily filter the traffic to only see packets of
interest.

5. Future Work

There are many opportunities to build upon this
research. For example, it would be beneficial to
determine if the communication between the phone and
the device is susceptible to injection attacks allowing
the data to be manipulated in real time. This could be
done using the Ubertooth hardware and corresponding
command-line tool to see if data could be replayed
to the application, and if other values could be input
instead. This would require better understanding of the
entirety of packets sent, rather than necessarily just the
packet with the information of interest. Frida injection
could also determine vulnerabilities to examine if the
application and companion app are vulnerable to fuzzing
or what values it will accept without raising alarm.

Reverse engineering the hardware is also a viable
direction for research. The researcher was unable to
do so in this experiment due to having to maintain the
functionality of the device. However, the hardware
could contain pertinent data. A mechanism to force an
over the air update to the device could be determined,
such as with Gutierrez [19], to permanently alter the data
or brick the system altogether.

Additionally, it would be beneficial to examine
the Masimo MightySat’s competitor, the Nonin Onyx
II 9560 [32]. The researcher could use the same
methodology outlined in this paper to determine if the
Nonin device also has data leakage. Future researchers
should also explore other like medical devices with BLE
to compare the security features of each.

Reporting false measurements on a medical device
could result in detrimental physical effects on the
patient, especially if medicine is prescribed based on the
data, where the user could get the incorrect dosage or no
dosage at all. These future research areas could help
secure medical devices from other security attacks.

6. Conclusion

Correlation of the data gathered through passive
sniffing, static analysis, and dynamic analysis allowed
the researcher to determine the packet structure
containing the oxygen and pulse rate values. In Table 3,
the oxygen value and pulse rate are the eighth and tenth
bytes for BluetoothLEConnection hooking and
for the HCI snoop.log, and the Ubertooth sniffed
traffic has those values in the ninth and eleventh bytes.
While the manufacturer of the device may have intended
to secure the device communication with a proprietary
format, the researcher successfully determined the
structure of the packets containing medical data.

Acknowledgement

The views expressed in this article are those of the
authors and do not reflect the official policy or position
of the United States Air Force, Department of Defense,
or the U.S. Government.

References

[1] G. Maayan, “The IoT Rundown For 2020:
Stats, Risks, and Solutions.” https://
securitytoday.com/articles/2020/01/
13/the-iot-rundown-for-2020.aspx.

[2] G. A. Office, “Internet of Things: Enhanced
Assessments and Guidance Are Needed to
Address Security Risks in DoD.” https:
//www.gao.gov/assets/690/686203.pdf/.

[3] K. Foote, “A Brief History of the Internet of
Things.” https://www.dataversity.net/
brief-history-internet-things/.

[4] A. Gibbai, “Kevin Ashton Describes the
Internet of Things.” https://www.
smithsonianmag.com/innovation/
kevin-ashton-describes-the-iot-180974.

[5] A. Shahzad, Y.-G. Kim, and A. Elgamoudi, “Secure
iot platform for industrial control systems,” in 2017
International Conference on Platform Technology and
Service (PlatCon), pp. 1–6, IEEE, 2017.

[6] M. Aleksandrova, “IoT in the Workplace:
Smart Office Applications for Better
Productivity.” https://www.iotforall.com/
iot-smart-office-applications/.

[7] M. Ryu, J. Yun, T. Miao, I.-Y. Ahn, S.-C. Choi, and
J. Kim, “Design and implementation of a connected farm
for smart farming system,” in 2015 IEEE SENSORS,
pp. 1–4, IEEE, 2015.

Page 6899



[8] Econsultancy, “10 Examples of the Internet of Things
in Healthcare.” https://econsultancy.com/
internet-of-things-healthcare/.

[9] M. Hossain, R. Hasan, and A. Skjellum, “Securing
the Internet of Things: A Meta-Study of Challenges,
Approaches, and Open Problems,” in 2017 IEEE 37th
International Conference on Distributed Computing
Systems Workshops (ICDCSW), pp. 220–225, IEEE,
2017.

[10] Y. B. Zikria, S. W. Kim, O. Hahm, M. K. Afzal, and M. Y.
Aalsalem, “Internet of Things (IoT) Operating Systems
Management: Opportunities, Challenges, and Solution,”
2019.

[11] AvSystem, “IoT Standards and Protocols
Guide: Protocols of the Internet of Things.”
https://www.avsystem.com/blog/
iot-protocols-and-standards/.

[12] Masimo, “MightySat Rx Fingertip Pulse Oximeter.”
https://www.masimo.com/mightysatrx/.

[13] AndroidDeveloper, “Bluetooth Low Energy Overview.”
https://developer.android.com/guide/
topics/connectivity/bluetooth-le.

[14] BluetoothSIG, “Gatt Services.” https:
//www.bluetooth.com/specifications/
gatt/services/.

[15] P. Rentz, “OWASP Releases Latest Top 10 IoT
Vulnerabilities.”

[16] M. Ryan, “Bluetooth: With low energy comes low
security,” in 7th {USENIX} Workshop on Offensive
Technologies ({WOOT} 13), 2013.

[17] “Ubertooth.” https://github.com/
greatscottgadgets/ubertooth/.

[18] “Wireshark.” https://wireshark.org.
[19] J. G. del Arroyo, “How Do I BLE Hacking.” https:

//www.youtube.com/watch?v=oP6sx2cObrY.
[20] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S.

Clark, B. Defend, W. Morgan, K. Fu, T. Kohno, and
W. H. Maisel, “Pacemakers and implantable cardiac
defibrillators: Software radio attacks and zero-power
defenses,” in 2008 IEEE Symposium on Security and
Privacy (sp 2008), pp. 129–142, IEEE, 2008.

[21] M. Rahman, B. Carbunar, and M. Banik, “Fit and
vulnerable: Attacks and defenses for a health monitoring
device,” arXiv preprint arXiv:1304.5672, 2013.

[22] C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu, “Friend
or foe? your wearable devices reveal your personal pin,”
in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, pp. 189–200,
2016.

[23] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang,
W. C. Lau, M. Sun, R. Yang, and K. Zhang,
“Iotfuzzer: Discovering memory corruptions in iot
through app-based fuzzing.,” in NDSS, 2018.

[24] “Fuzzing.” https://owasp.org/
www-community/Fuzzing.

[25] G. Campbell, “What is Taint Analysis.”
https://dzone.com/articles/
what-is-taint-analysis.

[26] J. Hedberg, “Bluez.” http://www.bluez.org/.
[27] PunchThrough, “Lightblue.”

https://punchthrough.com/
testing-bluetooth-low-energy-devices/.

[28] Abraham, “Mobile Security Framework.”
https://github.com/MobSF/
Mobile-Security-Framework-MobSF.

[29] Skylot, “Jadx.” https://github.com/skylot/
jadx.

[30] NowSecure, “Frida.” https://www.frida.re/
docs/home/.

[31] A. Developer, “Android Debug Bridge.” https:
//developer.android.com/studio/
command-line/adb.

[32] “Massimo MightySat Brochure.” https:
//www.masimo.com/siteassets/us/
documents/pdf/plm-11294e_brochure_
mightysat_rx_us.pdf.

Page 6900


