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Abstract

Exploring large datasets and identifying meaningful
information is still an active topic in many application
fields. Dealing with large datasets is currently not only
a matter of simply collecting and structuring data for
retrieval, but sometimes it also requires the provision
of adequate means for guiding the user through the ex-
ploration process. Visualizations have shown to be an
effective method in this context, the reason being that
since they are grounded on visual cognition, people un-
derstand them and can naturally perform visual opera-
tions such as clustering, filtering and comparing quanti-
ties. However, systems which help us to create visualiza-
tions often require specific knowledge in data analysis,
which ordinary users typically do not possess. To ad-
dress this gap, we propose a system that guides the user
in the data analysis process. To achieve this, the system
observes current user behavior, tries to infer the task of
the user and recommends the next analysis steps to help
her to carry out the task.

1. Introduction

Recent advances in technology have resulted in an
enormous increase of personal and industrial data. Al-
though this data includes massive volumes of valuable
information that can be used to better support both hu-
mans and machines, extracting and using this informa-
tion to gain valuable insights and draw correct conclu-
sions is a tedious and time-consuming task. As a re-
sult, relevant, useful information may be overlooked,
possible links within the data not identified and wrong
conclusions drawn. Visualizations have shown to be ef-
fective in dealing with huge datasets: because they are
grounded on visual cognition, people understand them
and can naturally perform visual operations such as clus-
tering, filtering and comparing quantities. However,
creating meaningful and valid visualizations is chal-
lenging and time consuming because it involves many
steps [1, 2]. It is a complex process, which often re-

quires domain knowledge, understanding of the data and
knowledge about the user’s goal and task [3]. The or-
dinary user, however, is not an expert in visualizations
and can rarely generate a visualization, which provides
meaningful message about data.

There exist several approaches which automatically
generate and recommend appropriate visualization [4, 5,
6, 7, 8]. What they all have in common is that these ap-
proaches follow the visual encoding rules and perceptual
guidelines to define, which visualization is more appro-
priate for the given dataset. These rules are basically
formal specifications for what might be achieved when
representing data visually. While these approaches are
successful in reducing the knowledge barrier, they are
restricted to a certain domain or technology, and more
importantly, they ignore the fact that the choice of a vi-
sualization depends to a great extent on the user’s visual
goal and tasks [9].

The existing research covers a broad range of visual
analytics tasks [10, 11, 12] a user may seek for. How-
ever, the most frequently performed visual tasks are:
gaining overview, analyzing outliers (anomalies), ana-
lyzing trends and comparing variable distribution. Fur-
thermore, a large number of techniques (=interactions)
are available that visualizations provide and users can
make use of to analyze their data: comparing quantities,
filtering data points, aggregating dimensions, zooming,
coordinated views etc. Basically, a goal or task requires
the user to perform a sequence of these interactions and
not a single one. With regard to Shneiderman [10], an
overview task includes zooming out views of individ-
ual data points, as well as panning or scrolling through
the whole dataset. Outlier detection on the other hand
includes searching, filtering or querying a multivariate
data[11, 13]. Knowing which visualization to choose
and which interactions to perform, however, requires a
significant level of visual and data analytical skills from
the user. Unfortunately, average users do not possess
these skills and may have serious difficulties in analyz-
ing their data. Even domain experts within a specific
area may be affected by the same issue.
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In order to address this gap, we propose a visual-
ization tool that guides the user in the visual analysis
process [14, 15]. To achieve this, our visual analytics
tool attempts to infer which analytical task(s) the user
is currently performing and guide her during this pro-
cess by recommending the next analysis step or a se-
quence of steps (interaction(s), such as filtering, aggre-
gating, zooming etc.). The main contribution of our tool
in providing guidance to the user on the visual analy-
sis process are: (i) our tool hides the complexity behind
data and visual analytics, and (ii) it supports the users in
readily gaining insights out of their data and draw con-
clusions, which might remain hidden by other means of
analyzing them.

2. Related work

A task-based visual analytics (VA) tool aims to iden-
tify users’ intention behind visualizing the data [16].
Basically, users’ visual intention can be categorized into
two groups: exploratory and confirmatory (=verifica-
tion) [17]. The former describes an analysis process in
which the user aims to summarize the main features of
the data and uses them to define preliminary hypothe-
ses. The later, however, describes the process in which
the user tests her found or assumed hypotheses from the
previous analysis. Depending on the stage of analysis,
users rely on different kinds of visualizations. Hence,
a task-based VA tool is usually provided not only with
a single, but with a series of interactive visualizations
to support the users through the exploration and veri-
fication process and thus in gaining new insights and
findings from their data. In the following we discuss
the relevant work conducted in the area on guided visual
analytics tools.

Casner [18] introduces BOZ, which models the vi-
sual tasks as a set of logic rules. These rules are used
to define equivalent perceptual operators and to create
appropriate visualizations. BOZ does not provide guid-
ance in performing a task, it is a relatively logical pro-
cedure that aids the definitions of appropriate visual-
izations. Similar to BOZ, VizAssist [19] supports the
user in finding the most appropriate visualization, but
for data mining tasks such as classification, clustering
and regression. When the user selects a particular task,
the system defines a list with relevant mapping combi-
nations and presents them to the user as visual recom-
mendations. The user can either accept the recommen-
dations or go to the previous step and change the task.
In this sense, VizAssist lacks the provision of a dynamic
support for performing a mining task and supports the
user only in exploring the mapping space. Voyager [7]
provides guidance in defining appropriate visualizations

using explicit user feedback, which are defined via vari-
able selection. Voder [20] uses interactive data facts to
recommend visualizations and to support users in in-
terpreting the recommended visualizations: e.g., when
the user hovers on data facts, the corresponding parts of
the visualization are dynamically highlighted. Similar to
ViZAssist, these tools only address one user need which
is finding the most relevant visualizations for the under-
lying data and they do not guide the user throughout a
visual task. Cool et al. [21] present a set of design guide-
lines for the development of task-model-based visual an-
alytics tools. However, the task-models are formulated
in terms of specific data sources and do not adapt easily
to new ones. Silva et al. [22] use an eye-gazed based
recommendation model to guide the users in identify-
ing time-series patterns. Similar to this, Shao et al. [23]
track gaze movements to guide the user to the most inter-
esting areas of large scatter plot matrices. Yet, these two
approaches are highly interface-dependent as the use of
an eye-tracker is essential in order to collect the gaze
information.

Basically, the users can be considered to have dif-
ferent analysis behavior when performing exploration
or confirmation activities/tasks [24]. Nazemi et al. [25]
propose a system, which tracks user behavior (interac-
tions on visualizations) to infer her goal/task and adapts
a set of applicable visualizations on user intention be-
hind visualizing the data. Given that the target of this
approach are the subjects (i.e., bibliographical notes and
publications) previously extracted from digital libraries,
this tool is bound to a specific domain and its specific
use cases. Gotz et al. [9] present a system, that logs cur-
rent user’s behavior and tries to match it to a set of in-
teraction patterns. These patterns aid in identifying the
intended task and in recommending alternative visual-
izations. The biggest limitation of this work, however,
is that the interactions patterns are defined by experts a
priori and thus do not reflect the individual user charac-
teristics.

In this paper, we propose a VA tool that further im-
proves the existing work along three main contributions:
(i) our VA tool guides the user throughout a visual task
by recommending the next analysis steps in form of in-
teractions, (ii) the behavior patterns we use to identify
the implicit tasks result from experimental observations
reflecting the individual user characteristics, and (iii)
our tool is not bound to a certain technology (e.g., eye
tracker) or restricted to a single domain (e.g., digital li-
braries, life-science).
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Figure 1. Task-based visual analytics tool: Stage A shows how to choose the attributes to be visualized. Stage

B lists the appropriate visualizations that are automatically recommended by our rule-based system for the

selected attributes. Stage C lists the recommended sequence of interactions (paths) for user’s current task.

Stage D provides a preview of a visualization that shows the final outcome of the selected path. Once the user

accepts the recommendation, the final visualization is shown in stage E.

3. Approach

We propose a task-based visual analytics tool, which
observes current user behavior to infer the visual task
she is currently working on (distribution, correlation,
finding anomalies, finding input/output relation). Once
the task has been recognized, the tool recommends the
next interaction (aggregation, filtering, linking/brushing,
zooming/panning) to assist the user in completing this
task successfully. To do so, the proposed tool relies on
two stages: an offline stage and an online stage. The
offline stage takes over the task to model the user behav-
ior when performing a particular visual task. To achieve
this, we use a repository of user interactions (e.g., fil-
tering, zooming, etc.) previously collected through a
user study in which users were asked to perform sev-
eral tasks. The details of the study can be taken from the
Section 4.1. In contrast, during the online stage, the tool
observes the current user behavior and attempts to rec-
ognize the task she is currently working on. When the
task is recognized, the tool recommends to the user a se-
quence of interactions that should provide her guidance
on completing the task and thus on extracting valuable
information from the underlying dataset.

In the following, we first detail our approach for
collecting, preprocessing and customizing user interac-
tions. Following this we introduce the algorithms used
to model the user behavior and the four types of visual

tasks based on collected user data. Finally, we present
how we apply these models to generate recommenda-
tions and provide guidance to the user on performing a
certain task.

3.1. Collecting user interactions

The (twelve) visualizations (bar chart, line chart,
pie chart, scatterplot, scatterplot matrix, bubble chart,
box plot, violin chart, grouped bar chart, heat map,
map, parallel coordinates) in our visual analytics tool
provide several interactions (filtering, aggregating, sort-
ing, zooming/panning, linking/brushing) each covering
a certain purpose (e.g., filtering, highlighting, unified
view). Whenever the user selects a visualization and
uses the integrated interactions, the ”logger process” is
initialized that, in real time, collects and saves the inter-
action events in a repository. The collected interactions
are used to match users’ current behavior to a set of in-
teraction patterns derived from previous user behaviors.
The following section details the definition of these pat-
terns.

3.2. Defining user behavior patterns

To investigate which interactions the users perform
when a certain visual task is given, we conducted a user
study and asked the users to work on predefined tasks
(see Section 4.1). The tasks were defined with regard to
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the four visual task categories (gaining overview, ana-
lyzing outliers, analyzing trends and comparing variable
distribution) the users usually need to carry out in the
analytical process. While the users worked on the tasks,
we logged their behaviors and used them to define be-
havior patterns. Note that we only consider the behavior
of the users who have successfully carried out the given
task.

We made use of Markov Chain (MC) model for
the pattern definition because it has been proven as ef-
fective for defining dynamic sequential behavior pat-
terns [26, 27, 28]. Basically, MC is a stochastic model
which describes a sequence of possible actions in which
each action depends on the previous actions of the user:
P(Xn+1 = x|X1 = x1,X2 = x2, . . . ,Xn = xn) = P(Xn+1 =
x|Xn = xn). This model consists of three components:
the state space, the transition matrix, and the initial vec-
tor [29]. In our case, the set of all states represents the
set of interactions performed within our visual analyt-
ics tool. For instance, the interactions ”selecting the
data attributes”, ”aggregating”, ”filtering” etc., are inter-
preted as states. When combined, they define the state
space S = {s1,s2,s3, . . . ,sn}, where si denotes a particu-
lar state with the state index i, i = 0,1,2, ...n. The tran-
sition Matrix P, however, describes the probability that
a user, whose current state is si, will select the next state
s′. Finally, the transition probability (pi j) describes the
probabilities resulting from various state changes, and
is calculated using the Maximum Likelihood Estimation
(MLE) [30, 31, 27]:

pi j =
ni j

∑ j ni j
(1)

where ni, j denotes the total number of transitions be-
tween the states si ∈ S and s j ∈ S. For instance, the
following transition matrix shows that if a user brushes
(i.e., considering different aspect of the same data on
different charts) over a visualization, she is more likely
to zoom as next.

P =

Brush Filter Zoom[ ]0.2 0.1 0.7 Brush
0.3 0.5 0.2 Filter
0.6 0.4 0.0 Zoom

MC of various orders are available. The differen-
tiating factor between them is the numer of previous
states the current state depends on. For instance, for the
first order MC the next step depends on the current state
only and not on past states [32]. In contrast, when using
the second order MC the next step follows the two past

states etc. Yet, the studies presented in [33, 34, 35] re-
vealed that the first order MC is plausible due to the high
number of parameters needed for higher order models.
In order to avoid the shortcomings in available data, we
follow this example and apply a first order MC to model
user behavior within a task. Note that using the first or-
der MC, we trained four behavior models each for one
of the four task categories.

3.3. Task recognition

To identify the different tasks considering the m first
interactions in users’ data, we made use of the random
forest algorithm (RF). The main idea behind this algo-
rithm is to apply the “divide and conquer” principle:
the data is sampled randomly in small parts (subsets)
and then used to grow a decision tree predictor within
each small data subset. We use RF, because of its abil-
ity to deal even with the small datasets. The decision
tree model is learned using the data from the user study
and is applied to recognize four different visual tasks
in real time applications. To recognize the intended
task, our system first observes the current user’s interac-
tions on the visual analysis tool. After the user has per-
formed three sequential interactions, the system applies
the learned model and attempts to classify the current
task. The advantage of using this data-driven approach
is that the patterns associated to the tasks are learned au-
tomatically (Section 3.2). Consequently, with each new
dataset and new user, new patterns are learned which
over time would improve the performance of the task
recognition algorithm. Once the task can be classified,
the system finally applies the four MC models and rec-
ommends the user the next analytical step.

The process of task guidance is challenging as it con-
sist of the two aforementioned parts (task recognition
and recommending the next analytical step). To tackle
this challenge and improve the results we considered a
hybrid approach consisting of RF and MC algorithms.

3.4. Visual guidance interface

Our visual analytics tool is primarily a rule-based
system which is built upon visual encoding rules and
perceptual guidelines [36, 37, 38, 39], and automati-
cally recommends a list of appropriate visualizations for
a given dataset. For the recommendations, the user first
uploads her dataset and selects the attributes (i.e., spec-
ification that can be measured, observed or logged such
as age, price, temperature) which should be visualized.
After this, the system defines a list with visual mappings,
valid for the selected data and presents these mappings
to the user as recommendations. A mapping is valid
only if there is a data type compatibility between the at-
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tributes and the visual components (e.g., axes) of a visu-
alization. The approach of our rule-based recommender
system is described in detail in our previous paper and is
beyond the scope of this paper. For further details please
refer to [8].

Once presented, the user can select any of the recom-
mended visualizations and use it for exploring and ana-
lyzing her data. This process is illustrated in Figure 1A
and B. When the system now recognizes the task the
user is currently working on, it recommends a sequence
of interactions that are presented on the UI as an arrow-
formed chain (in further text, path) with each arrow rep-
resenting a particular interaction (see Figure 1C). The
direction of the arrows describes the order of the inter-
actions that must next be performed to succeed with the
task. However, if there is more than one possible path, a
ranking algorithm ranks them based on how likely they
will be performed by the user as next and presents them
to the user in form of a list. When the user now clicks on
a path, she is provided with a preview of a visualization
that shows the final outcome of the path, recommended
interactions respectively (see Figure 1D). The user can
accept the preview by clicking on the recommended vi-
sualization (see Figure 1E). However, it is also possible
to select a single interaction within a path and consider
the visualization that illustrates the outcome of it. To
make a short recall, guidance is a dynamic process (i.e.,
user is included in the loop) that can be decomposed
into a series of actions or decisions [15], made not only
by the system but also by the user. Actions taken by
the user in the guidance process are of enormous impor-
tance since these promote user’s understanding and also
the generation of new knowledge about the unknown
dataset. Thus, the interactive exploration of the recom-
mended interactions enables the user to gather new in-
sights about the data and interpret them in the context of
the current task. It also paves the way for an in-depth
analysis of the various options for performing a partic-
ular task and thus fosters the user’s perception of the
relevance of that option.

4. Evaluation

In this section we investigate the performance of our
task-based visual analytics tool in generating recom-
mendations for a specific task. The quality of suggesting
tasks while observing user behavior may depend on a
number of different factors, including the complexity of
a task the user is currently working on, the available set
of visualizations and the supported visual operations. In
order to prepare measurements for observing this qual-
ity, we conducted a user study in which we collected
the initial data for training the models for our task-based

visual analytics tool. This section describes in detail (i)
the data source and the methods used to perform the user
study, and (ii) the evaluation of the task-recognition al-
gorithm.

4.1. User study

For the user study, we used the rule-based recom-
mender, without task-recognition and guidance, that in-
tegrates twelve interactive visualizations. Using the vi-
sualizations, the participants had to perform four indi-
vidual tasks each with three sub-tasks. The tasks re-
sulted from a real-live dataset about the CO2 emissions
in G20-Countries within the last 10 years. We defined
one task (with three sub-tasks) for each visual task cat-
egory (see Section 3.2). For instance, the first task was
”Which countries are represented in this dataset? Can
you recognize a pattern?” This task can be linked to the
high-level task definition ”gaining overview”, because
in order to succeed in it, one must first explore the vi-
sualizations (e.g., zoom out views), visually navigate
through the data, and finally identify the patterns (i.e.,
only G20-Countries are shown). With regard to Shnei-
derman [10], these are the steps to follow for gaining
overview about the data. For the remaining tasks, we
refer to the document.1

The participants had three minutes for the tasks 1&
2 and five minutes for the tasks 3&4. Once a task was
completed or the allotted time was consumed, the par-
ticipants had to submit their answers using a dialogue
provided on the user interface (UI). While a participant
worked on a task, every interaction on the UI was logged
and saved. The collected data have been used to train
the models for the task-based guided analytics. In the
training, we only used the data from participants who
provided the correct answer before the allotted time ex-
pired. Subjective feedback has been collected through
a post-task questionnaire consisting of a 10-point likert
NASA TLX2 scale covering six dimensions of workload
(mental demand, physical demand, temporal demand,
effort, frustration, perceived performance).

4.2. Task recognition quality

In the second part of our evaluation, we performed
an offline experiment to estimate the performance of
the task-based visual analytics tool in generating rec-
ommendations for a specific task. The performance of
the recommender highly depends on the accuracy of the
trained model for task-recognition. To this end, we used
the data from the user study and randomly split it into

1https://bit.ly/2RIbPwv
2https://humansystems.arc.nasa.gov/groups/tlx/

Page 1470



training and validation set performing five-fold cross
validation. We trained the classifier with the training
set and compared the generated recommendations (pre-
diction set) with the validation set. To report the ac-
curacy of the model, we used the confusion matrix and
presented the results of the classification outcomes [40].

4.3. Results and discussion

This section presents the results of the (1) user study
conducted to collect user data, and (2) offline evaluation
conducted to estimate the performance of the task-based
visual analytics tool.

4.3.1. User study: data elicitation The user study
was carried out with twenty participants (M=15, F=5),
ages 18-57. The users had experiences with visual- and
data analytics tools. Task 1 (incl. three sub-tasks) was
successfully completed by 5 participants, in 2 minutes
(m) and 40 seconds (s) and with 12.65 interactions. Task
2 was successfully completed by 15 participants, in 1m
30s and with 8.64 interactions. In a similar manner task
3 was successfully completed by 20 participants in 1m
and 50s and with 9.67 interactions. Finally, task 4 was
successfully completed by 18 participants, in 2m and
18s and with 11.19 interactions. Note that all reported
samples represent average values. The workload has
been estimated using the results of the NASA TLX ques-
tionnaire. The results have revealed low overall work-
load on all the tasks (mean below 50): (T1) µ = 26,
σ = 12.37, (T2) µ = 18.6, σ = 9.72, (T3) µ = 20,
σ = 9.71, and (T4) µ = 26, σ = 14.41.

In addition to basic behavior interactions collected
in the course of this study, the collected initial results
have also brought an important insight: the first task was
much more difficult to complete on time compared to
the other three tasks. We assume, this was caused by
the nature of the task (rather than its complexity), i.e.
the user had first to gain an overview of the data. Af-
ter gaining familiarity with the data, the users became
faster (less time and fewer interactions) and more suc-
cessful (although tasks 3&4 were more cognitively de-
manding). This is an important outcome for the behavior
and task recognition models. It suggests that the recog-
nition of the different tasks may require different han-
dling in terms of e.g., the number or type of interactions
per task. The relatively small quantity of the collected
data, however, prevented us from investigating this as-
sumption further and establishing appropriate statistical
inferences. This study thus needs a follow-up involving
more participants.

4.3.2. Task recognition quality To represent the
classification outcomes we used the confusion matrix
which is commonly used to represent the accuracy re-
sults of a classification model [40]. The confusion ma-
trix is illustrated in Figure 2. It can be observed on
examining the results that the trained model could cor-
rectly classify task 2 and task 3 but not task 1 and task 4
(default probability threshold is set to 0.50). To be more
accurate, task 1 has been classified as task 3 whereas
task 4 could not be classified at all. The misclassi-
fication of task 1 can be understood since both tasks
(1&3) were formulated in a very similar manner. To
give an example, task 1c was ”How many countries
have a GDP greater than 4 000 000 USD?”, whereas
task 3c was ”Is there a trend of increasing/decreasing
GDP value in a certain country from 2005-2015? If
yes, name these countries?”. In contrast, the formula-
tion of task 4 was too general compared to task 2 and
3 leading to a high variety of interpretation and inter-
actions by the participants (see Section 4.1). In a nut-
shell, the sub-tasks of task 4 were ”What is the distri-
bution of life expectancy/GDP/population per country
between 2005 and 2015?”. In summary it can be said
that while our task-based approach seems to be promis-
ing, we face some challenges in applying it. The major
challenge concerns the definition of the tasks we use to
train our classifier. An overly general description (i.e.,
overly high level of description) might mislead the user
and cause a variety of unrelated activities (i.e., analytical
steps) which would hinder the performance of the clas-
sifier. By contrast, if the tasks are too similar to each
other the same analytical steps may appear in multiple
tasks and bias the classifier. Another challenge concerns
the choice of the algorithm used. We did not evaluate
the performance of the random forest classifier against
a baseline algorithm, such as SVM and logistic regres-
sion, to assess which algorithm is more appropriate for
our purpose. Hence, this study needs a follow-up in-
volving different datasets, tasks and different algorithms
for task recognition to make more accurate statements
about the task recognition quality.

5. Conclusion and future work

Our proposed visual analytics tool guides the user
throughout a visual task by recommending the next anal-
ysis steps in the form of interactions. To do so, our tool
logs the current behavior of the user and tries to match it
to a set of interaction patterns derived from previous user
behaviors. These patterns are used to identify the im-
plicit task of the user and to recommend the next visual
interactions, which should help the user to carry out the
task. This work, however, is lacking in a thoroughgoing
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Figure 2. Confusion matrix showing the accuracy

results of the task-recognition model (trained with

random forest classifier).

investigation of the usability and usefulness of a guided
visual analytics tool. While we have made the hypothe-
sis that a task-based user guidance would positively in-
fluence the performance and experience of users, we did
not conduct an online user study to find out how peo-
ple would respond when working with such a tool. We
thus plan to conduct a user study in the future to evalu-
ate the value (significance) of our guided analytics tool
compared to our regular visual analytics tool which does
not assist the user in exploring the data.

It stands to reason that when guiding the user to-
wards a task, considering the different user preferences
(e.g., visual taste) or needs (e.g., knowledge gap, back-
ground, expertise) is paramount, because this helps us
to assess how much guidance is required by the cur-
rent user. Recent research has provided strong exper-
imental evidence supporting the practical applicability
of personalization in visual analytics processes [8, 41].
Although the current version of our guided visual an-
alytics tool does not address personalization- it only
uses a global user model, resulting from an empirical
user study, and ignores individual differences among
users 3.2)- it may substantially enhance the quality and
accuracy of the recommendations and thus the impact
of the guidance on user performance. The privacy and
security risks associated with collecting and processing
personal data, however, cannot be overestimated. In or-
der to make use of the power of personalization, we
will thus focus in the future on user preferences/needs
oriented user guidance, integrating privacy protection
techniques to fully protect the user’s data while gener-
ating high quality personalized recommendations that
are adapted to different user needs (e.g., knowledge-gap)

and preferences. This approach will build on the philos-
ophy of considering local information of user interaction
with the system and using them to retrain the behavior
models. Extending beyond that, we plan to perform a
crowd-sourced study with more tasks for each category
(gaining overview, analyzing outliers (anomalies), ana-
lyzing trends and comparing variable distribution), dif-
ferent datasets and longer sessions to collect a substan-
tial number of real user data to train and evaluate the
algorithms. Another purpose of this study will be to val-
idate and justify the representativeness of the given tasks
to the abstract task categories. To do this, participants
will be asked to assign each question to one of the four
categories after completing the task, without first stating
to which category the task was originally assigned.

In the context of guidance, it is also crucial to define
correct timing of guidance so that the analysis flow will
not be interrupted [42]. As highlighted by Ceneda et
al. [15] considering e.g., the long stall times or absence
might not be enough to assess if guidance is needed.
Revisiting previously seen states [43] or performing a
non-systematic analysis [44], however, may indicate sit-
uations in which guidance might be appropriate/needed.
Hence, in our future work we will use heuristics to as-
sess the degree and the optimal timing of user guid-
ance [14] and thus avoid distraction and decrease of user
engagement in the analysis process.
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