
Quest for Control: Managing Software Development in Networked Operating

Environments

Kari Koskinen

Aalto University
kari.m.koskinen@aalto.fi

Sonja Hyrynsalmi
LUT University

sonja.hyrynsalmi@lut.fi

Matti Rossi
Aalto University

matti.rossi@aalto.fi

Kari Smolander
LUT University

kari.smolander@lut.fi

Abstract
Instead of developing software purely within the

confines of one company, software companies

increasingly procure many of the functionalities of their

software from external entities and actors via system

integrations and utilizing resources provided by

external application programming interfaces (APIs). In

addition to the benefits that can be reaped via

integrations and working in cooperation with other

companies, this type of networked software development

leads to a reduction of control for the individual

companies. As a result, companies need to resort to

specific strategies and practices that reduce the risks
emerging from lack of control. By utilizing data

collected from Finnish software companies, we map the

factors that cause reduction of control, study why

companies give away control, and identify the

challenges surfacing from it. To tackle these issues, we

identify two strategies that software companies can take

to counter the reduction of control.

1. Introduction

In modern software development, integrations to

external systems as well as utilization of tools and

resources provided by external actors and entities are

often necessary. Instead of building everything in-

house, certain functionalities as well as resources such

as data can be obtained from external sources. In most

cases, the development of software occurs on top of

external development environments and utilizes widely

adopted digital platforms, infrastructures, and entire

ecosystems [1, 2]. These developments have resulted in

the expansion of software development projects beyond
the limits of a single firm into ecosystems consisting of

various actors and technologies, and the developed

software in many cases resembles more of a

constellation of externally provided functionalities and

other resources combined in a particular manner [3]. As

a result, these factors have led to the creation of project

and software development structures that can be viewed

as networks of actors and resources that do not adhere

to strict organizational or other boundaries. The

technological nodes in these structures are the

integrations to systems that offer tools, functionalities,

data, and other resources for others to use, for example,

via application programming interfaces (APIs) [4]. In

addition, these resources themselves may rely on other
external technologies, further emphasizing the

ecosystem-like character of software development

projects consisting of networks of different actors and

resources.

An example of this can be seen in the utilization of

digital platforms, on which software applications are

built. The company developing the application

functions as a complementor to the platform [5], and in

relation to the platform owner, it can be seen as a non-

focal actor that is highly dependent on the platform in

regard to the development and functioning of the
application [6]. In addition to the resources provided by

the platform, the application may draw functionalities

from other sources and use data from different external

entities while having at least some parts of the software

application in public cloud infrastructures. The software

company becomes dependent on all those external

actors and on the decisions that these entities make, yet

it has little or no direct control over the resources or the

decisions [7].

In this paper, we illustrate that as the technological

and organizational boundaries become lower [8] and

available technological resources and project
partnerships increase, situations in which software

companies have less control over the software they are

developing are more frequent. This reduction of control

is driven by factors occurring on two fronts. The first

one is largely technological and occurs as a result of

relying on externally provided technological resources

such as digital data and functionalities. The second

evolves from the manner in which software projects are

organized, as those projects may consist of several

actors and entities instead of taking place solely within

the premises of one company.

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 5965
URI: https://hdl.handle.net/10125/71342
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

mailto:kari.m.koskinen@aalto.fi
mailto:sonja.hyrynsalmi@lut.fi

As these companies have less direct control over the

software that is being developed, the argument put

forward here is that this may lead to loss of stability and

predictability in software development. Stability is lost

as there are a number of external and, hence, to some
extent, non-controllable factors, and a change in those

factors can require non-planned changes to the software.

Predictability is lost because it can be difficult to foresee

what kinds of changes will occur in those factors in the

future. This inability to predict the changes can be

further exacerbated as these external factors may on

their part similarly depend on another set of actors and

resources external to themselves.

The research shares some common characteristics

with the literature on platforms [4, 9]; yet, instead of

viewing this from the perspective of the resource owners

and bigger actors, it focuses on the companies using the
resources and looks for ways that these companies can

mitigate the challenges emerging from this loss of

control. The research questions set for the paper are the

following: first, why do software companies engage in

practices that lead to reduction of their control over the

developed software? Second, what are the benefits and

challenges following this reduction? Third, how do

these companies mitigate the challenges brought upon

them by the reduction of control? In our research, we

aim to answer these questions by focusing on Finnish

software companies that resort to integrations with
external systems and utilize external resources in

developing software. As noted, these companies can be

largely seen as resource takers, similar to the non-focal

actors of major platforms, and resource providers as

described by Selander et al. [6]. They are largely unable

to have direct control over the utilized resources or

resource owners because of a lack of power to do so. At

the same time, they need to operate in an environment

where integrations to external actors and technologies

are in many cases essential [10, 11]. However,

simultaneously, these companies value stability, which

might be in short supply due to the organizational and
technological reduction of control.

2. Trajectory of Networked Software

Development

The type of networked software development

discussed above refers to a development environment in

which individual companies rely on other companies to

develop software, for example, in the form of

partnerships and subcontractors. In addition, the

developed software utilizes heavily external resources

and functionalities. Traditionally, networked software

development has either been used to refer to software

development projects that have resulted from

outsourcing or otherwise moving software development

to different locations [12, 13], or software development

that takes place in open source communities that consist

of various heterogeneous actors possessing different

roles [14]. Both are examples of how the development

of software is done in a networked manner. In addition
to these, increasingly, the software artifacts themselves

are becoming networked as they are built on external

platforms [15], utilize cloud [16], or otherwise rely on

externally provided data and functionalities provided,

for example, via APIs [17].

Behind these developments are the increasing

digitization of information and socio-technical

processes, as well as the need to develop information

systems faster. As defined by Yoo et al. [18],

digitization can be understood as

encoding information into a digital format, which

among other things enables processing such
information via pre-programmed instructions. As this

kind of information is quite agnostic in terms of the

devices and systems in which it is used and can be

altered in various ways, it can also be shared and moved

from one system to another over information networks

with relative ease. This has led to further digitalization,

in which socio-technical structures are increasingly

mediated by digital artifacts or relationships [18]. Due

to the increasing appearance of APIs, as well as

connecting both physical and digital resources to the

network, communication has also begun to take place
between artifacts in addition to people using the

products and services [8]. APIs offer data,

functionalities, and technological resources for

developers to use [4, 17]. Via increasing amounts of

external and internal system integrations combined with

the overall provision of APIs, different actors and

entities such as digital platforms can provide other

developers and software-based products and services

resources that perform key functions in those systems

[15].

 Linked to this, modularity and the move toward

modularization of both software and organizational
processes have facilitated the sharing of tasks and

functions across organizations by splitting those into

specific units or compartments. The architecture of a

software shows the product’s fundamental structure,

utilized components, and the interfaces between those,

which together form the product’s functionalities [19].

The product can be divided into modular components,

each of which has a particular functionality and is

responsible for a part of the functioning of the product

[19–21]. Modularity of software refers to the degree to

which the components of that product can be separated
and combined in different ways [21].

Modularization is decided based on factors such as

distribution of design work, available technology,

manufacturability, and maintainability [20–23]. It has

Page 5966

thus partly led to reorganization of work by dividing it

into different areas and tasks, which is impacted by

factors such as how companies operate or are structured,

for example, in terms of production [24]. The fact that

each function is placed into its own unit also enables the
development of those units externally and therefore

facilitates processes such as outsourcing [25].

Modularity contributes to vertical deintegration of a

firm [26], since, as in the logic of outsourcing, certain

aspects or areas can be left for external actors [27]. One

example of this is the development of additional

services and components by third parties [11], which has

enabled the creation of product or service ecosystems.

In these ecosystems, the applications developed by third

parties are seen as complementing the platform, which

provides the applications technological resources that

these rely on in their functioning [28].
In our view, the concept of modularity is at the core

of software development and enables the development

and management of large-scale software projects by a

variety of actors [20, 29]. External and internal system

integrations combined with the overall provision of

APIs, different actors, and entities such as digital

platforms can provide other developers and software-

based products and services resources that perform key

functions [15]. These resources themselves may derive

part of their functionality from other similar resources,

thus creating a development environment that is highly
interlinked through various direct and indirect

technological connections. In this network, certain

actors, such as major platform companies, function

more as resource-givers and smaller software

companies as resource takers by relying on the provided

resources to develop their own software. From the

perspective of a software company that occupies a

peripheral position in relation to the resource providers

in the sense that it uses those resources but does not

provide them, the operating environment and the

software development projects become more

fragmented, consisting of various actors and resources.
To a fair extent, this network of different actors,

digital functionalities, and data enables processes and

projects to become less bounded and more

interconnected, similar to the infrastructural factors that

support those innovations [30]. By being connected and

digital, these systems and various digital products are

subject to being continuously edited and changed, which

also offers avenues for other actors to join, for example,

by expanding the systems and products in terms of their

existing functionalities or transferring those systems and

products to new contexts and environments [31].
As the operating environment resembles more of a

network than a hierarchical structure, the question that

emerges is who has control over the systems or how to

control them. In response to this, technological

modularity has been seen as guarding against lack of

control as the inputs and outputs of the modules are

relatively standardized and clear [32] and requiring no

intervention from a particular actor. However, the

question of control and overall governance has remained
a central topic particularly in relation to platforms [33,

34].

Especially in highly networked software

development ecosystems that consist of various actors

and technological resources, having control in some

form or another over the environment also functions as

a source of stability and predictability over the

developed software. The requirement for stability as

well as predictability is therefore central for the actors

using the resources. At the same time, by utilizing

external resources, control is being lost, as these actors

do not have any say in how those external resources are
developed or maintained. Research so far has focused

more on the platform owners, highlighting issues related

to, for example, platform governance or cultivating

exponential growth by the platform owner [3, 35]. With

some exceptions, there have been fewer studies looking

at non-focal actors who rely on these platforms to make

sure their own applications continue functioning. In

addition to looking at why companies engage in

activities that result in reduction of control, this paper

seeks to provide further insights into how the resource-

taking companies operate in networked software
development environments and how these companies

can bring predictability and stability to the networked

environment while still reaping the benefits from it.

3. Methodology

In order to answer the set research questions, we

adopted a qualitative approach and interviewed people

working in Finnish software companies. A total of 20
interviews were conducted. The interviewees consisted

of developers and managers as we aimed to cover both

the technological and organizational dimensions of

networked software development. In addition to the

companies being Finnish and working in areas closely

linked to software development, all of the interviewees

had experience in software integrations, and the

companies they represented were, in most cases,

resource takers and had little say about how the utilized

resources were to be maintained or developed.

The interviews were semi-structured and lasted
from 60 to 90 minutes. The interviews were recorded,

transcribed, and coded using Atlas.ti. The data were

analyzed by using thematic analysis, as coding resulted

in codes that could be further linked to subthemes of

networked software development overall as well as

strategies meant to counter the identified reduction of

control. The analysis was guided by the interview

Page 5967

questions as well as the research questions. In total, 211

codes were generated, which functioned as a basis for

subthemes, such as “best practices,” “challenges,”

“change,” benefits,” and “differences in integrations.”

The subthemes provided the foundation for the findings
that enabled us to answer the set of research questions.

Overall, the research took the abductive approach

in investigating the topic. In other words, there was no

intention to test existing propositions nor to generate

theory directly from data alone, but more to analyze the

data and develop the research by concurrently visiting

theory and empirical observation, and instead of

generating new theory, we aimed at taking existing

frameworks and developing them further in relation to

our own research [36]. From the codes and themes, we

identified the emergence of the phenomenon of

networked operating environments in software
development. After this, we aimed to see how this

environment could be better understood theoretically

and to identify from the literature how this environment

has evolved and the issues involved with it, such as the

notion of control and its paradoxical relationship with

enabling generativity and flexibility.

4. Findings

The analysis of the data focused first on identifying

factors that have led to reduction of control for

individual software companies. This emerged from

interviewees’ citing situations and events in which their

company had resorted to technologies and actors that

were external to the company itself. We then moved to

study the benefits that were obtained from relying on

external technologies and actors. The next step was to

analyze the specific challenges that the reduction of

control caused, which was followed by looking at

strategies and practices that allowed the companies to
compensate for the reduction of control and mitigate the

possible risks emerging from it.

The reduction of control for individual software

companies took place along two dimensions, namely, in

relation to technological reasons such as utilized

external technological resources and organizational

factors such as partnerships and use of subcontractors.

The reduction of control due to technological factors to

some extent facilitated the creation of networked

organizational environments. For example, product

modularization and the possibility for external
integrations also made cooperation among companies in

software development more feasible. As a result, our

research was able to distinguish between these two

dimensions, and we found that the overall reduction of

control for individual software companies can emerge

from both technological and organizational factors.

4.1. Factors Contributing to Reduction of

Control

Our analysis of the data revealed that there were

several factors that led to a software company being

unable to fully control the software it was developing.

One clear example of this occurring was when

companies developed applications for a particular

operating system and hence relied on functions and data

provided by the platform. A similar type of reduction of

control occurred in relation to utilizing public cloud

companies such as Amazon Web Services or Microsoft

Azure. The use of these resources enabled many
software companies to avoid directly owning hardware

such as servers, while also obtaining the added benefit

of having a range of functionalities such as analytics

tools or machine learning capabilities at their disposal.

“We have been thinking about moving those to AWS

[Amazon Web Services], because they probably also

have better tools for documenting, and at the same time,

we could have that separate from the customers’

systems” (interviewee 6 (int6)).

In addition to these, another contributor toward

reduction of control emerged in the form of data and
functionalities that were integral in making the software

function as intended. Examples of the functionalities

could be seen, for example, in utilizing maps or

authentication services in the developed software

artifacts, or regarding data, receiving it, for instance,

from institutions such as transportation operators

providing data about schedules or movements of their

fleet.

“Thinking about our software, the first thing that

comes to my mind [in terms of externally acquired

functionalities] are the location and map-based services

that we use, as they play a big role in our products”
(int7).

As noted, the common factor for all of these was the

requirement for integration into systems and sources

that resided outside the software company and tapping

into those sources. This has led to the establishment of

technologically mediated connections to the entities

providing those technological resources and services,

and overall the utilization of external resources.

 To a certain extent, the reliance on external

technological resources provided the groundwork for

also utilizing external partners and actors on an
organizational level. As the systems connected various

actors, external actors also had to be involved and were

part of the software development projects. Some

external actors also acted as middlemen toward other

actors.

“If you think of a normal project, there are quite a

few actors already involved via our customers’ own

networks, and all of those need to be taken into account

Page 5968

when we are building the new system, and we need to

deal with those third parties as well even though they

might not be directly related to our project” (int12).

Reduction of control due to organizational factors

was also witnessed in the partnerships between software
companies as they collaborated in the development of

software. Companies also formed partnerships, for

example, in competing or applying for funding for

software projects and developing those in groups. The

number of participants in these partnerships differed

considerably, varying from one to several dozens.

“In this one project, we had something like forty

plus IT companies involved” (int4).

Similarly, sometimes the customer for a developed

software was an alliance of different entities and

consisted of several companies, each of which

occasionally had interests that were not always aligned
with those of the others. Although the latter factor did

not necessarily lead directly to reduction of control for

the company developing the software, it had

consequences in terms of having to serve various and

sometimes differing interests, possibly also

complicating the further development of the software.

What also contributed to this was the requirement

to serve multiple stakeholders from within one system.

“There were quite a few different [actors involved],

for example, the telecom operators. Then we had to take

into account the public institutions, then via the
companies their different units such as factories, which

also had their own IT systems” (int10).

In addition to partnerships, a more traditional form

of subcontracting other companies or customers using

various companies to carry out areas of the development

of the software could also cause difficulties in managing

the whole development process.

“The worst thing is when it turns into something

like a developer, who tries to use the interface, sends a

mail to the customer saying that the interface does not

work, the customer forwards it to the other software

company, which says something completely different to
the customer. Then that response comes to us, and it

becomes this game of ping-pong where the customer is

at the middle. So, having some visibility would definitely

be useful” (int13).

Overall, the key technological and organizational

factors contributing to the reduction of control formed

something of a continuum, in which the more the

companies resorted to the abovementioned factors, the

more the control of the development of the software and

its functioning was handed over to forces and actors

residing outside the confines of the company itself.

4.2. Benefits and Challenges Resulting from

Factors Causing Reduction of Control

4.2.1. Benefits. By resorting to external resources and

actors in software development, the software companies

obtained multiple benefits. A clear example of this was

the ability to use resources such as maps that might have

otherwise required significant investments or would

simply be out of reach for many of the companies.

“There are fewer cases nowadays where you simply

cannot do something, or it does not work. Back in the

days, there were quite often those that the technology

was not quite ready or something else, and in this world
of integrations there really aren’t those show stoppers”

(int10).

Integrations between different systems also allowed

automatization of processes.

“I think the biggest value is in being able to

automatize work along the whole process chain […] For

example, because of the connected systems, there is no

need for an electrician to go and switch on electricity. It

can all be done remotely” (int12).

The ability to save costs and to respond to

fluctuating demand were noted as being among the
benefits of the utilization of public cloud companies.

Instead of having to invest in hardware and manage that

in-house, these cloud companies offered a feasible way

for the software companies to have the required

computational resources at their disposal, also to be able

to scale up when needed. Additionally, the public cloud

providers offered additional functionalities for the

software companies and enabled faster development

cycles overall.

“My opinion is that they provide a nice platform on

top of which to build applications and solutions really

fast and in a very convenient manner, which can be seen
also in costs […] What you do need to take into account

are the interests linked to having control, and that if in

the wrong hands damage can be done“ (int12).

In terms of organizational factors, the benefits

obtained from partnerships and the like shared some

characteristics with the benefits obtained from

technological factors. For example, subcontractors

enabled companies to direct their own resources to areas

where their main expertise resided and, in some

instances, also to meet the set deadlines for the

development of the software. Partnering with others also
allowed companies to expand their own offerings to

areas where they did not have much experience.

“It is quite typical that we do things to a point we

can, and then partner with someone who is particularly

good in the technologies that have been picked for the

project” (int10).

Page 5969

Forming partnerships also enabled smaller

companies to compete for and gain projects they alone

would not have been able to do.

“It was good for the project that each participating

company provided the people who were the best for that
particular job” (int13).

Finally, another benefit of partnering was that if

problems emerged, they were in some sense shared, as

the development of the software artifact was dependent

on the correct functioning of all its constituting parts.

4.2.2. Challenges. By relinquishing control, challenges

followed. In terms of technological challenges, since

resources were derived from external sources, the

software companies were unable to directly dictate or

even impact the decisions concerning the development

and evolution of those technological resources. If a

decision was made about changing a resource in some
way by the entity hosting the resource, the companies

utilizing the resource often had little choice other than

to accept the changes as they were and update their own

software accordingly.

“Well, you have to live according to their [software

development kit (SDK) provider] updates, and test your

system when they update, just recently when there was

an update some of our functionalities stopped working,

or then when certain functionalities are deprecated and

that requires work from our end” (int5).

Because companies had little say over how the
externally provided resource would evolve or function,

this led the companies to tweak or fork the resource in a

manner that was not entirely intended by the host of the

resource. In cases where too much forking occurred, it

was possible that, as the obtained resource was updated

by the host organization, the software utilizing the fork

encountered errors and was unable to function as

intended. Similarly, sometimes, the resources were

difficult to combine with other resources.

“We would like to move the mobile solution to

React Native, which can be used on both iOS and

Android, but it is difficult because we have the other
SDK in this” (int5).

In addition, as the software was linked to other

systems and tools, the problems spread more easily and

impacted all the integrated systems and software, and

the software and its developers were largely dependent

on other actors to fix the problems.

“Every time you work in this kind of environment

where the system should always work or the entire

facility comes to a halt, and as you have integrations to

other systems that are critical for the functioning of the

system, those might mean that if you don’t get the data
from there, there is nothing the facility can operate on”

(int17).

Integrations into external resources came with the

added risk of making the software more vulnerable to

external malfunctions. When errors occurred, receiving

support from the host entity was occasionally seen as

challenging, leaving the companies unable to fix the
problem. This caused delays in the development of the

software or required the companies to build additional

software components to prepare for the errors.

 “It is often a challenge that we state that we need

this type of feature to make this work, and even though

we have the same customer, the other company just does

not have the resources, and they cannot give you the

support for building that feature until only in some

months’ time” (int14).

Another challenge that resulted from the utilization

of external resources and reductions of control over the

software development was the ability to test the
software and its external parts, which in some cases was

completely lacking.

“Sometimes there is no testing environment or it is

not updated, or it’s down for several days, and in terms

of integrations, they need to be tested, and fixing issues

can take quite some time, and you cannot just change

your system so that the integrations stop working”

(int14).

Overall, if the reliance on external resources was

too great, that also meant that those resources were very

difficult to manage. Being able to communicate
effectively and be aware of the changes done for each of

the resources was not always easy. Also, the more

partners and external resources there were, it became

more cumbersome to capture the big picture of the

software’s development.

 “Another challenge is working with several actors

[…], you need to have the overall picture clear on what

it is that you are actually trying to develop” (int12).

Software development projects conducted in

cooperation with partners also led to increased

dependency among them, which also meant that

problems of one company became, in this way, shared
by others.

“Sometimes it gets quite strange. For instance,

there was this one problem we were trying to solve with

a customer for months, and then it turned out that the

data that came from the customer’s customer was done

in a manner that did not follow the standards very

strictly, and since it worked with some programs but not

with others, it turned out that the programs in which it

did work were not too picky about the format the data

came in” (int11).

Overall, most of the problems were seen as a result
in difficulties in communication.

“It happens every time in projects with third

parties, or when we have to integrate into another

system that requires some changes. The communication

Page 5970

just does not usually work […] It can be something like

it just takes time to get replies or support” (int14).

In addition, the collaboration and cooperation

between partners required certain common tools and

frameworks which the partners that had no prior
experience had to learn and adopt first.

“I have not had difficulties learning those, but if

people in companies are not yet using those, then you

have to first teach those how to use software like Jira in

order to have a common view of the project in one

place” (int4).

4.3. Strategies and Practices to Counter the

Challenges

To counter the challenges resulting from reduction

of control, the software companies resorted to different

strategies and practices both on the technological and

organizational levels. One was to simply try to build as

much in-house as possible.

“Occasionally there have been cases where we

have decided to build something ourselves, even if there

was already something available, though that has been

often because we have not been able to integrate that

functionality very well, and even when building
ourselves, we look if there are some components that

could be obtained elsewhere” (int17).

What is noteworthy is that some of the same factors,

which led to the reduction of control, also contained

mechanisms that helped to counter the challenges and

lessen the negative impacts from the lack of control.

One example of this was the major public cloud

companies, which were often seen as generally

trustworthy and stable because of their size and

resources, but also because of the competition among

them. All the major cloud companies were viewed as

being able to provide a large set of functionalities and
services and being relatively easy to use with reasonable

levels of support available.

There was an indication that it was better to utilize

resources that had alternatives available if something

went wrong with the use of the resource. However,

switching from one resource to another was often seen

as requiring a significant amount of work and

adaptations to the other areas of the software under

development.

“We quickly realized that it was necessary to build

connections to at least two different operators, since if
there was a failure in one at least the other one worked

okay” (int19).

If one were to choose between sources providing

similar resources or functionalities, such as maps or

authentication services, actors seen as well-established

provided a somewhat safer option in terms of continuity

and support availability. Although not directly stated, it

could also be argued that relying on functionalities,

which one’s key competitors also utilized, meant that, if

there was a problem with a particular functionality, the

competitors were likely to face the consequences as

well.
Overall, open source solutions were occasionally

seen as less risky than proprietary ones, especially if the

continuity of the host organization was of concern to the

company utilizing the resource. Naturally, this ability of

an open source to provide stability depended on the type

of resource it provided; however, having access to the

source code gave the companies time if unforeseen

disruptions occurred or the resource was no longer

actively maintained.

 “Well, if it is open source, there could be the thing

that then it is easier to fix, like if there is something in

the SDK that the provider does not fix, you can do it
yourself” (int5).

However, also in the case of an open source, it was

necessary to evaluate other aspects of the open source

project, such as how active the community was running

the open source project.

Many of the interviewees expressed the importance

of standards and common procedures as those have

offered clarity and made the cooperation between

different companies and integrations into different

systems easier. Standards have established the norms

and rules for how software and related components are
to be built and developed, and have further enabled

more efficient communication between partners.

“Just that there is the standard, so that you can just

watch and see that this is how the process goes, without

having to study it [the standard] first for hours […], and

overall, if something needs to be done, is to provide

standards which are globally shared and became de

facto, that is, something that needs to be supported”

(int15).

Linked to this, developers especially cautioned

against tweaking or excessively forking the provided

functionalities. Emphasis was placed on following the
provided guidelines and instructions if possible, as

forking of the resource could result in errors in

software’s functioning by the time the next update was

done to the obtained resource.

“Of course, we did not know that this [forking the

resource] will break down, though we knew that it is a

bit over what the SDK was able to provide, and now I

would think again whether that was a wise thing to do.

Better to make a request to them [resource provider] or

just wait if a feature like that will be provided by them

in the future” (int5).
In a similar manner, it was advisable to make the

connections to the integrated resource loose, as tight

integrations could lead to problems.

Page 5971

“If the connection is very tight between systems

[…], then whatever change in one system will create

problems in the other, so it would be ideal if both

systems could maintain their relative independence and

allow each of them to do their own development”
(int17).

In terms of external actors, measures could be taken

to avoid the harmful impacts and counter the challenges

resulting from reduction of control stemming from

reliance on partners and subcontractors. One relatively

straightforward way of doing this would be to rely on

partners and companies that one already knows and has

relatively good relations with, or otherwise has a good

reputation. Contractual factors and regulations such as

General Data Protection Regulation (GDPR) have also

established certain commonly agreed upon guidelines

and have thus helped to counter reduction of control. In
order to reduce the uncertainty even further, the ability

to test without committing oneself fully was also seen as

useful.

“One solution is to do a proof-of-concept before the

final decision, so you don’t commit yourself before

making sure that the resource is the right one” (int10).

Occasionally, local actors were preferred, as they

were viewed as being more aware of the local context

and business processes. Similarly, smaller local actors

were sometimes seen as giving more importance to their

partners and customers; however, larger players were
mentioned as being more reliable and trustworthy

because they had more resources available. It was also

considered important to view partners and projects from

a long-term perspective instead of one-off encounters.

It is noteworthy that the interviewees rarely

mentioned having back-up plans in case a resource or

actor proved to be inept for the purposes of the

developed software. The idea seemed to be more that

once something was decided on, it was quite difficult

and costly to do away with those resources or partners

and switch to others. As a result, if problems occurred,

the general thinking seemed to be to deal with
challenging situations as they emerged and not spend

too much effort trying to prepare for those beforehand

by making, for example, concrete back-up plans.

“There is a bit of that type of thinking [having back-

up plans], but I feel other options are not really thought

of that much, and if problems appear, then those need to

be fixed with the resources available, or then start

thinking if there is another way to get the data

required.” (int17)

5. Discussion

Reduction of control for an individual software

company results from the move toward a more

networked development environment, which emerges

from reliance on external technological resources as

well as partnerships with other actors. The ability to

count on external resources and actors provides the

companies multiple benefits, but as those benefits also

lead to diminishing control over the developed software,
particular challenges and risks also surface. These

challenges have negative implications in terms of the

predictability and stability of software projects and need

to be mitigated in some form or another. Based on our

findings, two principal strategies most often emerge, as

the companies in their software development either turn

inwards or then seek to strengthen the overall system

that enables the networked operating environment to

function. These strategies are not mutually exclusive but

often interlinked, since resorting to one strategy tends to

diminish the need to adopt the other one.

The first strategy, turning inwards, is simply trying
to maintain control over the software under

development by doing as much as possible in-house.

Instead of being binary, the decision on building

software in-house vs. using external resources and

actors should be viewed more as a continuum. In this

continuum, companies decide what is the suitable

amount of control that they wish to have. On the one

extreme of retaining control are practices such as

building many of the functionalities within the company

without resorting to external resources or partners.

When moving along the continuum, some control is
forfeited as software companies utilize external

technological resources, but those resources do not have

a substantial role in the software’s functioning, there are

alternatives available for the resources, or in the case of

external actors, they have more of a role as

subcontractors with clear hierarchical structures.

Toward the other end of the continuum, companies are

having less and less control over software development

as they increasingly resort to externally provided

technological resources and partnerships, and as a result,

have few means to impact decisions that are made

externally even though those decisions may
considerably impact the functioning of their software.

This is where the second strategy, that is, system

strengthening, begins to gain more ground as its focus is

on seeking predictability and stability on the system

level. To compensate for the reduction of control,

different practices can be applied, such as avoiding

excessive forking, making sure support is available, or

relying only on partners with proven track records. In

addition to these, stability and predictability are sought

from regulation but primarily by relying on established

standards, protocols, and common frameworks and
tools. The foundation of these practices is more on the

systemic level, as the aim is to create predictability and

stability in how the external resources operate and

impact the company’s own software. Overall, this

Page 5972

second strategy focuses on finding alternative sources

for stability when those cannot be achieved by

developing everything in-house. Linked to this, reliance

on an open source that allows more transparency in

terms of the acquired resource is valued more. On the
organizational side, similar practices can be observed,

as the partners in projects should abide by the same set

of standards and utilize established tools for

communication and information sharing. Reliance on

well-known actors as well as legal frameworks

compensate for the loss of stability and predictability

following that.

In other words, as control over the developed

software is reduced due to the reliance on external

resources and actors, this can be compensated for by

aiming to bring stability and predictability to a system

level where each of the software development
companies operates. If those two factors, stability and

predictability, can be obtained on a system level, this

further contributes toward the increasing utilization of

external resources and partners. In software

development, this would further enable, for example,

the loosening of vertical operating models that focus on

developing software in-house. Similarly, having a stable

and predictable operating environment will strengthen

the position of the type of non-focal actors discussed by

Selander et al. [6] and allow more room for the smaller

actors that function as resource takers to operate in.
Two research areas are of importance regarding this

in terms of future studies. The first one evolves around

looking at the implications of these developments

regarding notions such as generativity. By adhering to

strict standards and utilizing the provided resources only

as they are intended, this may also lead to a reduction in

the ways different resources can be utilized, and with

that, possibilities for companies to differentiate

themselves from one another and gain competitive

advantage from software. However, this may be

contrasted, for example, by the number of resources

available.
Second, the question remains about how far these

strategies and practices that seek predictability and

stability from the system-level are those of the weak,

and if the resource providers and bigger actors such as

platform and cloud infrastructure owners have interest

in promoting stability on a system-level or if they see

those as leading to reduction of the control they

currently possess. The situation might present itself

differently when the power balance is on one’s side, that

is, with the actor able to impact others by its decisions

and functions more as a norm-giver instead of a taker.
Overall however, it could also be argued that having a

relatively stable and predictable operating environment

would benefit all of the actors, no matter their size or

position.

6. Conclusion

This paper has examined how software

development that takes place in a networked operating

environment tries to balance the loss of control by

utilizing particular strategies and practices. Two main

strategies were identified: either turning inwards and

developing more in-house, or alternatively, seeking

stability and predictability on a system level as well as

strengthening the system and, in that way, mitigating the

loss of control. The key questions that need further

exploration are whether these practices inhibit

generativity and to what extent those strategies and
practices are engaged in by those who find themselves

in a relatively weak position vis-à-vis resource providers

and other more powerful actors in the environment.

7. References

[1] V. D. Bianco, V. Myllärniemi, M. Komssi, and M.
Raatikainen, “The Role of Platform Boundary Resources
in Software Ecosystems: A Case Study,” in 2014
IEEE/IFIP Conference on Software Architecture, Apr.
2014, pp. 11–20.

[2] K. Karhu, R. Gustafsson, and K. Lyytinen, “Exploiting
and Defending Open Digital Platforms with Boundary

Resources: Android’s Five Platform Forks,” Info. Sys.
Research, vol. 29, no. 2, pp. 479–497, Jun. 2018.

[3] S. Jansen and M. A. Cusumano, “Defining software
ecosystems: a survey of software platforms and business
network governance,” Software Ecosystems, Apr. 2013,
Accessed: Jun. 12, 2020. [Online]. Available:
https://www.elgaronline.com/view/edcoll/978178195562
8/9781781955628.00008.xml.

[4] D. Tilson, K. Lyytinen, and C. Sørensen, “Research
Commentary—Digital Infrastructures: The Missing IS
Research Agenda,” Information Systems Research, vol.
21, no. 4, pp. 748–759, Nov. 2010.

[5] A. Gawer, “Bridging differing perspectives on
technological platforms: Toward an integrative
framework,” Research Policy, vol. 43, no. 7, pp. 1239–
1249, Sep. 2014.

[6] L. Selander, O. Henfridsson, and F. Svahn, “Capability
Search and Redeem across Digital Ecosystems:,” Journal
of Information Technology, Sep. 2013, Accessed: Apr.
09, 2020. [Online]. Available:
https://journals.sagepub.com/doi/10.1057/jit.2013.14.

[7] B. Eaton, S. Elaluf-Calderwood, C. Sørensen, and Y.
Yoo, “Distributed Tuning of Boundary Resources: The
Case of Apple’s iOS Service System,” MIS Quarterly,

vol. 39, no. 1, pp. 217–243, 2015.
[8] Y. Yoo, K. Lyytinen, and R. J. Boland, “Distributed

Innovation in Classes of Networks,” in Proceedings of
the 41st Annual Hawaii International Conference on
System Sciences (HICSS 2008), Jan. 2008, pp. 58–58.

[9] C. Y. Baldwin and C. J. Woodard, “The Architecture of
Platforms: A Unified View,” in Platforms, Markets and
Innovation, A. Gawer, Ed. Cheltenham, UK: Edward
Elgar Publishing, 2009.

Page 5973

[10] K. H. Rolland, L. Mathiassen, and A. Rai, “Managing
Digital Platforms in User Organizations: The Interactions
Between Digital Options and Digital Debt,” Information
Systems Research, vol. 29, no. 2, pp. 419–443, May
2018.

[11] Y. Yoo, O. Henfridsson, and K. Lyytinen, “Research
Commentary—The New Organizing Logic of Digital
Innovation: An Agenda for Information Systems
Research,” Information Systems Research, vol. 21, no. 4,
pp. 724–735, Nov. 2010.

[12] I. Richardson, V. Casey, J. Burton, and F. McCaffery,
“Global Software Engineering: A Software Process
Approach,” in Collaborative Software Engineering, I.

Mistrík, J. Grundy, A. Hoek, and J. Whitehead, Eds.
Berlin, Heidelberg: Springer, 2010, pp. 35–56.

[13] R. Sangwan, M. Bass, N. Mullick, D. J. Paulish, and J.
Kazmeier, Global Software Development Handbook.
CRC Press, 2006.

[14] P. Wagstrom, C. Jergensen, and A. Sarma, “Roles in a
Networked Software Development Ecosystem: A Case
Study in GitHub,” CSE Technical reports, Jan. 2012,

[Online]. Available:
https://digitalcommons.unl.edu/csetechreports/149.

[15] A. Ghazawneh and O. Henfridsson, “Balancing Platform
Control and External Contribution in Third-Party
Development: The Boundary Resources Model,”
Information Systems Journal, vol. 23, no. 2, pp. 173–192,
Mar. 2013.

[16] W. Venters and E. A. Whitley, “A critical review of

cloud computing: researching desires and realities,” J Inf
Technol, vol. 27, no. 3, pp. 179–197, Sep. 2012.

[17] P. C. Evans and R. C. Basole, “Revealing the API
ecosystem and enterprise strategy via visual analytics,”
Commun. ACM, vol. 59, no. 2, pp. 26–28, Jan. 2016.

[18] Y. Yoo, K. Lyytinen, B. V. Thummadi, and A. Weiss,
“Unbounded Innovation with Digitalization : A Case of
Digital Camera,” presented at the 2010 Annual Meeting
of the Academy of Management, 2010.

[19] K. Ulrich, “The role of product architecture in the
manufacturing firm,” Research policy, vol. 24, no. 3, pp.
419–440, 1995.

[20] C. Y. Baldwin and K. B. Clark, Design Rules: The
power of modularity. London: MIT Press, 2000.

[21] F. Salvador, “Toward a Product System Modularity
Construct: Literature Review and Reconceptualization,”
IEEE Transactions on Engineering Management, vol. 54,

no. 2, pp. 219–240, May 2007.
[22] E. von Hippel, “Task partitioning: An innovation

process variable,” Research Policy, vol. 19, no. 5, pp.
407–418, Oct. 1990.

[23] S. K. Fixson, “Product architecture assessment: a tool to
link product, process, and supply chain design
decisions,” Journal of Operations Management, vol. 23,
no. 3, pp. 345–369, Apr. 2005.

[24] M. Jacobides, J. P. MacDuffie, and C. J. Tae, “Agency,
structure, and the dominance of OEMs: Change and
stability in the automotive sector,” Strategic Management
Journal, vol. 37, no. 9, pp. 1942–1967, 2016.

[25] J. P. MacDuffie, “Modularity-as-Property,

Modularization-as-Process, and ‘Modularity’-as-Frame:
Lessons from Product Architecture Initiatives in the
Global Automotive Industry,” Global Strategy Journal,
vol. 3, no. 1, pp. 8–40, 2013.

[26] N. Argyres and L. Bigelow, “Innovation, Modularity,
and Vertical Deintegration: Evidence from the Early U.S.
Auto Industry,” Organization Science, vol. 21, no. 4, pp.
842–853, 2010.

[27] O. Henfridsson and Y. Yoo, “The Liminality of
Trajectory Shifts in Institutional Entrepreneurship,”
Organization Science, vol. 25, no. 3, pp. 932–950, 2014.

[28] M. Jacobides, C. Cennamo, and A. Gawer, “Towards a
Theory of Ecosystems,” Strategic Management Journal,
vol. 39, no. 8, pp. 2255–2276, 2018.

[29] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen,
“The structure and value of modularity in software

design.” Association for Computing Machinery, Sep. 01,
2001, Accessed: Apr. 09, 2020. [Online]. Available:
https://doi.org/10.1145/503271.503224.

[30] S. Nambisan, K. Lyytinen, A. Majchrzak, and M. Song,
“Digital Innovation Management: Reinventing
Innovation Management Research in a Digital World,”
Management Information Systems Quarterly, vol. 41, no.
1, pp. 223–238, Mar. 2017.

[31] O. Hanseth and K. Lyytinen, “Design Theory for
Dynamic Complexity in Information Infrastructures: The
Case of Building Internet,” J Inf technol, vol. 25, no. 1,
pp. 1–19, Mar. 2010.

[32] A. Tiwana, “Does technological modularity substitute
for control? A study of alliance performance in software
outsourcing,” Strat. Mgmt. J., vol. 29, no. 7, pp. 769–
780, Jul. 2008.

[33] D. Tilson, C. Sørensen, and K. Lyytinen, “Change and

Control Paradoxes in Mobile Infrastructure Innovation:
The Android and iOS Mobile Operating Systems Cases,”
in 2012 45th Hawaii International Conference on System
Science (HICSS), Jan. 2012, pp. 1324–1333.

[34] A. Tiwana, Platform Ecosystems: Aligning Architecture,
Governance, and Strategy. Newnes, 2013.

[35] M. de Reuver, C. Sørensen, and R. C. Basole, “The
digital platform: a research agenda,” Journal of

Information Technology, vol. 33, no. 2, pp. 124–135,
2018.

[36] A. Dubois and L.-E. Gadde, “Systematic combining: an
abductive approach to case research,” Journal of
Business Research, vol. 55, no. 7, pp. 553–560, Jul.
2002.

Page 5974

