Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Multimodal Epidemic Visual Analytics and Modeling

Seokyeon Kim
Sejong University
ksy0586 @sju.ac.kr

Abstract

The risk of infectious disease increases due
to various factors, including the dense population,
development of various transportations, urbanization,
and abnormal weather conditions. Since the speed of
epidemic spread is fast, it is necessary to respond
quickly to prevent the high fatality rate. Therefore, a fast
search for the highly accurate spreading model has to
be focused on the proper analysis of disease spreading.
There have been many studies to understand the disease
spreading, and the epidemic model is often used to
analyze and predict the spread of infectious disease.
However, it is limited to apply the epidemic model
for the spread analysis because it captures spreading
changes only within the defined area. In this paper,
we propose a framework for the disease spreading
simulation with multimodal factors in the epidemic
model and networks of possible spread routes. Our
system provides an interactive simulation environment
with the interregional disease spreading according to
various spread parameters. Moreover, to understand the
spreading directions, we extract vector fields over time
and visualize the vector fields with the fatality of the
disease. Therefore, users can understand the disease
spreading phenomena and obtain appropriate models
through our framework.

1. Introduction

The human lifespan has been increased as medicine
develops. However, the risk of disease also increases at
the same time since humans are more exposed to many
different types of infectious diseases. The pandemic is
transmitted between humans, and as the longevity and
population density increase, the risk of the epidemic
spared has increased. Moreover, the new extraordinary
deleterious disease has been discovered and their
influence on humans is considerably threatening.

The WHO manages six pandemic phases as
follows [1]. In phase 1, only animal-to-animal infections
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are reported and do not cause human infection. In
phase 2 humans are infected by wild animals, which
is considered as a potential pandemic threat. In phase
3, animal-to-human transmission occurs, creating small
clusters of infected areas. In phase 4, human-to-human
transmission occurs, which causes community-level
outbreaks. Phase 5 refers to the imminent situation of
a global pandemic, spreading to at least two of the
WHO regions divided into six regions. Phase 6 is a
situation where another region is infected, indicating
that an pandemic is ongoing.

Animal-to-animal transmission or human-to-animal
infection only spreads to a small extent. However, in
the pandemic phase 4 and above, human-to-human
transmission occurs and the radius of spread increases
with the size of the community. To understand the
spreading patterns of newly found disease, there have
been many studies on various factors that cause the
disease spreading. Since the speed of epidemic spread
is fast, it is necessary to react promptly to avoid the
uncontrollable disease spread. In previous years, most
of the epidemic models were simulated under certain
conditions within limited areas.

As technologies for the data collection and storage
advance, lots of data are available for the research
purpose. Especially, the information related to disease,
including patients and hospitals, is available for the use
under privacy policies. Therefore, it is possible to model
and simulate the infectious disease spreading based on
the actual data. On the other hand, many epidemic
models are representing actual disease spreading.
However, it is not easy to find a proper model with
pertinent parameters and predict spreading patterns
for emergent cases. Although experienced experts
investigate an epidemic outbreak, it is still difficult to
estimate the disease spreading without any professional
support due to a large amount of data. Thus, it is
necessary to develop a suitable system simulating
disease spreading and discovering appropriate epidemic
models for immediate emergency responses.

In this paper, we present an interactive multimodal
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Figure 1. Epidemic VA system. (a) presents our system; (1)-(VI) represent the control panels, simulation map
view, graph view, detail information view, and history view, respectively. (b)-(d) visualize settings of the
protection model, additional roads networks, and area grouping, respectively.

epidemic visual analytics and modeling system to
analyze the epidemic situations. Our system consists
of an epidemic simulation and epidemic modeling.
The epidemic simulation utilizes actual environmental
factors, including population, transportation, weather
condition, transmission rate, and antiviral supplies,
to simulate disease spreading patterns. On the other
hand, epidemic modeling provides an optimal disease
spreading model based on the patient and hospital data
to predict the risk and disease spreading patterns.

For the epidemic modeling, our system loads
temporal infectious rates and performs optimizations
to estimate the parameters of epidemic models.
Besides, analysts can add environment conditions to
the optimization as well as the simulation of the
future epidemic patterns. Our system enables analysts
to simulate possible cases with different conditions
interactively and to model current epidemic patterns.

The major contributions of our work are as follows:

e We have developed an interactive epidemic
simulation framework to analyze the infectious
disease spreading.

e Interactive condition setting is designed
intuitively for the better usability of the epidemic
simulation.

* Major epidemic flow patterns are extracted and
visualized to estimate the spreading patterns.

* Epidemic model is approximated based on the
actual disease and infectious information to
characterize disease for the automated prediction.

2. Related Work

The epidemic model has been developed as
a simplified model to understand disease spread.
Traditional epidemic models [2, 3] consider
population and interactions between individuals.
Kermack-McKendrick model [4] is the first model
that provides a mathematical description of the
kinetic transmission of an epidemic in an unstructured
population. Webb [S5] proposes and analyzes a model
in a one-dimensional bounded space. The random
diffusion governs spatial mobility with coefficients k
and k5 for the susceptible and infected classes. May et
al. [6] introduce SIR model and a fixed population is
applied with three different variables; S(t):susceptible,
I(t):infected, and R(¢):recovered. Various models
are derived from the SIR model, such as SI and
SIS [7], SEIR [8], modified SIR [9, 10], MSIR [11],
and MSEIR [12]. However, these epidemic models
are designed to estimate parameters for the diffusion
patterns after disease outbreaks without considering the
spatial analysis of disease spreading.

In addition to the epidemic models, various disease
simulation research has been proposed. FluAid [13] is
provided by the United States Department of Health and
Human Services to assist state and local level planners
in preparing for the next influenza pandemic. Carley et
al. [14] propose a BioWar system with an agent-based
model to present disease diffusion that encompasses
certain exogenous factors, such as media information,
geographic information, and weather information with
social contact network and diffusion information. Chao
et al. [15] present FIuTE also with an agent-based model
to simulate the disease spread across large populations.
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Figure 2. System overview. (a) presents system flow and controllable parameters. (b) is our visual encoding.

Mniszewski et al. [16] have developed EpiSims, which
applies the regional population by an agent-based model
and constructs social contact network from daily social
activities. Balcan et al. [17] present an effect of mobility
networks for the spatial spreading of infectious disease,
but the mobility networks are connections between
two destinations, not actual geographical networks.
Vaccination [18] and school closure [19] are applied
in the HINI influenza simulation to confirm their
effectiveness in the mitigation of an influenza epidemic.

There has been lots of research on visual analytics
for various data analysis. The primary purpose of the
work is to synthesize information and derive insight
from data [20]. Visual analytics enables users to analyze
data efficiently. In the disease simulation domain,
Guo [21] proposes a visual analytics approach to
discover spatial patterns in pandemic data. In order to
design and plan more effective containment strategies
before pandemic diseases happen, Guo presents a
new graph partitioning method that consists of a
graph clustering, linear ordering, and matrix-based
visualization. Ramanathan et al. [22] propose a
verification method for the epidemiological model with
a visual analytics approach. Afzal et al. [23] propose
a visual analytics decision support environment for
epidemic modeling and response evaluation.

AnyLogic [24] is a simulation tool that supports all
of the most common simulation methodologies, such
as System Dynamics, Process-centric, and Agent-Based
modeling. STEM [25] is a framework and development
tool designed to help scientists create and use spatial
and temporal models of infectious disease. FRED [26]
has been designed as a flexible, modular, open-source
framework for epidemic modeling. GLEAMVviz [27] has
been developed to explore a more realistic epidemic
spreading at a global scale. The system utilizes the
global transportation network to simulate the disease
spreading globally. Bryan et al. [28] present predictive
analytics for spatiotemporal epidemic simulations with
an emulator workflow and visual analytics interfaces.

3. Design Goals

There are a few systems for the disease spreading
analysis, but they support only limited functionalities
and visual representations. We have designed our system
based on the following design goals for the system
capabilities and visualizations:

e The system should be able to express various
information at once. Figure 1 (a)-(IIl) shows the
visualization map view for simulation. (IV) presents
the graphs of infections, and (V) presents a detailed
information for the selected hextile. Figure 2 (b) shows
our visual encoding on the hextile. The total number
of infections is encoded in the height of the cell. The
spreading phase and infection rate are encoded in the
inner cell color. The red color presents the infection
diffusion phase, whereas the blue color indicates the
recovery phase. In order to reveal the spreading
directions, we represent the spreading directions.

e The system should be able to compare different
simulation outputs. We have designed a history view in
order to provide multiple simulation results in Figure 1
(a)-(VI). Once the simulation is completed, the infection
rate graphs are moved to the history view to compare the
multiple simulation results quickly.

* An appropriate action should be taken based on
the disease spread simulation. A protection plan has
been designed to provide suitable actions, including
an isolation plan and a vaccination plan. Our system
supports the protection plan simulation on the fly.

e The system should be able to show the infection
rates in specific regions. Disease spreading patterns have
geographical characteristics. Our system allows users
to group interesting regions, and the system shows the
infection rate changes for each group. The black graph
in Figure 1 (IV) represents the total infection rate in the
entire region, and color-graphs represent the infection
rate of each group that classified by analyst.

* The system should be capable of configuring various
networks. Our system uses the actual road networks
for more accurate predictive disease spreading, and we
obtain the actual network from the online map service.
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Table 1. Comparison of epidemic analytics systems
among @ GLEAMviz, @ EpiSIM, ® FRED, ® STEM,
and ® Anylogic. - O: Fully supported, A: Partially
supported, X: Not supported

®|@|®| ® | ® | Ours
Epidemicmodel | O | O | O | O | O (0]
Realroadnetwork | O | X | X | X | X O
Airline network A X | X | A X (0]
Disease direction | X | X | X | X | X (0]
Protection plan X|A|X|A|X| O

4. System Overview

Our system provides an interactive multimodal
epidemic visual analytics and modeling framework
allowing users to simulate and model disease spreading
patterns. The system flow is represented in Figure 2
(a). The system consists of Data pre-processing, model
settings, simulation, and optimal model fitting.

The target area is divided into hextiles using grid
geographical data with a user-defined hextile size. In
the pre-processing step, the user can apply additional
information, including road networks, airline networks,
and weather conditions. After applying a geographical
setting, the epidemic model and spreading model are
applied. When the user clicks a certain hextile, the
selected hextile is infected, and the disease spreading
starts. The protection plan provides isolation, 60%
vaccination, and 30% vaccination. The optimal model
fitting is the way to analyze disease from the spreading
data. Since the combination of epidemic models and
network structures is too complex and heuristic to set
optimal epidemic parameters, our optimal model fitting
enables the users to discover the optimal parameters in
the epidemic and spreading models.

Table 1 presents the functional comparison of
existing epidemic analytics systems. It is challenging
to analyze the disease spreading patterns using the
epidemic model only due to the complexity of epidemic
patterns. Some research applies an additional network
(GLEAMyviz and STEM) and a protection plan (EpiSIM
and STEM) to complement this limitation. To analyze
the disease spreading pattern in a visual analytics
system, the system should allow the users to apply
complex networks, utilize simple visualization and
transmit information efficiently for the analysis, and
enable various parameters with feedback interactions.
Most epidemic analysis systems partially contain
these capabilities. However, it is difficult to analyze
the spreading patterns without full functionalities.
Our system provides all features needed for the
comprehensive disease spreading analysis.

(d)

I Grid population data I

I Additional Network I

Figure 3. Geometric settings. (a) presents grids of
grid area data. (b) is the hextile mapping after grid
mapping. The population map is applied in (c). Then,
the user can apply additional network as shown in (d).

S. Models for Disease Analysis

The real epidemic is affected by various
conditions, including scientifically unknown factors.
Epidemiologists investigate disease outbreak, disease
spread, monitoring, and treatments. However, most
research is focused only on discovering disease
characteristics, disease models, or treatment methods
separately. Even the research on disease spreading
does not provide enough insight due to the ambiguous
simulation systems. In this section, we propose a disease
spreading model combining the spreading model and
a pseudo-agent-based model as an extension to the
epidemic model.

5.1. Geometric Settings

Many studies of geometric analysis use tessellations
with small polygons, such as triangles, rectangles, and
circles. Despite many types of polygons, we use the
hexagonal polygons in our system. The advantages of
the hextile mapping are as follows: 1)it is possible
to cover the entire map without any empty space,
whereas, other geometry mappings, such as circle and
octagon, generate uncovered empty spaces; 2)there are
many adjacent neighbors, and it is possible to transmit
the disease toward various directions compared to the
triangle and rectangle.

We apply the geographical information with the
grid population and the grid area data produced by
the SEDEC(Socioeconomic data and application center)
data of NASA. The grid population and area data are
formatted in the regular grid with fixed-size cells, and
each cell has latitude and longitude information at the
upper-left point, as shown in Figure 3 (a). When the user
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selects an area, our system calculates the latitudes and
longitudes that cover the selected area. Then, the system
generates hextiles with the user-defined hextile size, as
presented in Figure 3 (b). The population information
for each hextile is computed utilizing the grid population
and area data from SEDEC in Figure 3 (c). After
applying geographical information, we connect the
adjacent network in the data structure. Once the hextile
map is built for a region, we apply the additional
network conditions, as shown in Figure 3 (d).

5.2. Epidemic Model

Among the studies on the disease spread analysis,
Bernoulli proposed a mathematical model for
inoculating against smallpox [29] in 1760, which
preceded modern epidemiology. The most famous
epidemic model is SIR proposed by Kermack and
McKendrick [4] in 1927. People in the area are
classified as susceptible, infected, and recovered. SIR
model is described as a differential equation in the
following. 4% = —3. S . 1,4 = 3. 5.1 —~.1,

‘Z—IE = v - I, where 3 is the parameter controlling how
often a susceptible-infected contact results in a new
exposure and +y is the rate of moving into the recovered
phase from the infected status. SEIR model has an
additional parameter, exposed or latent period of the
disease (E(t)), on top of the SIR model. The SEIR

: . dS _
model is presented as follows: 5> = B—(3-S-I—p-S,

C(%:B~S-I—€-E—M-E,%:e~E—'y-I—M-I,

‘% = -1 —p- R, where € is the rate at which an exposed
person becomes infected and p is the natural mortality
rate unrelated to the disease. MSEIR model includes
a natural-born passive immunity as an additional
parameter, M (t), on top of SEIR model. MSEIR model
is formulated as follows: 24 = B —§ - M — pu- M,

dt —
% =0-M—-pB-S-1—pu-S, where § indicates
the average temporary immunity period. %, %, and

% are same as ones in SEIR model. Our system

utilizes these three epidemic models for simulation and
modeling of disease diffusion. The epidemic models are
computed for each hextile cell containing the population
information and the geographical information.

5.3. Spreading Model

The epidemic model presented in the previous
section is a mathematical model under certain ideal
conditions, whereas many other factors control
the real epidemic. When an outbreak of a new
unknown pandemic occurs, researchers do not have

Table 2. Controllable parameters in our models

Parameters | Description
Geometry | Hextile Geographical
size aggregation level
Selectable epidemic model
Types

using SIR, SEIR, MSEIR

I} Contact rate

Epidemic | 1/v Average infectious period

model /e Average latent period

" Average death rate

) Average immunity period
Spreadin . weight parameters

pr & Weights gntp

weight for environments

Road The additional information
Network . . .

Airline for infectious path
Protection | Isolation/ The government actions
plan vaccination | to prevent the spread

any information on scientific attributes. Although
parameters of a new model are complicated, there
is a reasonably simple regulation for the disease
propagation, which is affected by the adjacent areas
containing infected people. In this work, we propose a
spreading model to determine the diffusion rules and
probabilities.

We denote the current area as ¢ and adjacent area as
7. Given time ¢, the infection degree in the current area
d(; 1) is determined as follows:

iy =2 Feprr (1) - (dai-1) + 564-1)))

Fgpr is a certain epidemic model, such as SIR,
SEIR, and MSEIR as presented in Section 5.2. The
infection in the current area is related to the disease
spreading in the current area at the previous time,
d(;,t—1), and the disease spreading from an adjacent area
at the previous time, s(; ;1) Also the inherited disease
characteristics, (i) of a disease affect the infection
degree. The characteristic of the inherited disease is
defined as follows: c(; 1) = Tcond * Weond(i,t)-

where 7.,,q 15 a user-defined local rate in a specific
area, and w¢,pq 18 a weight for the spreading condition.
Generally, a disease is diffused via a specific medium,
such as mite, mosquito, and virus. When these kinds
of medium exist densely, the weight, wc.,q4, becomes
large. As another condition, if climate conditions, such
as temperature and humidity, are suitable, a disease is
diffused faster. w.,,q 1s related to the disease condition
associated with environmental factors for the spread of
disease.

The weight of the the spreading is defined as a
multiplication of a probability and spreading weights
from the adjacent areas as presented in the following:

(i) = 2?21 Pij) - Ay - (et i) - Wnet ey +

Tvec (i) * Woec(j,t) )
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Figure 4. Comparison of the disease diffusion
patterns for the isolation plan only with the additional
vaccination plan.

where 7 is an adjacent area associated with spatial
adjacency and discursive network connections, such as
road, subway, and airline network. P; ;) is a probability
of the user-defined parameters. r,.; and r,.. are the
user-defined local rates for the network weight, wy,¢,
and the vector field weight, w,.., respectively. wye; 1S
set for each network since each network characteristic is
different. For example, a road network has a speed limit,
a subway network has hourly usages, and an airline
network has departure and destination information. w,e.
refers to the vector field information, such as the wind
information and the infected carrier information.

The system performs a simulation to predict the
disease spreading once the model is determined.
The dispersion direction is defined by combining the
parameters in the adjacent cells and additional network
settings. Assuming that the local cell and adjacent
cell are indexed as ¢ and j, respectively, the diffusing
direction is obtained by the probability of transmission,
P jy, as presented in the following:

P(i,j) = %'Zle

o 2 —(H,; — 2

g SIS
w is the weight for each transmission parameter,
n(,;) is the sum of population in (i,j), a is the
population level, W;_,; and L;_,; represent the wind
vector and the location vector, respectively. (7; —
Rr) and (H; — Rp) are the results by subtracting
the reference values from the measured values. In
other words, these represent appropriate degrees of
temperature and humidity in ¢ area. The direction in a
hextile is computed as the average diffusion directions
for the neighbors transmitting to the hextile. The
diffusion flow fields vary along the simulation time, and
users can analyze how the disease spreads in the space.
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Figure 5. The optimal network model.

5.4. Pseudo-agent-based Model

The epidemic model has an assumption that there
is no disease spread and population movement out of
the analysis area. In order to develop more flexible
simulations, our system combines the spreading model
with an agent-based model. The original agent-based
model consists of dynamically interacting rule-based
agents, and each agent indicates each person in the
society commonly. However, it is difficult to run
the original agent-based model due to the prodigious
computational power requirement. To overcome this
limitation, our system utilizes a pseudo-agent-based
model that can be applied to the hextile-level agent
instead of the people-level agent. The population in
each hextile is computed by the population exchange
between neighboring hextiles in every system clock.
This interchange exerts stochastic effects on the
spreading factor, such as population, wind, temperature,
and humidity. Due to the population exchange,
the pseudo-agent-based model can determine the
spreading patterns more appropriately by considering
the population movements that the traditional spreading
model cannot accommodate.

5.5. Diffusion Model and Additional Network

Diffusion model parameters and additional network
parameters can be manipulated on the fly. Table 2 shows
a summary of the adjustable parameters. The diffusion
model parameters consist of epidemic model parameters
and spreading model parameters. In the case of the
epidemic model, the epidemic model parameters can
be adjusted by pressing the corresponding epidemic
tab. Spreading parameters affect disease diffusion
probability and velocity. Every weight of spreading
parameters are considered as the normalized rate that
has a range (0,1). The additional network consists of the
flight network and the road network. In the case of the
road network, the real road information is obtained from
the web-based map API, such as google maps API and
mapbox APIL
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Figure 6. The result of the optimal modeling using a synthetic data.

5.6. Protection Plan

Epidemic model and spreading model can be more
realistic to represent the disease diffusion patterns by
removing the disease spread risk, such as quarantine,
vaccination, and isolated area. In order to reflect these
disease risk management, we add a protection model
to the simulation. Our system provides two different
protection plans, isolation, and vaccination. To add the
protection plans, users select a protection type then
drag the mouse on the map to select the hextiles
for the protection. An example of our protection plan
simulation is shown in Figure 4. The isolation is
marked as purple hexagons, and any disease can not be
transmitted through the isolated hexagons, as seen in (a).
The isolation is to prevent the disease from spreading
by regional blockades. The blockade regions have no
network to infiltrate the disease to their neighbors, which
indicates that w,, is set to zero. The other protection
plan is to vaccinate regions, which increases the disease
resistance and recovery rate. The vaccination marked as
orange hexagons in Figure 4 (b) can also be applied by
mouse dragging on the map, and the ratio of vaccinated
people can be adjusted. We use 60% and 30% of
vaccination rates. The effect of the vaccination is to
mitigate disease infection and transmission. Since we
apply the incubation period and recovery ratio, if the
higher vaccination ratio is provided, the entire people in
the vaccinated areas could be recovered entirely quickly
before they transmit the disease to the neighbors, as seen
in Figure 4 (b). When the vaccination plan is activated
in a region, [ decreases, and -y increases in the epidemic
models introduced in Section 5.2. As shown in Figure 4,
the diffusion through the vaccinated areas becomes slow
or null in the end; therefore, our protection plans are
adequate to slow down the disease diffusion.

5.7. Optimal Modeling

Researchers publish the epidemic parameters for
the known disease after studying the diffusion patterns.
The parameters can be easily applied to the simulation
for the future diffusion patterns. However, when a
new disease outbreaks, it is not easy to discover
the epidemic parameters since there are so many
complex factors. To aid researchers, we develop an
algorithm for optimal modeling based on the data
collected from patients and hospitals. Our optimal
modeling algorithms adjust to the epidemic model
and the network model. The optimal epidemic model
allows us to obtain epidemic parameters, including
I, R, 5, and . The optimal network model is
designed to discover additional infection carriers, such
as wind, car, and airplane. In the optimal epidemic
model, our system, first, reads the data and computes
references of infection ratio and recover ratio as
Infrey and Recvpes from Igq:q/Population and
Rata/Population, respectively. Similarly, infection
and recover ratio of current hextile are calculated
as Inf.,, and Recvqy,. Then, our system compared
between reference and current. Our system increases
and decreases of I and R based on the difference between
the reference and current parameters. Optimal training
is to adjust the parameters in the epidemic model by
comparing it with the infection time, degree, and area
in the given data. For example, the S and v in SIR
model are adjusted for the appropriate values according
to the data fitting. If the overestimate or underestimate
of infection area occurs, the system adjusts the network
parameter. For example, when the infection rate does
not vary during the several time steps in the expected
infection region, the system proceeds to set the infection
in the region during the simulation.
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Figure 5 illustrates our optimal network model from
time ¢ to ¢t 4 2. The orange hextile in Figure 5 (a) is the
first seed area where the disease diffusion starts, and the
mint color hextile indicates the infected area marked in
the input data. At the time step ¢ + 1, the disease spreads
to the adjacent areas from the seed area by following the
diffusing algorithm introduced in Section 5.3. The red
color hextile represents the infected area, whereas, the
purple color hextile is the infection candidate area. The
infection candidate areas indicate the tiles infected at the
time step ¢ + 1 in the data. If the infection candidate
tiles are not infected during several time steps, these
tiles are classified as adjustment candidate hextiles. The
adjustment candidate tiles are marked as the yellow
color tile in Figure 5 (c). The infection candidate hextiles
at t+2 are marked as the same way as mentioned before.
In this way, the simulation is corrected and adjusted with
the optimal network model by comparing the actual data
and simulation results. We apply the optimal modeling
to the synthetic data in order to validate our technique.
The synthetic data has complicated characteristics since
the data is obtained with SEIR model with various
additional network parameters and a few protection
plans. We have tested the optimal model with SIR
model. Figure 6 presents the result from the optimal
modeling. The red graph is the reference infection
ratio in the data, and the black graph is the result of
our optimal modeling. A set of Figure 6 (a) present
the simulation results without the optimal modeling.
Figure 6 (b) presents the simulation results with the
optimal modeling. The different dominant result is
found in the infection time. Disease dispersion time
in (b) is faster than in (a). Another difference is seen
in the infection rate over time. Our optimal modeling
provides more accurate simulation results compared to
the original data.

6. Evaluation and Discussion

We have tested the system on Intel Core i7-4790
with 16GB RAM and NVidia GeForce GTX 960. Our
epidemic simulation and modeling are computed and
visualized in real-time, and user interactions can be
applied on the fly during the simulation. We utilize the
map information for the road network using Mapbox
API. For the hextile interaction, we create the box
collider and apply the raycasting algorithm. When the
mouse interaction occurs, the system checks the box
collider using the raycasting. Our system uses a 2D
list type data structure containing location, population,
epidemic model parameters, adjacent cell list, infection
state, dispersion direction, ratio, and weight. In the
following sections, we present two different simulations
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Figure 7. The result of MERS disease analysis.

to evaluate our system and algorithm. We apply our
technique to the real statistical data in MERS and FMD.

6.1. MERS Disease Analysis

The respiratory disease, MERS, first confirmed on
May 20, 2015, in South Korea, was brought into the
country by a person who visited the Middle East, and
MERS resulted in 186 confirmed cases and 38 deaths
until January 26, 2016. More than 70 cases have been
traced back to the hospital. It is believed that the
patients picked up the virus from an infected person
who waited for days in various parts of the emergency
ward, potentially exposing the virus to an estimated 900
staff, patients, and visitors. Korea immediately isolated
the confirmed patient and associated persons to prevent
the spread of infection [30]. We analyze the disease
diffusion with the MERS data using our optimal model
to approximate epidemic parameters. Then, we apply
the estimated parameters to another region in order
to predict disease diffusion. When a certain unknown
disease occurs, this analysis helps the analysts predict
disease dispersion quickly and determine proper actions
to prevent the disease spread. Figure 7 (a) shows the
number of infected patients in a region of Pyeongtack
between May 20 and 26, 2015. Figure 7 (b) presents
the number of patients infected in a region of Seoul
between June 4 and 10, 2015. First, we cut off the road
network using the isolation protection plan in order to
make isolate condition. We then let our system learn the
epidemic parameters using our optimal epidemic model
with the data in the region of Pyeongtack. We simulated
our model by setting the infected seed in the region
of Seoul. Figure 7 (c) presents the infection pattern
using our optimal epidemic model. Figure 7 (d) presents
the infection patterns in the region of Seoul using the
parameters obtained from the cases in the region of
Pyeongtaek. Although the infection rates seem slightly
different between the real data and simulation results
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due to the various other factors that we do not consider
in our model, the simulation results are very similar
to the original data. This indicates that our model can
capture the disease properties as the parameters and the
simulations are correctly computed to represent the real
data.

6.2. Foot and Mouth Disease Analysis

Foot-and-mouth disease or hoof-and-mouth disease
(Aphthae epizootic) is an infectious and sometimes
fatal viral disease that affects cloven-hoofed animals.
Foot-and-mouth disease (FMD) has severe implications
for animal farming. It is highly infectious and can be
spread by infected animals through aerosols, through
contact with contaminated farming equipment, vehicles,
clothing, or feed by domestic and wild predators [31].
Since the spreading occurs dominantly along with the
vehicle and human movements, we apply the real
road network to disease-spreading simulations. We
predict the disease dispersion when there are infection
carriers on the road and, then, we simulate the suitable
protection plans to prevent the disease from spreading.
To evaluate the road network model and the protection
plans, we used the FMD data in Andong, South Korea,
between November 28 and December 4, 2010. The
data consists of infected time, location information,
livestock information, and farm size. The total number
of foot-and-mouth disease cases is 38. First, we apply
the filter for cattle farms with more than 4000 in order
to sample events. Figure 8 (a) shows the map with three
large cattle farms. In order to analyze the FMD data,
we apply road networks (yellow lines), as shown in
Figure 8 (a). Then, we set the disease seed in the farm (I)
and simulate the disease spreading model. Figure 8 (b) is
the simulation result with the protection plan to prevent
further diffusion. Figure 8 (c) is the simulation result
indicating that FMD mostly spreads along with the road
networks. The number of FMD cases occurring during
the simulation is 27, which is 71.05% out of total cases
along the path. FMD outbreaks are found in the farm (I)
on November 28, in the farm (II) on December 1, and in
the farm (IIT) on December 7. In our simulation, FMD is
observed in the farm (I) at the time step 10, and FMD
reached the farm (III) at the time step 24. The temporal
and spatial spreading ratios are similar between the real
data and the simulation results. This indicates that our
model can well predict the disease spreading spatially
and temporally.

7. Conclusion

In this paper, we have proposed an interactive
multimodal epidemic visual analytics and modeling

@ ®)
.0 ot

b os! 2% : 7:
« ()

Isolation Plan Other Infected Data Points

FMD Flow

Figure 8. The result of Foot and Mouth Disease
(FMD) analysis.

system. To improve the conventional epidemic model,
we have defined a spreading model and a protection
model, and these models were incorporated with the
epidemic model. The spreading model was developed
with environmental conditions, such as population,
transportation, weather condition, and transmission rate.
The protection model was used to isolate or vaccinate
in certain areas. Our system has been designed as
an interactive tool for the simulation and modeling
the disease diffusion based on data. To evaluate our
development, we apply real statistical data, MERS and
FMD, in the system. However, our system has some
limitations. In order to apply the optimal model, a
pre-processing, such as data conversion, is required
since most of the data are geo-located as districts
instead of exact latitude and longitude. This limitation
hinders the ease of system usage. We plan to implement
an automatic data load module converting districts to
geographic coordinates. Since we use random numbers
in the disease spreading algorithm, the slightly different
results are obtained sometimes. We are currently
developing a web-based system to share our work.
We plan to add the COVID-19 dataset to our web
system. As future work, we will study the uncertainty
visualization for the simulation results or apply Monte
Carlo simulation for the spreading. Currently, the
optimal parameter setting focuses only on the disease
spreading speed; therefore, we plan to develop an
algorithm for the optimal parameters to extract the
network or vector field without additional inputs.
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