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Abstract 
 
When conducting direct marketing activities, 

companies strive to know whom to target with a 
marketing incentive to maximize the campaign effect. 
For example, which customer should receive churn 
prevention incentive to minimize overall churn rate? 
Uplift modeling is a promising approach to answer such 
a question. It allows to separate customers who would 
likely react positively to a treatment from those who 
would remain neutral or even react negatively. 
However, while different uplift approaches have been 
proposed, they usually suffer from high volatility and 
their performance often depends largely on data set and 
application context. Thus, it is difficult for practitioners 
and researchers to apply uplift modeling. To overcome 
these problems, we propose a weighted ensemble of 
different uplift modeling approaches to reduce volatility 
and improve robustness. We evaluate the novel 
approach against single uplift modeling approaches on 
multiple data sets and find that the ensemble is indeed 
more robust. 
 
 
1. Introduction  
 

Direct marketing refers to marketing activities that 
are tailored to an individual recipient, as opposed to 
mass marketing, which targets larger groups with the 
same activity [2]. A central goal in direct marketing is 
to optimize the overall performance of marketing 
activities, that is, maximizing the positive behavioral 
change (e.g., click-through, conversion, sales, non-
churn) from all individual marketing activities and 
reducing their adverse effects on recipients’ behavior 
(e.g. scattering loss, churn) [15]. This applies to digital 
marketing activities, such as online or email 
advertisements, related product offerings in e-
commerce, cross- or up-selling offers, as well as to 
analog marketing activities, such as individual print 
mailings or door-to-door offerings. 

Uplift modeling particularly aims at using data and 
predictive models to target the right individuals for a 
marketing activity in order to improve the overall 
marketing performance. More generally, uplift 
modeling estimates the differential effect of a treatment 
on a specific behavior of recipients, that is, the change 
in probability for a recipient to exhibit a specific 
behavior, that is caused by the treatment [14]. Thus, 
uplift modeling can identify those individuals who are 
likely to respond in the desired direction if targeted with 
a treatment (such as, a marketing activity), but unlikely 
to respond otherwise or even respond negatively [17].  

Three general approaches have been proposed in the 
uplift modeling literature, namely, two-model approach, 
class transformation approach, and direct uplift 
approach [13]. While each of these approaches has been 
successfully demonstrated in some cases, literature 
disagrees about which approach performs best [7, 17]. 
For example, while Radcliffe and Surry [21] claim that 
the two-model approach is rarely working well for real-
world problems, the analysis by Gubela et al. [12] 
slightly favors the two-model approach, though no 
approach is found to be generally superior over the 
others. Devriendt et al. [7] argue for the direct uplift 
approach while at the same time acknowledging its high 
volatility in performance across various data sets. In 
general, researchers agree that uplift modeling suffers 
from high volatility in terms of prediction performance 
across different data sets, but also across different cross-
validation folds of the same data set [1, 7, 12]. 
Moreover, the performance of each approach depends 
on parameters such as the size of the data set, the relative 
sizes of treatment and control groups, or the treatment 
ratio [8, 12, 19]. These problems make it extremely 
difficult to generalize the performance of different uplift 
models, leading some authors to the conclusion that 
there is no “single method that works the best for all data 
sets” [17]. 

One common technique to reduce error in prediction 
performance is to use an ensemble, a combination of 
multiple algorithms. Ensembles are considered to solve 
a plethora of challenges because of their premise to 
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compensate the error of a single algorithm by using 
multiple algorithms [24]. Thus, we propose to combine 
the three uplift modeling approaches into one, weighted 
ensemble. Subsequently, this study strives to address the 
following research question: 

RQ: Can the volatility in uplift prediction 
performance be reduced by using an ensemble of 
different uplift approaches? 

The remainder is organized as follows. We first 
describe related work in section 2. The research 
methodology, including the proposed method, data and 
metrics are presented in section 3. Results are shown in 
section 4 while section 5 contains the discussion. 
Section 6 concludes this paper with limitations, future 
work, and implications. 
 
2. Related Work  
 

We review relevant literature with respect to, first, 
the approaches used in the uplift modeling context and 
their respective advantages and disadvantages, second, 
the problem of volatility of prediction performance for 
uplift modeling in general and third, ensemble learning. 
 
2.1. Uplift Modeling 
 

Despite its practical relevance for researchers and 
practitioners in marketing, uplift modeling has yet 
received rather little attention [28]. Typically, marketing 
campaigns are based on traditional response modeling 
[6], although the success of uplift modeling has been 
shown several times [22, 26]. 

Uplift modeling was introduced by Radcliffe [20] in 
1999 under the term ‘differential response analysis’ and 
ever since, various terms were used instead, such as, 
‘uplift modeling’, ‘true lift modeling’, or ‘incremental 
value modeling’ [7]. Uplift modeling differs from 
traditional response modeling in that it models the 
change in response behavior that can be attributed to the 
treatment, while traditional response modeling models 
the ‘gross’ response behavior when the treatment is 
applied, including response caused by the treatment as 
well as auto-response. 

The fundamental problem with estimating the causal 
effect of the treatment is that usually an individual can 
only be either treated or not treated and, thus, the 
treatment-induced behavior change cannot be observed 
within one individual. To overcome this problem, uplift 
modeling uses data from randomized controlled 
experiments in which the population under study has 
been split into two different subpopulations, one which 

 
1 In the remainder we will use the term uplift instead of 
heterogeneous treatment effect. Note that also other 

is subject to the treatment (e.g., marketing activity) and 
another one which is not subject to any treatment. 
Groups are usually referred to as treatment group and 
control group, respectively, and the latter serves as the 
baseline for response behavior against which the 
behavior in the treatment group is evaluated [22]. The 
randomized controlled experiment is not only used to 
calculate a treatment’s overall success by means of 
comparison to a control group (also called the average 
treatment effect), but it can also be utilized by uplift 
modeling to estimate the heterogeneous treatment effect 
(HTE) for a given individual, that is, how particular 
individuals respond differently to the treatment [11]. 

Three main approaches have been proposed to 
estimate the individual heterogeneous treatment effect1 
[13]. First, the two-model approach estimates two 
predictive models for response behavior, one for the 
treatment group and another one for the control group. 
Subsequently, the individual uplift can be predicted by 
subtracting the estimate of the control group model from 
the estimate of the treatment group model: 

 
 𝑈𝑝𝑙𝑖𝑓𝑡 = 𝑃(𝑜𝑢𝑡𝑐𝑜𝑚𝑒|𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡)

− 𝑃(𝑜𝑢𝑡𝑐𝑜𝑚𝑒|𝑐𝑜𝑛𝑡𝑟𝑜𝑙) (1) 
 

For both models, any machine learning algorithm 
can be used, such as Random Forest [5] or Support 
Vector Machines [3]. While the advantage resides in its 
simplicity, many authors claim that the two-model 
approach can be outperformed by other approaches [23, 
26]. Radcliffe and Surry [21] even argue that the two-
model approach “rarely works well for real-world 
problems” as the difference in behavior is neglected 
between the two populations. Further, both models can 
contain errors, which can be amplified when aggregated 
to predict uplift [7]. However, a recent benchmarking of 
different modeling strategies showed that the two-model 
approach represents a modeling strategy of first choice 
[12].  

Second, the class transformation approach works by 
recoding the information whether a person was treated 
or not and whether the person responded or not [1, 16]. 
Generally, four different cases can be observed in the 
experiment [17]: 

 
• Control responders: Individuals who respond 

without being subject to any treatment.  
• Control non-responders: Individuals who did 

not respond, nor did they receive a treatment. 
• Treatment responders: Individuals who 

responded while being subject to a treatment. 

terms exist like conditional average treatment effect 
(CATE) or causal effect.  
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• Treatment non-responders: Individuals who did 
not respond although they received a treatment. 

 
Using this distinction, class transformation creates a 
new target variable by using a mathematical operation 
on the treatment and response variable. For example, 
Jaskowski and Jaroszewicz [16] defined the new target 
variable 𝑍 ∈ {0,1} like the following: 
 

 𝑍 =	 7
1	𝑖𝑓	𝑇 = 1	𝑎𝑛𝑑	𝑌 = 1
1	𝑖𝑓	𝑇 = 0	𝑎𝑛𝑑	𝑌 = 0

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

 
𝑇 ∈ {0,1} is representing the treatment variable with 
𝑇 = 1, if the person was subject to a treatment and 𝑇 =
0 if not, and 𝑌 ∈ {0,1} is representing the response 
variable with 𝑌 = 1, if the person responded and 𝑌 = 0 
if not. Thus, the authors decided to create a new variable 
𝑍 which equals one if the individual had been treated 
and 𝑌 = 1 or if the individual had not been treated and 
𝑌 = 0. Otherwise, Z equals zero. To understand the idea 
behind this transformation, we need to comprehend the 
advantage of uplift modeling over other predictive 
models, which is to differentiate the following four 
groups [17]: 
 

• Sure things: Individuals who react in the 
desired way (from a company’s perspective) 
with or without the treatment 

• Lost causes: Individuals who do neither 
respond in case they are treated nor in case they 
are not . 

• Do-not-disturb: Individuals who react 
negatively to the treatment, for example, do 
churn in case they are treated but do stay if not 
treated. 

• Persuadables: Individuals who react in the 
desired way only if being subject to the 
treatment. 

 
Jaskowski’s and Jaroszewicz’s [16] then label the 
control non-responders (𝑇 = 0, 𝑌 = 0) and treated 
responders (𝑇 = 1, 𝑌 = 1) group as positive and the 
control responders (𝑇 = 0, 𝑌 = 1) and treated non-
responders (𝑇 = 1, 𝑌 = 0) group as negative. The 
intuition is that the positive group contains all 
persuadables, some lost causes, and some sure things, 
while the negative group contains all do-not-disturbs as 
well as the remaining lost causes and sure things. The 
advantage of such an approach is that due to the 
transformation into a single, binary target variable, any 
machine learning algorithm can be applied. However, 
Jaskowski and Jaroszewicz found that the performance 
of different approaches largely depends on the data set. 
While the two-model approach outperformed the class 

transformation twice, the latter achieved better results 
once. Similar results were found in [1]. The authors used 
a slightly different variation of the class transformation 
approach and evaluated it against other approaches, 
such as the previously explained two-model approach, 
but without a clear winner. 

Lastly, the direct uplift approach relies on modified 
machine learning algorithms to infer uplift directly. 
According to the current literature, decision trees and 
different ensembles of decision trees are the most 
popular adapted algorithms [14, 21, 22, 26]. For 
example, Hansotia and Rukstales [14] modified the 
CHAID algorithm to choose in each branch the partition 
that results in the greatest difference in incremental 
response rates between the two resulting nodes. 
Specifically, the incremental response rate ∆𝑝 is 
calculated for each node by calculating the difference 
between the response rate in the control group 𝑝! and 
the response rate in the treatment group 𝑝". 
Subsequently, the difference in the incremental 
response rates for both nodes (𝐿 ≔ 𝑙𝑒𝑓𝑡	𝑎𝑛𝑑	𝑅 ≔ 𝑟𝑖𝑔ℎ𝑡) 
is calculated by subtracting the incremental response 
rate of the right node from the incremental response rate 
of the left node: 
 

 ∆(∆𝑝) = 	∆𝑝# − ∆𝑝$	
													= (𝑝#" − 𝑝#!) − (𝑝$" − 𝑝$!) (3) 

 
The algorithm chooses the partition in each splitting 

step such that ∆(∆𝑝) is maximized. 
An alternative splitting criterion has been proposed 

by Rzepakowski and Jaroszewicz [22]. It is based on 
information theory and uses a distribution divergence, 
that is, Kullback-Leibler divergence or Euclidean 
distance. The distribution divergence is used to build a 
tree in which the distributions of the target variable 
differ as much as possible between treatment and 
control groups. Thus, the goal is to maximize the gain in 
information of a split which is calculated by subtracting 
the divergence of the parent node from the conditional 
divergence of each child node: 
 

 
𝐷%&'((𝐴) =G

𝑁(𝑎)
𝑁 𝐷(𝑃"(𝑌|𝑎): 𝑃!(𝑌|𝑎))

&
−𝐷(𝑃"(𝑌): 𝑃!(𝑌)) 

(4) 

 
where 𝑎 refers to each of the child nodes, 𝑁 refers to the 
total number of instances in the parent node, and 𝑁(𝑎) 
refers to the number of instances in the child node 𝑎. 
𝑃"(𝑌) and 𝑃!(𝑌) are the outcome class distributions for 
treatment and control groups, respectively. The authors 
show that their approach is not only superior to the two-
model approach but that it also outperforms the 
approach by Hansotia and Rukstales. The direct uplift 
approach was extended by Soltys et al. [26] to two 
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different ensemble methods, namely Bagging and 
Random Forest. The authors achieved excellent results, 
exceeding the performance of other uplift modeling 
approaches, including the two-model approach and the 
direct uplift approaches mentioned above. Their 
approach differs from ours as they apply an ensemble 
only to the direct uplift approach while we use an 
ensemble based on every uplift approach, namely two-
model, class transformation, and direct uplift. The data 
sets used by Rzepakowski and Jaroszewicz [22] and 
Soltys et al. [26] are less than ideal for uplift modeling. 
Since the data sets had not been collected for uplift 
modeling in the first place, they did not contain actual 
response / target variables which is why the authors 
arbitrarily selected one of the features as target variable 
in order to make the data set suitable to uplift modeling. 
Further, the chosen data sets were rather small or very 
small with number of instances ranging from 57 to 
12,960 (median: 569), which is problematic for virtually 
any machine learning algorithm. Hansotia and 
Rukstales [14], on the other hand, only used a single 
data set to evaluate the performance of their classifier.  
 
2.2. Volatility in Uplift Modeling 
 

One of the most important problems in uplift 
modeling is the lack of suitable, publicly available data 
sets [22]. Without appropriate data sets, it is almost 
impossible for researchers to make fair comparisons 
between different uplift modeling approaches and, even 
worse, it is almost impossible to derive drivers and 
factors of a classifiers’ performance. Especially in the 
uplift modeling context, researchers have shown several 
times that the performance of different uplift modeling 
approaches is highly volatile and largely depends on the 
data set, its size, the ratio between treatment and control 
size, or the response ratio [7, 8, 12, 17]. For example, 
Kane et al. [17] evaluated two two-model approaches 
and two class transformation approaches and found that 
the class transformation approach performed better. 
However, they summarized that their results were not 
generalizable to other data sets. Finally, they concluded 
that there “may not be a single method that works the 
best for all data sets”. 

Devriendt et al. [7] found similarly that various 
approaches perform well on some data sets but worse on 
others. In a more extensive evaluation, they compared 
ten different classifiers, including various two-model, 
class transformation, and direct uplift approaches on 
four different data sets. The direct uplift random forest 
worked well on three of four data sets while the two-
model approach also exhibited good performance in half 
of the cases. The class transformation approach was the 
most volatile, scoring poorly three times, but then again 
very good once. Further, most of the approaches also 

exhibited large volatility across different cross-
validation folds of the same data set. The authors 
conclude that “the experimental results indicate a large 
variability in terms of performance of the various uplift 
modeling approaches […], with no clear winner” [7:40] 
and that the results demonstrate a strong dependency on 
data and application. 

The most recent benchmarking of various uplift 
modeling approaches is provided by Gubela et al. [12]. 
The authors evaluated eight different uplift modeling 
techniques, including one two-model approach and 
various class transformation and direct uplift 
approaches. Unfortunately, they did not consider the 
direct uplift approaches proposed by Hansotia and 
Rukstales [14], Rzepakowski and Jaroszewicz [22] or 
Soltys et al. [26]. Their experimental setup involved as 
much as 27 data sets from several digital marketing 
campaigns. The overall uplift of the data sets ranged 
from -2.24% to 3.60% and their size from 3,204 to 
1,199,581 cases. Treatment and control response rates 
ranged from 2.81e-3% to 0.56% and from 1.51e-3% to 
0.53%, respectively. With their comprehensive 
collection of diverse data sets, the authors provide a 
good foundation for a comparison of various uplift 
modeling techniques. Their results substantiate the 
assertion that predictions of uplift models are highly 
volatile and data-dependent. None of the eight proposed 
techniques was superior in every data set and there was 
substantial volatility across the different approaches. 

To summarize, there is no single uplift modeling 
approach which consistently outperforms the others. 
Existing methods are not generalizable across data sets 
but rather data and application dependent and suffer 
from high volatility. From a business perspective, this 
renders uplift modeling rather impractical as companies 
would probably have to evaluate all available 
approaches for every new campaign, which consumes 
time and resources. Hence, there is strong demand for a 
more robust and more widely applicable uplift modeling 
approach. 

 
2.3. Ensembles 
 

An ensemble is a well-known technique to reduce 
generalization error by training several different models 
separately and have all of them vote on the test sample. 
Finally, the average of all votes is taken [10]. This 
technique is also known as model averaging [10]. The 
premise is that the error of a single algorithm will likely 
be compensated by the other algorithms, reducing the 
overall generalization error and increasing predictive 
performance [24]. 
This improvement in performance can be explained by 
two reasons [24]. First, for small data sets in particular, 
a single algorithm is prone to predict all of the training 
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Table 1. Overview of approaches used in the experiment 

Uplift modeling approach Base learner Parameters for base learner Source 
Two-Model 

Random Forest 

Number of 
estimators: 200 
Max depth: 25 

Max features: auto 

e.g. [12] 
Class Transformation [16] 

Direct Uplift [26] 

Weighted Ensemble 
Direct Uplift +  
Two-Model + 

Class Transformation 

see above 
Distribution Divergence: 

Euclidean Distance 
 

data perfectly while failing to fit unseen instances. 
To circumvent this disadvantage, an ensemble averages 
many different predictions reducing the risk of selecting 
a single, incorrect hypothesis. Second, a single 
algorithm might not be able to create the optimal 
hypothesis as it is outside the feature space of the 
algorithm. By using many algorithms, the feature space 
is extended and hence, the optimal hypothesis is more 
likely to be found 

Another advantage of using an ensemble method is 
that class imbalances can be mitigated [24]. For 
example, Nikulin et al. [18] propose to train each 
algorithm of an ensemble on a different, balanced subset 
of the training data in order to cope with imbalances.  
This is particularly useful in an uplift modeling context 
because data suffers from high imbalances in class 
distribution [7]. Usually there are many more non-
responders in a marketing campaign than responders. 

The effectiveness of ensemble methods has been 
shown several times. For example, Fernández-Delgado 
et al. [9] found in an extensive evaluation using 179 
classifiers and 121 data sets, that the random forest [5], 
a kind of ensemble approach, is among the best 
performing algorithms. Vafeiadis et al. [27] showed that 
boosting [4], another kind of ensemble method, can 
clearly outperform non-boosted algorithms in a 
customer churn prevention case. 
 
3. Research Methodology 
 

To overcome the problems of high volatility, data 
and application dependency, we propose to combine 
two-model, class transformation, and direct uplift 
approaches into a weighted ensemble. The performance 
of the ensemble is then evaluated against other existing 
approaches, using nine data sets.  
 
3.1. Weighted Ensemble Approach 

 
The weighted ensemble combines the predictions 

from three uplift base models, namely a model based on 

 
2 https://scikit-learn.org/ 

the two-model approach, a class transformation model, 
and a direct uplift model. Each of these base models is 
itself based on Random Forest as a base learner with the 
following hyperparameters: Number of estimators: 200, 
max depth: 25 and max features: auto. We chose 
Random Forest as a base learner for each approach as 
Gubela et al. [12] found that it is the most promising 
algorithm when working with uplift modeling. The 
hyperparameters were fixed to facility comparability 
between different approaches. The values were chosen 
after several tests to avoid overfitting.  

For the two-model approach, both models use 
Random Forest as a base learner. The further procedure 
of this technique has already been described in section 
2. The class transformation approach is based on 
Jaskowski’s and Jaroszewicz’s mathematical operation 
[16], as described in section 2. After creating a new 
target variable, Random Forest is used to train a model. 
For these two approaches, cost-sensitive learning is 
applied in order to cope with imbalanced data sets. Here, 
weights are calculated according to the relative 
appearance of each class in the data set. The more 
underrepresented a class is, the higher the weight. These 
weights are then embedded into the learning algorithm, 
which makes the model more suitable for learning from 
very imbalanced data [25]. The direct uplift approach is 
based on the work of Soltys et al. [26], who used the 
splitting criteria proposed by Rzepakowski and 
Jaroszewicz [22] but in a Random Forest rather than in 
a single decision tree. Euclidean distance is used as a 
distribution divergence. While the first two approaches 
were implemented using the sklearn2 package, the direct 
uplift approach was implemented using the causalml3 
package. 

To train the weighted ensemble prediction model, 
the three base models are combined according to their 
relative prediction performance along the following 
steps. 

1) Base model training. Each of the base models is 
trained using a training data set. Stratification is applied 
when splitting data sets to preserve treatment-, control- 
as well as response-ratios. 

3 https://github.com/uber/causalml 
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Table 2. Overview of data sets used in the experiment 

Id Name Number 
of 

features 

Number of samples 
(treatment/control) 

Treatment 
Response 

Rate 

Control 
Response 

Rate 

Source 

1 Hillstrom 10 64,000 (42,694/21,306) 0.167 0.106 4 
2 Hillstrom/Women 10 42,693 (21,387/21,306) 0.151 0.106 4 
3 Starbucks 10 126,184 (63,112/63,072) 0.017 0.007 5 
4 Customer Acquisition 286 9,974 (6,193/3,781) 0.111 0.065 Private 
5 Churn Prevention 44 10,097 (6,684/3,413) 0.662 0.673 Private 
6 Churn Prevention/A  44 6,754 (3,341/3,413) 0.673 0.673 Private 
7 Churn Prevention/B 44 6,756 (3,343/3,413) 0.650 0.673 Private 
8 Criteo 14 25,309,482 (21,408,827/3,900,655) 0.002 0.002 [8] 
9 Criteo Resampled 14 7,797,062 (3,896,407/3,900,655) 0.002 0.002 [8] 

2) Calculating qini coefficients. Qini coefficients 𝑞 
are computed based on a validation set for all base 
models 𝑚' to measure their performance, respectively. 
The qini coefficient is a common performance metric in 
uplift modeling [7, 12]. It is defined as the ratio of the 
area under the actual qini curve and the diagonal, 
corresponding to random targeting, to the area under the 
optimal qini curve and the diagonal. This value ranges 
from -1.0 to 1.0. The qini curve is the cumulative 
difference in response rate between treatment and 
control group. It is calculated on a per-segment basis in 
descending order. The optimal qini curve ranks 
treatment responders first, treatment non-responders 
second, control responders third and treatment 
responders fourth.  

3) Weighting. Qini coefficients are used to calculate 
the weights as follows: 
 

 𝑤' =	
𝑞'

max
'
(𝑞')

 (5) 

 
Thus, the weight of each base model corresponds to 

its performance relative to the best base model. The best 
base model with the highest qini coefficient receives a 
weight of 1, while the other base models receive smaller 
weights. The weights are then normalized with min-max 
normalization to avoid negative values. 

4) Score normalization. The individual scores 
predicted by each base model 𝑚' for a given case 𝑋 are 
normalized to [0,1] using min-max normalization on the 
test data 𝑇: 
 

 𝑚'(𝑋)) =
𝑚'(𝑋) −min*∈"

Q𝑚'(𝑋)R

max
*∈"

Q𝑚'(𝑋)R −min*∈"
Q𝑚'(𝑋)R

 (6) 

 

 
4 https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html 
5 https://github.com/joshxinjie/Data_Scientist_Nanodegree/tree/master/starbucks_portfolio_exercise 

This is necessary as each base model returns different 
ranges of scores and, thus, combining the scores without 
normalization would be biased towards the base model 
with the highest range in scores.  

5) Ensemble model. Lastly, the ensemble model 𝐸 
is established as a weighted combination of the base 
models as follows: 

 

 𝐸(𝑋) =G𝑚'(𝑋)′ ∗ 𝑤'
'

	 (7) 

 
3.2. Evaluation 

 
Nine real-world data sets were used to evaluate 

model performances (see Table 2). Some of the data sets 
are publicly available (see given references for more 
details regarding these data sets) and some of the data 
sets were obtained from companies.  

The Hillstrom data set is an email marketing 
campaign from MineThatData2. Like other researchers 
[7, 17], we considered online visits as the response and 
we distinguished between two data sets: one that 
contained both treatments (men’s and women’s 
merchandise) and another that only contained the 
treatment featuring women’s merchandise. 

The Starbucks data set was provided by Udacity as 
part of their Data Scientist Nanodegree. It was made 
public in a blogpost 3. 

We obtained private data sets from a marketing 
campaign to acquire new customers in the retail industry 
as well as from a churn prevention campaign from a 
company with fixed term contracts and auto renewal. 
The churn prevention campaign includes two different 
treatments (A and B), for which we also created separate 
data sets. Both campaigns contained continuous and 
categorical variables covering socio-demographic 
information and campaign details. Additionally, the 
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churn prevention campaign included some consumer 
behavior data. None of the campaigns contained 
customer relationship information such as a customer 
life-cycle value. 

The Criteo data set was made available by Diemert 
et al. [8]. As the treatment-control-ratio is around 5:1 we 
also created another, more balanced data set by 
resampling the Criteo data set down to a treatment-
control-ratio of about 1:1. 

To assess the performance of the four approaches 
(i.e., two-model, class transformation, direct uplift, 
ensemble), models were trained/validated and tested 
using 10-fold cross-validation for data sets one through 
seven. First, the data set was split using 10-fold cross-
validation into 90% training/validation and 10% test 
data. The training/validation set was again split into 
training (80%) and validation (20%) data sets. Thus, 
72%, 18% and 10% of the data set were used for 
training, validation and test, respectively. See Figure 1 
for an illustration. For the Criteo Resampled data set we 
used 6-fold cross-validation as it is large enough to 
avoid taking into account more folds. For the (full) 
Criteo data set we omitted cross-validation because it 
was more than three times larger than the Criteo 
Resampled data set. Instead we used a single stratified 
split into 64% training, 16% validation and 20% test 
data.  
 

 
Figure 1. Illustration of training, validation and 
test split 

For each model, predictions were computed for the 
test data sets and qini coefficients were calculated. To 
measure volatility of the different models, two metrics 
were used. First, to measure the volatility of approaches 
across different data sets, we calculated the average qini 
coefficient of all cross-validation folds for each data set 
and approach - except for Criteo for which no cross-
validation had been conducted and hence only one qini 
was available. Next, the (average) qini coefficients of all 

approaches for each data set were normalized using 
min-max normalization to obtain relative values that are 
comparable across data sets.  

Second, to measure volatility for different splits of 
the same data set, the standard deviation of qini 
coefficients of the cross-validation folds for each data 
set and approach were calculated. Next, standard 
deviations of all methods for each data set were 
normalized using min-max normalization to obtain 
relative values that are comparable across data sets. 

Finally, to compare different approaches, we 
calculated a single number metric, which was the 
average for each approach across all data sets, for both, 
average qini coefficient and standard deviation of qini 
coefficient.  

 
4. Results 
 
4.1. Volatility across different data sets 
 

According to the average value across all data sets, 
the class transformation approach performed worst with 
a value of 0.241 (difference to best approach: 0.646), 
followed by the two-model approach with a score of 
0.501 (0.386). The direct uplift approach performed 
slightly better with a score of 0.633 (0.254) and the 
weighted ensemble approach performed best with a 
mean of 0.887. The following in-depth analysis 
confirms these findings. 

The class transformation approach performed worst, 
as its performance was lowest and second lowest four 
times each. Only on the Churn Prevention/B data set it 
achieved a relative average qini coefficient of 0.931; 
slightly worse than the ensemble approach with a 
difference of only 0.069.  

The performance of the two-model approach was 
remarkably volatile. It produced the best average qini 
coefficient on three data sets (Churn Prevention/A, 
Criteo, Criteo Resampled), but also the worst three on 
other data sets (Churn Prevention/B, Hillstrom, 
Customer Acquisition). It took third place once 
(Hillstrom/Women) and second place once (Churn 
Prevention).  

A similar picture was observed for the direct uplift 
approach. While it achieved the best average qini 
coefficient four times, it scored worst twice, and second 
worst twice. Once the direct approach took second place 
with an average qini coefficient of 0.839 (Criteo). 

The newly proposed weighted ensemble approach 
had remarkably low volatility across different data sets. 
It had the highest average qini coefficient on two data 
sets (Churn Prevention, Churn Prevention/B) and the 
second highest on all remaining data sets. Further, it was 
only slightly inferior to the best approach on four data 
sets: Hillstrom/Women (average qini coefficient:  0.917

Fold	1

Fold	2

Fold	3

Fold	4

Fold	5

Fold	6

Fold	7

Fold	8

Fold	9

Fold	10

Data	set

72%	Training	set:	Used
for	training	the	models

18%	Validation	set:	Used
for	calculating	the	weights

10%	Test	set:	Used	for
making	the	predictions
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Table 3. Average qini coefficient for each approach across different data sets 
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Ensemble 0.836 0.917 0.981 1.000 0.730 1.000 0.610 0.912 0.996 0.887 
Direct uplift 1.000 1.000 1.000 0.000 0.000 0.154 1.000 0.705 0.839 0.633 
Two-model 0.000 0.174 0.600 0.731 1.000 0.000 0.000 1.000 1.000 0.501 
Class transformation 0.128 0.000 0.000 0.082 0.634 0.931 0.392 0.000 0.000 0.241 
           

Note: Higher values are better        first second 

 
Table 4. Standard deviation of qini coefficient for each approach and data set 
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Ensemble 0.000 0.017 0.439 0.000 0.000 0.156 0.301 0.298 n/a 0.151 
Direct uplift 0.767 0.000 0.356 0.972 0.315 0.502 0.000 0.000 n/a 0.364 
Two-model 0.115 0.222 0.000 1.000 0.024 1.000 1.000 1.000 n/a 0.545 
Class transformation 1.000 1.000 1.000 0.177 1.000 0.000 0.843 0.007 n/a 0.628 
           

Note: Lower values are better        first second 

/ difference: 0.083),  Starbucks (0.981 / 0.019), Criteo 
(0.996 / 0.004), and Criteo Resampled (0.912 / 0.088).  

The results for volatility of all approaches across 
different data sets are summarized in Table 3. The 
higher the average qini coefficient, the better the 
approach 
 
4.2. Volatility across different folds 
 
The results for volatility of the approaches across 
different cross-validation folds of the same data set give 
a similar picture. According to the average value across 
all data sets, the class transformation approach 
performed worst with a value of 0.628 (difference to 
best approach: 0.477), followed by the two-model 
approach with a score of 0.545 (0.394). The direct uplift 
approach performed slightly better with a score of 0.364 
(0.213) and the weighted ensemble approach performed 
best with a mean of 0.151.The following in-depth 
analysis confirms these findings. 

The class transformation approach performed worst 
as the standard variation was the highest on four data 
sets and second-highest in another data set (Customer 
Acquisition with 0.843). On three data sets (Churn 
Prevention/B, Churn Prevention, Criteo Resampled) did 
class transformation produce the lowest or second 
lowest standard deviation of qini coefficients, 
respectively.  

The two-model approach did slightly better than 
class transformation as its standard deviation was 
among the lowest on three data sets (Churn 
Prevention/A, Hillstrom, and Starbucks). However, it 
performed poorly on the Churn Prevention, Churn 
Prevention/B, Customer Acquisition and Criteo 
Resampled data sets.  

The direct uplift approach yielded the lowest 
standard variation on three data sets (Hillstrom/Women, 
Customer Acquisition, Criteo Resampled). However, 
among the remaining data sets, it performed mediocre 
or poorly. 
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The most robust approach was again the weighted 
ensemble. It achieved the lowest standard deviation on 
three data sets (Churn Prevention, Churn Prevention/A, 
Hillstrom), like no other approach, and second-lowest 
on another three (Churn Prevention/B, 
Hillstrom/Women, Customer Acquisition). Further, on 
Hillstrom/Women, it was only marginally worse than 
the best approach (difference: 0.017). The approach was 
inferior to two other approaches only on the Starbucks 
and the Criteo Resampled data set. Measurements were 
not available for Criteo because no cross-validation had 
been conducted on this data set (see 3.2). 

The results for volatility for all approaches across 
different cross-validation folds of the same data set are 
summarized in Table 4. The lower the standard 
deviation of the qini coefficient, the better the approach. 
 
5. Discussion 
 

We have shown that our weighted ensemble 
approach can reduce the volatility in uplift prediction 
performance. Across different data sets as well as across 
different cross-validation folds the performance of the 
proposed approach was more robust than other single 
approaches.  

Ensembles are considered to solve a plethora of 
challenges because of their ability to reduce the 
generalization error. Our study does not only support 
this finding but also reveals the successful application 
of ensembles in the uplift modeling context. Further, we 
showed that single approaches such as two-model, class 
transformation and direct approach suffer from 
volatility supporting the findings of other researchers. 

By reducing the generalization error, the predictions 
became far more robust such that the results were more 
reliable and applicable.  

 
6. Conclusion and Future Work 
 

Previous studies on uplift modeling have shown high 
volatility of different approaches across different real-
world data sets and even across different cross-
validation folds of the same data set. Existing 
approaches have been found to be highly data and 
application dependent and cannot be generalized well. 

In this study, we proposed a weighted ensemble 
approach that combines two-model, class 
transformation, and direct uplift approaches to tackle 
these issues. We evaluated the weighted ensemble 
approach against existing approaches on nine real-world 
data sets.  

The results have shown that the ensemble approach 
is far more most robust across different data sets as well 
as cross-validation folds of the same data set. Therefore, 

we conclude that our ensemble approach provides a 
promising solution to cope with high volatility in the 
uplift modeling context.  

Nevertheless, our study is not without limitations. 
First, the evaluation of an uplift modeling approach 

is generally difficult [7]. Although many researchers fall 
back on qini coefficient and qini curve as evaluation 
metrics, they both entail some flaws. For example, it is 
questionable what an optimal qini curve looks like as an 
individual can only be either treated or not treated and 
thus, we do not observe the treatment-induced behavior 
change. Further, such metrics are not intuitively 
interpretable making it difficult to derive implications 
for business decisions. 

Second, although we used nine data sets, it can still 
be questioned whether our results can be generalized to 
other data sets. As already mentioned by other 
researchers, the number of publicly available uplift 
modeling data sets is low [22]. Further research should 
evaluate the ensemble approach on other data sets, such 
as the diverse collection by Gubela et al. [12]. 

Despite these limitations, our results suggest a first 
way to cope with the high volatility. One crucial step for 
future research is to evaluate other ensembles with 
different combinations of methods and base learners. 
Instead of using the class transformation approach 
proposed by Jaskowski and Jaroszewicz [16], one could 
use the approach introduced by Athey and Imbens [1]. 
The same applies to the direct uplift approach. One 
could use the technique proposed by Hansotia and 
Rukstales [14] rather than by Soltys et al. [26]. Further, 
as Gubela et al. [12] show, different base learners and 
their hyperparameters also play an important role in the 
performance of uplift modeling approaches. Thus, 
instead of using Random Forest as a base learner, the 
performance could be analyzed using Support Vector 
Machines, Linear Regression, or similar. Other ways of 
reducing volatility are also highly encouraged, for 
example, through the use of feature engineering. 

Further, there is need for more publicly available 
reference / benchmark data sets for uplift modeling, not 
only for research on reducing volatility, but to improve 
uplift modeling research in general. Besides using real-
world data sets, it might also be worthwhile to further 
investigate ways to generate synthetic data sets as 
mentioned by Radcliffe and Surry [21]. 

Marketing practitioners and analysts in charge of 
marketing campaigns can be informed through our study 
about the role of ensembles in uplift modeling. Our 
results suggest that ensembles help reduce the volatility 
which is highly useful in an uplift modeling context as 
approaches seem to be data and application dependent. 
A weighted ensemble could leverage marketing data 
such that the effectiveness of advertisements can be 
improved. Costs for sending advertisements to unlikely 
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buyers can be reduced and response rates improved due 
to more accurate targeting. Using the proposed robust 
ensemble approach, uplift modeling can be applied 
more broadly in marketing practice and the success and 
revenue of marketing campaigns can be increased. 
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