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Abstract

Despite the significant advances in Information systems adopted for several different courses,
the failure rate for Introductory Programming Courses (IPCs) still remains high. At present, the
formative activities used in IPCs focus on tracing tasks. However, there is no clear evidence
that such tasks foster higher-level abstraction and cognitive reasoning skills needed for code
writing. We propose an Algorithmic Reasoning Task system (ARTs) as an instrument, that can
be adapted by existing information systems to develop reasoning skills for students learning
programming. Our analysis of novice programmer performance reveals that code-writing tasks
correlate higher with Algorithmic Reasoning Tasks (ARTs) than with traditional tracing tasks.

Keywords: Algorithmic Reasoning Tasks, Introductory Programming Courses, Teaching pro-
gramming

1. Introduction
Several Intelligent Tutoring Systems (ITSs) [6], [9], [11], [22], [30] and eLearning platforms [3],
[24], [29] have been developed and are adopted for programming courses. Such systems mainly
focus on providing automatic feedback to students and navigation support within the course
[9]. Instantaneous feedback has shown significant improvement in reducing students’ miscon-
ceptions [4] and has also reduced manual effort for tutors and lecturers. Automated feedback is
provided for several formative activities such as tracing tasks. However, these tasks mainly focus
on student comprehension of individual constructs and have done little to develop the reasoning
skills needed for code writing. Code writing requires students to develop a unique solution for
each problem at hand by composing and interleaving various constructs while reasoning about
the overall behaviour of the resulting code. Problems through lack of reasoning skills have been
further exacerbated by greater diversity of incoming students, resulting in continued poor per-
formance in programming tests. A survey of 161 institutions worldwide revealed failure rates
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in introductory programming course (IPC) is 28% [5]. However, the common code-writing
task across four different universities by the McCracken ITiCSE working group confirmed poor
coding skill is a widespread and serious concern [18]. Subsequent work using multiple-choice
tracing tasks showed a much better performance [14], suggesting they may be measuring differ-
ent cognitive skills.

In an attempt to find more relevant precursors to coding skills, explain in plain English
statements were introduced as part of the BRACElet project with questions set at the relational
level of the SOLO taxonomy and the studies have shown "explain in plain English" tasks have
a correlation of 0.5586 with code writing skill [16]; novices were classified into different stages
based on tracing outcomes. In a more recent work, the higher SOLO level tasks were shown to
correlate with improved exam performance [14]. The three lower levels of the SOLO taxonomy
focusing on the pre-structural and structural aspects did not require students to abstract the
constructs or to distinguish “trees from the forest”[20]. The Neo-Piagetian theory provides
the basis for SOLO taxonomy, which suggests novices go through various stages of abstract
reasoning [27]. In the initial sensorimotor stage, a novice programmer may not even be able to
trace with appropriate values to analyze the behavior of the code. In the preoperational stage,
the novice would have developed the ability to generalize the results from different traces to
predict the behavior of the code. The novice at concrete operational stage would have the ability
to deduct the behavior of the code without having to trace with different values.

The novice programmers who have enrolled in IPCs need early formative feedback to over-
come many cognitive conflicts. Students find problem solving difficult as it requires combining
higher level thinking, problem abstraction and algorithm development, with language syntax and
code tracing [17]. Most tools developed in the past focused mainly on assessing students’ code
tracing skills. This paper investigates whether instrument types can be devised that correlate bet-
ter with algorithmic reasoning and problem abstraction skills needed for problem solving. In the
past Parsons puzzle tasks measuring a form of solution planning was shown to correlate better
with problem solving than code tracing [10]. In this study we have developed many additional
instruments(algorithm detection, algorithm comparison and algorithm analysis tasks) that foster
higher order thinking skills necessary for problem solving. The algorithm detection requires
in-depth study of an algorithm to extract its overall effect. The algorithm comparison requires
identifying different algorithms having the same effect. The algorithm analysis requires rea-
soning about its behavior for specified criteria such as performance. All of the algorithm-based
questions required students to work at the relational level of the SOLO taxonomy.

In this research, we introduce ART as an instrument type that can be widely adopted in on or
off-campus e-learning information systems to substantially improve students’ code writing skills
and to reduce student failure rates in the course. This research mainly focuses on the following
research question RQ. How well does the performance in ART type questions correlate with for
code writing?

The paper is structured as follow : Section 2 presents the previous work and the gaps while
section 3 talks about how the study was conducted including participants details and the different
tasks involved in the study. Section 4 and 5 presents the details about how the data was analysed
and discusses its findings before drawing some conclusions in the last section.

2. Background
Introductory programming exams commonly exhibit a bimodal distribution in CS1 courses
[25],[27]. The “Learning Edge Momentum” (LEM) attempts to explain why high failure rates in
programming courses are often combined with a substantially high number of students scoring
top grades[27]. Lack of progress in the early stages creates a negative momentum eventually
leading to high failure rates while steady progress leads to a positive momentum as new concepts
help reinforce earlier foundations. Some have used empirical studies to show how conducting
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class tests as early as week 3 can identify students likely to perform poorly in the end of the
semester code writing tasks.

Early studies have indicated that there exists a loose hierarchy of skills the students go
through while learning IPCs [21]. Some of these studies has also shown the existence of re-
lationship between code tracing, code explaining and code writing and have found that if stu-
dents are weak at tracing and/or explaining the code then they cannot write systematically[19].
Another similar study conducted at the later stage, highlighted that students misconceptions
should be identified at the early stages to make sure their progress in the course in not im-
peded [19]. One of these studies, investigated on code explaining skills of the students in the
end of semester exam states, one should have the ability to the see the forest and not just the
trees [20]. In other words, one must possess reasoning skills to be able to write a piece of code.
These studies[19, 20, 21, 22] emphasized that, to avoid misconceptions in the students’, teachers
should consider imparting abstract thinking or reasoning skills to novice programmers.

Parsons puzzle tasks were designed to ease novices into code writing by allowing stu-
dents to piece together code fragments interactively [10]. Many clues guiding towards the
expected solution help students perform better. Spearman ranking coefficient for code writ-
ing also showed closer correlation with Parsons when compared to tracing. Parsons however,
limits students’ freedom in arriving at a solution. Multiple-choice questions (MCQs), when
appropriately designed, have been shown to be effective for testing intermediate levels of pro-
gramming skills. MCQs were found to be the most preferred assessment types in many different
domains [12],[16]. Students in general felt such tests can improve their exam performance, as
they felt more relaxed [1]. MCQs were also found to be more motivating when used in formative
assessments leading to improved self-efficacy when preparing for exams [7].

Several ITS systems [6], [9], [11], [24], [30] developed in the past to teach computer pro-
gramming also provides MCQs as a formative and summative assessment to effectively teach
programming concepts to students. Bayesian intelligent tutoring system (BITS) [6] is one such
system developed to provide personalized learning to students using Bayesian Network. A di-
rected acyclic graph (DAG) is constructed for IPC using course textbook. The DAG represents
the sequence for learning all the concepts in the problem domain. This DAG is used to provide
personalized pathways i.e. navigation support through the course. Students’ knowledge for a
specific concept in the course is assessed using students’ performance to MCQs. However, the
MCQs used to assess the student knowledge of each concept does not assess whether the student
exhibits algorithmic thinking.

Another research was [11] conducted recently to create a set of instructional strategies that
can be used in smart learning systems to increase the student scores, pass rates. This study pro-
poses a predictive model based on certain parameters such as teacher’s opinion about students,
student’s performance to activities such as follow and give instruction, mind mapping activi-
ties and lastly gamification. While this predictive model integrated into the ITSs has significant
impact on identifying students who are likely to fail, the instructional strategies used do not
focus on improving the students’ code writing abilities or improving abstract thinking which is
essential for students to improve their code writing. The instructional strategies proposed in this
research is also based on in-class activities and cannot be widely adopted by all the learning
platforms.

Another [30] ITS developed in the past used a very similar approach which does not in-
volve creation of code to assess the students’ conceptual knowledge. AtOL [30]is one such web
based adaptive ITS developed to assist students in closed laboratories. The system consists of
the question tutor, the program tutor and the course management component in which teach-
ers can create new exercises. It includes three instrument types namely true/false questions,
MCQs and short-answer questions. The system assesses students preferred choice of program-
ming and question mode and accordingly modify the system to be used in labs. However, it
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does not assess the algorithmic reasoning skills of students. Another intelligent interactive ed-
ucational system ELM-ART [29], consists of five different types of instrument namely yes or
no questions, forced- choice question items, MCQs, free-form question types and lastly fill the
gap question types which are situated within the “electronic textbook” and are automatically
marked. The performance of students to these instrument types in each page of the textbook
determines whether the student can navigate to next page of the book in the course. The system
provides adaptive feedback and navigation support based on student’s performance to different
instrument types.

Similarly CIMEL ITS [24], uses quiz questions and interactive exercises like drag and drop
activities to measure the students’ conceptual knowledge. It relies on Bayesian network-based
domain model to predict whether the student understands the specific concept based on their
performance to the exercises given by the ITS. Similarly, there are several e-learning platforms
[2],[13],[22] developed to aid lecturers and students to manage the course content. E-learning
platforms have enhanced the teaching of programming courses by providing a centralized plat-
form for students’ and lecturers. It provides the ability to access course resources, seek feed-
back from lecturers on different programming exercises, attempt quizzes on different modules
of course. CPS [2] is another e-learning system developed to teach python programming. It has
offered a scalable platform using modular micro-service oriented architecture which combines
features and integrations from Node.js, React, Python, Nvidia Docker, Jupyter etc. to accommo-
date usage of the system by multiple users concurrently without affecting the performance. The
system has been well received by teachers and the students. A very recent study [8] to analyze
the student completion rate of MooCs used the student’s performance in weekly quizzes to de-
termine the student behavior. It has shown that students who complete the quizzes are likely to
complete the course compared to others. It is clear from this study that assessments used during
the course plays an important factor to determine student completion and success rates and it is
necessary to have right instrument types in any course.

While these information systems developed to aid novice programmers and lecturers in IPCs
assists in resolving student difficulties and provide personalized pathways, we contend there is
a need to come up with instrument types that are capable of imparting and assessing reasoning
skills needed for code writing and to reduce the failure rate in programming courses.

3. Methodology
To correlate the performance in problem solving with different objective type questions, a 110-
minute test was conducted which included 8 objective questions and 3 code writing tasks. The
code writing questions were designed to assess whether a student can abstract a problem by
translating it from the problem domain, come up with a viable algorithm and implement it using
the language constructs. The questions selected for this study were different from any they had
come across during the semester. Moreover, the students were not given any sample practice
questions to avoid any external influence. Students were advised to spend about 30 minutes
on the objective questions (Tracing and Algorithmic Reasoning Tasks) and the remaining 80
minutes on code-writing. The ARTs questions introduced in this study were not just an ordinary
objective question but it was designed in such a way where the students need to understand
the overall purpose of the code or in other words exhibit abstraction skills to answer these
questions (Refer Table 1 to understand the different ART Type questions used in the study and
their purpose). The data was collected from the Introduction to Programming course students
in the penultimate week on 2019 semester 1, allowing questions covering all the topics taught
in that semester. The data was collected electronically through google forms and there were 56
participants in the test. The objective questions were automatically marked while code writing
tasks were manually marked. A positive marking scheme was used [8] with each component
awarded 0.5 or 1 mark depending on whether it is partially or fully correct. However, no partial
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Fig. 1. Tracing Question Sample

marking is given for ARTs and tracing tasks.Spearman rank coefficient was used as the primary
means of computing correlation between ART questions and code-writing.

3.1. Algorithmic Reasoning Tasks

Our prior experience devising, administering, and analysing weekly quizzes revealed detect-
and-apply-algorithm tasks showed consistently greater discrimination index when compared to
conventional tracing tasks. Such tasks required students to detect the purpose of the algorithm
before applying it to 6 to 8 different inputs. While it is not possible to prevent students to
manually trace the algorithm several times to work out the final output, the time restriction made
such an approach viable. In addition to algorithms detection we also introduced new types of
objective questions requiring students to focus on the structural aspects of algorithms as shown
in Table 1.

Table 1. Types of Algorithmic Reasoning Tasks

Purpose ART Type
Detection Requires abstraction skills to detect what the role of the algorithm. Students are

expected to apply cognitive skills at relational level to analyze how the behavior
will change for different inputs.

Comparison Students are expected to identify algorithms which will display the same collective
or composite behavior considering different input values.

Analysis Students are expected to analyze an algorithm including working out worst case
scenarios considering all possible paths.

The sample questions for each task type namely Tracing and ARTs tasks are provided in
Fig.1,2,3 and 4 respectively.

3.2. Code Writing Tasks

The code writing tasks were primarily designed to measure problem analysis, solution planning,
coding, and desk checking. One of the questions (refer Fig.5) which we used in our analysis
was designed to test whether students can abstract a familiar problem and design an algorithm
before implementing it in Java.

4. Analysis of Marks Distribution and Correlation
56 students participated in this study and their answers to both ARTs and code writing tasks
are analysed here. The code writing marks were mainly allocated for analyzing the problem,
coming up with a viable strategy and coding the algorithm in Java. No marks were deducted
for minor syntax errors. There were 2 tracing tasks and 6 instances of ARTs questions: 2 in
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Fig. 2. Art-Detection Question Sample

Fig. 3. ART-Comparison Question Sample

Fig. 4. ART-Analysis Question Sample
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Fig. 5. Code Writing Question Sample

Fig. 6. Distribution of Marks in Code Writing

algorithm comparison, 2 in algorithm detection and 2 in algorithm analysis and 3 code writing
tasks.

4.1. Distribution of Marks

This section presents the distribution of marks for various ARTs and code writing sections before
correlating their performance. Fig.6 depicts the distribution of marks for the code writing task
revealing a classic bi-modal distribution with 40% of the students scoring either 0.5 or 1 out of
3 and another 40% scoring 3 out of 3. Fig.7 shows the distribution of marks for the 3 ARTs
algorithm comparison, detection, and analysis & tracing. Note, the ART analysis type question
has the most number of students getting 0 out of 3, and tracing the least. Fig.7 shows a summary
for the 4 task types with two tasks in each type, in terms of the difficulty index, discrimination
index and standard deviation. In all ARTs no partial marking is given (unlike code writing), with
students getting either 0 or 1. Difficulty index is the proportion of students answering a question
correctly. Hence more difficult items have low values for difficulty index. Discrimination index
distinguishes how an item distinguishes those with higher skills from those with low skills.
We used the top third and bottom third overall scores (including objective and code writing) to
arrive at the discrimination index. The discrimination index and difficulty indices in Table 2
vary substantially between different ARTs types. These indices can also vary within the task
type depending on familiarity, algorithmic complexity, level of abstraction needed and whether

Fig. 7. Distribution of Marks in ARTs & Tracing
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Fig. 8. Algorithm-Comparison Task Sample

Table 2. Difficulty,Discrimination Indices & Std. Deviation

Statistics Non-ARTs ARTs
Trace Compare Detect Analysis

Difficulty Index 0.46 0.26 0.33 0.11
Discrimination Index 0.74 0.47 0.66 0.29
Standard Deviation 0.86 0.69 0.82 0.53

any clues (lead-in) are given. In the algorithm comparison task for example, the code shown
below (refer Fig. 8)had much lower discrimination index than others and therefore excluded in
the analysis. Though the first two fragments in this task are simply swapping the variables, the
lack of clues, lack of familiarity and the need for a higher level of abstraction may have led to
the weak performance in this task.

4.2. Correlation with Code writing

We measured the correlation using the Spearman rank coefficient for tied ranks as the limited
range for ARTs led to many tied ranks. Others have used such a coefficient to correlate Parsons
with code writing and tracing [8]. Table 3 shows the correlation between different parts of ARTs
and code writing, with algorithm detection showing the highest correlation. The low correlation
for algorithm comparison is partly due to the use of multiple-choice questions where random
selection can distort the statistics. The low-ranking correlation is used for analysis because over
80% of the students got 0 out of 3 for analysis, leading to many tied ranks. Since algorithm
detection and tracing show the highest correlation in Table3, these are further analyzed in Fig.9,
which show the distribution of students’ scores between these categories and code comparison
respectively. The area of each circle represents the number of students with the scores in that
intersection. The left side of Fig.9, suggests high marks in code writing is not predicated on
getting high marks in tracing; students getting low marks in tracing have clusters where they
score both low and high marks in code writing. This section therefore computes the conditional

Table 3. Spearman Rank Correlation with Code Writing

Non-ARTs ARTs
Tracing Comparison Detection Analysis ARTs

0.42 0.36 0.61 0.36 0.44
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Fig. 9. Correlation Tracing Vs Coding (Left) and Correlation Algorithm Detection Vs Coding
(Right)

Fig. 10. Conditional Probability of Passing Code Writing

probability of passing code writing given their performance in different ARTs. Fig.10 shows the
conditional probability of a student with 1 or 2 marks in objective section getting code writing
correct are substantially higher for algorithm reasoning tasks than tracing.

5. Quantitative Analysis and Discussion
This study has helped us identify the algorithmic reasoning tasks that can be incorporated in the
weekly quizzes to impart algorithmic reasoning skills in students and improve their code writing
skills.

The high correlations between code writing and algorithmic reasoning tasks in Fig.10, sug-
gests structural and relational thinking needed for algorithmic tasks share many of the reasoning
skills needed in code writing. For example, ability to compare algorithms for their structural
properties is predicated on being able to arrive at derived behaviors of various composed el-
ements focusing on their relational aspects. Identifying the derived behavior of an unfamiliar
algorithm (such as locating an element using binary search) is also essential when asked to ap-
ply it on many different inputs, as line-to-line tracing becomes nonviable. Similarly analyzing
algorithms for their structural properties fosters reasoning skills in students.

Table 4. Conditional Probability of a Student Failing Tracing but Passing ARTs

ARTs
Comparison Detection Analysis

0.26 0.17 0.0
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Both Spearman rank coefficient and conditional probabilities linking various tasks to code
writing in Table 3 and Fig.10 suggest algorithm detection activate higher cognitive skills needed
for problem solving than tracing. Moreover, the algorithms students are asked to detect and
apply are unfamiliar to novice programmers. Having to write down the answers when an algo-
rithm is applied to numerous inputs makes it difficult to trace over and over again when time is
limited. The essence of these tasks is therefore providing a way to demonstrate what the code
does by applying it to different inputs, instead of explaining code in words that requires manual
marking.

Spearman rank coefficient had slightly lower value for algorithm comparison than tracing
when correlating with code writing. However, these differences can be attributed to the guessing
factor present in multiple-choice questions (5 choices) with 0.2 probability of getting the ques-
tion correct with random guessing. We therefore argue the actual correlation with code writing
is likely to be much higher if guessing can be prevented or reduced through negative mark-
ing. Moreover, left side of Fig.9 reveals most students scoring high marks have fared poorly
in tracing, affirming earlier findings [18]. Use of conditional probabilities in Fig.10 also shows
algorithm comparison tasks correlate better (0.84) with coding than tracing (0.66).

Spearman rank coefficient also had slightly lower value for algorithm analysis tasks than
tracing when correlating with code writing. The main reason was analysis tasks answered cor-
rectly by only 11% of students was a much smaller group compared to others, thus making the
ranking less reliable. However, Fig.10 reveals those scoring well in algorithm analysis tasks
have a much higher conditional probability of passing code writing, suggesting analysis tasks
demand the same cognitive skills needed for problem solving. Fig.10 depicting conditional
probability of passing code writing as a function of passing other types of tasks shows it is least
dependent on tracing skills. However, Table 4 suggests tracing is a precursor skill for algo-
rithmic reasoning tasks, as students unable to pass tracing have very low probability of passing
ARTs. It is evident form Fig.10, code writing correlates increasingly higher with algorithm
comparison, algorithm detection and algorithm analysis tasks in that order, when compared to
tracing, thus answering our research question RQ.

Algorithm analysis performing various what if scenarios to arrive at the best or worst-case
scenarios appears to need more in-depth reasoning than algorithm detection and comparison ag-
gregating various parts to arrive at the emerging behavior. Code detection verifies the behavior
by getting students to apply it on specific inputs instead of expressing it in words. Algorithm
comparison requires matching equivalent algorithms while algorithm efficiency requires reason-
ing to arrive at the worst or best performances. Thus, all these ARTs can be presented as fill in
the blank or multiple-choice questions, which can be easily automated. We have used only three
types of ARTs questions in our study. A human expert (educator) will likely use additional types
of questions. These ARTs question types can be widely adopted in any e-learning platforms or
ITSs to impart algorithmic reasoning skills and to predict student navigation pattern or student
success in course using these task types. In future work we intend to develop other instrument
types, introduce these instruments as part of weekly quizzes and measure the improvement in
student performance.

6. Conclusion
Our study revealed ARTs have the potential to be used as an alternative to some code-writing
tasks, in formative assessments and for self-learning. As the marking of ARTs can be easily
adopted by existing information systems in the form of multiple-choice questions, more frequent
assessment is possible compared to code-writing. Unlike code-explain tasks used in assessing
student cognitive development levels, they do not require instructor involvement and therefore
are scalable. The three algorithmic reasoning tasks we devised showed substantially different
difficulty and discrimination indices, permitting an incremental approach to fostering problem
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solving skills in large diverse student cohorts. The novel algorithm detection task is similar to
the code-explain strategy, as it requires students not only to extract the algorithm but also to
apply it to at least 6 different inputs, thus emphasizing the relational aspects. The algorithm
detection and algorithm analysis tasks showed the strongest conditional probabilities of getting
code-writing correct suggesting these tasks exercise similar cognitive skills as code writing. Our
findings suggest students in large diverse introductory programming classes can improve their
coding skills by combining tracing and algorithmic reasoning tasks in formative and practise
activities.
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