
Introduction to the Minitrack
Software Survivability: Strategies for Long-Lasting and Usable Software

Abstract

The focus on software usability, long-lasting and
reproducible software is a timely one that spans
various domains of science and significant investment
of research funding both in the US, Europe, U.K, and
elsewhere. Software has become a major driver for
research with over 90% of researchers answering
surveys that they use software for their research and
over 65% expressing that they could not even do their
research without software. The computational
landscape has evolved from system-centered design
focusing on training users to user-centered design
delivering solutions that are intuitive and/or self
explanatory. The prominence of research software
creates challenges in the following areas - usability
and ease of use, survivability, and reproducibility.
Thus, the concept of long-lasting, easy to use software
accelerating science is a major concern for
researchers. Additionally, researchers would like to be
able to re-use software technologies to be able to
analyze further data with established and verified
methods, which is part of reproducibility approaches.

1. Introduction

The three concepts usability, survivability and
reproducibility are interconnected with each other and
cover a wide range of application areas. They affect all
layers of the software process - from enabling
reproducing experiments via an easy user interface to
using containerization for application portability. Such
concepts are also relevant in the building of Science
Gateways (also known as virtual laboratories or virtual
research environments), which by definition serve
communities with end-to-end solutions tailored
specifically to their needs. Software survivability

involves a wide scope that can potentially include the
following topics:

● Web-based solutions (web sites, science
gateways, virtual labs, etc.)

● Application Programming Interfaces (APIs)
● Computational and Data-Intensive Workflows
● Novel approaches in containerization
● Survivability practices in software

development
● System architectures for testing and

continuous integration
● Emerging best practices in Machine Learning

software
● Best practices and Key Success Factors for

usability, survivability and reproducibility

This mini-track, Software Survivability: Strategies for
Long-Lasting and Usable Software, introduces the
wide variety of accepted papers to HICSS-54. It
focused on the broad spectrum of submissions that deal
with complex scenarios such as containerization,
strategies for long-lasting software, usability and user
interface issues, handling data curation and provenance
and more.

2. Accepted Papers

The three papers accepted to this track introduce
the following three topics:

● Sustainability in regards to
software-as-a-service

● Research Software Sustainability and
● Usability, version control, archiving and

reproducibility

Maytal Dahan
Texas Advanced Computing Center,
The University of Texas at Austin

maytal@tacc.utexas.edu

Joe Stubbs
Texas Advanced Computing Center,
The University of Texas at Austin

jstubbs@tacc.utexas.edu

Sandra Gesing
Center for Research Computing

University of Notre Dame
sandra.gesing@nd.edu

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 7237
URI: https://hdl.handle.net/10125/71492
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

One paper selected for this minitrack,
“Sustainability in the Tapis Framework” delves into
the Tapis framework and argues as research depends
fundamentally on software, sustainability becomes
increasingly critical. Nevertheless, despite valiant
efforts from a growing number of researchers and
practitioners, a basic understanding of best-practices
for sustainable software remains elusive. In this paper,
we review the specific practices and strategies that
have helped to sustain Tapis, a cyberinfastructure
project that has been in use for over a decade. The
Tapis framework is an open-source,
software-as-a-service Application Programming
Interface (API) for collaborative, automated,
reproducible computational research which began as
the Foundation API for the iPlant Collaborative Project
in 2008, and today is used by tens of thousands of
individuals across more than a dozen active projects.
This paper describes our multi-faceted approach to
sustaining an increasingly complex ecosystem of
software, documentation and other digital assets,
including both technical and organizational strategies
for minimizing the cost of sustainment while
maximizing available resources for sustainment
activities.

Further diving into research software sustainability,
the second paper, “Research Software Sustainability:
Lessons Learned at NCSA” , discusses why research
software is important, and what sustainability means in
this context. It then talks about how research software
sustainability can be achieved, and what the
experiences at NCSA have been using specific
examples, what the authors have learned from this, and
how they think these lessons can help others.

Lastly, authors of the third paper dive into version
control and software sustainability. The paper “A
Behavioral Approach to Understanding the Git
Experience” details the Investigating and Archiving the
Scholarly Git Experience (IASGE) project is
multi-track study focused on understanding the uses of
Git by students, faculty, and staff working in academic
research institutions as well as the ways source code
repositories and their associated contextual ephemera
can be better preserved. This research, in turn, has
implications regarding how to support Git in the
scholarly process, how version control systems
contribute to reproducibility, and how Library and
Information Science (LIS) professionals can support
Git through instruction and sustainability efforts. In

this paper, we focus on a subset of our larger project
and take a deep look at what code hosting platforms
offer researchers in terms of productivity and
collaboration. For this portion, a survey, focus groups,
and user experience interviews were conducted to gain
an understanding of how and why scholarly researchers
use Version Control Systems (VCS) as well as some of
the pain points in learning and using VCS for daily
work.

4. Conclusion

These papers show a wide range of applications
and impact of software survivability in research
software. They cover crucial aspects such as
reproducibility and cultural approaches, We hope you
will join us for interesting presentations and lively
discussions on software sustainability, reproducibility,
challenges, and solutions for our evolving landscape.

Page 7238

