
Research Software Sustainability: Lessons Learned at NCSA

Daniel S. Katz
University of Illinois

at Urbana-Champaign
d.katz@ieee.org

Kenton McHenry
University of Illinois

at Urbana-Champaign
mchenry@illinois.edu

Jong S. Lee
University of Illinois

at Urbana-Champaign
jonglee1@illinois.edu

Abstract

This paper discusses why research software is
important, and what sustainability means in this context.
It then talks about how research software sustainability
can be achieved, and what our experiences at NCSA
have been using specific examples, what we have
learned from this, and how we think these lessons can
help others.

1. Introduction

Software is essential for research. Research
data relies on research software for interpretation,
understanding, analysis, and sometimes generation.
Software makes modeling and simulation of physical
and social phenomena at scale possible. Good
research software can make the difference between
valid, sustainable, reproducible research outputs and
short-lived, potentially unreliable or erroneous outputs.

• The National Science Foundation has
identified software as “directly responsible for
increased scientific productivity and significant
enhancement of researchers’ capabilities” [1].

• Many of the 100 most-cited papers of all time
identified in a 2014 article describe research
software, from fields such as bioinformatics
(BLAST, ClustalW), phylogenetics (MEGA4,
MrBayes), and crystallography (SHELX,
CNS) [2].

• A UK survey of 1,000 randomly chosen
researchers showed that more than 90% of
researchers acknowledged software as being
important for their own research, and about 70%
of researchers said that their research would not
be possible without software [3].

• A study of Nature papers from Jan–March 2016
reveals that “32 of the 40 papers examined

mention software, and the 32 papers contain 211
mentions of distinct pieces of software, for an
average of 6.5 mentions per paper.” [4]

• The US National Science Foundation made
18,592 awards totaling $9.6 billion to projects that
included the topic of “software” in their abstracts
between 1995–2016 [5].

Additional evidence for the importance of research
software can be found through a community effort led
by the Research Software Alliance [6].

2. Research software sustainability

But for research software to continue to be usable
over time, ongoing human activity is needed to maintain
it. Research software today involves a complicated
stack of components, ranging from the operating
system to general infrastructure (e.g., compilers) to
domain-independent scientific infrastructure (e.g., linear
algebra and I/O libraries) to domain-specific scientific
tools (e.g., community applications and libraries) to
project-specific code (e.g., scripts, workflows). Each
layer depends on the layers below it, which can and
do change in response to bugs, new needs, or changes
in underlying layers, all the way down to the hardware
itself [7].

We can define research software sustainability as
the process of developing and maintaining software that
continues to meet its purpose over time, which includes
that the software adds new capabilities as needed by
its users, responds to bugs and other problems that are
discovered, and is ported to work with new versions of
the underlying layers, including software as well as new
hardware.

In order to sustain research software, we can

1. Take actions that reduce the amount of work
needed

2. Take actions that increase the available resources

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 7249
URI: https://hdl.handle.net/10125/71494
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

3. Take actions that both reduce the amount of work
needed and increase the available resources

In order to reduce the amount of work needed to
sustain the software, we can train its developers, which
involves finding or developing training material, and use
best practices, which involves finding or developing best
practices.

In order to increase the available resources to sustain
the software, we can create incentives so that people
want to work on the software, e.g. getting citations that
help in existing career paths, adjusting existing career
paths to ensure that they reward software work, and
creating new career paths; and we can increase available
funding by first making the role of software in research
clear to research funders, and then by clearly making the
case for them to increase funding for new software, and
to provide funding for software maintenance.

Finally, the main action that both reduces work
and brings in new resources is collaboration. Using
the work of others rather than reimplementing a
function or package reduces what a software team
(or its developers) needs to do themselves, even
without assuming that the collaborators contribute to the
software, which also may happen. Similarly, if others
use a team’s software, and contribute to maintaining it,
the team has less they need to do. To make this work, the
software has to be designed from the start to be modular
and reusable, and it must also be clearly documented and
explained to potential users, even those in fields other
than the developer’s. And the team has to put effort
into engaging and working with the potential user and
contributor community.

A related concept is FAIR, meaning Findable,
Accessible, Interoperable, and Reusable. A set of
FAIR principles were created [8], primarily for data, but
these four foundational principles are also important for
software. And community work has recently started to
formalize a definition and metrics for FAIR for research
software [9], in part starting with a recent paper by
Lambrecht et al. [10]. The more FAIR software is, the
more likely it is that it will be found, accessed, and
used, which in turn leads to both a need for sustaining it,
which can be filled by the original developers, users, or
others who see an opportunity to contribute.

3. Sustainability is people

Overall, we recognize that nothing will change
the fact that someone needs to maintain the software,
whether they do this as a volunteer or as a paid activity.

We may be able to use institutional resources for
this, if the software is considered sufficiently important
to the organization, either or both operationally or

reputationally. NCSA (the National Center for
Supercomputing Applications at the University of
Illinois Urbana-Champaign) has done this in the past.
For example, NCSA provided support to the Ergo
framework, described in the next section, because it
saw an emerging community around the software and
wanted to bridge it to the next project that would
leverage it. In order to increase this, we need to be able
to make a case to our management that this provides
a good return on investment, in terms of needing to
spin up fewer future projects and being more efficient
in applying existing software to new projects, both of
which can lead to increased success in collaboration and
in proposals.

At NCSA, our primary experience has been
in bringing in collaborators through joint funding
opportunities, where either we write a proposal to
develop software that includes funding others as users
and developers to drive the development and expand it to
support more use cases, or where users write proposals
to do their research that includes funding for us and
our software as an efficient means of enabling that
research. In some cases, those collaborators are us, in a
follow-on project that depends on the initial project and
thus dedicates resources to maintaining it. We discuss
this in more detail in the next section.

But first, we also want to briefly discuss the
experiences and lessons about bringing in volunteers.
We have some experience with volunteers, such as
users who find bugs and tell us about them, or users
who provide fixes to bugs, or developers who want
to incorporate their software into ours, but here we
highlight a couple of useful ideas from others who have
focused on this type of interaction.

If we want to bring in volunteers or collaborators,
we need to think about why they will choose to put
effort into our software project, or how we can engage
them. In the context of community activities and
organizing, Joseph Porcelli has defined engagement as
motivation+support−friction [11]. Porcelli further
splits motivation into intrinsic and extrinsic components,
and defines each term as follows:

• Intrinsic motivation = self-fulfillment, altruism,
satisfaction, accomplishment, pleasure of sharing,
curiosity, real contribution to science

• Extrinsic motivation = job, rewards, recognition,
influence, knowledge, relationships, community
membership

• Support = ease, relevance, timeliness, value

• Friction = technology, time, access, knowledge

Page 7250

Figure 1. Community member engagement. For each level of engagement (above the arrow), methods to

promote a community member to reach that level are shown below and to the left of the arrow [12].

To encourage engagement, we can impact many
of these factors. For example, we can use GitHub
for development (reduce friction by using a known
technology, at least known to developers though
potentially not to users), provide templates for issues
and guidelines for good pull requests (reduce friction
by providing knowledge of how to work with our
project and simultaneously increase support by easing
the means of doing so), provide a code of conduct and
a welcoming and encouraging environment (increase
extrinsic motivation by helping develop relationships
and sense of community), add contributors to a
list of authors who are cited when the software is
used (increase both intrinsic motivation and extrinsic
motivation through recognizing accomplishments), and
highlight examples of how the software is used (increase
intrinsic motivation by demonstrating the contribution to
science).

Additionally, we can consider a progression of
types of engagements, as defined by Abigail Cabunoc
Mayes [12], as shown in Figure 1. Here, a potential
contributor initially discovers the software project, has
a first contact with the project, participates in it once,
continues to participate, becomes part of the project,
and eventually takes on a leadership role. The project
has a number of things it can do before each level to
encourage the potential contributor to move to that level,
from promotion to encourage discovery to defining
a value exchange and using a personal invitation to

encourage a contributor to become a leader.

4. NCSA experiences

We describe our experiences at NCSA in two
categories, software and people, though there clearly is
overlap between them.

4.1. Software

Projects that develop software in academia can be
divided into two categories, those that intend to develop
and share software as a primary goal of the project, and
those where the software is developed as a means to
accomplish a different primary goal, often a research
investigation. In the first category, the project likely has
planned for the software to be released, but may not have
firm plans to sustain it after the project funding ends,
and in the second category, it’s very unlikely there are
any plans to sustain the software after the project ends,
other than perhaps assuming that follow-on projects by
the same team for which the software is needed will
continue to maintain it. The software we are discussing
here falls into the first category.

Research software activities supported by NCSA
staff have spanned the spectrum described above. In
general, however, NCSA has aimed to leverage and
sustain past developments wherever possible, with
the aim of benefiting not only current users of the
software but also new users, particularly as part of

Page 7251

new efforts where similar functionality is needed, if
perhaps adapted with additional features. When this is
possible, larger frameworks have emerged with a wide
array of features to support needs across a number of
scientific disciplines. The broader user base in turn helps
sustain activities around the software and through that
the software itself.

Of course, this must be done carefully and
considerately, as there are some potential downsides.
The code can expand in size as additional functionality
is added, and can become brittle and hard to maintain.
The developers need to watch for this, aiming to stay
true to the core intention of the software, as well as
potentially rearchitect and refactor the code, particularly
if the code was originally designed for a limited purpose.
Often times, however, extensions to support additional
data types, interfaces, or types of analytics are all that is
needed in order to support a new community’s needs.

An example of successful leveraging and sustaining
software is the Clowder framework [13]. Started in
2009 as Medici [14, 15], initially a visual frontend
for the Tupleo [16] RDF triple store for the purpose
of an image database, the software has lived on for
over a decade supporting efforts with overlapping needs
across a broad spectrum of disciplines with funded
efforts from agencies such as the National Science
Foundation (NSF), the National Institutes of Health
(NIH), the National Endowment for the Humanities
(NEH), the Environmental Protection Agency (EPA),
and the European Union (EU). Though it started
with an initial focus on image data, the framework
developed into its current incarnation, Clowder, as a
much broader data management framework supporting
many types of data, its curation, publication, as well
as analysis. As data management was found to be a
common need across many domains requiring similar
core functionality but on different types of data, Clowder
was developed as a major refactoring of the original
Medici. In addition to supporting scalable analytics, this
refactoring made nearly every aspect of the architecture
customizable and so that it became fairly simple to add
support for a new data type or visualization. Currently
Clowder is leveraged by over a dozen active activities,
as shown in Figure 2, supporting data well beyond just
image data such as depth, numerical, and streaming data
in support of geoscience, video data in support of social
science, and 3D data in support of cultural heritage.

While some other sustained software activities
rigorously promote their software and largely only
collaborate on efforts that utilize their software, NCSA
does not, at least not in the same sense. NCSA focuses
on providing access to Research Software Engineers
(RSEs) and supporting projects and scientific software

development broadly. Software, such as Clowder tend
to emerge organically and comes into new efforts not as
“NCSA Clowder” or an “NCSA” thing, but as a readily
leverageable tool in a toolbox that can be brought to bear
on a new effort should it fit. If there is such a fit, perhaps
with some modification, gains can be obtained within a
project in terms of leveraging all the past developments
and capabilities, leveraging the RSEs’ already existing
familiarity with the tool, and providing another option
in terms of sustainability of new developments, since the
new modifications that are created will go back into the
toolbox in support of future endeavors.

Another good example is the Ergo framework [17].
Ergo has its origins with MAEviz [18], which was
developed as part of the NSF Mid-America EarthQuake
Center from 1997 to 2008 for risk assessment of city
infrastructure during an earthquake for city planning
and potential first responder deployment. After the
project ended, NCSA continued to maintain MAEviz
as a tool in its toolbox. Over seven years, a
broad international open source community was built
around the framework, and this community then
re-branded the software as Ergo. NCSA held a user
community meeting every two months to discuss Ergo
and related topic activities, to discuss grant proposal
developments, to support and share scientific research,
and to plan participation in international conferences.
Five to 10 partners (leads of their group) regularly
attended the meeting. The framework proved to be
a particular good fit in terms of ramping up a new
effort in 2015 through the NIST (National Institute
for Standards and Technology) Center for Risk-Based
Community Resilience Planning as the IN-CORE
(Interdependent Networked Community Resilience
Modeling Environment) [19] framework, where the
software continues to be developed to this day in support
of not only earthquakes but also many other types of
modelling on hazards such as fires, tornadoes, and
tsunamis.

An example of software where NCSA plays a
collaborating (rather than leading) role is the family
of software that includes Swift [20], Parsl [21], and
funcX [22], all of which are systems for programming
applications by assembling a mix of existing and
new components, including components that are also
standalone applications. Swift is a C-like language for
distributed parallel computing that was created about
15 years ago, and which was used by application
developers and users in a variety of disciplines for
applications that involved ensembles, optimization,
workflows, and other types of programming programs.
Swift was developed by a team primarily located
at the University of Chicago and Argonne National

Page 7252

Figure 2. Clowder collaborators, users, and uses. The accumulation of these groups over time across these

different fields and the contributions and use cases they provided enabled Clowder to be sustained.

Laboratory.
About 4 years ago, the Swift team (which had added

a co-PI at NCSA) began thinking about the decisions
that had been made at the start of Swift, and what
similar decisions would be now (4 years ago), and
decided that rather than being both a language and a
system, the ideas of Swift could be implemented in pure
Python to ease the learning curve for new users who
would then not have to learn a new language. This led
to the development of Parsl under a new NSF award.
Parsl also was gained from the experiences of Swift,
as it was written from scratch in a much more clean
and more simple style, and with newer collaborative
(community/git-based) software practices built-in. We
believe these changes have led to Parsl being easier
to contribute to and more welcoming to contributors.
Parsl now has over 40 contributors, most of whom are
not funded by Parsl and are not at any of the three
institutions that are funded by NSF specifically for Parsl
development and maintenance. This is a large number
for a typical academic project, in line with projects of a
similar age and similarly sized focus that are supported
by open source organizations such as NumFOCUS [23].

These contributors include Parsl users who find
bugs and fix them, and who suggest new features via

pull requests. An example is a staff member at a
company who contributed improved build technology
while working to incorporate Parsl into an internal
application. Parsl has also worked to integrate multiple
cyberinfrastructure tools and systems. For example,
Parsl can use the Work Queue [24] executor developed
at Notre Dame, and the work to do this integration was
mostly performed by the Work Queue developers. A
final example is a student at a liberal arts college who
developed a method to use Parsl as a uniform interface
to his college’s cluster, so that users don’t need to have
expertise in HPC job submission and scheduling [25].
This work led to 57 commits to the Parsl repository,
affecting over 7,000 lines of code, and has made the
student the 7th largest contributor to Parsl.

An even newer development in this set of related
software projects is funcX, a function-as-a-service
platform for research applications on academic
(high-performance computing, or HPC) and commercial
infrastructure (clouds) being developed collaboratively
between University of Chicago, Argonne National
Laboratory, and NCSA. funcX, which was recently
funded by NSF through awards to the Universities of
Chicago and Illinois, relies on Parsl to provide some of
its functionality.

Page 7253

Both Parsl and funcX are projects where NCSA
is part of the team, involved in the architecture,
development, documentation, and outreach, but does
not lead the project. While the overall style of these
projects are similar to that of Clowder and Ergo at the
level of the team and its goals of building products that
are useful to end users and building a community of
developers and end users to contribute to the software,
it is also somewhat different in that decisions must be
collaborative across institutions. Clowder and Ergo have
also developed in this same direction over time, because
asking people to make significant contributions to a
software package is not usually successful without also
giving them a stake in the governance of the software.
While this lesson is more obvious in projects that are
funded across institutions, we have also found it to be
true in projects where the development awards are to a
single institution (e.g., NCSA).

4.2. People

To better enable the ability to support and sustain
scientific software activities in this model, NCSA
has fleshed out and put into place aspects for the
improvement of recruitment, training, and career growth
of Research Software Engineers (RSEs) [27]. As
described in Katz et al. [26], teams are organized less by
specific areas and more along the lines of senior RSEs
guiding newer RSEs, who can either be new software
developers, developers from various scientific domains,
or software engineers from industry backgrounds.
Mentorship by senior RSEs revolves around not only
technology and best practices but also interacting
with collaborators, being part of teams made up of
researchers and students, writing/publishing/presenting
their work, over time overseeing efforts and possibly
serving as the point or even Co-PI for projects,
and being taught to think beyond the short term
towards addressing longer-term software aspects such as
reusability, maintainability, and overall sustainability.

As depicted in Figure 3, the RSE career path
rewards the development of these aspects within the
staff, specifically overseeing collaborations as well as
software, by including these skills as prerequisites to
moving to the next level, meaning that staff members
can see what is needed to move to the next level and
work on those aspects of their skills. We note that
while this career advancement that has been put into
practice is based on nearly a decade of experience, it
still continues to evolve. Aspects that continue to need
to be addressed include the sharing of knowledge across
a large (approx. 40 member) overarching team with
regards to the collective “tools within our toolbox” as

well as caveats to matrixing projects across teams based
on this non-speciality but instead mentorship-oriented
team model.

Specifically, leveraging existing software, which can
include extending its capabilities, and creating new
software that could become a new reusable framework,
is encouraged. The RSEs who can successfully do
this become a resource within the group, because they
can support these frameworks within new projects and
train others as part of teams that use the frameworks.
Developers with experience in building and maintaining
one or more frameworks typically find themselves with
more projects to choose from than they can do, requiring
them to train and mentor newer research programmers to
support those projects. This choice of projects around
software they support provides job security, since the
software without the people who know it is not very
useful in the long term, while simultaneously preserving
institutional knowledge of those frameworks.

The NCSA Software Directorate relies on a group
of senior developers overseeing the group’s software
frameworks and serving as PI/Co-PI/lead of the projects
the directorate works on. The group contributes to
decisions about projects for the directorate to take
on, staffing assignments across the directorate, project
priorities (e.g., staffing increases, reallocation of senior
developers when needed for upcoming milestones), as
well as other financial/strategic decisions relevant to the
group and the frameworks it oversees. To grow the
number of developers in this more strategic category,
and to foster the ability to grow activities, the directorate
also considers technical strategy aspects, finding and
encouraging senior people to further mentor research
programmers who have demonstrated an aptitude for
advancing along the career path. These research
programmers then begin to take a larger part in strategic
decisions across the projects served by the directorate
(e.g., which underlying technologies to use, codifying
best practices) and to begin leading aspects of the
projects. In general, each project staffed by the
directorate has one month of a senior person in addition
to the development staff, with the role of the senior
person being to oversee, guide, and align efforts and to
serve as a backup if additional development is needed or
as the project memory in the event of the loss of a newer
staff member.

5. NCSA lessons learned

Software doesn’t maintain itself – without active
maintenance, it will stop working. And for research
software, particularly for software that is designed to be
shared to solve the problems the communities have, we

Page 7254

Figure 3. NCSA career path for RSEs (currently research programmers) [26].

believe we have demonstrated a set of methods to obtain
the resources to perform this maintenance that can be
combined. These include

• Making projects collaborative by design,
including opening up governance of the projects
to contributors

• Designing and applying mechanisms to move
users to developer to maintainers

• Offering career paths that allow full-time research
software developers to act as institutional memory
and continuing expertise

• Considering senior developers a key part of the
overall Software Directorate, with specific roles
in mentoring staff, leading projects, and providing
strategic guidance to the directorate

• Designing software to be as flexible and adaptable
as possible, and working to combine software
needs into a small set of well-architected packages

• Providing institutional support to bridge software
packages between projects

We continue looking for additional methods to bring
in, understanding how best to combine the methods we
have, and working on institutional issues such as trying
to make the case for increased institutional support and
career paths that enable research software engineers to
be as productive as possible.

Acknowledgements

We thank members of the current and past NCSA
software development community, as well as our
external collaborators in the projects mentioned in this
paper. We also thank the anonymous reviewers for their
helpful comments and suggestions for future work.

References

[1] National Science Foundation, “Software Infrastructure
for Sustained Innovation - S2I2 (SI2-S2I2),”
2013. Program Solicitation NSF 13-511, https:
//www.nsf.gov/pubs/2013/nsf13511/
nsf13511.htm.

[2] R. Van Noorden, B. Maher, and R. Nuzzo, “The top
100 papers: Nature explores the most-cited research of
all time,” Nature, 2014. https://doi.org/10.
1038/514550a.

[3] S. Hettrick, M. Antonioletti, L. Carr, N. Chue Hong,
S. Crouch, D. De Roure, I. Emsley, C. Goble, A. Hay,
D. Inupakutika, M. Jackson, A. Nenadic, T. Parkinson,
M. I. Parsons, A. Pawlik, G. Peru, A. Proeme,
J. Robinson, and S. Sufi, “Uk research software survey
2014,” Dec. 2014. https://doi.org/10.5281/
zenodo.608046.

[4] U. Nangia and D. S. Katz, “Understanding software in
research: Initial results from examining nature and a call
for collaboration,” in 13th International Conference on
e-Science (e-Science), pp. 486–487, 2017. https://
doi.org/10.1109/eScience.2017.78.

[5] D. S. Katz, L. C. McInnes, D. E. Bernholdt,
A. Cabunoc Mayes, N. P. Chue Hong, J. Duckles,
S. Gesing, M. A. Heroux, S. Hettrick, R. C.
Jimenez, M. Pierce, B. Weaver, and N. Wilkins-Diehr,
“Community organizations: Changing the culture in

Page 7255

which research software is developed and sustained,”
Computing in Science & Engineering, vol. 21, no. 2,
pp. 8–24, 2019. https://doi.org/10.1109/
MCSE.2018.2883051.

[6] M. Barker, D. S. Katz, and A. Gonzalez-Beltran,
“Evidence for the importance of research software,” June
2020. https://doi.org/10.5281/zenodo.
3873832.

[7] K. Hinsen, “Dealing with software collapse,” Computing
in Science & Engineering, vol. 21, no. 3, pp. 104–108,
2019. https://doi.org/10.1109/MCSE.
2019.2900945.

[8] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg,
G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W.
Boiten, L. B. da Silva Santos, P. E. Bourne, and
et al., “The FAIR guiding principles for scientific
data management and stewardship,” Scientific Data,
vol. 3, Mar. 2016. https://doi.org/10.1038/
sdata.2016.18.

[9] “FAIR 4 Research Software (FAIR4RS) WG.”
https://www.rd-alliance.org/groups/
fair-4-research-software-fair4rs-wg.

[10] A.-L. Lamprecht, L. Garcia, M. Kuzak, C. Martinez,
R. Arcila, E. Martin Del Pico, V. Dominguez Del Angel,
S. van de Sandt, J. Ison, P. A. Martinez, and et al.,
“Towards FAIR principles for research software,” Data
Science, vol. 3, p. 37–59, June 2020. https://10.
3233/DS-190026.

[11] J. Porcelli, “How to grow users into active
community members and get your community more
engaged,” in 2013 Open Source Software Summit,
2013. https://web.archive.org/web/
20160310200155/http://ossummit.org/.

[12] A. Cabunoc Mayes, “Work open, lead
open,” in Chan-Zuckerberg Initiative (CZI)
Essential Open Source Software (EOSS)
Kickoff Meeting, 2020. https://docs.
google.com/presentation/d/13NAGmqP_
Fb2qjBKePGVZe7awtwnFKZUHtPz8mqbYtsE/
present.

[13] L. Marini, I. Gutierrez-Polo, R. Kooper, S. P. Satheesan,
M. Burnette, J. Lee, T. Nicholson, Y. Zhao, and
K. McHenry, “Clowder: Open source data management
for long tail data,” in Proceedings of the Practice and
Experience on Advanced Research Computing (PEARC
’18), ACM, 2018. https://doi.org/10.1145/
3219104.3219159.

[14] L. Marini, R. Kooper, J. Futrelle, J. Plutchak, A. Craig,
T. McLaren, and J. Myers, “Medici: A scalable
multimedia environment for research,” in Microsoft
Research eScience Workshop, (Berkeley, CA), 2010.

[15] C. Sophocleous, L. Marini, R. Georgiou, M. Elfarargy,
and K. McHenry, “Medici 2: A scalable content
management system for cultural heritage datasets,”
code{4}lib, 2017. https://journal.code4lib.
org/articles/12317.

[16] K. McHenry, M. Ondrejcek, L. Marini, R. Kooper,
and P. Bajcsy, “Towards a universal viewer for digital
content,” Procedia Computer Science, vol. 4, pp. 732
– 739, 2011. Proceedings of the 2011 International
Conference on Computational Science (ICCS), https:
//doi.org/10.1016/j.procs.2011.04.077.

[17] N. Makhoul, C. Navarro, and J. S. Lee, “Seismic
estimation of casualties and direct economic loss to

byblos city: a contribution to the ‘100 resilient
cities’ strategy,” Sustainable and Resilient Infrastructure,
pp. 1–21, 2020. https://doi.org/10.1080/
23789689.2020.1745531.

[18] T. M. McLaren, J. D. Myers, J. S. Lee, N. L. Tolbert,
S. D. Hampton, and C. M. Navarro, “Maeviz: An
earthquake risk assessment system,” in Proceedings of
the 16th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, GIS ’08,
Association for Computing Machinery, 2008. https:
//doi.org/10.1145/1463434.1463534.

[19] N. Attary, J. W. van de Lindt, H. Mahmoud,
S. Smith, C. M. Navarro, Y. W. Kim, and J. S. Lee,
“Hindcasting community-level building damage for the
2011 Joplin EF5 tornado,” Natural Hazards, vol. 93,
pp. 1295–1316, 2018. https://doi.org/10.
1007/s11069-018-3353-5.

[20] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S.
Katz, and I. Foster, “Swift: A language for distributed
parallel scripting,” Parallel Computing, vol. 37, no. 9,
pp. 633–652, 2011. Emerging Programming Paradigms
for Large-Scale Scientific Computing, https://doi.
org/10.1016/j.parco.2011.05.005.

[21] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford,
R. Kumar, L. Lacinski, R. Chard, J. M. Wozniak,
I. Foster, M. Wilde, and K. Chard, “Parsl: Pervasive
parallel programming in python,” in Proceedings of
the 28th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’19,
pp. 25––36, Association for Computing Machinery,
2019. https://doi.org/10.1145/3307681.
3325400.

[22] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard,
B. Blaiszik, I. Foster, and K. Chard, “Funcx: A
federated function serving fabric for science,” in
Proceedings of the 29th International Symposium on
High-Performance Parallel and Distributed Computing,
HPDC ’20, pp. 65––76, Association for Computing
Machinery, 2020. https://doi.org/10.1145/
3369583.3392683.

[23] NumFOCUS. https://numfocus.org.
[24] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and

D. Thain, “Work queue + python: A framework for
scalable scientific ensemble applications,” in Workshop
on Python for High Performance and Scientific
Computing (PyHPC) at the ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage, and Analysis (Supercomputing),
2011. http://ccl.cse.nd.edu/research/
papers/wq-python-pyhpc2011.pdf.

[25] B. Glick, “Parsl for research computing at a
liberal arts college,” in ParslFest, 2019. https:
//drive.google.com/file/d/1fSQ1j_
2rl8-IoQLoItyi8jhOopY3xpK9/view.

[26] D. S. Katz, K. McHenry, C. Reinking, and R. Haines,
“Research software development & management in
universities: Case studies from Manchester’s RSDS
Group, Illinois’ NCSA, and Notre Dame’s CRC,”
in ACM/IEEE International Conference on Software
Engineering (ICSE), International Workshop on
Software Engineering for Science (SE4Science), 2019.
https://doi.org/10.1109/SE4Science.
2019.00009.

[27] J. Cohen, D. S. Katz, M. Barker, N. P. Chue Hong,
R. Haines, and C. Jay, “The four pillars of research
software engineering,” IEEE Software, 2020. https:
//doi.org/10.1109/MS.2020.2973362.

Page 7256

