
A Bio-Inspired Trust Framework in Wireless Ad Hoc Networks

Vikram Kanth
Naval Postgraduate School

vkkanth@nps.edu

John McEachen
Naval Postgraduate School

mceachen@nps.edu

Murali Tummala
Naval Postgraduate School

mtummala@nps.edu

Abstract

Cyber attacks are amongst the most serious
threats facing people and organizations. In the
face of the increasing complexity and effectiveness
of these attacks, creative approaches to defense are
required. Groups of insects survive due to their use
of collaborative approaches with the unique ability
to detect anomalies using primarily local data and
very limited computational resources (i.e., limited brain
power). These attributes are even more crucial for
wireless ad hoc networks where the number of nodes
and connections between those nodes are ephemeral.
We propose a trust framework inspired by the detection
mechanisms exhibited by bee swarms in which a wireless
node can only observe and leverage the actions of
their neighbors rather than the global knowledge of the
network to make decisions. This leveraging of local
knowledge is an important aspect of trust in wireless
networks in which global state information is difficult to
encapsulate. We also utilize models from binary voting
to present a mathematical model for our bee-inspired
trust framework in wireless ad hoc networks.

1. Intrusion Detection, Neighboring
Nodes, and Trust

Cyber threats present some of the most pervasive
challenges in today’s security landscape. Reports from
the Governmental Accountability Office (GAO) showed
that federal government agencies reported 35277 cyber
security incidents in 2017 and 31107 incidents in 2018
[1, 2]. According to the Identity Theft Resource Center,
there were 1473 reported data breaches exposing over
164.68 million sensitive records in 2019 [3]. In the face
of these stark statistics, it is clear that there is a need for
more effective defensive tools.

One of the most commonly utilized defensive tools
is the intrusion detection system (IDS) [4]. As the
name implies, the purpose of these systems is to detect
intrusions by identifying anomalous behavior within

individual hosts or in a network. Broadly, there are
two categories of IDSs, network-based and host-based.
A network-based IDS uses network behavior such as
traffic volume or diversity to detect abnormal network
behavior. A host-based IDS uses local events like
unusual program execution or log-in attempts to trigger
an alert regarding a potential attack. These techniques
have been successful in monitoring single machines
and single networks. Unfortunately, the nature of
cyber attacks is evolving and require more sophisticated
defenses to detect them. Highly distributed attacks
like distributed denial of service (DDoS) attacks can
be used to camouflage virus and malware installation
for nefarious purposes [5]. In order to counter these
threats, cyber defenses have leveraged the idea of
information sharing between hosts and networks in
order to create collaborative systems capable of rapid
detection and response to sophisticated cyber threats
[5, 6]. These types of systems are called collaborative
intrusion detection systems (CIDS).

While CIDS and collaboration are good approaches
to improving cyber defense, they raise several issues.
The first is a question of network structure and how
nodes should share information amongst themselves.
There are three approaches to CIDSs, centralized,
hierarchical, and distributed. A detailed analysis of
these various approaches can be found in [6]. In a
perfect world, every node in a network would share
information with every other node in a fully distributed
system. Unfortunately, as a network grows larger,
the overhead required to implement such a system
can become unmanageable (connections between nodes

scale to
n(n− 1)

2
where n is the number of nodes).

These issues are even more difficult to resolve in
wireless ad hoc networks. These types of networks
introduce additional concerns such as limited battery
life, an unreliability of links, and a changing network
architecture that make defense paradigms more difficult
[7]. Figure 1 captures the essence of the problem. At
any given time, not all of the links are necessarily active.

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 6876
URI: https://hdl.handle.net/10125/71446
978-0-9981331-4-0
(CC BY-NC-ND 4.0)



In fact, at this specific time t, Node f (depicted by the
dashed circle) has been dropped from the network.

Figure 1. Snapshot of the Configuration of a Wireless

Network at time t

In a dynamic wireless ad hoc environment where
both the number of nodes and the links between them
can change, it is difficult to acquire and process global
state information for defense purposes. The question
then becomes, for a particular wireless node, what other
nodes provide the most useful information for cyber
defense?

In order to answer this question, we briefly
examine how insect colonies, particularly honeybees,
make collective decisions. Insects exhibit a powerful
ability to make collective decisions with relatively
little communication, very little computational power,
and in short amounts of time. Most importantly,
they make these decisions using local, not global
information. Insect swarms are in many ways similar
to a wireless network. There are a variable number of
scouts communicating information to dynamic groups
of workers. This idea is analogous to nodes in a wireless
network which may or may not be actively connected to
the network at a specific time. Furthermore, nodes that
are connected to the wireless network have to be able
to process information from a variable number of other
nodes.

In this type of environment, insects have to make
correct collective decisions to ensure survival. In his
book Honeybee Democracy, Seeley points out that a
bee can only observe and react to her neighbors and
thus operates only with local information without the
full global context [8]. Bees choose foraging sites and
potential new hive sites by means of a waggle dance.
Scout bees travel in all directions and upon returning to
the hive, indicate the direction and ”goodness” of their
discovered site to the remainder of the bees by dancing.
The speed and intensity of the dance indicate how good
a potential site is. Any scout bee that observes that dance
can visit that site. Over time, good sites are visited
more frequently and bad sites are discarded. Thus, using
only local information, bees are able to make effective

collective decisions.

The idea that nodes can use their close neighbors
to make decisions is not particularly new. Modern
routing algorithms like OLSR [9] have made extensive
use of this type of logic. More specifically, several
different works have used insect behaviours to make
a similar point. A survey of these works can be
found in [10]. Wedde et al. proposed a fault-tolerant
routing algorithm using ”foraging zones” to update
local routing algorithms based on the communication
exhibited by honey bees [11]. Korczynski et al. propose
a non-parametric exchange of levels of concerns from
neighborhoods of nodes to adjust the sensitivity of
local detection algorithms based on bee communication
methods [5]. Information from a node’s neighbors can
prove useful to the intrusion detection capabilities of a
node.

Another critical component of information sharing
systems is trust. There is a need for a mechanism to
evaluate the trustworthiness of nodes that are sharing
information, as a malicious node can send out false data
that can degrade the performance of any collaborative
approach [12]. Trust in wireless and mobile networks
has been a subject of intense scrutiny [13] due to the
aforementioned additional challenges presented by a
dynamic network. Any potential mitigation strategies
must begin with a definition of trust. Given an entity A,
an entity B, and a behavior X, a useful definition is A’s
subjective estimation of the probability that B displays
the behavior X [14]. There are a litany of previous works
that address trust and the related problem of collective
decision making in the cyber environment. Consensus
theory [15] and game theory [16] are two broad fields
that have provided strategies to address this deficit of
trust.

In this paper, we borrow a common trust mechanic
to assess the trustworthiness of a node at any given time.
Simply put, if a neighbor node acts in an expected or
beneficial manner, we trust it more. If the node acts in
a manner detrimental to our interests, we decrease our
trust in it and act accordingly. Again, this idea is nothing
particularly new and has been used in trust models for
cyber security [17] and in other fields such as game
theory. Consider the example of the prisoner’s dilemma
in which two prisoners are arrested and have a choice to
flip on each other, with the payoff table below [18].

Page 6877



Prisoner A
Cooperate Defect

Prisoner B Cooperate 1, 1 0, 4

Defect 4, 0 3, 3

Table 1. Payoff Table for Prisoner’s Dilemma Game

adapted from [18]

Based on the table, the purely rational decision is
for both players to betray each other even though both
players cooperating (staying silent) results in a better
outcome for both of them. If this game is played
repeatedly (the iterated prisoner’s dilemma) the optimal
strategy is tit-for-tat [19] or do the same thing that the
other prisoner did in the last round. In other words,
stay silent and cooperate with the other prisoner until
they defect/betray and once they do, retaliate. This idea
provides support for our trust mechanic, increase trust in
a node if they behave beneficially and penalize the node
if they behave detrimentally.

Another example of this mechanic can be seen in
repeated binary voting. Kamhoua et al. proposed
a game theoretic approach to mitigate malicious node
behavior in binary decisions [16]. They proposed
nodes building their future reputations using their past
behaviors in a game theoretic construct using binary
voting. We leverage this concept and portions of their
model in Sections 2 and 3.

Our focus in this research area is to address trust
in the information sharing process by tying together
different concepts from existing cyber security and
consensus work. In this paper, we propose a scheme
informed by existing strategies that can be used in
any network to establish trust ratings for nodes and
their neighbors. In this way, those nodes can weigh
information from their neighbors for the purposes of
cyber defense.

2. Proposed Trust Framework

As noted in Section 1, the idea of neighbors
informing their neighbors for the purpose of cyber
defense is not new. In [5], the authors present the
idea of non-parametric levels of concern that nodes pass
amongst themselves that help to adjust the sensitivity
of their local detection algorithms. However, their
approach does not take into account the ability of a
node to be compromised or simply incorrect in its
analysis. We leverage a portion of the Repeated
Binary Voting Algorithm proposed in [16] to establish
reputation values for each node. In this way, a node
can weigh levels of concerns from their neighbors. In
[16], reputation is a quantity, where a node g has has

reputation Rg(t) at time t is given by:

Rg(t) =


0.5 t = 0

(1− γ)Rg(t− 1) + γ node vote correct
(1− γ)Rg(t− 1)− γ node vote incorrect

(1)

The γ value is referred as the smoothing factor and
is bounded 0 < γ < 1. It is adjusted based on the
desires of the defender. The larger the γ value is, the
more the node values recent events versus the history
that has been established. Kamhoua et al. recommend a
γ value of 0.1 [16].

In [16], nodes vote on the state of nature, which
was a node’s belief in the percentage of the system
nodes that was compromised. We adapt their model
and provide different definitions for correct and
incorrect votes. In [20], a level of concern represents
non-parametric data regarding the likelihood of
an attack. The nature of attack is unimportant
as different nodes may have different intrusion
detection mechanism. In their model, they make
the assumption that if a node’s neighbor is attacked,
it is more likely for that node to be attacked shortly
thereafter. We represent this as a conditional probability,
Pr [Node A is attacked | Node A’s neighbor was attacked]).
Thus, an indication of attack from a node’s neighbor
can be useful in adjusting the threshold values intrusion
detection algorithm for the node. We use this idea to
adjust the rules from Equation 1.

We define our model as follows. Let the network
of nodes G be a connected graph defined as G =
{gi, i = 1, 2, ...n} where n is the number of nodes in
the graph. Each node has an associated list of neighbors
A = {aj , j = 1, 2, ...n − 1}. Finally, let t represent a
time interval. For maximal abstraction, we do not force
a value for the length of the time interval, but rather
reference a particular interval t ≥ 0.

A neighbor node aj has its reputation increased if
it reports an attack and the node gi is attacked. This
is our definition of a correct vote. An incorrect vote
is characterized by one of two cases. Either neighbor
node aj does not report an attack and node gi is
attacked or node aj reports an attack and node gi is not
attacked. The second case in particular is important as
if a neighbor node is not penalized for reporting false
attacks, a malicious node would always report an attack.
However, the reputation damage that is caused in the
second case should be lower than that of the first case.
Figure 2 summarizes these different cases.

With those requirements in mind, our adjusted rules
are as follows:

Page 6878



Figure 2. Overview of Correct and Incorrect Votes

Rg(t) =


0.5 t = 0

(1− γ)Rg(t− 1) + γ node vote correct
(1− γ)Rg(t− 1)− γ node vote incorrect case1
(1− γ)Rg(t− 1)− α× γ node vote incorrect case2

(2)

The value α is a scale factor where 0 < α < 1 that can
be adjusted to penalize a node for reporting an attack
where one has not occurred. For the purpose of analysis
we define a global patt that represents the probability
that any node gi is attacked in a particular time interval
t. The scale factor α should dependent on the value of
patt. We initially set α = 0.1×patt. Table 2 summarizes
the effect of each of the cases on reputation.

Node gi
Attack No Attack

Node aj
Attack +γ −α× γ

No Attack −γ 0

Table 2. Effects of Correct and Incorrect Votes on

Reputation

Table 2 describes the interaction between a pair
of nodes. At every time interval t, each node gi
updates its relationship with its neighbors based on the
rules described in Equation 2. Algorithm 1 presents a
high-level description of these interactions.

.
Similar to [5], we make no assumptions about the

type of attack or the detection algorithm implemented by
a particular node. Hence, the functions g.isAttacked(t)

Algorithm 1: Algorithm describing Trust Update
Process at every time interval t

Timestep Graph G, Time t, γ, α
inputs : Graph G, Time t, γ, α
foreach Node g in G do

g.isAttacked(t) = (0, 1)
foreach Node a in g[neighbors] do

Update g[trust][a] based on values of
g.isAttacked(t) and
a.wasAttacked(t− t0) according to
Table using γ and α.

return G;

and a.wasAttacked(t − t0) are dependent on the
IDSs that are utilized for each node. For simplicity
of analysis, we assumed the best case scenario
that each node detected attacks perfectly. It is
easy to see that if this is not the case, trust
amongst nodes will decrease. We can think of
this as distrusting a node that is particularly bad
at detecting attacks. Naturally, we would want to
ignore input from such a node. Mathematically, this
can be seen by examining the conditional probability
Pr [gi.isAttacked(t) | aj .wasAttacked(t)]. If the
node aj is bad at detecting attacks, this conditional
probability will be lower than if the node was good
at detecting attacks. As this case is the only case in
which a neighbor node can increase its reputation, if the
probability of this occurring decreases, the reputation of
the neighbor node would also decrease. Similarly, if a
node g is bad at detecting attacks, information from its
neighbors does not make up for that fact.

Another important element of the algorithm is the
value of t0. We make no assumptions about the duration
of t or the number of time intervals t0 that a node g is
willing to accept. In our testing, we chose to use the
simplest case, t0 = 1. Additional considerations must
be taken into account as t0 increases. Specifically, one
may want to add extra rules to prevent an adversary node
from maintaining its reputation. These considerations
are left for future work. Lastly, we make no assumptions
about the type of node or network. This framework is as
applicable to wired network as a wireless one. This is
because the trust relationship between nodes is explicitly
based on neighboring nodes and the prior relationship
between them. As nodes disconnect and reconnect, the
history of their relationships does not disappear and can
still be leveraged by our framework.

Page 6879



3. Results

We implemented our trust framework on a Linux
box running Ubuntu 18.04.1 and used the Python3
language. Graphs were implemented using the
Networkx package [21], specifically using the
Newman-Watts-Strogatz small-world graph generator
[22]. For the purposes of initial framework analysis, we
used a static graph with static links.

Our first set of experiments was designed to
test the effects of varying the conditional probability
Pr [gi.isAttacked(t) | aj .wasAttacked(t)]. We used
values of 0.4, 0.6, and 0.8 as our conditional
probabilities with a graph consisting of 10 nodes. The
global probability of attack was 0.1. Figure 3 shows the
configuration of the wireless network graph.

Figure 3. Initial Configuration of Wireless Network

Graph with 10 Nodes

Figure 4 presents a comparison of the different
conditional probabilities. An arbitrary node and its
neighbors were chosen for this figure. In this case,
the trust relationship over 500 timesteps between Node
1 and Node 9 was examined. This figure reveals a
couple of very important points. As the conditional
probability increases, the trust in a neighbor node
increases. This observation is simple but very powerful.
If an attack on a node g is uncorrelated with a previous
attack on one of its neighbors, then the node should
not use indications from that neighbor to inform its
detection algorithm. This is clearly demonstrated by the
upward average trend in reputation as the conditional
probability Pr [gi.isAttacked(t) | aj .wasAttacked(t)]
increases. In this implementation, we capped the
lower bound for reputation at 0 instead of allowing the
reputation to be negative. Capping the lower bound
at 0 only had an effect on the p = .4 case as trust
values routinely went negative. As the conditional
probability Pr [gi.isAttacked(t) | aj .wasAttacked(t)]

increases, fewer timesteps exhibit a negative trust value.
In Figures 4(b) and 4(c), the reputation value never goes
to 0. Similarly, we also capped the upper bound for
reputation at 1.

Our next experiment was designed to see if the
reputation value converged to a particular value over
a number of runs. For reproducibility purposes,
we ensured that the random number generator we
used was seeded with the same value to generate
the graphs in Figure 4. In this experiment, we ran
our algorithm for 100 different progressions of 500
timesteps. We fixed the configuration of the graph
and varied the attack events. We then averaged
the results together and displayed them in Figure 5.
Furthermore, we then plotted the average reputation for
several different conditional probability values. Figure
5 and Figure 6 confirm the trend described in the first
experiment. As the conditional probability increases,
the average reputation value of the neighbor node
increases. Furthermore, that trust value converges as
the number of timesteps increases. This observation
led us to vary our starting reputation value, which was
originally set to 0.5 as was done in [16]. The value of
Rn(0) did not impact the converged value and only had
a limited impact on any individual run.

Figure 6. Average Reputation versus Conditional

Probability Pr [gi.isAttacked(t) | aj .wasAttacked(t)]

While the experiments above only tracked the trust
relationship between Node 1 and Node 9 (the trust Node
1 had in Node 9 is not necessarily the same as the trust
Node 9 has in Node 1), these results were observed
throughout the network. Table 3 shows a snapshot of
the p = 0.8 case at t = 250, and Table 4 shows the
average reputation values of all of the nodes with the
same p-value.

The value nan indicates that there was no edge
connecting the two Nodes i, j. As noted before,
reputation relationships are not reciprocal. Also, in this
implementation, trust relationships are not transitive.

Page 6880



Figure 4. Comparison of Trust Profiles with Increasing Conditional Probability

Pr [gi.isAttacked(t) | aj .wasAttacked(t)]

Figure 5. Comparison of Average Trust Profiles over 100 Runs with Increasing Conditional Probability

Pr [gi.isAttacked(t) | aj .wasAttacked(t)]

0 1 2 3 4 5 6 7 8 9
0 nan 0.41 0.32 nan 0.41 nan nan nan 0.27 0.41
1 0.34 nan 0.63 0.73 nan nan 0.56 nan 0.49 0.25
2 0.59 0.53 nan 0.62 0.55 0.44 nan nan nan nan
3 nan 0.60 0.45 nan 0.77 0.28 nan nan nan nan
4 0.29 nan 0.42 0.79 nan 0.22 0.64 nan 0.64 nan
5 nan nan 0.27 0.56 0.56 nan 0.38 0.10 nan nan
6 nan 0.55 nan nan 0.66 0.29 nan 0.19 0.50 nan
7 nan nan nan nan nan 0.57 0.50 nan 0.25 0.21
8 0.22 0.54 nan nan 0.63 nan 0.56 0.32 nan 0.24
9 0.11 0.67 nan nan nan nan nan 0.21 0.60 nan

Table 3. Reputation Values for all Nodes at t = 250,

p = 0.8

That is to say, just because Node i trusts Node j and
Node j trusts Node k, this does not mean that Node i
trusts Node k. This type of logic could be implemented
in future work.

Table 4 shows that although the reputation value at
any given t might differ, the average reputation value
remains the same around 0.5. This is the same value
that was very clearly displayed in Figure 5(b).

0 1 2 3 4 5 6 7 8 9
0 nan 0.50 0.49 nan 0.53 nan nan nan 0.39 0.49
1 0.43 nan 0.52 0.51 nan nan 0.52 nan 0.48 0.51
2 0.46 0.53 nan 0.51 0.52 0.44 nan nan nan nan
3 nan 0.49 0.49 nan 0.50 0.42 nan nan nan nan
4 0.42 nan 0.51 0.50 nan 0.44 0.50 nan 0.48 nan
5 nan nan 0.48 0.51 0.53 nan 0.45 0.41 nan nan
6 nan 0.52 nan nan 0.47 0.46 nan 0.46 0.46 nan
7 nan nan nan nan nan 0.45 0.46 nan 0.46 0.46
8 0.41 0.51 nan nan 0.49 nan 0.47 0.41 nan 0.48
9 0.44 0.51 nan nan nan nan nan 0.43 0.48 nan

Table 4. Average Reputation Values for all Nodes

after t = 500, p = 0.8

Finally, we varied the number of nodes from 10 to
100 (with a global probability of attack of 0.01, which
is 1 divided by the number of nodes) and observed the
effects. We concluded that scaling up the number of
nodes made no discernible difference in the reputation
values as would be expected. In our model, each node’s
relationship with another node is somewhat independent

Page 6881



from any other node. Of course, there are second and
third order effects that can have an impact on reputation
values. For example, if Node i’s neighbor j has a
neighbor that is attacked, then Node j will be more
likely to be attacked in the next time interval. Following
that interval, if Node j is attacked , Node i will be more
likely to be attacked and so on and so forth. A more
detailed analysis of these effects is planned for future
work.

4. Conclusion

We have proposed and implemented a trust
framework to dynamically adjust reputation values of
wireless nodes and their neighbors. Nodes tracked their
level of trust in their neighbors based on whether they
benefited from the attack indications that their neighbors
provided. While we did not specifically examine
dynamic changes to the network (dropping/adding
nodes or links), our initial experiments show that this
framework is capable of tracking reputation values
over long periods of time and in a stable manner.
It also appears scalable. These indications validate
future research in this area for both wired and wireless
networks.

The framework developed in this paper is by no
means a finished product. There are still additional
parameters that must be considered. Specifically, we do
not fully explore varying the number of time intervals
for the set of rules. We considered a positive indication
of trust to be if Node gi was attacked in time interval t
and if one of its neighbors aj indicated it was attacked in
time interval t− t0. We did not consider the cases where
neighbor aj was attacked in time interval t−k∗t0 where
k is some arbitrary number or intervals. We believe
that this would have a substantial effect on the system
and would alter the set of rules based on the number of
intervals.

We also do not fully explore how a malicious
node would try to leverage our rules to maintain its
reputation. Further analysis is necessary to identify
optimal strategies for a malicious node and then to adjust
our model accordingly.

This framework is a small piece in the overall CIDS
challenge. Our next step would have to incorporate
this reputation system into an existing CIDS model
and explore its benefits on detection probability. Also
not fully explored in this paper is the communication
overhead of this system, though we believe it is small as
nodes only communicate attack information with their
neighbors and are passing small messages.

The sharing of information between cyber defenders
is critical to preventing attacks against our cyber

systems, especially our wireless systems. That
information is only as good as the nodes that share it.
We need better ways to track the trustworthiness of
the nodes in our wireless networks. The framework
proposed in this paper provides a simple and easily
implementable way to track trust in adhoc networks.
While it is not perfect, it shows promise in this area.

References

[1] U.S. Government Accountability Office, “Federal
information security: Agencies and omb need to
strengthen policies and practices,” Washington, DC,
USA. GAO Report No. GAO-19-545, 2019.

[2] U.S. Government Accountability Office, “Information
security: Agencies need to improve implementation of
federal approach to securing systems and protecting
against intrusions,” Washington, DC, USA. GAO Report
No. GAO-19-105, 2018.

[3] Identity Theft Resource Center, “2019 end-of-year data
breach report,” 2019.

[4] H. Debar, M. Dacier, and A. Wespi, “Towards a
taxonomy of intrusion-detection systems,” Computer
Networks, vol. 31, pp. 805–822, 1999.

[5] M. Korczynski, A. Hamieh, J. H. Huh, H. Holm, S. R.
Rajagopalan, and N. H. Fefferman, “Hive oversight for
network intrusion early warning using DIAMoND: a
bee-inspired method for fully distributed cyber defense,”
IEEE Communications Magazine, vol. 54, pp. 60–67,
June 2016.

[6] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser,
and M. Fischer, “Taxonomy and survey of collaborative
intrusion detection,” ACM Comput. Surv., vol. 47,
pp. 55:1–55:33, May 2015.

[7] B. Subba, S. Biswas, and S. Karmakar, “Intrusion
detection in Mobile Ad-hoc Networks: Bayesian game
formulation,” Engineering Science and Technology, an
International Journal, vol. 19, pp. 782–799, June 2016.

[8] T. D. Seeley, Honeybee democracy. Princeton: Princeton
University Press, 2010.

[9] “Optimized Link State Routing Protocol (OLSR),” Tech.
Rep. RFC3626, RFC Editor, Oct. 2003.

[10] D. Karaboga and B. Akay, “A survey: algorithms
simulating bee swarm intelligence,” Artificial
Intelligence Review, vol. 31, pp. 61–85, June 2009.

[11] H. F. Wedde, M. Farooq, and Y. Zhang, “Beehive:
An efficient fault-tolerant routing algorithm inspired by
honey bee behavior,” in Ant Colony Optimization and
Swarm Intelligence (M. Dorigo, M. Birattari, C. Blum,
L. M. Gambardella, F. Mondada, and T. Stützle,
eds.), (Berlin, Heidelberg), pp. 83–94, Springer Berlin
Heidelberg, 2004.

[12] C. Fung, J. Zhang, I. Aib, and R. Boutaba, “Trust
Management and Admission Control for Host-Based
Collaborative Intrusion Detection,” Journal of Network
and Systems Management, vol. 19, pp. 257–277, June
2011.

[13] T. K. Kim and H. S. Seo, “A trust model using fuzzy logic
in wireless sensor network,” World academy of science,
engineering and technology, vol. 42, no. 6, pp. 63–66,
2008.

Page 6882



[14] P. C. Bauer, Three essays on the concept of trust and its
foundations. PhD thesis, Universität Bern, 2015.

[15] M. Castro and B. Liskov, “Practical byzantine fault
tolerance,” in Proceedings of the Third Symposium on
Operating Systems Design and Implementation, OSDI
99, (USA), p. 173186, USENIX Association, 1999.

[16] C. A. Kamhoua, K. A. Kwiat, and J. S. Park, “Surviving
in Cyberspace: A Game Theoretic Approach,” Journal
of Communications, vol. 7, pp. 436–450, June 2012.

[17] G. Theodorakopoulos and J. S. Baras, “On trust models
and trust evaluation metrics for ad hoc networks,” IEEE
Journal on Selected Areas in Communications, vol. 24,
no. 2, pp. 318–328, 2006.

[18] D. Bauso and Now Publishers, Game theory: models,
numerical methods and applications. 2014. OCLC:
905837938.

[19] R. Axelrod and W. D. Hamilton, “The evolution
of cooperation,” science, vol. 211, no. 4489,
pp. 1390–1396, 1981.

[20] M. Korczynski, A. Hamieh, J. H. Huh, H. Holm, S. R.
Rajagopalan, and N. H. Fefferman, “DIAMoND:
Distributed Intrusion Anomaly Monitoring for
Nonparametric Detection,” in 2015 24th International
Conference on Computer Communication and Networks
(ICCCN), (Las Vegas, NV, USA), pp. 1–8, IEEE, Aug.
2015.

[21] “NetworkX NetworkX documentation.” https://
networkx.github.io/.

[22] M. Newman and D. Watts, “Renormalization group
analysis of the small-world network model,” Physics
Letters A, vol. 263, pp. 341–346, Dec. 1999.

Page 6883


