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Abstract

The increasing integration of renewable energy in
electric power systems focuses attention on realistic
representation of “net load” because it aggregates the
information from both demand and the renewable supply
side; net load is the remaining demand that must be
met by non-renewable resources. However, the net load
data is not readily accessible because of cost, privacy
and security concerns. Furthermore, even if historical
data is available, multiple stochastic scenarios are often
needed for a wide range of power system applications.
To address these issues, this paper proposes a stochastic
synthetic net load profile generation approach. A
seasonal detrending technique is combined with the
modified Fractional Gaussian Noise method to deal
with the complex multi-periodic seasonal trends in the
net load profile. A thorough statistical validation and
temporal correlation check are performed to show the
quality of the synthetic data. The benefits of the
synthetic data are demonstrated by a microgrid energy
management problem.

1. Introduction

The system load profile is essential to a wide range
of power system management applications including
energy resource planning, electricity market clearing,
risk assessment, reliability analysis, and policy design
[1, 2]. However, as the effects of climate change
intensify, integration of intermittent renewable energy
resources is accelerating[3, 4]. Under these conditions,
the load profile is insufficient to readily inform most
power system operation and planning applications. As a
result of the increasingly distributed nature of renewable
energy resources, they are often consumed or stored
locally (behind the meter) and invisible to the system
operator [5]. Thus, instead of using load profile,
net load profile, which is defined as the difference of
load and any behind-the-meter energy, is increasing in
importance[6].

Net load profile is not easily accessible by
researchers and the reason is two-fold; first, it is
expensive to install and maintain ubiquitous equipment
necessary to collect electricity demand and renewable
generation data with high spatial and temporal
resolution; second, renewable generation is relatively
nascent at large scale, and as result, historical data is
scarce (for example, only 3 years’ data is available
from CAISO) [7]. Thus, a novel modeling strategy
to capture the stochastic time-varying behavior of both
the electricity demands and the renewable supply would
fill an important need in power systems planning and
operations research.

In addition to lack of availability of historical
net load data, the growing interest in stochastic
optimization and sequential time-series solutions [8, 9],
and approximate dynamic programming, policy-based
decision making approaches, [10, 11, 12, 13] requires
a large set of plausible scenarios of net load input data
to inform and enhance the decision making process.
The set of stochastic net load profiles must preserve
the statistical properties and temporal correlation of
historical records [14].

Significant attention has been paid to time-varying
synthetic renewable energy profile generation [15, 16,
17, 18, 19, 20, 21, 22, 23]. The Markovian state
transition property has been an underlying assumption
of the renewable energy behavior in much of this
literature; first and second order Markov Chain-based
methods have been proposed by [16, 17, 19, 20, 21,
23]. Most of these methods were able to preserve
the probability distribution of the historical records,
but temporal correlation has only been considered in
[16, 20, 20] though these efforts leave a significant
gap between the synthetic and historical data. Authors
in [22] used a Fourier series and auto-regressive
moving average model to capture the characteristics of
historical data. The synthetic profiles showed promising
performance in quantile and cumulative density function
validations, though the temporal correlation was not
explored as a key feature for time-series data generation.
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Relative to interest in synthetic renewable energy
profiles, load/net load profile generation has not
received sufficient attention. The methods used to
generate renewable energy profiles are not readily
applicable to load/net load profiles directly because
of the complex multi-periodical seasonal trends in
electricity demands. In [24] Liu and Maldonado,
performed a probabilistic analysis of masked loads
with PV penetration behind-the-meter using gaussian
processes to model the spatial correlation and a
stochastic differential equation to capture temporal
correlation. The theoretical foundation is promising,
but no statistical characteristics or temporal correlation
analysis were shown to validate the effectiveness of the
model. Pillai et al. focused on using weather and load
data as inputs for an artificial neural network (ANN)
to generate synthetic data [25]. ANN was effective in
reducing the root mean square error (RMSE) between
the real and synthetic data but failed to maintain the
temporal characteristic given the underlying assumption
of independent and identically distributed (iid) inputs
to the model. In [26], Pinceti et al. concentrated on
generating transmission grid level synthetic load dataset
that maintain spatio-temporal features. While the spatial
correlation was well preserved, the dataset was limited
to one consecutive week and therefore was unable to
model the monthly and seasonal changes over a longer
time period. Overall, less attention has been paid to
synthetic load/net load profile generation. For existing
models, a thorough validation process is needed to
assess the effectiveness of each approach and to better
understand the advantages of using the synthetic data to
better capture the internal variability and extremes when
net load is treated as a stochastic process.

Given the dearth of studies of temporal correlation
and thorough statistical validation [27] of long-term
synthetic load/net load profile generation, this paper
seeks to introduce a long-term stochastic synthetic
net load profile generation approach by embedding
a seasonal detrending technique into the modified
Fractional Gaussian Noise (mFGN) method [28].
“Comparing to other synthetic data generation methods
such as Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs), the mFGN method
is easy and fast to avoiding the conceptual and
computational complexity of identifying and training
network architecture as well as feature selection,
which are potentially both problematic with highly
temporally correlated data.” The mFGN method has
shown very promising results for producing long-term
weekly-streamflow data and replicates the temporal
correlation. However, the hourly net load has a
higher temporal resolution and a much more complex

multi-periodical seasonality than weekly-streamflow
data. Thus a seasonal detrending process should be
embedded into the mFGN method to accommodate
these trends in net load data. The derived synthetic
samples should be statistically compared to the
historical record and applied to a real-world case study
to test its effectiveness. The key contributions of this
paper are:

• development of a generalizable approach to
generate long-term synthetic time series data with
complex, multi-periodical seasonal trends, with
the ability to replicate characteristics of historical
data

• thorough statistical validation and temporal
correlation evaluation on the synthetic net load
profiles, and

• demonstration of the superior performance of
using stochastic synthetic net load profiles on
a multiobjective microgrid energy management
problem under uncertainty

The paper is organized as follows: Section 2
provides an overview of the CASIO data set and some
special characteristics of the net load data. Section
3 introduces the mFGN method and the seasonal
detrending technique to generate the synthetic records.
The statistical validation is performed in Section 4 to
prove the fidelity of the synthetic data. Section 5
demonstrates an application of the synthetic profiles and
Section 6 concludes the paper.

2. Dataset Description

The dataset used in this paper is drawn from the
California Independent System Operator (CAISO) [7].
Interested reader is referred to find the data under
“System Demand” category. The historically recorded
hourly wind generation, solar generation, and load
profile for year 2017-2019 is used and a small number
of missing points are filled with the mean of adjacent
points. Figure 1 shows the wind generation, solar
generation, and load profile for January 1st, 2019.
Net load is calculated, and indicated by the red line.
The shape of the aggregated net load is primarily
driven by load, with additional uncertainty introduced
by renewable energy. California data is selected for
use in this paper for two reasons; first, as previously
mentioned, real renewable energy data is very limited
and CAISO has three full years of data; second, the
California data is strongly influenced by solar energy,
which creates a very deep valley in the middle of
the day. The resulting twin-peak of net load profile
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adds an additional approximate 12-hour period to the
net load profile. This additional period makes the
dataset even more challenging to model and provides a
perfect opportunity to test the robustness of the proposed
method.
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Figure 1. Wind, solar generation and load, net load

profile on Jan 1, 2019.

3. Methodology

In this section, the modified Fractional Gaussian
Noise (mFGN) method [28], which has shown
promising performance to generate stochastic synthetic
streamflow records, is introduced. However, since
the streamflow data is recorded weekly, the seasonal
complexity is not as high as that of the net load data.
Thus, a seasonal detrending technique is implemented
to further stabilize the net load historical records for the
mFGN method.

3.1. Modified Fractional Gaussian Noise

Fractional Gaussian Noise [29] method was first
proposed in the late 1960s, for use in hydrological data
applications, due to its ability to preserve correlations
of normally distributed datasets without seasonal
trends. Kirsch et el. improved it to be able to deal
with a relatively low level of seasonal patterns in the
correlation structure [28]. This characteristic makes
it effective for climatological systems, most notably
streamflow data. Following the mFGN method in [28],
the historical time series net load data that usually
stored in a vector y is reformulated into a matrix Y.
Given N days’ record, matrix Y will be N × 24 with
each row representing hourly data for a single day. Each
column of Y is normalized according to:

Yi,j = (Yi,j − Yj)/σj (1)

where Yj is the mean of column j and σj is the standard
deviation of column j. If there is no significant multiple
seasonal trends in the data, after such normalization, the
data will be an approximate N (0, 1) distribution. In

the case of the net load data in this paper, the existence
of multiple seasonal trends requires further detrending,
which will be introduced in the following sub-section.
The rest of this sub-section focuses on describing the
mFGN method in the net load dataset context.

To generate synthetic data, a matrix X, which has
the same dimension as Y, is bootstrapped through an
intermediate matrix M. Each entry of M is sampled
with replacement from the set [1, 2, ..., N ]. Then, X is
formed such that:

Xi,j = Y(Mi,j),j (2)

Since X is independently bootstrapped through M,
the temporal correlation is lost. To reintroduce the
correlation to X, the sample covariance matrix of
Y is calculated and then decomposed with Cholesky
decomposition [30]:

Corr(Y) = QQT (3)

where Q is the upper triangular matrix that contains the
correlation information for each row of X. By applying
the following equation:

Z = XQ (4)

the upper triangular property of Q ensures that for
Xi,j , namely the net load data of day i hour j would
take into consideration the information carried by the
net load data of hour 1 to j − 1. As a result, matrix
Z preserves the autocorrelation within each row of data
but not between each row. It could be problematic
when one wants to generate time series data longer
than one day because only intra-daily correlation is
maintained (not inter-daily correlation). Such a problem
can be solved by constructing a matrix with a longer
time horizon in each row. However, the dimension of
the sample correlation matrix corr(Y) increases as the
number of columns of Y increases. Furthermore, the
computational complexity of Cholesky decomposition
is O(n3) where n is the number of columns of the
correlation matrix. It is therefore intractable to generate
year-long hourly data.

To deal with the challenge of creating longer
data sets, a matrix manipulation technique is used to
reconstruct the inter-daily correlation. Figure 2 is
an adjusted visualization taken from [28] to show the
matrix manipulation process as it is applied for net load
data. As shown in Figure 2, matrix Y′ takes the second
half of the first day, i.e. hour 13 − 24 of day one, and
the first half of the second day, i.e hour 1 − 12 of day
two as the first synthetic day stored in row 1 of Y′. The
remaining rows of Y′ are formed following the same
rule. Thus Y′ is a (N − 1)× 24 matrix because the first
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half of day 1 and the second half of day N are lost. The
loss of one day’s data can be considered negligible for a
year-long time series. X′ is created in the same way as
X. Q′ is decomposed by the sample correlation matrix
of Y′, which thus preserves the correlations between
any two days (rows). Then, Equation (4) is applied to
these reorganized matrices to derive Z′:

Z′ = X′Q′ (5)

1 24 13 24 1 12

𝒀 𝒀!

13 24 1 12

13 241 12

1 12 13 24

𝒁𝑪

𝒁 = 𝑿𝑸

𝒁! = 𝑿!𝑸!

Figure 2. Visualization of the matrix manipulation to

form Y′ and Zc

To assemble the final synthetic data, the second-half
columns of Z, which capture the intra-daily correlation,
and the second half-columns of Z′, which captures the
inter-daily correlation, are combined into a new matrix
Zc as highlighted by the blue and red boxes in Figure
2. By de-normalizing Zc and reformulating it into a
vector Zc, a stochastic synthetic trajectory is created.
A more detailed description of the mFGN method and
the comparison of mFGN with Auto-regression methods
can be found in [28].

3.2. Seasonal Detrending

Figure 3 shows the autocorrelation of the net load
from January 1st to Dec 31st, 2017. Peaks in
autocorrelation occur every 24 hours, with higher peaks
after one day and one week (highlighted by the red
box), indicating a T = 24 and T = 168 periodical
change. It is also worth noting that a small peak exists
at around lag 12 × x, which represents the twin-peak
of the net load data, previously mentioned in Section 2.
Furthermore, the net load for 2017 shown in Figure 4
exhibits a distinct difference between summer (roughly
Jun-Oct) and non-summer (roughly Nov-May) seasons
of the year.

The idea of seasonal detrending or “whitening” the
normalized net load data is to remove the impact caused
by the summer and non-summer season and the weekly

Figure 3. Autocorrelation of net load for 2017

Summer Season:
Roughly Jun to Oct

Figure 4. Net load for 2017: the red box highlighted

the obvious difference for summer period from June

to October

periodic impact. Thus, the “whitening” process has two
steps. First, a year-round seasonal curve is fitted by:

y = a sin(
2πt

c
− b) + d cos(

2πt

f
− e) (6)

where a − f are the parameters to be estimated from
the historical data. The combination of a sine and
cosine functions is chosen to keep the formulation as
simple as possible to avoid over-fitting, and to be easily
generalizable for most of other seasonal time series data.
Study cases of different horizons will be tested and
presented in Section 4 to ensure that seasonal periodicity
is captured reasonably well. Figure 5 shows an example
of this curve fitting, with the red markers representing
the normalized data and the blue markers illustrating the
fitted seasonal curve. Figure 6 shows the data after the
first seasonal detrending step. An approximately white
noise signal is shown with several spikes. The spikes
represent extreme events where peak demand happens.
As there is no magnitude difference within the dataset,
such spikes are kept to ensure the model’s capability to
replicate extreme events in the synthetic records.

The second step of the “whitening” process is to
model the weekly seasonality by further detrending the
data shown in Figure 6 with the following function:

y = ax+ b+ c sin(
2πt

T
− d) + d cos(

2πt

T
− f) (7)

where t is the hour of the day, T = 168, and a −
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Figure 5. Curve fitted for yearly seasonality

f are parameters to be estimated. The reason only
weekly periodic is included is that the mFGN method
already takes care of the inter-daily correlation, so
there’s no need to include another sine or cosine function
with daily periodic and causing potential over-fitting of
the data. The fitted curve will be reapplied back to
the “whitened” data before normalizing back. It will
be shown in Section 4.3 that the seasonal detrending
technique can stabilize the data and significantly
improve the autocorrelation preservation.
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Figure 6. “Whitened” data after the first seasonal

detrending step

4. Statistical Validation

In this section, a series of statistical validation
tests are performed to confirm the efficacy of synthetic
records in approximating the properties of the historical
data. To have a better understanding of the impact
of the time horizon on results, a short-term case,
a mid-term case, and a long-term case (4, 8 and
12 months respectively) will be compared in terms
of mean, standard deviation, cumulative distribution,
autocorrelation, and percentile performance. Finally,
a concatenation approach will be performed to further
improve long-term data generation.

4.1. Mean and Standard Deviation

To compare the performance of the original mFGN
method and with the additional seasonal detrending
technique, 1000 samples are generated for short-term
(4 months), mid-term (8 months) and a long-term
(12 months), respectively. The means and standard

deviations of the 1000 synthetic samples should be
statistically similar to the historical mean and standard
deviation. Welch’s t-test [31] and Levene’s test [32] are
performed for mean and standard deviation respectively.
The results are shown in Tables 1 and 2.

Table 1. Percentage of synthetic samples with

statistically similar mean to historical data using

t-test. Significance set at p < 0.05

Term mFGN mFGN+deseasonalized
Short 71.7% 93.5%
Mid 65.5% 85.2%
Long 65.4% 83.1%

Table 2. Percentage of synthetic samples with

statistically similar standard deviation to historical

data using Levene test. Significance set at p < 0.05

Term mFGN mFGN+deseasonalized
Short 80.5% 80.9%
Mid 77.3% 90.5%
Long 75.7% 86.1%

A much higher percentage of samples have
staticically similar mean and standard deviation when
the extra “whitening” process is involved, which means
the synthetic data generated is more similar to the
historical data in general.

4.2. Cumulative distribution

In addition to the ability to preserve the mean and
standard deviation of the historical data, it is also
necessary to explore whether the synthetic data is fully
representing the statistical distribution of the historical
data. The two-sample Kolmogorov-Smirnov (K-S) [33]
test is one of the goodness to fit test for comparing
the empirical cumulative distribution functions of the
historical data and synthetic samples. The K-S
test indicates that all 1000 samples derived from
both approaches are drawn from the same underlying
distribution as the historical data, which means that
the synthetic records generated by both approaches
replicate the historical cumulative distribution very well.
Figure 7 shows the empirical cumulative distribution
of 1000 short, mid and long term synthetic samples
with mFGN in blue, seasonal detrending technique
embedded mFGN in red, and historical data in black.
The tails of both ends are fully covered by the synthetic
data distribution, which means the synthetic data is able
to reproduce rare events. Upon closer inspection, the
extended tails of the synthetic distribution show a wider
range of values for net load profile than historical data
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with a few samples showing negative values for net
load. While this may seem a lack of fit at first glance,
with 1000 “parallel universes”, it is reasonable to see
a few “universes” showing more extreme values at the
tails. One could easily drop the samples that are not
reasonable for specific study cases.
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Figure 7. Cumulative distribution of 1000 synthetic

samples from mFGN and mFGN+seasonal detrending.
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4.3. Temporal Correlation

Temporal correlation plays an important role in
maintaining the structure of time series data, and
has not always received sufficient consideration in the
past. Figures 8, 9, and 10 compare the temporal
correlation preservation for a range of different time
horizons. In each figure, the temporal correlation of
1000 samples generated from mFGN, and the seasonal
detrending technique embedded in mFGN, are shown
in blue and red, respectively. The temporal correlation
drawn from the historical data is shown as the thick
black line and the light blue shaded area is the 95%
confidence interval. The x-axis shows the lags from
current time t and y-axis shows the autocorrelation
between the current time and different lagged times.
For example, assuming the current hour is t, the value
at lag 1 represents the autocorrelation between time t
and t − 1. If a value at lag a is with in the 95%
confidence interval, then at the 95% confidence level,
the sample autocorrelation is considered to be 0, which
means the autocorrelation between time t and t − a
is 0. As shown in the figures, data generated with
the seasonal detrending process outperforms the data
generated with mFGN only in all three cases. The time
horizion of the autocorrealtion checking is chosen to be
400 to cover the weekly periods twice. Although as
the horizon increases, the red curves depart from the
historical record occationally, the detrending technique
reconstructs almost identical temporal correlation for
the short-term (4 months) scenario. Another observation
is that the 12-hour period caused by the twin-peaks is
well captured by the synthetic data. As the time series
gets longer, the temporal structure starts to deteriorate
a bit more. To fill the gap a bit more, a concatenation
approach will be demonstrated in Section 4.5 taking
advantage of the superior performance of the short-term
case.
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Figure 8. Comparing temporal correlation of

synthetic data and historical data for the short-term

(4 months) case.
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Figure 9. Comparing temporal correlation of

synthetic data and historical data for the mid-term (8

months) case.
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Figure 10. Comparing temporal correlation of

synthetic data and historical data for the long-term

(12 months) case.

4.4. Percentile

In previous sections, the aggregated performance of
the stochastically generated synthetic data was assessed
based on statistical comparison with the historical
data set. In this section, we consider the detailed
performance over three consecutive days. Figure 4
shows that the net load profile has very different
behavior for the summer and non-summer periods.
Thus, a non-summer three-day case is randomly chosen
to compare with the summer three-day case where the
peak net load of the year is included in the middle day.
As the mFGN augmented with a detrending technique
outperformed the original mFGN method, the synthetic
samples of both summer and non-summer cases are
generated with the seasonal detrending embedded
mFGN.

Figure 11 shows the non-summer case and Figure
12 shows the summer case with the heavy black line
representing the historical data and the percentile of the
synthetic data in the color scale. During the non-summer
season, the historical data lies in the 30 − 50 percentile
range of the synthetic data. However, percentile ranges
are much broader for the middle of the day when net
load is driven by solar generation resulting in more
uncertainty. The performance is very different for the
peak net load summer days, where the net load is
dominated by the electric consumption associated with
cooling demand. The model shows a reasonably robust

performance to re-generate the extreme events. As
shown in Figure 12 , the historical line settles in the
60− 80% range, which means out of the 1000 samples,
200-400 of the synthetic data is able to recreate the most
rare events in historical data.
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4.5. Concatenation approach

To further improve the temporal correlation
reconstruction for the long-term scenario, the data for
year 2017 is decomposed into summer and non-summer
seasons. The rationale behind this approach is
that, the summer season has a very unique moving
trend within itself as shown in Figure 5 and such
a trend cannot be captured by a simple periodic
fixed sine and cosine function combination. Thus,
a separate seasonal detrending and mFGN process
are performed on summer season (roughly Jun-Oct)
and the summer season synthetic data is put back to
the whole year sequence after the separate process.
Such a concatenation approach is able to be performed
because when bootstrapping the intermediate matrix
M, the random seed could be fixed for the summer and
non-summer season. In other words, M is sampled
once for the full year, but the detreading curves are fitted
separately for the summer and non-summer seasons.
The random consistency in M ensures the consistency
of the concatenated re-sampled trajectories. The result
of the concatenation approach is shown in Figure 13,
where the gap between the synthetic data and the
historical records is significantly reduced.
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5. Application

In this section, a microgrid energy management
problem is used to show an example application of
the synthetic data. In this section, we compare the
performance of the strategies (also called policies)
developed by the model with historical data, to
those developed with the synthetic data. After a
description of the microgrid system, we introduce
the Evolutionary Multi-Objective Direct Policy Search
(EMODPS) framework, which is used to solve the
microgrid energy management problem. The section
will conclude with a comparison of policies arising from
the historical and synthetic datasets.

5.1. Microgrid Energy Management

The context of this analysis is a microgrid that
consists of a local diesel generator, a wind farm,
a solar farm, and a battery storage unit. The
microgrid is connected to the main utility grid and
can buy or sell energy with the utility grid. A
demand response program is implemented to provide
limited flexibility in shifting peak load across the day.
Distinct from the traditional economic dispatch setting,
where only cost (or revenue) is considered as the
optimization objective, in this case, four objectives
are modeled explicitly including: expected revenue,
expected CO2 emissions, reliability, and expected
daily average ramping. Such explicit multi-objective
modeling enables the exploration of the complex
trade-offs between different stakeholder perspectives
and could provide deep insights on engaging consumer
participation and system operations under uncertainty
[12]. The goal of EMODPS is to find the best
policies to control the daily local generation, battery
charging/discharging, and energy exchange with the
utility grid. In this case, CAISO data is downscaled to
be appropriate for the microgrid context.

5.2. Evolutionary Multi-Objective Direct
Policy Search

EMODPS [34] is a simulation-based optimization
framework that contains two major components: a
simulation model that mimics the microgrid operation
dynamics and a multi-objective evolutionary algorithm
(MOEA) that searches for the best control parameters
based on the simulation results. Borg [35] is the
MOEA implemented in this instance given its robust
performance over a diverse set of multi-objective
problems, where its performance is identical or superior
to other state-of-the-art MOEAs [36, 37, 38]. In
the simulation model, instead of estimating individual
sequential hourly decisions for the control variables,
an approximate mapping is used to characterize the
relationship between the current system states and the
control actions shown as equation 8:

X = F(St) (8)

where St is the system state and X is the control
action. F could be any universal mapping functions
that can capture non-linear, non-convex complex system
behavior, such as radial basis functions or artificial
neural networks. Radial basis functions are used here
given its ability to model the multi-mode property. The
approximate mapping will be referred to as the policy
for the rest of the paper. Given the space limitation of
this paper, the detailed algorithm description is omitted
here, though the interested reader is referred to [12].
The parameterized policies could be generalized on
unforeseen system conditions, which provides a suitable
test-bed to compare the generalizability of the synthetic
net load profiles and the set of historical profiles.

5.3. Result Comparison

Historical data from Jan 2017, and 1000 synthetic
samples for the same month are each used to train
the operation policies, separately. At this point, it
is worth noting that the multiobjective optimization
does not result in a single point solution, but instead
a non-dominated Pareto frontier. These solutions are
non-dominated in that there is no other solution that
improved one objective without some loss in one or
more of the others. Using Borg, 140 policies are
identified with the historical data, henceforth referred
to as the historical policy, and 228 policies result from
the synthetic data, which will be referred to as synthetic
policy. All the policies are then re-evaluated on the Feb
2017 data, which was not used in training. In Figure 14,
the combined Pareto frontier of the historical policies
(in purple) and synthetic policies (in yellow) are shown.
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Each marker represents the expected performance of one
policy on Feb 2017, with 114 non-dominated policies
resulting. Of these policies on the combined Pareto
frontier, 31 are from historical policies and 83 are
from the synthetic policies. This data indicates that
the synthetic may outperform the historical policies,
as 72.8% of the Pareto frontier arises from synthetic
policies. It is likely that one-month of historical data is
not enough to fully represent the underlying uncertainty
of renewable energy and load profiles. Conversely,
well-characterized synthetic data could provide a better
sampling of the state space of the stochastic process, and
generalize to unforeseen system states.
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Figure 14. Combined pareto frontier of synthetic

and historical policy .

To have a better understanding of the daily-level
performance of the policies, two policies that have
similar revenue and average ramping results are
taken from the historical and synthetic policy sets,
respectively. The objective values are shown in Table
3 and the daily behavior of one day (Feb 1st) is shown
in Figure 15. The upper panel of Figure 15 shows
the diurnal profile of the emission rate and the local
marginal price of the utility grid. The middle panel
shows the synthetic policy behavior and the lower panel
shows the historical policy behavior. These results
show that the synthetic policy achieves lower expected
emissions, while maintaining similar revenue outcomes
relative to the historical policy. Examining the red
curves, it can be seen that the synthetic policy charges
before the price peaks and discharges during the peak
to reduce the electricity purchases from the utility grid.
Furthermore, the synthetic policy also takes advantage
of the demand response for load shifting, so that the
generation (shown in brown) more closely follows the
net load with demand response to avoid continuous
generation at a higher level. Conversely, the historical
policy fails to use the battery efficiently and does not
coordinate the generation and energy exchange policy
effectively, resulting in an inferior performance to the

synthetic policy.

Table 3. Compare objectives of the synthetic and

historical policy
Type of Revenue Emission Reliability Average Ramping
policy (k$) (M-Ton) (%) (MW)

Historical 10.03 21.90 99.10 2.65
Synthetic 10.05 21.21 99.85 2.65

Figure 15. Daily behavior comparison of synthetic

and historical policy.

6. Conclusion

This paper proposes a seasonal detrending technique
to augment the mFGN method to improve suitability
for time series data with complex multi-periodic trends.
The method is tested on CAISO net load data which
has a 12-hour period, a daily period, a weekly period,
and a seasonal year long period. Statistical validation
shows that the seasonal detrending process enhances
the mFGN to generate synthetic data that is more
statistically similar to the historical data. In terms
of temporal correlation, the complex twin-peak of the
CAISO data has been replicated effectively and the
“whitening” process improved the temporal correlation
to be almost identical to the historical data for a
year-long horizon.

Other than the promising results related to statistical
validation, there are several potential advantages. First,
the proposed method is easily generalizable to other
time series data with appropriate adjustment to the
period of the sine and cosine functions, estimated
through the autocorrelation analysis. Second, no
additional data is required to replicate the process;
only the time series itself is needed. In addition, the
computational complexity grows linearly to the length
of the time series input, instead of cubicly as a result
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of the sample correlation matrix, which has a fixed
dimension instead of growing with the horizon of the
data.

Analysis of a microgrid energy management
application shows that the synthetic data set can
characterize the underlying uncertainty well, resulting
in policies that are more generalizable to unforeseen
system states than the historical data. Such a result
indicates that this approach could be beneficial to many
power system applications that make decisions under
significant uncertainties. Future work could focus on
considering the spatial correlation to generate wind,
solar data for a regional space with multiple wind or
solar farms. This work also provides a foundation
for future work on network level net load profiles
with spatial correlation, while extra attention might be
needed to deal with the less smooth data at nodal level.
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