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Abstract

When faced with uncertainty regarding potential
failure contingencies, prioritizing system resilience
through optimal control of exciter reference voltage
and mechanical torque can be arduous due to the
scope of potential failure contingencies.  Optimal
control schemes can be generated through a two-stage
stochastic optimization model by anticipating a set
of contingencies with associated probabilities of
occurrence, followed by the optimal recourse action
once the contingency has been realized. The first stage,
common across all contingency scenarios, co-optimally
positions the grid for the set of possible contingencies.
The second stage dynamically assesses the impact of
each contingency and allows for emergency control
response. By unifying the optimal control scheme prior
and post the failure contingency, a singular policy can
be constructed to maximize system resilience.

1. Introduction

In analyzing the behavior of the electric power grid
after a major disruptive event, full dynamic models are
critical. During such an event, real or reactive power,
voltages, and other system metrics may go beyond limits
enforced by steady state optimal power flow models
(for general references in power system dynamics and
stability, see [1, 2]). Our work focuses on the problem
of positioning the grid to be resilient to a set of possible
outage scenarios through stochastic optimization over
power system dynamics. In each scenario, we allow
second stage recourse through generator control to
improve grid stability after the outage.

The transient stability constrained optimal power
flow (TSCOPF) problem, introduced in [3], optimizes
power flow to minimize generation cost, while using
power system dynamics to ensure stability under
contingencies. Optimizing cost subject to stability
constraints can leave the system close to constraint
boundaries and vulnerable to additional perturbations;
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we instead incentivize safety margin, to keep the system
farther from these boundaries. We are interested in
stability under multiple possible contingencies, much
like the multi-contingency transient stability constrained
optimal power flow problem (MC-TSCOPF) introduced
in [4]. Our research differs from MC-TSCOPF in that it
1) assumes the system is already at some (non-optimal)
steady state prior to the contingency and explicitly
addresses the dynamic control actions necessary to
improve contingency readiness, and 2) additionally
addresses post-contingency corrective control in the
second stage. Our second-stage problem is similar to the
transient stability emergency control (TSEC) problem
(e.g., [S]) of ensuring grid stability after a contingency
(e.g., by reducing generation and shedding load).

The three main techniques for solving TSCOPF and
TSEC are direct approaches, single-machine equivalent
(SIME) reduction, and computational intelligence. See
[6] for a recent overview of these techniques. Most
prevalent and flexible is the direct approach, which
involves discretizing differential equations that express
system dynamics. These discretized equations can be
solved directly as part of the optimization (simultaneous
discretization), in a simulation sub-problem (sequential
discretization), or via a hybrid of the two. For expanded
discussion of these methods and demonstration of the
hybrid method, see [7]. While our problem formulation
is agnostic of discretization approach, our results are
obtained via simultaneous discretization. See [8] for
enhanced discretization techniques.

Direct approaches are typically solved via an
interior point method, and can benefit from reduction
and parallelization techniques. For a reduced-space
approach and parallelized reduced-space interior point
method, see [9] and [10]. A GPU-based parallelization
approach to solving TSCOPF is given in [I1].
Metaheuristics have occasionally been used to solve
these problems, include whale optimization [12], hybrid
particle swarm, and artificial physics optimization[13].

Our optimization model prepares the grid for
multiple contingencies before any one contingency
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occurs and optimizes stability after the contingency
is realized. Our model does not directly consider
economic generation cost in the objective function, as
we focus on system resilience to major emergencies.
Our formulation maximizes safety margins for voltage
and frequency, to both ensure adequate power quality
post-contingency and reduce the chance of a cascading
failure.  Unlike aforementioned TSCOPF research
where power flow is optimized, we optimize directly
over the exciter reference voltage and mechanical
torque generator controls throughout the full time
horizon.  Furthermore, our research is the first to
optimize grid dynamics in preparation for a multitude of
possible contingencies, simultaneously with optimizing
the post-contingency controls.

2. Grid Resilience and Stability Model

We use the fourth-order flux decay generator model
and turbine with no reheating model from [1]. For
realism, loads can also be modeled dynamically [14];
the importance of dynamic load modeling compared
to static load modeling is investigated in [15]. Our
power system model uses the exponential recovery
dynamic load model [16]. Our model is a nonlinear
two-stage stochastic differential algebraic equation
(DAE) formulation. The differential equations of
the generators and loads can be discretized through
any available discretization scheme including finite
differences and collocation. We use a set of
contingencies such as line faults and generator failures
that occur at the same time ¢y to form our scenarios. The
first stage varies generator controls (exciter reference
voltages and mechanical torque) before t; so that
the grid is best prepared for any scenario to occur.
Meanwhile, the second stage varies generator controls
after ¢ in each scenario to maximize grid stability. The
generator controls (indirectly) adjust generator real and
reactive power output.

In the following sections, we detail our formulation
by giving nomenclature, DAE equations, a description
of discretization, stability objectives, and finally our
two-stage stochastic programming model.

2.1. Sets
Set Index Symbol Description
B b Buses
g g Generators
L 1 Loads
vy Scenarios

2.2. Indexed Sets

Set Index Symbol Description
G, b Generators at bus b
Ly, b Loads at bus b

2.3. DAE Variables

Variable Index Description

1) g Rotor angle

w g Generator frequency

E; g g-axis transient voltage

Eyq g Field voltage

1, g g-axis current

1y g d-axis current

T g Shaft mechanical torque

V b Voltage

0 b Phase angle

Py 1 Active load power draw

QL 1 Reactive load power draw

Tp 1 Load active power state variable
Tq 1 Load reactive power state variable

2.4. Control Variables

Variable Index Description
Vier g Exciter reference voltage
Py g Generator mechanical torque power

2.5. Parameters

Parameter Index Description

T Time horizon

Ws Rated synchronous speed

M g Shaft inertial constant

D g Damping coefficient

Ky g Exciter amplifier gain

Ta g Exciter amplifier time constant

R, g Scaled resistance after dq
transformation

Xy g g-axis synchronous reactance

X4 g d-axis synchronous reactance

X (li g d-axis transient reactance

T(;O g Transient time constant

Ten g Mechanical torque damping const.

by g Bus connected to generator g

Poy, 1 Initial active power

Qor, 1 Initial reactive power

Tpr, 1 Active power time constant

Tqr, 1 Reactive power time constant

Qg 1 First active power exponent
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ap 1 Second active power exponent Exponential recovery load model:
Bs 1 First reactive power exponent
By 1 Second reactive power exponent dz T o, o
by 1 Bus connected to load 1 dfl = T;; + Por, V"' — Por,Vy, ! ®)
Y b,b Admittance magnitude matrix '
A bb Admi.ttar.lce phas.e angle matrix dig, _ Ta i QOL,Vstl _ QOLlVbBtl ©)
m V objective scaling parameter dt Tqr, ! !
N2 w objective scaling parameter T o
7 V objective shaping parameter P, = Tpil +Por, Vi, ! (10)
Y2 w objective shaping parameter . 5
Qr, = ﬁ + Qor, V" (11)
2.6. DAE Equations '
Generator model: vieL
ds Balance equations:
7; =Wy — Ws (1)
: =Y (ViVyYip cos(6; — 0, — Aip))
% — TMQ _ El I‘Zg o Id I a9 ng i€B
dt M, 99 M, 9749 M, .
o = (Pr)+ Y (L, Vi sin(d, — 05)
D =9 S 2 leLy 9€Gy
9N, 2)
/ ) 14, Vi cos(0g — 0,)) =0 (12)
dFE E X, E
dg __ dg g fdg .
dt - T’ - ng - Idy T’ + T’ (3) - Z(%bevi,k Sln(ei - 91, - Ai,b))
dog dog dog ieB
dE dg E dg KAq
Brie _ Bt | (v,,,, —vi, ) K @ =37 (Qu) + Y Ha,Vy coss, — 00
Ag Ag leLy 9€Gs
Vgeg +14,Vosin(dg — 6)) =0 (13)
Governor model: Vbe B
dT, Pres, — Tu, In addition we add two inequality constraints that
dt = Ton ®) limit the rate of change of V.. and P..y. We do this
o to prevent solutions with highly oscillatory control
Vgeg choices, as this would not be replicable in reality.
Stator equations: ‘d‘z;f <k (14)
Vb, sin(dy — 9[,9) + Rs, la, — Xg,1q, =0 6) ‘dPrefg . s
B, — Vi, cos(8, — 0y,) — Ry, Iy, — X, Ig, =0 dt |~

q

7
@ Yg € G

Vg€ Note that % could be set differently for V,..r and P;.c ¢
or even uniquely for each generator. In practice, this
value would be tied to the generator ramp rate of the
system. A rather aggressive value of £ = 3 is used for
this proof of concept.
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2.7. Discretization

To approximate the differential equations with
algebraic equations, we first partition the time
horizon [0,77] through a finite set of points P =
{0,t2,...,t7,...,tn_1, T} that includes the failure
time. Common choices of P include uniform spacing
and a scheme which adds more points around time
periods where total variation is expected to be high such
as a neighborhood after ¢;. Next, P is used to discretize
differential equations through a discretization scheme
such as finite difference or collocation. As an example,
the forward finite difference scheme approximates every
derivative % through the forward finite difference

e kS (16)
dt tp —tr—1
After every derivative in the DAE is approximated with
a finite difference, the DAE is approximated through a
system of algebraic equations. Henceforth, we refer to
a discretized approximation of DAE (1) - (15) as (1)’ -
15y

Note that numerical circumstances around dynamic
simulations are different than those around solving our
DAE model. With dynamic simulation, numerical
inaccuracies are propogated forward in time as the
simulation progresses. DAE models are used to obtain
a full system solution over the full time horizon
simultaneously.

2.8. Stability Metrics

Upon discretization, discrete values of bus voltage
and angular velocity are available to form stability
metrics for various types of grid stability.

SRR CN

te{rePlt1<r<t2} bEB

Mv(tla t2) =
(17)

measures how far buses deviate from a nominal voltage
of 1 p.u. between ¢; and 5. Similarly,

Wyt — Ws 72
M, (t1,t2) = Z Z T
te{reP|ti<r<ty} g€G s T2
(18)

measures how far frequency deviates from nominal
frequency between ¢; and t5. The parameters 7 and
can be used to scale and shape the stability metrics.

Penalizing these deviation metrics both incentivizes
improved power quality, and increases margin against
over/under voltage and frequency limits to reduce
the likelihood of protective tripping if any follow-on
contingencies occur. Prioritizing voltage and frequency
deviation should maximize grid stability in the short
term given a failure contingency. While these are
sufficient for proof of concept, additional stability
metrics such as transient stability can be included.

We later add these stability metrics together to form
our model’s objective function.

2.9. Stochastic Model

From the discretized dynamic model of the power
grid, we construct a two stage stochastic program with
recourse. This mathematical program takes the form

rn?}n c(z) + Eld(yy)] (19)

Z,Yy

s.t. (20)
flz) <b 1)
9y (Yp) < fy Vi €U (22)
h(x) + k(yy) < gy Vi € U (23)

This allows only choices of x that leave constraints
(23) feasible. Within these constraints, z is chosen,
and y,, is chosen for every scenario 1), so that the first
stage objective c¢(x) and expected value of second stage
objectives d(yy are optimal. See [17] for further details
on stochastic programming.

Unlike most stochastic programming models in the
literature, our model’s first stage and second stage are
separated by time. Our first stage decisions are made for
t € [0,¢s) and prepares the grid to be in a resilient state
before any contingency occurs. Meanwhile our second
stage decisions are made for ¢ € [ty,T] and stabilizes
the grid after any contingency is realized.

The first stage of our stochastic model optimizes
control variables V;..; and P,y over [0,t;) to prepare
for any of the scenarios in W. Therefore our first stage
constraints — effectively (21) — are equations (1) - (15)’
discretized only for t € {7 € P| 7 < t;}.

Our model’s second stage optimizes control
variables V,..y and P,..; to maximize stability in each
scenario. For every ¢ € W, we add equations (1)’ -
(15)* discretized only for t € {r € P| 7 > t;} as our
second stage constraints (22).

To ensure continuity of the dynamic model between
[0,¢7) and [t;,T], we add the single discretized
constraint for (1)’ - (5)’, (8)’ - (9)’ pertinent to ¢, and
the time period before it. Note that these constraints
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form (23) above; they contain second stage decision
variables for ¢ ¢ and first stage decision variables for the
time before it.

Finally, using our stability metrics M, and M, our
objective (19) is

min M, (0,t¢) + M, (0,t5)+ (24)
Vief Pref

Y v (Mot T) + Mo(ts,t)
Ppew

Note that the first two terms use V' and w variables from
the first stage equations while the final terms use V'
and w variables from the various second stage scenario
equations.

In effect, our model optimizes over a singular set of
controls with the anticipation of various potential failure
contingency scenarios — each with its own probability —
occurring. The model then optimizes controls over every
scenario to maximize stability in the event that scenario
occurs.

Note that in general, the first stage could actually
precede the second stage by minutes or more. In that
case, it may be prudent to incorporate a cost incentive
in the first stage to prevent economically unrealistic
results. For this proof of concept, however, we are
focused on the stability problem, and present the stages
as temporally contiguous and omit a cost penalty for
simplicity.

We consider simple load, line, and generator trips as
our contingencies. For ease of exposition, we define the
post-failure partition Py = {t € P|t > t¢}.

To model a load trip we deactivate the differential
and algebraic load constraints (8)’ - (11)’ and fix Pr,
Qr, zpr, xqr to 0 for t € Py.

A line trip eliminates the connection between two
buses by and bs. This is done by setting Y}, 3, and Yy, 3,
to zero and then recalculating the diagonal entries Y3, 5,
and Yy, p, for t € Py. Note that in our implementation,
Y includes time as an additional index to allow line trips.

Finally, for generator trips, constraints (6)’ - (7)’ are
deactivated and variables I, I are fixed to zero for ¢t €
Pr. This prevents generator current from entering the
power network.

When performing single-scenario experiments with
these failure contingencies, we are assuming that the
failure happens deterministically, and that we optimize
the stability given this future failure. If we perform
a multi-scenario experiment, however, we need to
introduce uncertainty in the likelihood of each scenario
occurring. ~ We define p, as the probability that
contingency scenario i occurs.

3. Experimentation and Results

We demonstrate our model through experiments on
the WSCC 9-bus power system. Our experiments
optimize grid resilience and stability for different failure
contingencies.

3.1. Solution Methodology

Our model is developed in the mathematical
programming language Pyomo [18]. Pyomo’s
sublanguage Pyomo.DAE facilitates expression of
differential equations and has automatic discretization
capability with various optional discretization schemes.
The experiments described in this section use uniform
spacing and collocation techniques implemented in
Pyomo.DAE.

Pyomo transforms our DAE model into a nonlinear
program and can interface with most nonlinear solvers.
In our experiments, we used both IPOPT [19] and Knitro
[20].

3.2. No-Failure Deterministic Case

Let us first consider a single scenario with no
failures. Solving our model with shape parameters
n = land v = 2, a time horizon T' = [0, 3], and 40
discretized points, we get the following results. Figures
1, 2, 3, and 4 depict V, w, V,y, and P,y respectively
over time.

1.04 bus 1 bus 4 bus 7
bus 2 bus 5 bus 8

1.03 bus3 — bus6 bus 9

1.02

1.01

1.00

0.99

0.98

0.0 0.5 1.0 15 2.0 2.5 3.0

Figure 1. V (p.u) vs. ¢ with no failure

Note that although the system is initially in a steady
state, it quickly moves away from that steady state (via
generator controls) towards a state with more safety
margin. We can see that even without failures, the
system can benefit from controls — here, primarily to
improve voltage quality.

Of note, the frequency separation depicted in Figure
2 is both very small and brief, and not of stability
concern (it is causing the generator rotor angles to
converge, not diverge).
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genl gen 2 gen 3
60.02 N\

60.01 , AN
60.00| —= N\,
59.99 N )
59.98
59.97

59.96

0.0 0.5 1.0 15 2.0 2.5 3.0

Figure 2. w (Hz.) vs. ¢ with no failure

1.175 genl gen 2 gen3
1.150
1.125 I

1.100 n n

o | (Ml
1.050 I

1.025 1/

1.000

0.0 0.5 1.0 1.5 2.0 25 3.0

Figure 3. V,.; vs. t control trajectory with no failure

2.001 —— genl gen2
1.75 !

1.50 - —
1.25 ~

1.00 —~

0.75

0.50 —

0.25

0.00
0.0 0.5 1.0 1.5 2.0 2.5 3.0

— gen3

Figure 4. P,.; vs. t control trajectory with no failure
3.3. Deterministic Failure Cases

Att; = 1.5, we induce a line trip between buses 5
and 7, a generator trip at bus 1, and a load trip at bus 5.
Our model yields the following voltage responses when
dealing with each scenario individually. As the first
stage is effectively allowed to anticipate each upcoming
failure, these results show the (unrealistic) best possible
preventive-corrective control actions for each scenario.

1.04
1.02 A
I N \\ N ———— |
1.00 N \/\ — -
0.98
0.96/ — bus1 — bus4 bus 7
bus 2 bus 5 bus 8
— bus3  — bus6 bus 9
0.94 0.0 0.5 1.0 15 2.0 2.5 3.0

Figure 5. V vs. t with line 5-7 trip at t; = 1.5

1.04
1.02 o
1.00 — -
0.98
| —~—

bus 1 —— bus 4 bus 7 7
0.96 bus 2 bus 5 bus 8

bus 3 bus 6 bus 9

0.0 05 1.0 1.5 2.0 25 3.0

Figure 6. V vs. t with generator trip at Bus 1

1.04 \ — busl —— bus4 bus 7
103 -\ o ot burs
1.02
101 N\ ;
1.00 \=o =
0.99 ‘ N ——
0.98
0.97

0.96

0.0 0.5 1.0 15 2.0 2.5 3.0

Figure 7. V vs. t with load trip at Bus 5

For this small system, even single-component
contingencies are a major perturbation to the system.
Nonetheless, coupling preventive control (before ;)
and corrective control (after ¢;) allows the system to
stabilize the system fairly quickly. Naturally, behavior
may take significantly longer to stabilize using more
realistic ramp rates and bounds on control variables.

In the following subsection we show the results when
the model can not anticipate which failure will occur.

3.4. Multi-Scenario Stochastic Case

Here we optimize the first stage over several
scenarios, with scenario-specific dynamics and recourse
control in the second stage. In this example there
are 4 scenarios of equal probability: the three failure
events in Section 3.3 plus a no-failure scenario.
This multi-scenario experiment yields the following
first-stage results. Note that all first-stage dynamics are
due to control actions (to improve upon the non-optimal
initial condition and prepare for contingencies).

1.04 bus 1 bus 4 bus 7
N bus 2 bus 5 bus 8
1.03 bus 3 bus 6 bus 9
1.02 N
\\ h —
1.01 NN —
\ AN
1.00 N — —— <
. \\
0.99 ) - -
0.98
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 8. First stage V' vs. ¢

Page 3364




genl gen 2 gen 3
60.02

60.01
60.00, —
59.99
59.98
59.97

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 9. First stage w vs. ¢

1.175 — genl gen2 —— gen3

1.150 ‘
1.125 ||
1.100 A ! _—

1.075 | ] == ] ]
1.050| | ! ‘
1.025 (.

1.000 |-

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

Figure 10. First stage V,.; vs. t control

1.75 — genl gen2 —— gen3

1.50 —
1.25 o

1.00 )
0.75| ;
0.50
0.25
0.00

0.0 0.2 0.4 0.6 0.8 1.0 12 14

Figure 11. First stage P,..s vs. t control

While the frequency separation in Figure 9 would
not be sustainable over longer time windows, in this case
it optimally pre-positions the grid for the possible set
of upcoming failures (and although not shown here, is
corrected quickly after each failure).

Figures 12-15 show the voltage trajectory for each
scenario across the entire time horizon. Note that the
pre-contingency behavior is the same as Figure 8 across
all scenarios.

1.04/
1.02
1.00 —— ——— - =
0.98|
0.96
—— bus1 — bus 4 bus 7
0.94 bus 2 bus 5 bus 8
bus 3 bus 6 bus 9
0.0 0.5 1.0 1.5 2.0 25 3.0
Figure 12. V vs. t for line 5-7 trip

1.05
1.04
1.03

bus 1
bus 2
bus 3

bus 4
bus 5
bus 6

bus 7
bus 8
bus 9

1.02 \
o1 N\ . - N
1.00 —
0.99

0.98

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 13. V vs. t for load trip at Bus 5

1.04
1.02 -
1.00 —<
0.98
bus 1 bus 4 bus 7 ‘V'/ -
— busl  — bus us
0.96 bus 2 bus 5 bus 8 - -
bus 3 bus 6 bus 9 L
0.0 0.5 1.0 15 2.0 255 3.0

Figure 14. V vs. t for generator trip at Bus 1

1.04 . bus 1 bus 4 bus 7
N\ bus 2 bus 5 bus 8

1.03 bus 3 bus 6 bus 9
\

1.02 AN

101\

1.00

0.99

0.98

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 15. V vs. ¢ with no failures

As these figures show, the optimization is able to
keep voltage within desired values (except for a brief
excursion at bus 5 in Figure 12). Frequency was also
kept within 0.2% of nominal in all cases.

Figure 14 is particularly interesting; while the
voltages diverge, they are kept centered within
reasonable bounds around 1.0 p.u. despite the sudden
loss of 24% of total generation. This is significant;
although not shown here, without control the system
experiences major voltage drop across the entire system.
Coupling first and second-stage controls is particularly
effective, yielding a 65% reduction in objective value
compared to pre-positioning alone, or 61% reduction
compared to recourse control alone.

While the results shown here are optimistic
due to relaxed rate-of-change and bound constraints,
they provide proof of concept that the combined
pre-positioning and emergency control formulation
can provide significant benefit during emergencies.
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Furthermore, they demonstrate that it is conceivable
to pre-position against multiple serious contingencies
whose systemic effects are considerably different.
However, such pre-positioning is likely to be far from
optimal in nominal operating conditions (economic
penalties may mitigate this somewhat, albeit at some
cost to contingency readiness). In Figure 16 we see that
significant control actions are required for the no-failure
case to “stand down” from contingency readiness.

gen1 gen 2 gen3

2.0
1.5
1.0
0.5

0.0
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Figure 16. P,..s vs. t > t; with no failures

4. Conclusion

We have demonstrated the ability to solve our
two-stage stochastic optimization model with dynamic
constraints that represent power system dynamics. This
class of problem is important to power system resilience,
as 1) both preparation (first stage) and emergency
control (second stage) are needed to ensure system
operability under severe emergencies, 2) coupling these
decisions together in the same framework should allow
better solutions across a wider set of contingencies,
and 3) system dynamics are critical to assessing grid
stability in such emergencies. Additionally, motivated
by our intended use on severe emergency cases, we
demonstrate the use of power stability and quality
objectives, as opposed to economic objectives typical
in the literature. This framework allows preparation
against an uncertain space of contingencies scenarios, as
well as immediate recourse control once the uncertainty
is realized. This provides the greatest margin for safety
against substantial voltage and frequency deviations.

4.1. Future Research

Our current work demonstrates proof of concept on
the WSCC 9-bus system. Future research will look
at scalability to larger systems and scenario sets, and
effectiveness against multi-component failure scenarios.
Load shed will be added as a second-stage decision
variable to improve feasibility in such cases. Control of
inverter-based resources may be of significant benefit as
well. Higher temporal fidelity and/or more sophisticated

temporal discretization may be needed to accurately
capture severe post-contingency behavior.

In cases where any excursions outside bounds
are unacceptable, hard constraints can be set. For
example, to ensure transient stabiilty, rotor angle
should be no more than 100° from system center
of inertia. Likewise, voltage and frequency bound
constraints would ensure that the solutions do not
exceed bounds that would cause protective tripping in
the real system. Additional objective penalties and/or
constraints could be considered (e.g., voltage stability,
small signal stability, and transmission line power
limits) to provide more assurance of system stability in
severe contingencies.
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