
Utilizing Remote Evaluation for Providing Data Sovereignty in Data-sharing
Ecosystems

Fabian Bruckner
Fraunhofer ISST

fabian.bruckner@isst.fraunhofer.de

Falk Howar
TU Dortmund

falk.howar@tu-dortmund.de

Abstract

The maintenance of digital sovereignty is an
important aspect of data-driven business models and
data-sharing ecosystems. Considering this, sensitive
data is often stored in proprietary systems under the
data owner’s control and with appropriate security
mechanisms. However, nowadays, it is often necessary
to share data. As executing unknown and untrusted
code on systems containing sensitive data is potentially
dangerous, data-processing algorithms cannot be
directly sent to the data-storing systems, as one
solution. Instead, we have implemented an approach
called remote processing that uses the domain-specific
language D◦, which provides built-in usage control
mechanisms for data processing tasks. The approach
extends the well-known remote evaluation paradigm
that allows controlled, distributed data usage without
actual data sharing (transmission via network). Instead
of classified data, applications and their execution
results are transmitted. This way, sensitive data is
never directly exposed to third parties. Furthermore,
the application-integrated usage control mechanisms
prevent malicious data usage.

1. Introduction

One central part of Industry 4.0 is the integration
of information technology into machines, used for
industrial production, which results in enormous
amounts of collected data amongst other things. The
ongoing transition to industry 4.0 results in new
requirements for data protection and data usage control.
As the new data itself is increasingly becoming a
valuable good, it is necessary to protect it. Innovative
business models that mainly rely on the handling and
processing of data are emerging in the context of
industry 4.0 [1]. Some known examples of such
business models are predictive maintenance and smart
supply chain management. For many companies the
owned data is one of the most valuable, if not the

most valuable asset and critical to their business models.
Therefore, reliable protection is required for these
assets, especially if the data needs to be shared with third
parties. In particular the ability to make independent
decisions about the use of one’s own data is necessary.
This ability is called data or digital sovereignty [2] and
includes, for example, the ability to restrict the purpose
for which data is used, to limit the period of use.

It becomes apparent that reliable mechanisms for
protecting data and regulating its use (by third parties)
are necessary.A technical solution to these issues is
provided by usage control. Usage control is “a
fundamental enhancement of the access matrix” [3]
and in this context, many different approaches have
been developed. Existing solutions allow to add
usage control mechanisms to existing software or
to integrate them into newly developed applications.
LUCON, for example, is a label-based approach that
allows to track and restrict the usage of data within
distributed systems [4]. Correct usage control is often
quite challenging [5]. This issue can be addressed
by the policy-agnostic programming paradigm. The
paradigm is based on the separation of application logic
and policy enforcement during the development and
later combination into one application. The correct
combination of these two elements can be automated.

However, these solutions have a potential weakness
that might cause problems in some usage scenarios.
They are not well-suited for use cases where data
should be shared with a third party.Data is transferred
to a third party and processed by its software and
systems that feature usage control mechanisms. In these
scenarios, the data is transferred to systems that are
not controlled by the data owner.Once the data leaves
the data owner’s system, it is no longer under the data
owner’s control. Even with contractual agreements and
technical solutions for usage control, this can result in
unallowed data access and usage as soon as a malicious
administrator of the receiving system bypasses the usage
control mechanisms and ignores contracts to gain full
access to the data.Furthermore, the transmission of data

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 7005
URI: https://hdl.handle.net/10125/71463
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

via network is a possible point of attack.
In order to address these issues, we developed a

technology called remote processing which extends the
remote evaluation paradigm from the area of mobile
code. Remote processing reverses the direction of
transmission. The sensitive data stays in the owner’s
system and the data processing application is transferred
to the data owner’s system as source code. The data
owner has the possibility to audit the received code
before it gets compiled and executed in a sandbox
environment. The data processing entity will only
receive the results which are produced by the sent
application. That way the sensitive data never leaves the
systems which are controlled by the data owner.

In this paper we introduce the remote processing
system. The system allows the reception of source
code, its compilation, execution, and removal being
controlled by the sender after the recipient has approved
the application. The system allows the cooperative
data usage with third parties while protecting the
sovereignty of the data owner. The received
applications are executed in application containers
in order to provide isolation from the executing
system as well as the application provider. We
demonstrate the implementation of the system for the
programming language D◦ (pronounced di’grē). D◦

is a policy-agnostic domain specific language with
integrated usage control mechanisms [6]. We show how
the data owner can add additional usage control policies
to received applications if programming languages with
embedded usage control are used for remote processing.
The used architecture allows easy extensions in order
to allow the usage of various programming languages
with integrated usage control functionalities. The
remote processing system is an extension of the
remote evaluation paradigm and integrates usage control
mechanisms as a fundamental system component that
allows to address the aforementioned requirements of
industry 4.0 and data-driven business models.

1.1. Related Work

Remote execution of applications is known from
distributed systems where powerful centralized or idle
hardware is used by other machines with potentially
very weak hardware [7]. The approach has been
adapted for different device types (e.g. mobile) [8]
and improved for classic thin-client architectures [9].
Another approach provides a JavaScript framework that
allows the flexible distribution of web applications to
different devices [10]. However, these approaches do
not target the secure processing of data at its source
with regard to usage control. Instead, they provide

computing power for devices that exceed the device’s
own hardware capabilities or distribute the computation
across multiple devices.

The proposed system is more comparable to mobile
code systems [11]. Remote processing is an extension
of the remote evaluation paradigm, which is one type of
mobile code [12]. The basic idea of sending applications
via network, executing them on a remote machine, and
returning the execution result is extended by modern
usage control mechanisms to meet the challenges of data
usage control that arise nowadays [13].

There are several existing (domain specific)
programming languages that feature different types
of usage control mechanisms. To extend the Java
language with the possibility of statically checked
information flows, JFlow was developed [14]. There,
an additional byte code checker allows to perform
information flow checks on source code as well as
byte code [15]. By extending the Java programming
language, users of JFlow are themselves responsible for
ensuring that the provided usage control mechanisms
are used correctly. The used programming language
D◦, however, is cross-compiled into a general-purpose
programming language that is used as host language.
Therefore, users of D◦ cannot omit the usage of
the language’s policy system, neither accidentally
nor intentionally. In addition, D◦ implements the
policy-agnostic programming paradigm in order to
simplify the usage of the policy system significantly.

The policy-agnostic programming paradigm was
introduced by Yang et al. and implemented in the
programming language Jeeves [16, 17]. It is based
on the separation of application logic and policy
enforcement. These two components must be combined
at a later stage of development (e.g. during compilation)
to create an application that contains the application
logic and complies with the defined policies. In contrast
to D◦, Jeeves is characterized by the modification of
data in situations where execution has to be stopped
due to unfulfilled policies. If a modification of the data
would allow the execution, Jeeves is capable of doing
so. D◦ does not provide this feature since it can lead to
unwanted behavior in data processing applications.

LIFTY is another domain specific programming
language that implements the policy-agnostic
programming paradigm which can be used for the
development of data-centric applications [18]. In order
to combine application logic and policy enforcement
into a single application, LIFTY uses program synthesis
to perform information flow and (unintentional)
information leak checks during compile time. This
is contrary to D◦, which uses techniques from the
field of model-driven software engineering (e.g. code

Page 7006

generation) to embed a policy system into the compiled
application that is operating during the runtime of the
application.

1.2. Outline

The remainder of this paper is structured as
follows. Section 2 presents how the remote processing
technology is designed and how the different aspects
address the mentioned goals. The procedure to
make data usable for applications within the remote
processing is described in Section 3. A simple example
is used to demonstrate the proposed technology in
Section 4. A discussion and conclusion of the remote
processing technology is given in Section 5.

2. Design

This chapter presents how the remote processing
system is structured. The different states of the process
which define the remote processing technology are
described. In addition some aspects of our realization
of remote processing are shown.

The different aspects of the remote processing were
created by using the prototyping method according to
Alavi [19].Between the different prototyping iterations,
new and adapted requirements for the remote processing
emerged in discussions with experts.

2.1. Process

The process of remote processing can be described
roughly in four different steps.

1. Transmitting the source code including all
resources that are required for compilation and
executing to the remote processing system.

2. Performing an automatic audit of the received
application and extending it by usage policies
defined by the system’s operator and providing
data which can be used by the application.

3. Compiling the application and deploying it by
using an application container.

4. Executing the sandboxed application and
returning the execution’s result.

Figure 1 shows a schematic diagram containing the
different components of remote processing, grouped by
functionality.In addition, the upper part of the figure
shows the most important states of remote processing as
a process. A complete overview of the states of remote
processing is given later in this section. The components

Remote Processing

D° Compiler

Data App 1
Image

Docker Host

Data App n
Image...

Data App 1
Container

Data App n
Container...

External
Repository

Data App 1
Repository

Git Repository

Remote
Processing
Repository

Management Data

Data App n
Repository

...

Register Compile Deploy Start Stop

Figure 1. Block Diagram Showing the Components

of the Remote Processing System, and Components

Which Are Used in Register, Deploy, and Stop

Requests.

used in the states register, deploy, and stop are indicated
by arrows as a sample.

The main contribution of remote processing is
step two of the described process. The steps 1, 3,
and 4 basically describe a classic remote evaluation
process [12] extended by security mechanisms that are
known from the area of mobile code [20]. The added
usage control mechanisms are a cross-cutting concern
which can be identified in all stages.

However, if we take a more in-depth inspection
of the remote processing process, there are various
differences to the classic remote evaluation process that
is known from the area of mobile code.

The first difference becomes apparent right at the
beginning of the process. Instead of source code and
required resources, the application provider registers
a source code repository that contains all required
elements. The application provider can trigger the
remote processing system to retrieve an update from the
repository.This offers an easy way to provide updates
for applications, used in remote processing.In addition,
using source code repositories instead of source code
allows to track which versions of an application have
been used for remote processing.

Next, updated applications must be audited before
they can be prepared for actual execution. Since

Page 7007

D◦, the programming language used for the remote
processing, does not provide any automated code
auditing capabilities, the possibilities for automating
audits are limited in the current version of remote
processing. Future versions of D◦ will feature automatic
code audit functionalities which will allow a more
comprehensive automatic audit on the application.
Alternatively, existing methods for e.g. static code
analysis [21] can be added to the system to add
additional capabilities during the audit. Since D◦

implements the policy-agnostic programming paradigm,
it is easy to add additional policies to applications. The
separation of application logic and policy enforcement
during the development and later combination during
compilation, which are the key points of the paradigm,
allow to add additional policies without requiring
modifications to applications. Therefore, policies
that are predefined by the system’s operator can
be automatically added to the application during
compilation.If further audits of the received application
are required (e.g. regarding the code quality), they
have to be performed manually. The remote processing
operator and the application provider must have agreed
on which data can be used by the application. How
this data is provided to and used by the application is
described in Section 3.

Once the audit has been performed, the application
can be prepared for its actual execution. This
includes the compilation and actual deployment of the
application. In case either of these two steps fails,
the application provider can retrieve an error message
and then decide to either remove the application from
the system or to add a solution for the problem to the
application’s repository and update the application. It
has to be noted that each time the application is updated,
a new audit is performed because the previously added
usage policies are no longer available. In order to ensure
isolation of the application and the executing system, the
deployment includes building an application container
that is used as sandbox for the application.

After the application provider has triggered the
execution of a deployed application, the corresponding
container is started. Running the application inside an
application container ensures that neither the executing
system nor the operator’s data are directly exposed
to the application. Following the starting phase, the
embedded application either starts the data processing or
provides an API that is used to start the data processing,
depending on its type. Self-running applications that
operate on the command line as well as applications that
provide an HTTP API are supported by the system. If
the application provides an HTTP API, the application
provider has to call it to start the data processing.

The provided HTTP API is only used to start the
execution of the application, it cannot be used to alter
its behavior (e.g. by parameters). To ensure isolation
between the application provider and the application,
this API is not exposed.Instead, the remote processing
delegates the application provider’s requests to the
application. Since the application is not exposed to the
provider, there is no possibility for hidden malicious
functionality which can be used by the application
provider. The remote processing system has full
control over the application while the provider triggers
state changes. Regardless of the application type, the
remote processing system provides an endpoint that
can be used by the application provider to retrieve the
execution results from the applications. The application
running inside the container sends a signal to the remote
processing as soon as its execution is finished.

If an application will not be used again in the future,
the application provider is responsible for triggering the
removal of the application.

Deploying

Starting

Compiled

Compiling

Compilation Error

Deployed Deployment Error

Registered Updated Deleted

Running Terminating Terminated

Audited

Figure 2. All States and Their Transitions of the

Remote Processing Process.

Figure 2 shows all states and their transitions that
are used in the remote processing. Green nodes
represent states which are entered as a result of an action
performed by the application provider or a positive
result of a system action triggered by the application
provider. These states are only entered and exited if
the provider triggers the corresponding action. The
two possible exceptions to this are the ’Deleted’ state,
since an application automatically leaves the remote
processing after it was deleted, and the ’Running’ state,
since the executed application may terminate itself. Blue
nodes are intermediate states that are also entered after
the application provider has triggered the corresponding
action. They are automatically exited as soon as the
system has performed a specific action, e.g. compiling

Page 7008

the application or shutting down a running application.
Red nodes indicate error states and can only be entered
after a system action (blue nodes) has failed. The
’Audited’ node is the only yellow block, as it allows
optional manual intervention. The state is entered
when the application provider requests an audit for
an application. Depending on the audit result, the
application provider has several options for which state
transitions to trigger. If the audit fails, the application
can be updated or removed. If the audit is successful, it
is possible to compile the application.

2.2. Realization

The remote processing system provides an HTTP
API that is used for all interactions with application
providers. A unique identifier is assigned to each
registered application and necessary for triggering
state changes or requesting execution results. Our
implementation is using Spring Boot in order to provide
the necessary HTTP API.

For each application registered in the remote
processing system, the system stores necessary
management data such as the location of the
repository that provides the actual application code.The
management data also contains a list of used commits to
allow the tracing of used application versions. In order
to persist these management data, the remote processing
system can optionally use its own git-repository for
storing the data. That way, the different state changes
for registered applications can easily be traced and the
entire system can be run on different machines without
complicated data migration operations. As a result,
every application has to be updated when the remote
processing system is migrated to another machine.

The D◦-compiler is an inherent part of the remote
processing system. The system is designed in a way
that additional compilers can be added. However,
in terms of usage control, this is only useful if the
programming languages have embedded usage control
mechanisms. Otherwise, the remote processing does not
provide any major improvements compared to a classic
remote evaluation system. With some modifications to
the process, it would be possible to use programming
languages without integrated usage control and to
deploy them in combination with additional usage
control software.However, this is not the preferred
solution as it increases the complexity and produces
overhead when running an additional application.

To provide the aforementioned isolation between
the application and the executing system, our
implementation uses Docker to wrap the applications
into application containers. It is not necessary for the

remote processing system and the Docker client to be
operated on the same system. Instead, they can run on
different systems and be connected via network. That
way, the remote processing provides better scalability.
In addition, it prevents the system that executes the
applications and has access to the sensitive data, which
the remote processing wants to protect, from being
exposed to the internet.

3. Data Access

While Section 2 demonstrates the remote processing
process one very important aspect has not been
described yet: the provision and usage of data which
can be used by the applications.

It is hardly intuitive to transfer an application to a
remote system and execute it with full access to all
data in order to protect the data stored in the system.
Therefore, it is necessary to restrict the data that can be
accessed by applications. Only data that is required for
the application’s functionality and agreed upon with the
remote processing operator is allowed to be accessed by
the applications.

The most appropriate solution depends heavily on
the type of data and the way it is stored.For example,
files can be easily integrated into the Docker container
that is created during the deployment of applications.
If the deploying machine is different from the Docker
host, volumes can be created and the files, that should
be accessible for the application, can be copied into the
volume before the container is started.

We have defined patterns for integrating file-based
data as well as data stored in SQL-databases. These
defined patterns allow an easy way to provide copies
of actual data to applications used within remote
processing. That way, it is not required to define how
data is transferred between the data provider’s system
and the application’s container (and vice versa) on a
per-application-level. At the same time, the integrity
of the original data is not compromised because the
application only gets access to data copies. In addition,
the task of providing data to applications is easy for
the remote processing operator, since it only has to
define which files and/or tables are to be copied into
the container. This can be done at the same time as
defining the policies to be added to the application. The
application provider has to implement the application
according to these patterns in order to ensure correct
functionality. These patterns define used file names and
locations as well as the naming of tables in databases
used for in- and output. For example, if data is provided
by using a SQL database a SQL dump is used. The
location and name of the dump-file as well as used table

Page 7009

names is standardized for remote processing.
Similar patterns can be defined for

NoSQL-databases or other data sources, so the
approach does not create restrictions to the types of
applications that can be used with remote processing.
As an additional benefit, the process of providing data
to applications does not depend on the internal structure
of the data.

If we stick to SQL-data, a similar result could be
reached by using individual views with read-only access
for the different applications. The benefits of the data
provisioning method used by the remote processing are
the following:

• Identical provisioning for all kinds of data sources

• Management of data for remote processing takes
place completely in the remote processing system

• Various possibilities to filter the data by including
other data sources

The application has full control and access to the
provided data copy. Therefore it is mandatory to
provide only data to the application which may be
used by it. Since the application has full control of
the provided data, it is necessary to prevent that the
application exfiltrates the data by sending it to the
application provider. There are multiple aspects in
the remote processing which aim at this issue. The
usage of containers for the provided applications does
not contribute to the data protection by itself. But is
ensures that the applications access to data is limited
to the provided data copies. An additional aspect
is that the application provider does not have direct
access to the application, the used container, or the
executing machine. The main contribution to preventing
data exfiltration is made by using D◦ as programming
language. The policy system, used by D◦, allows to
define policies for data types as well as activities, which
are the atomic functional element in D◦. By adding
policies which prohibit the exfiltration of the data (e.g.
by sending them via HTTP), the compiler creates an
application with integrated usage control code which
complies to these policies.

Next, it is described how the application provider
knows how the data is structured. The internal structure
of the data is not defined by the remote processing.
These information is required to allow the application
provider to develop applications which can use the
data. For this purpose, the remote processing operator
provides the type definitions from the D◦ type system.
These definitions describe the data which is available to
the application in a way that the application provider can
use them.

4. Example

For a better understanding of the remote processing
system, this section will introduce a usage example.

The medical staff of a clinic is working on a new
study. This process involves heavy usage of sensitive
patient data.Since this data is very critical, there are very
strict regulations regarding the usage of such data and its
protection. Due to the current situation with COVID-19,
the medical staff working exclusively on the study is
working in home office. Because of privacy regulations
and data protection requirements, these staff members
can no longer access the patient data that is needed to
create the studies. In fact, they are not able to work on
the study because it is not allowed to copy the data to the
staff’s computers, which are not appropriately secured.

Since the study does not require the data themselves,
but the results of the analyses performed with these data,
remote processing can be used to allow the medical staff
to continue working on the study. By using remote
processing, the medical staff can write data apps with
D◦, which will process the patient data and produce the
results required for the study. The D◦-code of these
data apps is stored in a repository that is registered at
the clinic’s remote processing system instance. The
clinic runs an instance of the remote processing on its
server that is accessible by the medical staff. Access
to the remote processing’s API is regulated by the
clinic’s identity provider. The Docker host responsible
for the application execution is not operated on this
server. Instead, a server of the clinic’s intranet is used.
The network configuration ensures that this server is
capable of accessing the sensitive patient data and is
itself only reachable by the clinic’s remote processing
server. That way, it is possible for medical staff to
perform evaluations on the patient data, while ensuring
that the data is always resided in the secure systems
operated by the clinic or specialized service providers.

The clinic created a definition of the patient data
which is made available for applications in the remote
processing. A shortened version of this definition can
be found in Figure 3. Line 1 defines the name of the
data type. Line 2 contains validation rules that are
evaluated each time the value of an instance of the type
is changed. This ensures that each instance of each data
type only contains valid values at any time. The value
of the validation is Java code that must return a boolean
value indicating whether the new value is valid. The
type system allows defined access to elements of the
types for validation. Lines 3 and 4 are used to set the
data type MedicalData as super type for this type.
This is important for both type casting and validation.
The validation of all super types is performed each time

Page 7010

the validation of the type is executed. Line 5 sets the
cardinality of the data type to 0, which represents a
list of arbitrary length. Lines 6 to 9 define of which
attributes the data type is composed. Lines 10 to 13
contain sample values that must pass the validation (line
11) and must fail the validation (line 13). These values
allow an automated check of the given validation code.
Line 14 contains a documentation for the data type used
for automatic generation of web-based documentation.
This allows to auto-generate a documentation for the
entire type system and simplifies the usage of defined
data types.

1 PatientData:
2 validation: "..."
3 supertypes:
4 - "MedicalData"
5 cardinality: 0
6 attributes:
7 - patient: "clinic.Patient"
8 - diagnose: "clinic.Diagnose"
9 - invoice:

"administration.Invoice"
10 - ...
11 positiveTests:
12 - "..."
13 negativeTests:
14 - "..."
15 wikidoc: "Patient data which can be

used in studies."

Figure 3. The Shortened Definition of the Patient

Data Datatype Used in the Example.

The medical staff working on the study may not
have the knowledge required to program applications
that perform the data processing. Since D◦ is highly
extensible, allowing data types, policies, and activities
to be provided as language extensions [6], this problem
can be solved. In the context of D◦, an activity is
an atomic functional block. Each activity contains an
arbitrary amount of code in the used host language.Our
implementation of D◦ uses Java as host language. The
same applies to policies. Each policy provides its own
enforcement code and the code generator, which is part
of the D◦-compiler, ensures that the code is executed in
the right situations.

In order to resolve the aforementioned issue, the
clinic has to provide the medical staff with a language
extension for D◦, which contains all required data types
and activities. The contained elements can be used
by the medical staff to develop data apps that perform
the required data processing. The language extension
mentioned does not need to include any special policies
for the following reason.

The usage control policies that have to be enforced
in order to protect the patient data are added to the

applications during the audit phase.These policies are
packed as a separate language extension that is available
within the remote processing system. That way, the
overhead for the medical staff in using D◦ is minimized.
The clinic simply needs to make sure that a set of
policies is defined to ensure that patient data is not
used maliciously. This set of policies is added to each
individual application provided by the medical staff.

The policies which are added to the applications
contain policies which ensure that the patient data is
not transmitted to other services, used as result without
aggregation or anonymization, and preventing access
to administration’s data like invoices. As an example,
the policy which prevents the returning of data without
aggregation or anonymization is shown. This policy
is important because otherwise the staff could use the
patient data directly as the application’s return value and
bypass the regulations that way.

First, the D◦-policy is inspected. Each
policy has three different enforcement points:
Precondition, postcondition, and the security manager
intervention [6]. Pre- and postcondition are executed
before and after an activity is executed. The security
manager intervention is a construct that allows APIs to
be protected and policies to be checked before calls are
executed to the protected APIs.

To allow different combinations of language
elements (e.g. policies & activities) and static values,
D◦ distinguishes between instances that can be used
in D◦-applications and definitions that provide the
constructs (and implementations) of language elements.
Figure 4 contains the policy definition used in the
example. Lines 1 to 4 are used to define the name
and unique identifier of the policy definition. Since the
instance of the shown policy definition does not contain
anything special, it is omitted here.

1 RequireAggregation:
2 degree.Constraint@RequireAggregation:
3 name:
4 Identifier: "RequireAggregation"

Figure 4. The Policy-Definition Which Is

Instantiiated in the Example.

The code generator, that is part of D◦, ensures that
enforcement takes place in required situations [6]. For
the example policy, the precondition and postcondition
do not contain any enforcement logic. The security
manager intervention is used to monitor interactions
with the SQL database which is used for reading the
patient data as well as storing results. Each time some
data should be written to the database, the policy checks
if the data is tagged as aggregated or anonymized.

Page 7011

The D◦ type system allows the usage of tags for data.
These tags can be added, changed, and removed during
runtime.

Next, we take a look at an application which a staff
member develops to analyze the patient data. The person
working on the study needs the case numbers within
a certain period of time broken down by gender. To
get these case numbers, the following steps have to be
performed:

1. Load the patient data

2. Filter data that is not within the given time interval

3. Sort the filtered data by gender

4. Count the sorted data

To retrieve these values by using remote processing,
the person develops a data app using D◦.Since this is
a very common query for the given study, the member
of the medical staff decides that the data app should
provide an HTTP API that can be used by other
members of the staff.This can be easily set using the data
app configuration, which is part of the D◦-code.

Figure 5 shows the data app that implements the
aforementioned steps in a D◦-application. Lines 1
to 7 contain the configuration of the data app. The
exact values for the entries port (line 6) and url
(line 7) are not relevant to the use case, since the
remote processing prevents direct access to the running
application and delegates all requests to the application’s
API. Nevertheless, the values are important because they
ensure that the application will provide an HTTP API.
The tags applied to the application (line 5) can be used
within usage control policies. Lines 2 to 4 provide the
name, namespace, and version of the application and are
used to identify the application.

The actual application logic can be found in lines
9 to 28. Line 10 contains the signature of the data app.
The given data app requires a time interval defined by its
start and end date as input. Requests that do not contain
these two fields are rejected. Lines 11 and 12 as well as
lines 24 and 25 generate log messages that can be used
to trace the usage of the running application. Lines 14
to 22 contain the implementation of the four required
steps mentioned before. All activities which are used
in the application are part of the language extension,
which is provided by the clinic. Line 14 calls an activity
that loads the patient data into a variable which can be
used by other activities. As mentioned before the data
is provided to the application as a SQL-dump. Because
of the defined data provisioning process the location of
the dump as well as the names of the tables is known
and therefore not required as input for the activity. The

1 configuration
2 - namespace : "example.clinic"
3 - name : "genderizedCaseNumber"
4 - version : "1.0.0"
5 - tags: "MEDICAL, STUDY, GENDERIZE"
6 - port : "5000"
7 - url: "query"
8
9 code

10 [startDate = $DateTime,
endDate = $DateTime] -> begin

11 logMessage = $Text(@write
["Starting processing of
patient data."]);

12 UnconstrainedPrintToConsole
Activity[logMessage];

13
14 [patientData] = loadPatientData[];
15 [filteredData] = filterByTime

Interval[patientData,
startDate, endDate];

16 maleCases = $PatientData();
17 femaleCases = $PatientData();
18 [maleCases, femaleCases] =

genderizeData[femaleCases];
19 maleCount = $UnsignedInteger();
20 femaleCount = $UnsignedInteger();
21 [maleCount] = count[maleCases];
22 [femaleCount] = count

[femaleCases];
23
24 logMessage = $Text(@write

["Finished processing of
patient data."]);

25 UnconstrainedPrintToConsole
Activity[logMessage];

26
27 storeAndDumpResult

[maleCount, femaleCount];
28 end

Figure 5. Service for Processing Patient Data

Developed With D◦.

activity call in line 15 applies a filter that uses the
specified time interval as criteria. Lines 16 to 18 break
down the filtered data into gender. Finally, lines 19 to
22 count the filtered and sorted data. Like all activities
that are used in the application, the call-Activity is
part of the D◦ language extension which is provided
by the clinic. This activity also adds the required
AGGREGATED-tag to the data, which allows the usage
as output of the application. Each activity has the
possibility to modify the tags which are attached to data.
This is a functionality which is provided by the type
system of D◦. The tags can be used in various places,
for example within policies. The result is written to the
database in line 27. In addition this activity creates a
SQL-dump of the result tables. This dump is used by
the remote processing system to provide the execution
result to the application provider.

D◦-applications always contain application logic and

Page 7012

configuration in the same file. This way, the data apps
are self-contained, at least when they do not require
special language extensions that need to be provided
because they are not already known to the compiler.

Next, the described D◦-application is registered
at the remote processing system and an update is
performed. That way, the source code is available for
the audit. Two things happen during the audit:

1. The patient data that is required for the study
is dumped into a format that can be loaded
by the in-memory database that is used inside
the container holding the D◦-application. Since
the staff needs to perform analysis on arbitrary
parts of the patient data, the entire data set is
dumped into the containers and can be used by
the contained applications. As the medical staff
is allowed access to the entire data set, additional
filtering of the data that can be used within the
D◦-application is not necessary.

2. The policies that ensure the protection of sensitive
patient data are incorporated into the application.
The set of policies defined by the clinic to ensure
the protection of patient data is added to the
activities used in the given application. The
policies could have been added to the language
extension for all activities, but since the staff
can add their own language extensions to the
D◦-application, it has to be ensured that the
correct policies are combined with all elements.
The compiler checks for duplicates later to avoid
policy redundancies on elements.

Once the audit is finished, the application is ready for
compilation and deployment. When the medical staff
triggers the compilation, the application, the clinic’s
language extension, and the policies, that were added
during the audit, are used as input to the compiler. The
compilation is a two-phase-process: First, the D◦-code
is cross-compiled into the host language. The host
language code is then compiled into an executable
format. The result of this compilation is an executable
application that contains all defined policies and their
enforcement logic as an inherent part.

After the compilation has been successfully finished,
the staff can start to deploy the application. A prepared
Dockerfile is used to build the application container
which contains all required artifacts. The script ensures
that the application is started. When the application
terminates, a message is sent to the remote processing
system.Since the application in this example is designed
with an HTTP API, this signal should never be sent. The
execution of the application can only be terminated by
the staff.

When triggering the execution of the application
logic, the application provider gets a unique identifier.
This identifier is used to identify a specific execution
of the application logic. The remote processing stores
and reuses the identifier. At regular intervals, the remote
processing system queries the running application for
all known identifiers to check whether the execution has
finished and the results can be retrieved by the user.

For applications that do not provide an API (e.g.
HTTP) used to trigger the execution, the remote
processing system regularly polls the state of the
running application and once the execution results
are available, they are available for retrieval by the
application provider. A unique identifier is also used for
these applications to retrieve the execution results.

5. Conclusion

We have shown that the well-known remote
evaluation paradigm can be extended by modern usage
control technologies in order to help data owners
maintain their digital sovereignty. We demonstrated
that, by using a programming language with integrated
usage control mechanisms combined with code audits,
data owners have the possibility to ensure that their
data is only used in accordance with agreed rules.
Furthermore, we showed that the overhead of using the
language’s usage control mechanisms can be reduced by
using a policy-agnostic programming language.

Since the used programming language D◦ does not
feature automatic code audits, the automatic remote
processing auditing is currently limited to adding
policies and data to applications. There are several
approaches that partially automate code audits, thereby
reducing the amount of code that has to be manually
audited in situations where a more detailed audit is
required [22]. By integrating such mechanisms into
the D◦-compiler, the functionality of the automatic code
audit within remote processing could be improved. If
the compiler has access to a machine-readable version of
the agreed data usage restrictions and a set of predefined
policies that address these restrictions, the compiler
could identify relevant parts of the application and add
the required policies. That way, the task of applying
policies to the application can be limited to a verification
of the policies applied by the compiler. The same
principle could be applied to the provision of data to
applications. By using standardized machine-readable
definitions for data to be accessed, the remote processing
operator only needs to check the correctness of the data
provided by the compiler to the application. The fact
that each update of an application potentially results in a
new audit can be problematic for the remote processing

Page 7013

provider if there are many updates for applications. In
order to minimize the amount of work required, the
compiler could be extended to consider the repository
history and the results of previously performed audits.
That way, unmodified and already audited parts of the
application can be identified and excluded from further
audits.

The remote processing approach aims at protecting
the data and establishing the digital sovereignty of the
data owner. Depending on the application which is
used to process the data, the algorithms inside the
application can also require protection from access by
third parties. Such algorithms may contain business
secrets or reveal internal information like the way of
working. Therefore, the remote processing shifts the
problem of using assets that require usage and access
control from the data owner to the application provider.
This is not within the scope of the remote processing,
but has to be considered before usage. Nevertheless,
remote processing allows for cooperative and sovereign
data usage in many applications.

Acknowledgments

This work was developed in Fraunhofer-Cluster of
Excellence “Cognitive Internet Technologies”.

This research was supported by the Excellence
Center for Logistics and IT funded by the
Fraunhofer-Gesellschaft and the Ministry of Culture and
Science of the German State of North Rhine-Westphalia.

References

[1] A. Zolnowski, T. Christiansen, and J. Gudat,
“Business model transformation patterns of data-driven
innovations,” 2016.

[2] M. Jarke, B. Otto, and S. Ram, “Data Sovereignty
and Data Space Ecosystems,” Business & Information
Systems Engineering, vol. 61, no. 5, pp. 549–550, 2019.

[3] R. S. Sandhu and J. Park, “Usage control: A vision
for next generation access control,” in International
Workshop on Mathematical Methods, Models, and
Architectures for Computer Network Security, pp. 17–31,
2003.

[4] J. Schuette and G. S. Brost, “LUCON: data flow
control for message-based IoT systems,” in 2018 17th
IEEE International Conference On Trust, Security
And Privacy In Computing And Communications/12th
IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE), pp. 289–299,
2018.

[5] P. V. Rajkumar, S. K. Ghosh, and P. Dasgupta,
“Application specific usage control implementation
verification,” International Journal of Network Security
and Its Applications, vol. 1, no. 3, pp. 116–128, 2009.

[6] F. Bruckner, J. Pampus, and F. Howar, “A Framework
for Creating Policy-agnostic Programming Languages,”
2020.

[7] M. M. Theimer, K. A. Lantz, and D. R. Cheriton,
“Preemptable remote execution facilities for the
v-system,” ACM SIGOPS Operating Systems Review,
vol. 19, no. 5, pp. 2–12, 1985.

[8] R. K. Balan, M. Satyanarayanan, S. Y. Park, and
T. Okoshi, “Tactics-based remote execution for mobile
computing,” in Proceedings of the 1st international
conference on Mobile systems, applications and services,
pp. 273–286, 2003.

[9] R. A. Baratto, L. N. Kim, and J. Nieh, “Thinc: a
virtual display architecture for thin-client computing,”
in Proceedings of the twentieth ACM symposium on
Operating systems principles, pp. 277–290, 2005.

[10] T.-L. Tseng, S.-H. Hung, and C.-H. Tu, “Migratom. js:
a javascript migration framework for distributed web
computing and mobile devices,” in Proceedings of the
30th Annual ACM Symposium on Applied Computing,
pp. 798–801, 2015.

[11] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding
code mobility,” IEEE Transactions on software
engineering, vol. 24, no. 5, pp. 342–361, 1998.

[12] J. W. Stamos and D. K. Gifford, “Remote evaluation,”
ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 12, no. 4, pp. 537–564, 1990.

[13] A. Lazouski, F. Martinelli, and P. Mori, “Usage control in
computer security: A survey,” Computer Science Review,
vol. 4, no. 2, pp. 81–99, 2010.

[14] A. C. Myers, “JFlow: Practical mostly-static information
flow control,” in Proceedings of the 26th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 228–241, 1999.

[15] G. Barthe, D. A. Naumann, and T. Rezk, “Deriving
an information flow checker and certifying compiler for
Java,” in 2006 IEEE Symposium on Security and Privacy
(S&P’06), pp. 229–242, 2006.

[16] J. Yang, K. Yessenov, and A. Solar-Lezama, “A language
for automatically enforcing privacy policies,” ACM
SIGPLAN Notices, vol. 47, no. 1, pp. 85–96, 2012.

[17] J. Yang, Preventing information leaks with
policy-agnostic programming. Dissertation,
Massachusetts Institute of Technology, Massachusett,
2015.

[18] N. Polikarpova, J. Yang, S. Itzhaky, T. Hance, and
A. Solar-Lezama, “Enforcing information flow policies
with type-targeted program synthesis,” in Proceedings of
the ACM on Programming Languages, vol. 1, 2018.

[19] M. Alavi, “An assessment of the prototyping approach to
information systems development,” Communications of
the ACM, vol. 27, no. 6, pp. 556–563, 1984.

[20] A. D. Rubin and D. E. Geer, “Mobile code security,”
IEEE Internet Computing, vol. 2, no. 6, pp. 30–34, 1998.

[21] M. Kulenovic and D. Donko, “A survey of static code
analysis methods for security vulnerabilities detection,”
in 2014 37th International Convention on Information
and Communication Technology, Electronics and
Microelectronics (MIPRO), pp. 1381–1386, IEEE, 2014.

[22] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck,
“Automatic inference of search patterns for taint-style
vulnerabilities,” in 2015 IEEE Symposium on Security
and Privacy, pp. 797–812, IEEE, 2015.

Page 7014

