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Abstract

In recent years, advances in artificial intelligence
(AI) have far outpaced our ability to understand
and leverage them. In no domain has this been
more true than in conversational agents (CAs).
Transformer-based generative language models, such as
GPT-2, significantly advance CAs’ ability to generate
creative and relevant content. It is critical to start
exploring collaboration with these CAs. In this
paper, we focus on an initial step by enabling a
human-augmented, AI-driven CA to contribute to a
panel discussion. Key questions include training
a transformer-based AI to talk like a panelist,
effectively embodying the CA to interact with panel
participants, and defining the operational requirements
and challenges to a CA gaining acceptance from
its peers. Our results highlight the benefits that
varied training, equal and dynamic representation, and
fluid operation can have for AI applications. While
acknowledging limitations, we present a path forward
to richer, more natural human-AI collaboration.

1. Introduction

With the release of OpenAI’s generative pre-trained
transformer (GPT-2) [1, 2], it became apparent that
generative language models had reached a level of
sophistication such that their outputs were believable by
a general audience. This was demonstrated in the short
stories released by the OpenAI team [3], and validated
by others who created scripts [4], poetry [5], and other
narratives [6]. What had not been demonstrated is the
performance — believability, relevance, response time
— of these models in real time.

Conversational agents (CAs) are a common
application domain for Natural Language Processing
(NLP) technologies. Models like GPT-2 could expand
the use of CAs from knowledge retrieval [7] to idea
generation. Two key challenges must be overcome
in building a CA for generative tasks. First is the

challenge of interacting with these artificial intelligence
(AI) models. CAs often contribute to activities that
happen in real time, are physically anchored, and
involve iterations with humans. Second is the challenge
of transforming expectations of a CA’s capabilities.
Society expects transactional interactions with CAs, but
generation necessitates collaboration and iteration. We
must also be aware of the limitations of deep learning
AI, such as GPT-2. These models are not guaranteed
to deal in facts [8]. Instead, they should be used when
conjecture is an acceptable currency in discourse.

In this work, we set an ambitious goal of
building a generative CA that would participate
as a human-augmented AI panelist in a discussion
of “AI-empowered learning” as part of the 2019
Interservice/Industry Simulation, Training, and
Education Conference (I/ITSEC). Conference panels
are a prime venue for conjecture, offering a creative,
improvisational environment for ideation where an
AI-powered CA can thrive, without strict requirements
on feasibility or veracity. An AI panelist in this
environment must effectively address these challenges
while working within the technological limitations,
or risk entering the “uncanny valley” that leads to
subverted expectations and rejection [9]. This work
explored three research questions:

RQ1: Can a generative language model be
trained to talk like a conference panelist?

RQ2: What embodiment and interfaces are
required to enable effective contribution to
a panel by an AI-driven CA?

RQ3: What mechanics and interfaces are
required to ensure successful operation of
the AI-driven CA during the panel?

2. Related Work

2.1. Generative Language Models

Recent, extreme strides have been made in NLP
models by using the Transformer architecture [10].
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Transformers ensure that predicted tokens (or words) are
realistic using a mechanism called self-attention, which
uses input sequence tokens to improve predictions.
Other methods, such as Recurrent Neural Networks
[11] and Long Short-Term Memory [12], use hidden
state to approximate self-attention by incorporating all
previously processed tokens into the current prediction.
Self-attention does this at a larger scale by drawing
attention to each of the previous tokens separately, as
opposed to one compilation of them all.

Transformers have produced state-of-the-art results
on a number of deep learning tasks such as translation
[13]. Language generation, particularly, has made recent
strides with the integration of transformers, as shown
with BERT, GPT-2, and Turing-NLG [14]. In these
model architectures, transformers have shown above
human-level expertise on the GLUE benchmark based
on their bilingual evaluation understudy (BLEU) scores
[15]. The BERT transformer achieves better BLEU
scores than the previous state-of-the-art models on the
English-to-German and English-to-French news tests at
a fraction of the training cost [10].

2.2. Human-AI Interaction

CAs have a long history, from early chatbots [16]
to modern personal assistants [17]. CAs are designed to
use natural language as their primary interface [18], with
the nature of their use influencing the design of their
underlying AI and embodiment. Here, we review past
work in three use cases applicable to CA performance.

Question-Answering. CAs were designed to enable
information retrieval (IR). Chatbots rely on text-based
interfaces [16], which have been scalable for a variety
of service-oriented tasks [19]. Advances in context
modeling [20] have improved the accuracy and precision
of chatbot IR by enabling iterative refinements of
a shared context space [21]. However, chatbots
still struggle for acceptance [18], correlated with
perceptions of social presence and humanness [22].
Personal assistants — exemplified by Amazon’s Alexa
and Apple’s Siri — expand on the foundations of
chatbots to include automated task completion and
speech-based interfaces [7]. Regardless of interaction
modality, research has shown positive correlations
between response delay [23] and dynamism [24] in
human acceptance of CAs. These are important insights
for a panelist, signaling that the audience will be
accepting of variance in the response time should the
agent provide sufficient embodiment of its internal state.

Debate. CAs have started to appear in debates
against humans. Debate is a highly structured discourse
where opponents must recognize an argument [25] and

present an optimal counter-argument in order to “win”
[26]. CA debaters rely on corpora of existing arguments
[27], which they assess in real time for quality [28] and
relevance [29], to perform in these conditions. Although
panel discussions are far less formal than debates,
debaters provide an important lesson: the audience will
judge the panelist on how it interacts with its human
compatriots. Effective performance depends on its
ability to build on and branch off of others’ statements.

Ideation. Panels gather individuals from varied
backgrounds to deliberate potential innovations, thus
engaging in the first step of ideation [30]. For humans,
ideation often relies on synthesis from two or more
existing concepts, as shown in product development [31]
and information analysis [32]. To date, measures of
synthesis are limited and difficult to complete in real
time [33]. As such, the use of CAs in ideation has been
restricted to supporting roles, such as that of a moderator
[34], facilitator [35], or planner [36]. However, there is
an open question as to how plausible an idea needs to
be in order to be a useful contribution to ideation. For
example, if the discussion merely needs enough entropy
to prevent premature closure [37], a generative language
model could effectively contribute.

3. Methods

Charlie was designed and developed as an action
research program [38] that used guerilla usability testing
[39], agile software development practices [40], design
thinking [41], and rapid prototyping [42] methods. The
goal of this program was to develop a CA that could
effectively participate as a conference panelist, while
characterizing the limitations and future research needs.

We conducted 10 guerilla usability tests. Tests
1-6 assessed utterance believability (Section 5.1) and
embodiment effectiveness (Section 5.2) in a 30-minute
discussion between Charlie, a moderator, and two
reviewer-panelists. Two observers recorded notes
during these tests. Discussion transcripts were recorded
in addition to the observer notes. Following the
discussion, the observers conducted a semi-structured
interview with the participants to document Charlie’s
failure modes and ideas for improvement. Tests 7-10
were conducted as a formal panel discussion between
Charlie, a moderator, and four reviewer-panelists. Data
were recorded in the same way as the prior tests,
although the emphasis pivoted to performance and
operation in a real time (see Section 5.3). Feedback
from these tests was translated into tickets and addressed
during subsequent development activities.

Major capability milestones were marked with two
demonstrations equivalent to a dry-run of a panel
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in front of a live audience — one with panelists
from our organization and one with Charlie’s I/ITSEC
co-panelists. Qualitative measures of engagement were
collected, along with feedback on utterance quality and
effectiveness of embodiment.

4. Building an AI panelist

Charlie is a human-augmented, AI-driven CA
designed to participate in real-time panel discussions.
Given the capabilities of the other panelists, Charlie was
expected to provide the following capabilities.

1. Charlie must be able to take input from the
moderator and/or other panelists as speech.

2. Charlie must be able to generate natural language
responses to questions that account for responses
from other panelists.

3. Charlie must vocalize the generated statements so
that they can be heard by the audience.

4. Charlie must provide an embodiment on stage so
that the audience and panel members are aware of
her presence.

5. Charlie must provide some indication of her
internal state such as readiness to speak.

Charlie consists of four components (Fig. 1). Two
components reside on the Amazon Web Services (AWS)
cloud infrastructure. Our trained model (Req. 2) runs
on one or more Elastic Compute Cloud (EC2) nodes
with high-performance GPU compute. Amazon’s Polly
service provides Charlie’s text-to-speech capability
(Req. 3). The remaining components run on a computer
at the conference venue. The panelist interface provides
Charlie’s embodiment (Req. 4), including a visual
representation of her state (Req. 5) and the outbound
audio interface with the room’s sound system (Req. 3).
The operator interface enables human augmentation of
Charlie during the discussion (Req. 1). The necessity,
assumptions, design decisions, and evolution of the
model, panelist interface, and operator interface are
discussed respectively in Sections 5.1, 5.2, and 5.3.

5. Findings

5.1. Training an AI CA to be a panelist (RQ1)

Charlie was trained to speak about the future of
learning and training as a like-minded panelist using 30
years of papers from I/ITSEC (a training and simulation
conference) as source material. We hypothesized that
the abstracts would provide the most useful material for
a panel discussion as they avoid the technical details

Figure 1. Charlie system architecture

and give a brief overview of the content — qualities
one would expect from a panelist. We fine-tuned GPT-2
(the 117M, 345M, and 774M models) with a corpus of
3,121 I/ITSEC abstracts (approximately 5.6 MB of text).
We concatenated the abstracts to prepare for training,
adding <|endoftext|> between abstracts as done in the
GPT-2 training corpus. We also removed items within
parentheses to eliminate citations from the training data.
Although citations were not the only text contained
within parentheses, most other items were clarifications
or interjections and therefore not appropriate for a panel,
where flow is of utmost importance.

The fine-tuned I/ITSEC model was trained using
hyperparameters [10]. Specifically we used the loss
function equivalent to that of GPT-2–that is, we
optimized for predicting the next word in a text corpus.
For training we used the Adam optimizer with learning
rate 2×10−5, batch size equal to 1, and only trained the
transformer layers. The loss function converged after
approximately 3, 000 iterations.

For generating text, we used a series of AWS EC2
instances running in parallel to rapidly provide potential
responses. Upon each request of these models, the text
generation with temperature = 1 and topk = 0 produced
text until a full sentence was generated. We used an
unsupervised model for sentence boundary detection
in order to avoid premature closure from mid-sentence
punctuation [43]. As input to the generation, we used
the previous panel text with the following structure.

HOST: Text from host...
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PANELIST: Text from panelist...

HOST: Text from host...

PANELIST: Text from panelist...

This structure had three key advantages: (1) it
removed the requirement for an operator to start a
sentence for Charlie by delineating when others were
done speaking and she should start; (2) it kept Charlie
on her own thread while integrating context from others;
and (3) it allowed Charlie to react to the discussion
above rather than simply continuing her thought.

Content was filtered using a black list containing
frequent tokens in the training corpus that are
well-suited for publications, but not for panel discourse,
such as ‘in this paper’, ‘Figure’, ‘Name:’, or symbols
(*, -, [], (), etc.), as well as a dictionary of inappropriate
and/or foul language. If those tokens were generated,
the process deleted them and started the text just after.
The generation of <|endoftext|> or HOST: were also
treated in this manner, but in future work can be used to
detect the end of Charlie’s statement.

Over the course of the panel, Charlie generated
2,098 responses to 268 prompts, of which 42 were
selected by the human operator as potentially useful.
Of the responses selected, 23 (54.8%) were from the
1.5B parameter base GPT-2 model and 19 (45.2%) were
from the fine-tuned I/ITSEC model. Those responses
were then gathered into 10 total utterances. Fig. 2
shows the distribution of each utterance split by sentence
and colored by model. Generally, Charlie stuck with
one model for the full course of the utterance but she
occasionally pivoted between the two.

Figure 2. Charlie’s answers distributed across the

two models

We hypothesized that the base model would be
particularly well suited for generating general text and
that the fine-tuned I/ITSEC model would be well suited
to providing insights about artificial intelligence and
training. However, we found that in the responses
selected, both models generated a mix of the two. For
example, in the below quote from Charlie in the panel,

the model that generated each sentence is included at
the end. This response is a mix of both models as well
as both types of sentences.

Prompt: How can we help build trust in
artificial intelligence systems?

Utterance: This is a difficult question to
answer (GPT-2). I think trust will evolve
over time (I/ITSEC). Trust is something
that you build from within and therefore
artificial intelligence can be of benefit
to you (GPT-2). It’s a long ways off
(GPT-2). It won’t happen overnight
(I/ITSEC). But we must build trust, and
we must create systems that help people
understand each other and communicate a
bit better (GPT-2). Just get over the fear
of machines taking over (I/ITSEC). And this
means building trust in realistic, credible
conversations (I/ITSEC).

5.2. Embodying an AI panelist (RQ2)

Charlie was expected to contribute to the discussion
as an equal. Thus, the visual display took up
approximately the same space on stage, the speech
flowed through the same sound system, and the
non-verbal communication was equally visible to the
audience. Human panelists were seated in a row of
chairs on stage, and Charlie’s embodiment (Req. 4)
was constrained to a similar style and space. A single
32-inch display was mounted on a chair to provide the
visual component of Charlie’s embodiment (Fig. 3).
The sound from the computer driving the display was
connected to the room’s mixing board, as were the
microphones for each human panelist.

Figure 3. The panel on stage at I/ITSEC 2019.

The panelist interface (i.e., the embodiment)
required 3 iterations to refine state communication
(Req. 5), representation (Req. 4), and stage presence
(Req. 4) driven by feedback from guerilla usability
evaluations. From chatbots, we expected that response
delays would be acceptable [23], especially in response
to other panelists [24], as long as Charlie’s state
was clearly communicated. Humans use physical and
audible queues — gestures, changes in eye contact,
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and transitional phrases — to indicate their state and
control the flow of a conversation [44]. Charlie had to
effectively coordinate the use of the display and audio
to achieve a similar presence and represent its states as
follows:

• Idle: Charlie is listening.

• Thinking: Charlie is generating a statement.

• Interjection: Charlie has something to say!

• Speaking: Charlie is speaking.

The first iteration of the panelist interface supported
3 of the 4 states. When idle, the display was a
blank, white canvas. Thinking added a yellow border
(Fig. 4.A). When speaking, the border changed to
green and the text of the speech filled the central
white area (Fig. 4.B). Reviewers felt that this
design fell short for a number of reasons. First,
displaying the text on screen was distracting and would
not be expected of human panelists. Second, the
borders did not effectively communicate Charlie’s state,
lacking an intuitive mapping of the colors and being
indistinguishable at a distance. Finally, the blank display
did not convey that Charlie was listening or present.

Figure 4. Version 1 of the panelist interface with

states for thinking (A, yellow border) and speaking

(B, green border with text).

The second iteration took a very different form,
providing a highly mimetic and pictorial representation
of Charlie’s state using stylized video of a human acting
out hand gestures for the idle (Fig. 5.A), thinking
(Fig. 5.B), and speaking (Fig. 5.C) states. Although
this iteration addressed the issues of presence and
distinctive state representation, reviewers noted that it
introduced additional problems akin to the “uncanny
valley” [9]. Seeing a human on screen would be a
misrepresentation of what Charlie is; instead of an
AI-driven CA, audiences would think that a human was
generating these statements.

Charlie’s third panelist interface iteration moved to
an abstract, geometric representation, akin to that of

Figure 5. Version 2 of the panelist interface used

videos of hand gestures to show the idle (A), thinking

(B), and speaking (C) states.

Figure 6. Version 3 of the panelist interface using

shape and color to show the idle (A), thinking (B),

and speaking (C) states.

other CAs [7]. When idle, a light blue ellipse rotated
constantly (Fig. 6.A). The thinking and speaking states
added distortions around the edge of the ellipse while
it rotated, and increased color saturation (Fig. 6.B/C).
Reviewers noted that the use of geometric shapes with
smooth transitions eliminated the “uncanny valley”
problem, improved presence, and reduced distraction.
However, the changes in color and texture were too
subtle to quickly interpret at a distance, a known
challenge with animated symbology [45].

The final iteration refined the geometric approach.
Size, color saturation, and texture were the primary
visual variables used to distinguish between states. The
size and color saturation increased from idle to thinking
to speaking (Figs. 7.A-C). An animated border texture,
which effectively “chased its own tail,” was used to
emphasize thinking as an ongoing process (Fig. 7.B).
This animation led to a natural representation of the
interjection state: a complete border around the circle,
signaling the end of the thinking process, and a color
change from blue to yellow, which draws attention and
indicates urgency (Fig. 7.D). The speaking state was
also animated to indicate an ongoing process, with the
circle changing size while Charlie spoke.
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Figure 7. The final panelist interface combined size,

texture, color, and animation to illustrate all four

states: idle (A), thinking (B), speaking (C), and

interjection (D).

Reviewers found that these changes effectively
enabled state inference, provided stage presence, and
supported dynamic evolution of Charlie’s response
process. For example, when posed with a direct
question, Charlie could fluidly transition from idle to
thinking to speaking, or, when listening to another
panelist, Charlie could move immediately from idle to
interjection if an appropriate statement was generated.

5.3. Operating an AI panelist (RQ3)

The nature of a conference environment and
the nuances of GPT-2 posed significant challenges
to automating Charlie’s operation: bandwidth and
interface limitations precluded the use of speech-to-text
tools; GPT-2 is vulnerable to spelling errors; and
multiple, different model instances were needed to
respond in a timely fashion with relevant content. These
challenges necessitated that a human operator augment
Charlie by performing the following tasks.

• Transcribing speech to text

• Aggregating statements into an utterance

• Coordinating Charlie’s state transitions

The operator interface went through several
revisions. The first version (Fig. 8.A) was a
command-line interface to the AWS EC2 instances
running the models. This was an efficient way to test the
models, but was inconvenient and minimally usable for
transcription and aggregation tasks, and lacked support
for controlling state transitions entirely.

Starting with Version 2 (Fig. 8.B), the operator
interface became a web application that emphasized
efficiency in aggregating statements into utterances.
A history of utterances was shown at the top, with
the “send” button separating the utterance aggregation
text field below. Candidate statements were shown in
a pop-up. Clicking on a statement added it to the

Figure 8. The evolution of the operator interface,

from command-line (A) to a web app enabling

utterance construction (B) and state transition (C).

current utterance text field, and pressing tab refreshed
the candidate statements. When the operator clicked
send, the utterance was added to the history and sent to
the panelist interface for vocalization. All items in the
history were sent to the models as context every time
candidate statements were refreshed. During capability
demonstrations, operators noted that it was hard to
distinguish between what the moderator and panelists
were saying, and the lack of direct state controls.

Version 3 (Fig. 8.C) added direct control over state
transitions via buttons. Clicking these buttons sends
a message to the panelist interface, which processes
messages as a queue. The other key addition was the
“note” button, which added the contents of the text
field to the history as a note when clicked, allowing
the system to capture and distinguish content from the
moderator and other panelists (grey items) and content
from Charlie (blue items) for the first time.

The final iteration represents a major shift in
workflow. During demonstrations, it became clear that
a single operator could not manage transcription, state
transition, and utterance aggregation without inducing
unacceptably long response delays [23]. Thus, the
interface was divided into two areas (Fig. 9): the
conversation history area on the left and the statement
review area on the right, with one operator assigned
to each area. While idle, the conversation history
operator’s primary job is to transcribe the discussion into
the text area and store it in the history. The statement
review area operator’s job is to retrieve, assess, and save
candidate statements for future utterances, and to tell the
other operator when to stop so they can initiate a state
transition. Candidate statements are displayed in a list
of 8 numbered items: 4 from the GPT-2 model and 4
from the I/ITSEC model. A statement’s color saturation
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Figure 9. The final operator interface with the (A) saved statements, (B) conversation history, and (C)

utterance construction components on the left, and the (D) statement review area on the right.

indicates its recency, with newer candidates being more
saturated. A button under the statement number allows
the operator to save candidates for future use.

If one statement stands alone as relevant, the
operators can transition to the interjection state: click
on that statement in the review area; which loads it in
the text area; and await recognition from the moderator
to speak. If there are multiple relevant statements,
operators can transition to the thinking state and begin
to collaboratively aggregate statements into utterances
from the review area on the right (Fig. 9.D) or the “saved
statement” area in the top-left (Fig. 9.A). Clicking
on a statement appends it to the text area content and
generates new candidate statements. Operators can
continue to add statements to the utterance until they are
satisfied, at which point they click “speak” to send the
utterance to the panelist interface, and then the “done”
button to transition back to the idle state.

6. Results and discussion

In practice, Charlie successfully participated in a
95-minute panel session in front of more than 300
audience members. Charlie responded with relevant
content to a number of questions from the moderator,
other panelists, and the audience. Fig. 10 shows
Charlie’s state progression throughout the panel, and

Table 1 breaks down the total time (in minutes) and the
average duration (in seconds) in each state. There are
some striking observations we can gather from the flow
of the discussion captured in the timeline (Fig. 10).
We clearly see a cyclical pattern of states. Between
long periods of idle, Charlie enters a thinking state
followed by interject and finally speaking. This process
is as expected for any panelist, human or AI. Below we
highlight three key patterns.

1. The majority of Charlie’s interactions follow
the idle-thinking-interject-speaking pattern. A
question is posed by the moderator; Charlie
generates a response; Charlie indicates that she is
ready to speak; upon a break in conversation or as
directed by the moderator, Charlie speaks.

2. From minutes 21-24 and 55-60, Charlie remained
in the interject state before speaking. These long
periods of waiting to interject are in line with
human panelists who also frequently want to jump
in but must also avoid speaking over others.

3. At minute 79, during the audience question
portion of the panel, Charlie entered the thinking
and interject states but did not speak afterwards.
In this case, although Charlie had something
relevant to say, the conversation quickly moved
on to the next topic before she could respond.
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Figure 10. Changes in Charlie’s state over the course of the panel discussion.

Per [23, 24], Charlie’s ability to demonstrate
structural parity in conversational patterns, and her
ability to respond dynamically to discursive conditions
are essential for effective performance and acceptance.

Table 1. Charlie’s state progression by the numbers.
State Total Time (min) Avg. Duration (s)
Idle 61 (65%) N/A

Speaking 5 (5%) 32
Thinking 18 (18%) 106
Interject 11 (12%) 112

6.1. Limitations

Although future iterations of Charlie are expected to
reduce the necessary human augmentation, the current
need for human involvement in operating Charlie is
a significant limitation. A human is required to (1)
transcribe the conversation, (2) select responses for
Charlie to speak, and (3) conduct Charlie state changes.

Human transcription was a venue limitation; our
inability to access the room’s soundboard and the
limited internet bandwidth precluded the use of
real-time transcription services. The technical aspect
of this limitation has been addressed in our continued
development of Charlie. That said, since Charlie uses
previous discussion to generate her injects, Charlie
is sensitive to typographical errors in transcription.
Particularly, as Charlie sees errors or nonsense, she will
begin to generate typos and nonsense herself. Mitigation
of these errors will be key when integrating automated
transcription services, at the risk of non-acceptance by
her compatriots and the audience [18, 22].

Response selection is an open research question.
We expect that the pace of GPU advancement will
overcome the time-bounded technical aspects of this
limitation. However, generative language models induce
many challenges regarding relevance and adaptability.
For example, Charlie can easily generate novel ideas
using GPT-2’s underlying randomness and leveraging
training corpus construction, but this randomness can
result in responses that do not progress the discussion.
As we know from chatbots [18, 22] and debaters
[26], constructive, on-topic feedback is essential

for effective performance. Adaptability is another
challenge. Because any new response is influenced
by the entire prior discussion, Charlie naturally tends
toward a static tone and context. Although this keeps
her responses globally relevant, it limits her ability to
engage in short-lived, tangential conversations. This
is the underlying reason we used multiple models,
but automatically selecting which model to use at a
given time is an unsolved problem. Balancing the
dynamics of her generative processes will be critical to
generalize Charlie to other real-time discursive activities
and increase her value in ideation.

State management is the final link in optimizing
Charlie’s performance. As discussed above, aspects
of response time (a critical performance measure [23])
and relevance have been optimized via the design of
the operator interface, training the human operator
to optimize interface use, and using parallel GPU
accelerated instances. State management remains a
challenge because of the non-verbal cues so prevalent
in human communication. Automating this process will
require real-time content analysis, as well as sensing and
analyzing of auditory and visual cues.

7. Conclusion

This paper presented findings from the development
and operation of Charlie, a human-augmented AI
panelist. We sought to address three questions related
to the suitability of AI-driven CAs as peers: (1)
can a generative language model talk like a panelist?,
(2) what embodiment is required to enable effective
contribution?, and (3) what mechanics are required to
ensure successful operation during the panel?

We posit that, given an appropriate framework and
constraints, generative language models do provide
useful, novel inputs to discussion on a panel. When
training the model, developers should recognize the
benefits that varied training data have on speech patterns
while reinforcing core content and understanding the
potentially negative effects that typos and sidebar
discussions can have on performance. Despite
their present limitations, transformer-based AI shows
considerable promise for backing CAs in panels,
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debates, public speaking, and other domains.
Acceptance of AI, and CAs in particular, depends

not only on their technical prowess, but on their
embodiment and operation. Our work shows the
effectiveness of equal positioning and differentiated
representation. Although the representation of Charlie’s
state lacked nuance compared to humans, the use of
size, color, texture, and animation was effective in
communicating state and provided a stage presence with
which panel members and the audience could engage.
Further research is needed to refine the embodiment in
collocated and distributed settings.

Operating an AI-driven CA — balancing the
transcription, aggregation, and state management —
proved non-trivial. Our research found that this was a
two-person job: one transcribing and the other juggling
aggregation and state management. Adding automated
transcription could improve operation, so long as it
does not induce spelling, grammatical, or other errors
in Charlie’s statements. Further, scoring generated
statements for appropriateness and utility would assist
in human-augmented workflows (e.g., aggregation) in
the short term and in removing the human augmentation
requirement in the long term.

7.1. Future Work

There are many potential paths forward for Charlie,
ranging from moving her to other forms of discourse,
to increasing her level of automation, to improving her
generation capabilities. For the latter, some current
work in improving content generation for generative
language models has focused on evaluating generated
responses to maximize information gain [46, 47].
Although this is one key to a “good” response in a
panel discussion, filtering or ranking of responses also
requires understanding the relevance and value of the
response to the conversation. These metrics can be
measured to rank responses for selection.

A first step toward increasing Charlie’s autonomy
is using speech-to-text services (STTs) to transcribe
the ongoing discussion. Although current STTs show
less than 10% error rate [48], this is still above the
threshold of sensitivity for generative language models
[49]. There may need to be accommodations for the
editing STT-transcribed text on the fly, and certainly the
use of automated spell checkers will be required.

Since appearing on the I/ITSEC panel, Charlie has
been a podcast guest discussing the third wave of AI.
She has also been invited to participate in other panels,
to write a book chapter, and to give a joint human-AI
keynote address. We expect that AI agents such as
Charlie will continue to expand into new fields where

creative generation and discourse is a valuable resource.
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