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Abstract

While the importance of small data has been
admitted in principle, they have not been widely adopted
as a necessity in current machine learning or data
mining research. Most predominantly, machine learning
methods were typically evaluated under a “bigger is
better” presumption. The more (and the more complex)
data we could pour at a method, the better we thought
we were at estimating its performance. We deem this
mindset detrimental to interpretability, explainability,
and the sustained development of the field. For example,
despite that new outlier detection methods were often
inspired by small, low dimensional samples, their
performance has been exclusively evaluated by large,
high-dimensional datasets resembling real-world use
cases. With these “big data” we miss the chance
to gain insights from close looks at how exactly the
algorithms perform, as we mere humans cannot really
comprehend the samples. In this work, we explore in
the exactly opposite direction. We run several classical
anomaly detection methods against small, mindfully
crafted cases on which the results can be examined in
detail. In addition to better understanding of these
classical algorithms, our exploration has actually led to
the discovery of some novel uses of classical anomaly
detection methods to our surprise.

1. Introduction

While the exact phrase “Big Data” is no longer a
buzzword in academic contexts, “bigger data” continue
to be regarded as almost universally superior to “smaller
data” when evaluating machine learning algorithms. We
seem to always prefer a “more inclusive” dataset when
talking about evaluation of algorithms. Authors rarely
claim that they consciously remove some samples with
justification when describing experiments, while the
identification and removal of outliers (anomalies) have
been the norm in more traditional sciences of statistical
nature, such as medicine [1].

The importance of small data has been
acknowledged in principle. But works addressing
them have only occasional occurred. Interesting, we
have seen quite a few talks about small data in top
venues [2, 3, 4, 5, 6], but actual technical papers have
been observed far less in proportion. We speculate
that works directly addressing small data tend to be
easily accused of “lacking comprehensive evaluation”,
because of the aforementioned hidden hypothesis that
bigger data are always better.

The most usual arguments in favor of small data
are probably quality and cost. Less good samples
might train a better model than more bad samples
Sometimes data simply come at a very high cost. It
is also apparent that we want small data when trying
to understand, interpret, explain and analyze how an
algorithm works by examples[7]. Few people would
deny these frequent arguments. But they may still not
be enough to support the claim that small data should be
widely adopted as part of an evaluation kit, which leads
to our following not-so-obvious-but-important argument
about sustainability of the field.

1.1. Potential next AI winter vs. small data

Despite criticism from various perspectives [8, 9],
deep learning has taken over the (largely overlapping)
fields of machine learning, data mining and artificial
intelligence due to its effectiveness. The advantage
largely comes with the large amount of data in
benchmarks [10, 11]. The ubiquity of “big benchmarks”
in turn came with the argument that more data is almost
always better [12].

Moreover, if you focus on more traditional machine
learning and think that automating deep learning is not
very relevant, then you might be wrong. For example,
K-Means, which does not even use gradient descent
itself, can be cast into a strictly equivalent deep neural
network [13]. ML algorithms outside deep learning
could still have an equivalent, similar or superior version
in deep learning.
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And then here comes a warning sign. Not too long
ago, two prominent organisations, literally at the ground
zero of the explosive growth of deep learning, received
substantial funding cuts from their local government
[14, 15]. One was the revered CIFAR (as in the
CIFAR datasets [16]). The other was the newly-founded
“flagship” AI-specific Vector Institute led by the DL
“godfather” Geoffrey Hinton himself.

Not only deep learning might plateau, the advance of
Neural Architecture Search [17] erodes the human factor
in machine learning in the other direction. Deep learning
already have too much trial-and-error in its use. As long
as we cling to “big benchmarks”, neural architecture
search might very well simply perform better without
us knowing why, blocking works that inquires why in
the process. Then machine learning would become
truly about machines, where researchers’ few leftover
tasks are mindlessly monitoring the search process and
interfacing with client requests.

1.2. Anomaly detection as a specimen

Anomaly detection has attracted many surveys
and benchmarks, among which ones with the larger
datasets are deemed more comprehensive. Such
surveys provide a good estimate of the accuracy
and performance of unsupervised anomaly detection
algorithms in production settings, in which the input
is large and high-dimensional. But when one tries
to look closely into each case, and find inspirations
for improved algorithms, the high-dimensional large
datasets from real world are hard to comprehend by
a human, let alone why exactly some points are
wrongly identified. In this regard, development of better
algorithms often relies on a trial-and-error approach,
where one changes some aspect of an algorithm, and
runs the algorithm against a benchmark to see whether
some of the accuracy statistics become better. Even if an
improved algorithm were found, it may still be hard to
interpret and reason about why it had been improved at
all, other than that it performed better on a benchmark.

When we look at the original papers proposing the
algorithms [18, 19, 20, 21, 22, 23], we always find
one or a few very small “motivating examples” exactly
“crafted” by the authors to explain why inventing the
new methods. In a sense, the fact that the proposed
algorithms fared better than previous ones against the
crafted “motivating examples” has been accepted as
supporting the arguments for the proposed algorithms,
yet we don’t see them in an evaluation paper! We are
exactly about to pit multiple algorithms against each
other in the face of the same set of crafted small point
configurations.

1.3. Not few-shot learning

Finally, we would like to draw a line between
our idea of small data and the more popular few-shot
learning [24], as “few-shot” literally means a small
number of samples. Few-shot learning stemmed out of
practical need in computer vision, and deals with a few
samples given parameters carried over from previous
training with a much larger dataset, effectively a kind of
transfer learning. In contrast, we are talking about small
data in their purest form, in a more Platonian sense.
By “evaluating with small data” we mean evaluating
a clean-slate model with only a small amount of
data. In particular, the unsupervised anomaly detection
algorithms we examine here are all stateless. It is
impossible for them to carry over states from previous
training. By “small” we also imply low-dimensionality.

2. Outlier detection methods

We limit ourselves to methods based on
k-nearest-neighbors, in particular those with no
other hyperparameters than k itself. Methods based
on k-nearest-neighbors, sometimes referred to as
density-based methods [25], nearest-neighbor based
methods [26], neighbour-based methods [27] or
proximity-based methods [28], are among the most
popular detection methods for their ease of deployment.
Because these methods are local, our small-data cases
are speculated to be generalizable to larger real-world
cases. Note that these unsupervised methods are
entirely different from applying a kNN-classifier trained
with labeled inliers and outliers.

Our test policy is, briefly speaking, letting each
algorithm do its best regardless of the necessary
k. Comparing algorithms with different numbers of
hyperparamters would not be as fair as comparing ones
with the same set of hyperparameters.

To facilitate a precise notation, duplicate points need
some attention. In general we would like to allow
duplicate points in our analysis. However, allowing
duplicate points prevents addressing “set of points”
directly as a set cannot have duplicate members. This
can be side-stepped by addressing the index of points
throughout. It is not so hard to remove duplicates
beforehand, so many algorithms were designed to
work on datasets without duplicates. When using
floating-point numbers, it may be problematic to decide
whether any two points are equal. For generality, we
will try to accommodate duplicates in our formulation
as much as possible, but use only test cases without
duplicates.

Assume that there are P points in Rn from which
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we are to find outliers. As has been noted, we use
1, 2, . . . , P ∈ N to refer to the points. Then the actual
coordinates are in a n × P matrix X , each column of
which defines one point. It is usually assumed that
X ∈ Rn×P , but we refrain from this constraint for
maximum generality. Instead, we just write X ∈ Sn×P ,
where S can be R or a set of other scalars.

In principle, any metric can be used as the distance
function between points. However, not all algorithms
were designed with this generality in mind. For now we
just use d : Sn × Sn → S to stand for the distance
function. Although most of the time we can just assume
it to be the Euclidean distance

d(x,y) = (

n∑
i=1

(xi − yi)
2)

1
2 .

A shorthand for distances between indexed points is

Di,j = d(X•,i, X•,j) .

2.1. Basic kNN methods

k-nearest neighborhood is probably the most
employed concept in outlier detection. To facility
further discussion, it is better to define some common
concepts first.

First of all we assume that there are enough points to
establish the k-nearest neighbourhood, and that k is not
zero, that is,

0 < k < P .

k-Nearest Neighborhood has not k points. With or
without duplicate points, it is possible to encounter a
situation where a point has multiple neighbours with the
same distance, making it impossible to choose exactly
k points solely based on distance. This could actually
be frequent if we wish to consider Manhattan distance
or fixed-point arithmetic. To work around this we define
a point q being a member of the k-nearest neighbor of
point p as that there are less than k points which are
closer to p than q, that is,

Ord(p, q) = |{i ∈ {1..P} | p 6= i 6= q ∧Dp,i < Dp,q}| ,
NNk(p) = {q ∈ {1..P} | q 6= p ∧ Ord(p, q) < k} ,
kNN(p) = NNk(p) .

We use both NNk(p) and kNN(p) as k is usually
understood from the context in discussions, but
sometimes we wish to vary the k explicitly. As such
it is true that

|kNN(p)| ≥ k ,

where the equality may not hold if there are multiple
neighbours with the same distance, which cannot really
be prevented in a real program despite having an
expectation of zero. This definition is compatible
with that in [19], although defined in a different way,
while many other publications ignored this issue, which
may lead to inconsistencies, and possibly bugs in
implementations.

kthNN The kth nearest neighbour (kthNN ) [29]
method is certainly one of the major approaches to
outlier detection. In kthNN , the outerlierness of a
point is its distance to its kth nearest neighbor. The
original paper admits the use of any Lp metric as the
distance. Here we only evaluate the algorithm with L2,
or Euclidean distance.

OL(p) = k-th-dist(p) = max{Dp,q | q ∈ kNN(p)}

Note that even if the implementation ignored the
possibility that kNN(p) > k, the value of k-th-dist(p)
would still be always correct. The implementation we
use [30] differs from the original paper in the definition
of k but it does not affect our results since we always try
to find the best k.

kNNw Instead of the distance to the kth nearest
neighbor, kNNw [22] defines the outerlierness of a point
as the sum of distances to its k nearest neighbors, that is,

OL(p) = k-dist(p) =
k∑

i=1

max{Dp,q | q ∈ NNk(p)} .

Note that we can’t simply define it to be∑
q∈kNN(p)

Dp,q

because even if |kNN(p)| > k we still want to sum only
k of the |kNN(p)| numbers, otherwise the value may be
biased. Instead, we have to iterate and sum through the
i-th smallest neighbor-distance.

LIC One immediate way to invent another method
would be to somehow combine k-th-dist and k-dist. LIC
[20] did that and used other distance functions instead
of the Euclidean one. We limit ourselves to Euclidean
distances in this work, but the averaged version is worth
attention. To be precise, the version of LIC in this paper
is defined as

OL(p) = LIC(p) = k-th-dist(p) +
k-dist(p)

k
,
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so that k-dist(p) term does not shadow k-th-dist(p) when
k is larger. This is also the default in [30].

ODIN Outlier Detection using Indegree Number
(ODIN) [18] employs a kNN graph, which we will see
later that we can understand the method without. To
construct the graph, each data point p corresponds to a
vertex with directed edges the corresponding vertices of
k-nearest neighbours of p. Formally, we can define the
(directed) kNN graph as

kNND(p) = (VkNN(p), EkNND(p)) ,

VkNN(p) = kNN(p) ∪ {p} ,
EkNN(p) = {(p, q) | q ∈ kNN(p)} .

Data points whose correseponding vertices have the
least indegrees are considered outliers, where the
number of indegrees can be computed as

Ind(p) = |{q ∈ {1..P} | (q, p) ∈ EkNN(q)}|
= |{q ∈ {1..P} | p ∈ kNN(q)}| .

Or we can equivalently define the outlierless by any
strictly decreasing function of the number of indegrees.
A definition that is consistent with the implementation
under test is

OL(p) = ODIN(p) =
−Ind(p)

k
,

whose linearity also arguably provides ease for both
computers and human readers. As can be seen from
the simplified computation of Ind(p), this method can
actually be understood without knowing about the graph
at all.

2.2. Methods based on LOF

A large class of unsupervised anomaly detection
algorithms are based on the well-known Local outlier
factor (LOF) [19] method.

LOF LOF has only one hyperparameter k. Given k,
the outlierness of of point p, LOF(p), is defined as

OL(p) = LOF(p) =
1

|kNN(p)|
∑

q∈kNN(p)

lrd(q)
lrd(p)

,

where the local reachability density of p, lrd(p), is
defined as

lrd(p) =
|kNN(p)|∑

q∈kNN(p) reach-dist(p, q)
,

reach-dist(p, q) = max{k-th-dist(q), Dp,q} .

Although named reachability distance, reach-dist is not
symmetric, and thus not a proper distance.

LDOF As with LOF, LDOF has only one
hyperparameter k. Instead of the k-th smallest
neighbor-distance, average kNN distance k-a-dist(p)
and kNN inner distance k-i-dist(p) are used, defined as

k-a-dist(p) =
1

|kNN(p)|
∑

q∈kNN(p)

Dp,q ,

k-i-dist(p) =

∑
i,j∈kNN(p)∧i6=j Di,j

|kNN(p)|(|kNN(p)| − 1)

=

∑
i,j∈kNN(p) Di,j

|kNN(p)|(|kNN(p)| − 1)
.

In the original literature [21] it is k instead of
|kNN(p)|. Using |kNN(p)| is consistent with [19] as
well as the implementation, and more general. Then the
outlierness is given by

OL(p) = LDOF(p) =
k-a-dist(p)
k-i-dist(p)

.

sLOF sLOF is said to be a method which happens
frequently in practice by mistaking the reachability
“distance” with the actual distance. [31] It is mildly
faster as well. The exact definition is

s-lrd(p) =
|kNN(p)|∑
q∈kNN(p) Dp,q

,

OL(p) = sLOF(p) =
1

|kNN(p)|
∑

q∈kNN(p)

s-lrd(q)
s-lrd(p)

.

3. Challenging the detection algorithms

All algorithms introduced, as well as most outlier
detection algorithms in general, output a scalar
“outlierness” score for each point and require further
thresholding. To avoid tuning for the threshold, we
consider an algorithm to have succeeded on a case
as long as the range of scores over inliers (by label)
can be separated from that of outliers. That is, either
the maximum score of labeled inliers is less than the
minimum score of labeled outlier(s), or the maximum
score of labeled outlier(s) is less than the minimum
score of labeled inlier(s). All test results are aggregated
in Table 1 for quick reference once the reader have
understood the rest of the paper.
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Table 1. Aggregated test results

kthNN kNNw LIC ODIN LOF sLOF LDOF
Case SD.1 7 7 7 3 3 3 3
Case SD.2 7 7 7 3 3 3 3
Case SD.3 7 7 7 3 3 3 3
Case SD.4 7 7 7 3 3 3 3
Case L1.1 3 3 3 3 3 3 3
Case L1.2 7 7 7 7 7 7 7
Case L1.3 3 3 3 3 3 3 7
Case L1.4 3 3 3 3 3 3 7
Case L1.5 3 3 3 3 3 3 7
Case L1.6 3 3 3 3 3 3 7
Case L1.7 7 7 7 7 3 7 7
Case L1.8 7 7 7 7 7 7 7
Case L1.9 7 7 7 3 7 7 7
Case LD 3 3 3 7 3 3 3
Case LD/1 3 3 3 7 3 3 3
Case LD/2 3 3 3 7 3 3 3
Case LD/3 3 3 3 3 3 3 3
Case G.1 7 7 7 7 3 7 7
Case G.2 3 7 3 3 3 7 7
Case G.3 3 3 3 3 3 3 7
Case G.4 7 7 7 7 3 7 7
Case G.5 7 7 7 7 3 7 7
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(a) Case SD.1
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(c) Case SD.3
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(d) Case SD.4
Figure 1. Sparse and dense clusters

3.1. Sparse and dense clusters

A sparse cluster and a dense cluster in each of Figure
1. The distance from the outlier to the dense cluster, is
about the distance between inliers of the sparse cluster.
Variations of actual clusters have been produced to
check the robustness of results.

This kind of situations was exactly one of
the inspirations behind LOF. Not surprisingly, all
LOF-based methods succeeded in these cases, while
kthNN and kNNw failed. The results were exactly the
same across the perturbed versions, that is, Case SD.1 to
Case SD.4.

It is worth mentioning that ODIN also succeeded in
disambiguating these outliers, despite being a “global”

Table 2. Test results of sparse and dense clusters

kthNN kNNw LIC ODIN LOF sLOF LDOF
Case SD.1 7 7 7 3 3 3 3
Case SD.2 7 7 7 3 3 3 3
Case SD.3 7 7 7 3 3 3 3
Case SD.4 7 7 7 3 3 3 3

20 40
10

20

30

40

1

2

3
4

5

Figure 2. Minimal sparse-and-dense case

method along with kthNN and kNNw, in contrast to
LOF-inspired ones [31]. ODIN essentially used only the
information of whether a point was in another point’s
kNN set. The reason is that the inliers point their
outbound edges to other inliers in the same cluster,
rather than the outlier. And the outlier has to point its
outbounding edges to inliers, although no inbound edge
received. In other words, without graph theory jargon,
the kNN set of both inliers and outliers are composed of
inliers, so inliers are likely to be in at least one point’s
kNN set, yet the outlier can be in no point’s kNN set. To
illustrate, we show a vastly simplified example in Figure
2, with k = 1 and

X =

[
16 21 45 42 46
29 46 12 14 19

]
,

kNN(1) = {2} , kNN(2) = {1} , kNN(3) = {4} ,
kNN(4) = {3} , kNN(5) = {4} .

It is clear from Figure 2 that the outlier, point 5, is
in no point’s kNN set, but other points are always in
another point’s kNN set. So ODIN is able to separate
the inliers from the outliers in this case. Also note
that the distance between point 1 and 2 is larger than
that between 5 and 4, rendering kthNN and kNNw
ineffective.

3.2. Straight line and outlier

As shown in Figure 3, Case L1.1 to Case L1.8
represent a class of configurations where the inliers form
(approximately) a line (segment) or more generally, lie
in a subspace of lower dimensions.

The first case (Case L1.1) is the easiest, where
the distance from the outlier to the line of inliers
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Figure 3. Straight line and outlier

Table 3. Test results of straight line and outlier

kthNN kNNw LIC ODIN LOF sLOF LDOF
Case L1.1 3 3 3 3 3 3 3
Case L1.2 7 7 7 7 7 7 7
Case L1.3 3 3 3 3 3 3 7
Case L1.4 3 3 3 3 3 3 7
Case L1.5 3 3 3 3 3 3 7
Case L1.6 3 3 3 3 3 3 7
Case L1.7 7 7 7 7 3 7 7
Case L1.8 7 7 7 7 7 7 7
Case L1.9 7 7 7 3 7 7 7

is much larger than those between successive inliers.
The feature of the second case (Case L1.2) is that
there are significant variations in the distances between
successive points on the line. The four cases from
Case L1.3 to Case L1.7 are visually similar. Case
L1.3 and Case L1.5 are different in that, in Case L1.3,
the projection of the outlier on the line of inliers is
very close to an inlier, while in Case L1.5 the outlier
is projected to the middle of a gap. Case L1.4 and
Case L1.6 are modified from Case L1.3 and Case L1.4
respectively, each with an inlier removed for a larger
gap. Case L1.7 differs from Case L1.3 by having two
less points and larger gaps between successive inliers.
Points in Case L1.8 are significantly perturbed. Case
L1.9 has large variations of gap sizes.

The results are shown in Table 3. It is clear from the
result of Case L1.1 that as long as the distance from an
outlier to a line is much larger than the gaps between
points in the line, any unsupervised anomaly detection
algorithm works reasonably well. So only the rest of the

20 40 60 80
40
45
50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17

Figure 4. Case L1.2

 48.5

 49

 49.5

 50

 50.5

kNN kNNw LIC ODIN LOF sLOF LDOF

Figure 5. Test result represented by

yellow (failure) and black (success) pixel strips.

cases, where the outlier-to-line distance and gap sizes
are comparable, are interesting.

In Case L1.2, all methods failed, which was quite
intriguing. On the first sight, it was tempting to scale the
gaps between the inliers and see what would happen.
However, unsupervised anomaly detection algorithms
are usually assumed to be scale-invariant, so it should be
sufficient to move the outlier around instead. For ease of
discussion, we number the points as in Figure 4.

All the inliers had the same y-coordinate 44, while
the y-coordinate of the outlier in the original Case L1.2
was 48.5. Then we moved the outlier vertically to
see how each unsupervised anomaly detection algorithm
would work. The configuration being simple, we could
afford to run a three-digit equal-step scanning of the
outlier’s y-coordinate from 48.50 to 50.49 with a 0.01
increment, 200 test cases in total. Luckily, the result
turned out to exhibit mononicity. That is, we observed
that if any one method succeeded at discriminating the
outlier with y-coordinate y, it would then succeed at all
the cases where the outlier has y-coordinate y′ ≥ y. To
showcase this, the result is plotted in Figure 5, where
each case is represented by a yellow or black strip of
pixels. The monotocity is evident from the fact that there
is no distinguishable strips but only two color blocks in
the plot.

3.3. Case where LDOF was claimed to have
advantages over LOF

We recovered the precise configuration used as the
“motivating example”, in the LDOF paper [21] by
parsing the PDF file. As a result, there may be some
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Figure 6. The LDOF case and its modifications

(lower two differing only by the circled point)

uniform scaling but all methods covered in this paper
should work invariantly under uniform scaling. This
case, along with some modified versions which are
about to be explained in this section, are plotted in
Figure 6. As can be seen from Table 4, although the
case was designed to show the superiority of LDOF, all
methods except ODIN passed the test. Actually, in the
original paper [21], it was only claimed that this case
defeated kthNN , kNNw and LOF when k > 10. And
in our tests all the algorithms did pass with k < 10 (in
particular, k = 2 for both kthNN and kNNw, and k = 3
for LOF). So our results do not technically conflict with
those in [21]. In retrospect, the test case did seem
somewhat lax in terms of supporting LDOF, as there was
no obvious reason why we should prefer some k > 10
over k = 2 when encountered by this case.

That said, it is accidentally interesting why ODIN
alone failed. To ease the analysis, we gradually removed
some of the inlier points from the configuration until the
result of any method changed. The modified cases are
displayed in Figure 6, while the results are listed in Table
4 alongside the result of the original case. We were also
lucky enough to find two cases Case LD/2 and Case
LD/3, where the only difference was the latter having
one less point from the former, while ODIN failed in the
former but succeeded in the latter.

Case LD/3 was passed by ODIN with k = 9. For
a reasonably small k, including k = 9 of course, the
two outliers in the middle have an indegree number of
0, while the two outliers in the lower right corner have

Table 4. Test results of the LDOF case and its

modifications
kthNN kNNw LIC ODIN LOF sLOF LDOF

Case LD 3 3 3 7 3 3 3
Case LD/1 3 3 3 7 3 3 3
Case LD/2 3 3 3 7 3 3 3
Case LD/3 3 3 3 3 3 3 3
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Figure 7. Local view of Case LD/2

an indegree number of 1, being the nearest neighbor of
each other, which we have manually verified to be true
for both Case LD/1 and Case LD/2, forall 1 ≤ k ≤ 9.
So as long as all the inliers have an indegree number no
less than 2, ODIN can successfully disambiguate.

Now, for Case LD/2 and k = 9 we have

7 ∈ kNN(2) = {1, 3, 4, 5, 6, 7, 8, 9, 78} ,
7 /∈ kNN(8) = {3, 6, 9, 10, 14, 15, 16, 17, 78} ,

Ind(7) = 1 .

And for Case LD/3,

7 ∈ kNN(2) = {1, 3, 4, 5, 6, 7, 8, 9, 15} ,
7 ∈ kNN(8) = {3, 6, 7, 9, 10, 14, 15, 16, 17} ,

Ind(7) = 2 .

That is, as displayed in Figure 7, when point 78 is not
present, point 7 is in the kNN set of point 8 and thus
has two indegrees, which is why ODIN passed Case
LD/3. When point 78 is present, as is the case in Case
LD/2, it takes the place of point 7 in the kNN set of
point 8 (for k=9), so point 7 has only one indegree
and becomes indistinguishable from the outliers. That
said, in this local view, this point does look like a local
outlier to a certain extent. If we decreased k below 9,
point 7 would be no longer in the kNN set of point 8
by being exactly the 9-th nearest neighbour, so neither
Case LD/2 or Case LD/3 could be passed when k¡9. For

Page 853



Table 5. Test results of grid patterns
kthNN kNNw LIC ODIN LOF sLOF LDOF

Case G.1 7 7 7 7 3 7 7
Case G.2 3 7 3 3 3 7 7
Case G.3 3 3 3 3 3 3 7
Case G.4 7 7 7 7 3 7 7
Case G.5 7 7 7 7 3 7 7

completeness, all points would have indegree number 0
when k=0, disabling the ODIN method completely. If
we increased k to 10, the indegree number of one of
the outlier would suddenly increase to 8, a value greater
than those of a significant portion of the inliers, which
means k was already too large and the method started to
lose their disambiguation power globally.

We take the finding this way. The ODIN method
is scale-invariant within one configuration, it is
equally likely to recognise small, local features and
larger-scale features, similar to a fashion in fractals.
On the other hand, the indegree number of any point
p increases monotonically from Ind(p) = 0 when
k = 0 to Ind(p) = (P − 1) when k = (P − 1),
since kNN(q) = {1..P} r {q} for any q, but the way
Ind(p) grows with k depends on the outlierness of p.
The scale-invariance may be desirable sometimes, but
when it is unwanted, which is the case for general use
of outlier-detection, we cannot separate small-scale
features from large-scale ones using the indegree
numbers under a single k. Considering the curve of
Ind(p) versus k rather than a single value could lead
to more advanced methods. Alternatively, combining
Ind(p) with other methods to filter out small-scale
“outliers” also seems like a viable approach. More
extensive study on ODIN itself can be conducted with
data patterns generated with fractals in mind.

3.4. Grid patterns

While being “outliers” in a literal sense,
irregularities in grid-like patterns as demonstrated by
Case G.1 to Case G.5 displayed in Figure 8 are probably
not intended for most unsupervised anomaly detection
algorithms. We initially prepared these patterns with
the expectation that they are very challenging for
unsupervised anomaly detection algorithms, only to
find that these methods work reasonably well on these
configurations. The results are shown in Table 5.

At first sight, it is tempting to consider the
effectiveness coming from the fact that the outliers are
unusually close to or far away from its surrounding
points, compared to the inliers. However, the presumed
outliers in grid-less density patterns such as Case B.1 are
harder to detect. So the unsupervised anomaly detection
algorithms seem to be actually picking up the pattern
and need a closer look.
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Figure 8. Grid patterns

From the results, vanilla LOF stands out as being
particularly effective for the grid-like patterns, failing on
only 1 case.

For Case G.1 we have used

X =

[
48 19 36 52 69 19 37 53 68 68 53 37 20 20 37 53 69
50 28 29 29 29 46 45 45 45 61 61 60 60 75 75 75 75

]
,

the first column being the presumed outlier,and

P = 17 ,k = 16 ,

For LOF we have

lrd(1) = 0.0176 , LOF(1) = 1.0218 ,

lrd(7) = 0.0177 , LOF(7) = 1.0143 .

In this case k = P − 1, and the outlier seems to be
identified by it being at the most “central” location. It
could be argued that this is just a special case.

An obvious next step would be to move the “outlier”
point somewhere else so that the special case cannot
hold, as shown in Figure 9b. But in this case we have
found that LOF was able to distinguish the outlier with
k = 2. More specifically, for the case shown in Figure
9b, we have

X =

[
65 19 36 52 69 19 37 53 68 68 53 37 20 20 37 53 69
35 28 29 29 29 46 45 45 45 61 61 60 60 75 75 75 75

]
,

and

P = 17 , LOF(1) = 1.1815 ,

LOF(5) = 0.9344 , LOF(8) = 1.0809 ,

where point 8 has the greatest LOF score among inliers.
In this case, since the LOF scores were seperated
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Figure 9. Case G.1 and its modification

between point 8 and point 1, rather than between point
5 and point 1, it can still be argued to be a special case.

However, LOF is observed to succeed on most
“grid-like” cases, which is not yet well explained by
the one special case. It is not hard to generate a series
of similar cases with different grid sizes and different
“outlier” positions. But before that we should check
other grid-like patterns in Table 5 first. And in Case G.2,
Case G.4 and Case G.5, LOF all successfully identified
outliers with k = 2.

It would then be tempting to postulate that LOF
works on grid-like patterns generally with either
k = P − 1 or k = 2. We went on to extensively
generate grid-like patterns of various sizes and apply
LOF against them.

The experiment setup was to generate square grids
of different sizes, and cells of different heights as we
consider the method to be scale- and rotation-invariant
but not necessarily invariant with uneven scaling on two
axes. Some perturbations were also applied to each grid
points. We then inserted an outlier around a grid point
with random perturbation greater than that of any regular
grid points. Then the “original” grid point around which
the outlier was added could either be removed or not,
and we considered both cases.

For both types of cases, four cell aspect ratios 1,
2, 4 and 8 were used. And for each combination
of aspect ratio and grid size, 40 experiments with
different pseudo-randomness seeds for perturbations
were generated. Grid sizes of 4, 5, 8, 9, 13, 16 and 32
were used, resulting in a total of 2240 cases. Examples
are shown in Figure 10.

We found that in more than half of the 2240 cases,
LOF was able to identify the outlier successfully, with
a small k < 5 most of the time. There were no more
apparent patterns regarding whether a configuration
could or could not be successfully detected by LOF. The
LOF method certainly has great potential to be adapted
for grid-like patterns, and we will need a more dedicated
future work in this regard.
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Figure 10. Examples of extensive cases for LOF in

grid-like patterns

4. Discussion

In this work we have tested several classical
unsupervised anomaly detection algorithms with
manually designed cases. Both the size of each case and
the total number of cases are much smaller than a typical
review. And yet we have found an unexpected use case
for outlier detection methods, that is the grid patterns.
We do learn more of algorithms with less data and more
attention. While objective, automated and extensive
evaluation of algorithms are certainly desirable, at
present the human attention is still valuable. For
data-mining practitioners, this paper also provides some
useful heuristics for generic outlier detection algorithms.

This paper is by no means exhaustive in terms of
exhibiting the effectiveness of small data in machine
learning research. The main point here is to rehearse the
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perspective stressing the small, well designed examples
that is sometimes assumed with existing research but
rarely elaborated or made a focus of research. We hope
this perspective could be used across many different
classes of data-mining/machine-learning algorithms.
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