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Abstract

For moving target defense (MTD) to shift advantage
away from cyber attackers, we need techniques which
render systems unpredictable but still manageable.
We formulate a partially observable Markov decision
process (POMDP) which facilitates optimized MTD
capable of thwarting cyber attacks without excess
overhead. This paper describes POMDP formulation
including the use of an absorbing final state and attack
penalty scaling factor to abstract defender-defined
priorities into the model. An autonomous agent
leverages the POMDP to select the optimal defense
based on assessed cyber-attack phase. We offer an
example formulation wherein attack suppression of
greater than 99% and system availability of greater than
94% were maintained even as probability of detection of
attack phase dropped to 74%.

1. Introduction

During the 2009 U.S. National Cyber Leap Year
Summit, authorities touted moving target defense
(MTD) as a game-changing cybersecurity concept
that would finally reduce cyber attackers’ long-held
advantage [1]. MTD dynamically alters protected
systems to make them less predictable and thus more
difficult to attack [1]. Examples of the 90+ distinct
MTD techniques include mutations of system addresses,
randomization of memory layout, and variation of data
formats [2]. Each technique impacts predictability;
however, each can also impact the performance via
imposition of overhead like temporary system outages
or increased network traffic [3].

To achieve the early promise of MTD, we need
techniques that amplify the unpredictability of the attack
surface [3] while controlling the overhead imposed [4].
Unfortunately, these are often competing goals such that
implementing useful MTD becomes an optimization
effort to find the point of balance where an acceptably
unpredictable and manageable system is achieved [5].

Seeking innovative ways to achieve this balance,
we turned to biomimicry, the discipline of finding
engineering solutions in nature [6], and examined
predator-prey co-adaptation for relevant strategies
because of the resemblance to the cybersecurity
attacker-defender arms race [7]. Graded evasive
response in which insects scale defensive response to
the assessed imminence of predator attack [8] stood
out as particularly well-aligned with our effort to
optimize MTD. Where moths want to avoid bats for a
minimum energy expenditure, cyber defenders similarly
want to avoid attackers for the minimum performance
sacrifice. With the moths in mind, we sought a path to
implementing MTD as a graded reaction to cyber attack
so that effectiveness and manageability are achieved.

We propose a novel approach to implementing
MTD by formulation of a partially observable Markov
decision process (POMDP) that reflects attack-defense
dynamics, overhead of defenses, and defensive
attack-risk tolerance. With these factors abstracted
into a single model, an autonomous agent reasons over
the model to optimally implement defensive actions in
response to assessed attack imminence. The proposed
MTD system is illustrated in Figure 1.

POMDP
Formulation

MTD Agent
ω(t)

a(t)

historical attack data, 
system specifications

Intrusion Detection System

Protected 
System

s(t)

POMDP

Figure 1. The proposed system formulates a

POMDP which the facilitates selection of the optimal

action a(t) based on attack phase s(t).

At each time step t, the MTD agent leverages the
formulated POMDP to select action a(t) that thwarts
the attacker effectively without undue overhead. This
selection is informed by incoming observation ω(t),
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which provides partial information regarding true attack
phase s(t). The focus of this paper is on POMDP
formulation, though we give a brief example of the
optimization gains possible when the complete proposed
system is in place.

POMDPs are the dominant technique applied in
systems that handle sequential decision-making under
persistent state uncertainty [9]. While best known in the
field of operations research, POMDPs have gained wider
traction recently as new techniques achieve optimal
decisions in increasingly complex systems [10]. At the
core of the model is a finite Markov chain wherein the
probability of a system being in one of a finite set of
states at time t is conditioned only on the state of the
system in the immediately preceding time step t − 1.
As such, this probability is called the state transition
probability. The POMDP model extends the finite
Markov chain to reflect two additional conditions: (1)
a decision maker influences state transition probabilities
in known ways by implementing one of a finite set
actions and (2) true system state is only partially
revealed to the decision maker via observations which
occur with probabilities conditioned on true state. By
applying a cost basis to states and actions reflecting the
goals and priorities of the decision maker, expectations
of cost under various action sequences can be explored
to facilitate optimal decision making.

A POMDP is fully specified via the following
components: the set of system states s, the set of
available actions a, the set of observations ω, the set of
state transition probability matrices P where matrix Pi
describes the state transition probabilities under action
ai, the set of observation probability matrices O where
matrix Oi describes observation likelihood under action
ai, and the set of cost matrices C where matrix Ci
quantifies the cost of landing in each state under action
ai. In the context of our proposed system, POMDP are
well suited as we require sequential selection of optimal
MTD actions based on the partial observation of attack
phase available from an imperfect upstream intrusion
detection system (IDS).

The remainder of the paper is organized as follows:
We review previous work influential to our approach
in Section 2. Section 3 includes descriptions of each
POMDP component with detail of what each represents
in the context of the proposed system. We support
our decision to adopt an absorbing final state for the
model in Section 4. In Section 5, we detail an example
formulation and quantify performance under the model
in a simulated MTD system. Finally, Section 6
concludes the paper with a summary of our contribution
and description of future work.

2. Related work

Related work falls into three categories. The
first category includes other examples where POMDP
was applied in a cybersecurity context, the second
category supports the use of absorbing Markov chains
for quantification of cybersecurity metrics, and the third
category reviews other research toward optimized MTD.

We identified six examples in which POMDP was
used to improve cybersecurity [11, 12, 13, 14, 10,
15]. These works were not specifically focused on
MTD optimization, but aspects of their approaches to
model formulation were still influential. For example,
the multi-phase attack model in [11] was particularly
well-aligned with the design goals of our system
because MTD impacts each attack phase differently
[16], and a model that represents attack phases can
capture this impact. Additionally, the results in [11]
support the need for appropriate treatment of incomplete
observability in cybersecurity systems, as the authors’
improved feedback controller based on the POMDP
formulation was able to successfully reject false alarms
from the IDS [11]. The ways in which variability of
attackers was absorbed into the models in [15] and [10]
helped develop our approach, as well.

Absorbing Markov chains became particularly
important in our work. Abraham and Nair [17] also use
an absorbing Markov chain to describe the dynamics of
movement through an attack graph with expected path
length τ used as a security metric for the network [17].
We expand upon their development to include the impact
of sequential decision making and state uncertainty on
τ so that the metric quantifies the impact of optimal
defensive decisions.

Three works toward optimal implementation of
MTD relate to and influence our proposed system
[18, 4, 5]. Two of the works conduct analysis to
identify static parameters for the frequency with which
reconfigurations should be deployed [18, 4]. Both make
strides toward more manageable MTD, but [4] was
particularly influential on our proposed system because
the authors look at how effectiveness and overhead
change as multiple MTD techniques are used in
combination. Where [19] minimized cost by identifying
static reconfiguration timing parameters based on attack
trends, we further reduce overhead by using real-time
assessments of attack phase to dynamically trigger
reconfiguration when threat justifies expense.

The final work explores an intelligent optimization
system that triggers address reconfigurations both
randomly and in reaction to detected attacker progress
and changing system priorities much like the one
we propose. DeLoach et al. [5] propose three
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runtime models to represent system performance
constraints, available assets, and vulnerabilities. These
models are reasoned over to identify optimal defensive
reconfiguration timing. The research is complimentary
to ours in that we both use stochastic models to control
implementation of MTD under conditions of uncertainty
regarding attack detection [5]. Our system differs from
that of [5] in that we replace the three runtime models
with a single POMDP.

3. POMDP model specification

The POMDP model is the core of the proposed
system. Thus, the description of the system must begin
by describing how the cyber attack-defense process is
abstracted into the model. The POMDP components
{s, a, ω, P,C,O, γ} are defined as listed in Table 1.

The components in the left hand column are generic
to any POMDP [9], while the descriptions in the center
column describe the way each component is defined to
achieve our design goal of optimized MTD.

The proposed model takes advantage of the distinct
phases exhibited in cyber attacks, which are each
partially observable by the defender [20]. For the
family of MTD techniques that carry per-reconfiguration
overhead, the total cost of operating the system is
directly proportional to the number of reconfigurations
that occur. Thus, the MTD agent minimizes overall costs
without sacrificing defensive effectiveness by keeping
the most expensive defenses in reserve until the later
phases of attack when the such cost is justified by the
increased likelihood that the attack goal will be reached.

Each POMDP component is derived from analysis of
available data related to attack, operation, and defense
of the protected system. Examples of such data
include forensics from previous attacks against similar
systems, system specifications and requirements, and
traffic analysis of the defended system. The formulation
process can be broken up into four channels of attack
analysis, defense analysis, prioritization of competing
requirements, and assessment of the upstream IDS, as
illustrated in Figure 2. The next subsections give more
insight into each channel.

3.1. Attack analysis

The goal of attack analysis is to identify state vector
s, observation vector ω, and transition probability matrix
P1. In our model, the phases of cyber attack become the
states of a Markov chain as illustrated in Figure 3. While
the model can have as few as two states, achieving our
stated design goals requires inclusion of the intermediate
attack phases which MTD is designed to impact. As
such, sources for selecting the states of a model include

historical attack data, 
system speci�cations

Attack 
analysis

s, �, P1

Defense 
analysis

a, P2, ..., Pm

Prioritization
of competing 
requirements

C, � 

IDS
assessment

O} {

POMDP

 

Figure 2. POMDP formulation process

both attack forensics and MTD specifications. The state
vector s = [s1, s2, ..., sn] is a discrete list of the n
phases. State s1 is the earliest phase of the attack, and
sn represents the ultimate attack goal. The intermediate
states represent incremental progress toward sn, which
may be skipped, but are ordered from 1 to n such that
the imminence of attack can be inferred from the index.

Start 

s1

s2

Attack 

Goal

sn

...

pi,1,1
pi,2,2

pi,n,n=1.0

pi,1,n

...

pi,1,2

pi,1,x � 3...n-1

pi,2,3

pi,2,x � 4...n-1...

pi,2,n
...

pi,n-1,n

...

pi,2,1

Figure 3. A Markov chain with state transition

probabilities Pi describes the system dynamics under

action ai.

The next step is to determine a transition basis
for the system in question. Event-based examples
include per-connection, per-session, or per-IDS-alert.
Time-based transitions are also possible.

We leverage attack forensics to estimate the state
transition probabilities inherent to the attack process
itself, absent any influence of the defender. To be
most powerful, these probabilities are derived from
forensic analysis of attacks against similar targets.
When that information is unobtainable, insight available
from ethical hackers and cybersecurity practitioners is
leveraged. Examples of published resources useful for
this process include cyber threat intelligence reports,
cybersecurity industry white papers, and academic
research papers.

Probability set P contains a set of m probability
matrices, with probability matrix Pi describing the
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Table 1. POMDP formulation
Component Description Size
state vector (s) list of attack phases 1× n
action vector (a) list of MTD 1×m
observation vector (ω) list of IDS indications (s ≡ ω) 1× n
probability matrix (Pi) likelihood that system transitions between attack phases under

MTD ai,combining m Pi together, P = {P1, P2, ..., Pm}
n× n

cost matrix (Ci) overhead (−) incurred for moving between any two phases
under MTD ai, combining m Ci together, C = {C1, C2, ..., Cm}

n× n

observation matrix (Oi) likelihood IDS indication aligns with attack phase under MTD ai,
combining m Oi together, O = {O1, O2, ..., Om}

n× n

discount factor (γ) factor balancing immediate defensive overhead with long term
attack penalties, 0 ≤ γ ≤ 1

scalar

transition probabilities under MTD ai as

Pi =


pi,1,1 pi,1,2 ... pi,1,n
pi,2,1 pi,2,2 ... pi,2,n

...
...

. . .
...

pi,n,1 pi,n,2 ... pi,n,n


where pi,x,y describes the probability that the system
transitions from sx to sy under action ai. We adopt a
convention in which a1 always describes the nil option
in which the defender takes no action at all, therefore P1

describes the pattern of attackers’ unencumbered efforts
to compromise the system.

Generically, the Markov chain described by P1

is fully connected to capture attacker ability to skip,
loiter in, and revisit states. The only exception to full
connectivity is sn, as the final state is absorbing, i.e.,
p1,n,n = 1.0 as described in Section 4. The other
transition probabilities are estimated from occurrence
counts in data of past attacks against similar devices.

The observation set ω is the discrete list of possible
observations that could be received from the upstream
IDS. For the proposed system, the burden of processing
myriad attack indicators lies with the IDS such that
possible observations are drawn from the possible attack
phases, i.e., s ≡ ω. These observations reflect
the incomplete observability of attack phase such that
individual observations may not align with true state,
i.e., s(t) 6= ω(t). With s, ω, and P1 determined, attack
analysis is complete.

3.2. Defense analysis

The next step in POMDP formulation is an
assessment of the available defenses to determine
action vector a, the corresponding transition probability
matrices in P , and the vector of defensive overhead
Cdef . The action set a = [a1, a2, ..., am] is the discrete

list of m available MTD. The transition probabilities
under defense ai are represented as Pi. We index
defenses by either effectiveness in thwarting the attacker
or overhead incurred for use. We have kept to this
convention, so that am is the most effective defense
available. We also assume am incurs the most overhead,
as optimization goals would preclude installation of a
defense that is more expensive unless that defense were
also more effective.

The specific values in Pi for 1 < i ≤ m require
careful consideration of the phase-impact of defense ai.
The literature offers a starting point. For example, the
catalog compiled by Ward et. al. [2] includes qualitative
considerations of the phase-impact of more than 90
MTD techniques. Translating these assessments to a
specific transition probability requires consideration of
the technical descriptions of the defense in context of
the attack model captured by s and P1.

Defining Pi as a function of P1 permits rapid update
of the scheme when attack patterns change. Many MTD
follow the general form of alternating some facet of the
system between a discrete set of k choices, with repeat
such that there is probability ps = k−1

k that the MTD
succeeds in thwarting attack progress. A complimentary
pf = 1

k describes the likelihood of failure. These
success and failure probabilities can be used to define
Pi as a function of P1 as

Pi =


ps 0 0 0 0
ps 0 0 0 0
ps 0 0 0 0
ps 0 0 0 0
0 0 0 0 ps

 + pfP1 (1)

for 1 < i ≤ m, assuming the defense returns the system
to s1 when successful. Analysis to quantify unique
values ps and pf must be conducted for each member
of a.
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Defense analysis also involves quantifying overhead
ci incurred when ai occurs. In particular, the overhead
must reflect the goals of the optimization effort. If the
goal is to suppress attacks while minimizing downtime
of services, ci should reflect the downtime for deploying
reconfiguration ai. In general, one-time overhead
expenses such as those required for installation do
not translate into the proposed approach and must be
accounted for separately. When multiple cost factors
matter, the factors must be scaled and combined into
a single value that reflects the prioritization of each.
For the purposes of describing the proposed system, we
discuss cost in terms of availability because availability
offers a tangible and objective basis for comparison.
Thus, ci carries a unit of seconds and expresses the down
time incurred when ai is deployed such that ci ≤ 0.
We define Cdef as a 1 ×m vector of defensive costs to
succinctly describe the MTD overhead.

3.3. Prioritization of attack prevention

We translate the defensive tolerance for attack risk
and overhead into the model by determining catk such
that prioritization between these competing goals is
reflected. The cost set C contains m matrices wherein
matrix Ci captures the costs incurred by state under
action ai, inclusive of both the defensive costs from
Cdef determined during defense analysis and the attack
penalty catk. We define catk relative to the most
expensive defense as catk = νmax[Cdef ] where ν is
defined as an attack penalty scaling factor. The defender
selects ν so that attacks are thwarted at acceptable cost.

The cost set C contains m cost matrices, with cost
matrix Ci describing the overhead incurred under MTD
ai as

Ci =


ci,1,1 ci,1,2 ... ci,1,n
ci,2,1 ci,2,2 ... ci,2,n

...
...

. . .
...

ci,n,1 ci,n,2 ... ci,n,n


where ci,x,y is the specific cost incurred if the system
transitions from sx to sy under MTD ai. MTD overhead
is assumed to be independent of attack phase. As such,
any individual element ci,x,y can be found as

ci,x,y =

{
ci x < n

ci + catk x = n

because the attack penalty catk is avoided if s(t) 6= sn.
The defender considers the tipping points in ν that

result in changes in the optimal policy Π of an equivalent
Markov decision process (MDP) that is formulated

ν
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max[cdef] action 
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Figure 4. As ν increases, the proportion of states

using the most costly defenses increases.

identical to the POMDP except that state uncertainty
is ignored, i.e., s(t) = ω(t). For MDP, Π is of size
1 × n. Vector Π lists the action to take in each state to
incur the lowest discounted cost over the infinite horizon
and can be efficiently found via dynamic programming
techniques [21].

As ν increases, preventing attack becomes
increasingly influential in minimizing the discounted
cost of a given policy until attack prevention becomes
the only influential factor. At that point, the system
will conduct expensive but effective reconfigurations
regardless of attack phase. Analysis of Π over a range
of ν values will identify up to n × m points where ν
drives a change in Π, as more expensive but effective
defenses are used in increasingly more states.

These shifts are illustrated for a generic system in
Figure 4. The vertical axis tracks the total number states
in which a given action is applied. The horizontal axis
indicates ν. Because costs are imposed as negative
values, the max[cdef ] action is the least expensive
available defense. Under our convention that cost,
effectiveness, and index are directly proportional such
that the defense with the least cost is also the least adept
at thwarting attacks, at ν = 0, there is no attack penalty
applied, and therefore the least-cost action is applied in
n states. As ν → ∞, attack is weighted so heavily
that am is applied in all n states. Given the interest in
optimization prerequisite for considering the proposed
system, the defender seeks to identify ν in the mid-range
of values such that the most expensive defenses are used
against imminent attack.

The discount factor γ influences the priority of
immediate versus future rewards. The factor falls in
the range [0, 1], with the minimum value 0 resulting in
future costs being ignored, and the maximum value 1
representing an equal emphasis on present and future
costs. In this application, attack suppression requires
consideration of future costs as catk is only incurred
in sn. Overhead control, on the other hand, requires
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emphasis on present costs. With both in play, γ
sensitivity is reviewed similar to the way in which ν
sensitivity was explored to find the tipping points and
select that which best reflects defender priorities.

3.4. IDS assessment

The final component of POMDP formulation
involves assessment of the upstream IDS to determine
the probability of detection pD, i.e., the probability that
ω(t) = s(t). Observation set O contains m observation
matrices denoted by Oi which contain the likelihood of
alignment between ω(t) and s(t) as

Oi =


oi,1,1 oi,1,2 ... oi,1,n
oi,2,1 oi,2,2 ... oi,2,n

...
...

. . .
...

oi,n,1 oi,n,2 ... oi,n,n


where oi,x,y describes the probability that observation
ωy occurs in state sx if action ai is taken. We introduce
the general form of O to facilitate consideration of the
way individual defenses may improve or degrade the
ability to discern true system state, but so far our work
only considers cases where defense and observation
processes are independent such that O contains m
identical members.

Assessment must be made to determine where the
error falls by state. These values are collected into
the observation matrix Oi, which is n × n in size and
reflects the probability of receiving observation x in
state y conditioned on action ai as oi,x,y . Probability
pD as well as the probabilities of false alarm pFA and
missed detection pM must be determined, usually from
tests of the IDS under conditions where attack activity is
well understood. Our work so far considers optimization
under intrusion detection performance of the form

Oi =


pD pFA ... 0 0
pM pD pFA ... 0

...
...

. . .
...

...

0
... pM pD pFA

0 0 ... pM pD


in which pFA and pM are restricted to immediate
neighboring states. Together, the components
{s, a, ω, P,C,O, γ} form the POMDP integral to
our proposed system.

4. Importance of the absorbing state

Although recovery after attack is represented in
all but one of the POMDP-based works discussed in

Section 2, we found that including the recovery process
within the POMDP was problematic for two reasons.
First, recovery is difficult to accurately represent as
a stochastic process. Once an exploit lands on a
device, recovery involves a manual process dependent
on the extent of the damage. Recovery can take
weeks. Second, in initial exploration of performance
of our MTD agent, we found that inclusion of the
recovery process in the model led to undesirable a1

action selection in the high-risk states closest to sn. Just
when defenses were needed most, they failed to deploy.

To overcome both of these issues, we adopt an
absorbing state at sn such that pi,n,n = 1.0 for 1 ≤
i ≤ m. An illustration of the influence of the absorbing
state on optimal decision-making is presented in Figure
5. These box plots contain the projected costs of all
possible discounted futures when either a1:nil or a2:def
is taken in the next time step. In both scenarios (a) and
(b), the system is currently in penultimate state sn−1 and
p2,(1,...,n−1),1 = 1.0 such that selecting action a2:def
always returns the system to safety. In scenario (a),
the model includes recovery such that pi,n,1 = 1.0. In
scenario (b), attack recovery is not possible as sn is an
absorbing sate, i.e., pi,n,n = 1.0.
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Figure 5. As compared to (a), incorporation of an

absorbing state in (b) spreads projected costs under

either action ten-fold to ensure achievement of

optimization goals.

The optimal decision in either scenario is the one
that minimizes cost. In both cases, a2:def is the
better choice, indicated by the def box plots being
closest to zero, but the wider spread between nil and
def costs in scenario (b) sets better conditions for the
simulation-based approach used by our MTD agent to
select the optimal decision.

Our POMDP formulation with the absorbing end
state is similar to the goal attack states in [10], with
a key difference: in our model, lower numbered
states may be revisited from any state except sn,
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while the model in [10] assumes monotonicity in that
even intermediate phases toward attack accomplishment
cannot be reverted once achieved. Because our system
is focused on optimizing MTD, the monotonicity
assumption no longer holds [5]. MTD introduces
uncertainty for attackers with the specific intent of
forcing them to revisit earlier attack phases. Thus,
a model of MTD requires incorporation of backwards
potential progress through state sn−1.

Once the absorbing state was adopted, we found it
useful in establishing metrics for system performance.
Under absorbing Markov chain theory, P1 can be used
to understand qualities of the underlying attack process.
Given the standard form of P1, partition Q1 is the
upper left n − 1 × n − 1 partition of transient state
transition probabilities [22]. The fundamental matrix
N1 = (I − Q1)−1 where I is an identify matrix of
size n − 1 [22]. We assume the system begins in s1

represented by starting transient state probability vector
α = [1, 0, ..., 0]. Therefore, the total expected number
of state visits is found via

τ1 = αN1ξ (2)

where ξ is a column vector of n − 1 entries of 1 [22].
Serving as a baseline, τ1 is a critical metric. We define
attack suppression under the proposed system φ relative
to τ1 as φ = (1 − τ1

τΠ
) × 100% where τΠ describes the

steps before reaching sn under optimal defense.

5. Results

In this section we step through POMDP formulation
toward optimal defense against the five stage attack
diagrammed in Figure 6. States {s1, s2, s3, s4, s5}
correspond to the progression from start to attacked. We
selected this five-phase attack model for the example
formulation because a similar model was used to
study the effectiveness and overhead of MTD in [4],
which will permit comparison between our approaches.
Following formulation, we offer results from simulated
operation of the proposed system to demonstrate the
value of the proposed POMDP-based approach to MTD
optimization.

Start Target 

Scan

Vuln.

Scan

Launch Attacked

s1 s2 s3 s4 s5

Figure 6. Five-phase attack process

In start, s1, no attacker is yet working against the
system. Next, target scan, s2, represents the initial
efforts performed by the attacker to locate the system.
An example of this type of activity is an internet

control message protocol (ICMP) ping sweep used by
an attacker to identify all hosts in range of network
addresses. If the system enters this phase, activity
has been detected that indicates an attacker has located
the system. The next phase is vulnerability scan, s3,
which represents technical reconnaissance efforts like
operating system fingerprinting and similar techniques
which can identify particular vulnerabilities of the
protected system. Finally, in launch, s4, the attacker
actually attempts a compromise, which, if successful,
results in the protected system entering s5, attacked.

To estimate the values in P1, we translated honeypot
data into a Markov chain. The data used are published
in [23] and were collected over 48-days as attackers
interacted with two honeypot web servers behind a
university firewall. Our attack analysis assumed that the
event counts are gathered under pD = 1.0 such that the
reported attack progressions reflect P1, not O.

The authors of [23] categorized activity as one
of four different events based on a count of
packets-per-connection. These classifications were
possible because the honeypots served no true function,
and consequently there was no valid reason to
communicate with them. Two protocols were identified
in traffic, namely ICMP and transmission control
protocol (TCP). All ICMP traffic was assumed to be
scanning activity, regardless of packet volume. The
TCP traffic was of three types, with the lowest volume
connections labeled as port scans, intermediate volume
as vulnerability scans, and high volume as launches.

Over the 48 day window, 59,468 connections were
collected, 22,710 of which went to the two honeypots.
Of those honeypot connections, 6,203 unique records
occurred, representing 5,540 individual attacks. To
align the available data in [23] with our five state
attack model, we considered ICMP and port scans
both indications of s2. Under the assumption that
the attack stages may be skipped but not reordered
from {start, target scan, vulnerability scan, launch},
the tallied events from [23] translate into the Markov
chain in Figure 7 with values from Table 2. These
probabilities assume that attacks occur via consecutive
connections. State transitions occur on a per-connection
basis between clients and the protected server.

p1,1,1

p1,1,2

s1 s2 s3 s4 s5

p1,1,4

p1,1,3

p1,2,3 p1,3,4 p1,4,5

p1,2,2 p1,4,4 p1,5,5
p1,3,3

p1,2,4

Figure 7. Markov chain modeling stochastic nature

of cyber attacks, developed from data in [23].
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We extend the model to the fifth state to account for
the failure of exploits to take effect and cause damage,
which was not quantified in [23]. In the presence
of layered defense, p1,4,5 represents the probability of
all other defenses (e.g., anti-virus software, privilege
control, security training) failing. We apply a value of
0.5 to represent the likelihood another layer of defense
prevents entry into sn. Together, the probabilities form
transition matrix

P1 =


0.6611 0.2300 0.0856 0.0233 0

0 0.9235 0.0687 0.0078 0
0 0 0.7900 0.2100 0
0 0 0 0.5000 0.5000
0 0 0 0 1.0000

 .
Following equation 2, there are τ1 = 17.928 expected
total state visits before reaching s5. Based on the
connection rate of six per minute, this system, absent
defense, enters s5 within approximately 3 minutes.

To prevent such rapid success, we implement two
MTDs. While there are many more defenses available,
both from the catalog of MTD detailed in [2] and
other non-MTD options like restarting resources or
partitioning network connectivity, we implement just
three defenses at this juncture for two reasons. First,
this dimensionality can be accommodated via a variety
of MTD agent techniques, which permits verification of
the optimization gains possible via POMDP in general,
without limiting choice of agent. Second, implementing
these specific defenses facilitates direct comparison
between our system and the system in [4].

When effective, each returns the system to s1.
Defense a2 represents a dynamic platform change
between x = 3 services with repeat wherein xv = 1
are vulnerable to attack such that ps = x−xv

x . The next,
a3, represents a dynamic network change in IP address
among ρ = 256 addresses with repeat such that ps =
ρ−1
ρ . To align with the defenses implemented in [4], we

implement a2 and a3 into our model with specifications
as recorded in Table 3. We measure overhead in terms
of availability such that ci represents the loss in system
availability in seconds when MTD ai is deployed as
measured in [4] assuming a 10 second inter-arrival rate
between connections. Transition matrices P2 and P3

follow Equation 1.
Following the same flow of analysis used to

determine τ1, a2 would extend the expected time before
attack 15 times over to τ2 = 105, or φ2 = 83.9%,
while a3 extends the expected time before attack to
τ3 = 5.25 × 106, or φ3 = 99.9%. By far the more
effective defense, a3 is also the most expensive, and
system availability under such consistent use would be
just 4.1%. The other options either thwart the attack
moderately well, for moderate expense (a2) or not at all,

but for free (a1).
Attack penalty scaling factor ν is determined by

reviewing the locations of the policy shifts as ν increases
are shown by state in Figure 8. The optimal policy
vector Πν describes the action that should be taken in
each state for a given value of ν, determined via policy
iteration as implemented in [24]. For approximately
ν ≤ 100, Πν = [a1, a1, a2, a3, a1]. For ν > 104, Πν =
[a3, a3, a3, a3, a3], wherein the optimization effort is
effectively abandoned, as the policy indicates taking the
most expensive defense, a3, in every state.
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Figure 8. Policy shifts by attack penalty scaling

factor ν.

These two cases represent the policies at either
extreme, with the former prioritizing overhead control
and the later prioritizing attack suppression. This
trade-off is illustrated in Figure 9 wherein predicted
metrics of attack suppression and availability as a
function of ν are displayed. These expected metrics are
calculated via an extension of absorbing Markov chain
theory using probabilities of state and action occurrence
weighted by the impact of partial observability. The
stair-step shifts in value align with the policy shifts by
state in Figure 8. Even for pD = 0.5, attack suppression
of greater than 99% is achievable, but not unless the
user is willing to accept availability on the order of 2%.
Because the objective of our work is to implement MTD
with overhead control, we set ν = 100 to explore system
performance in the range where both attack suppression
and availability are above 90%.

The discount factor γ influences the priority of
immediate versus future rewards. The optimal policy in
this case is not particularly sensitive to γ. We selected
γ = 0.75 to ensure both long-term attack suppression
and near-term availability were achieved, but could have
selected any value in the range 0.34 ≤ γ ≤ 0.99
with no impact on Π as generated via policy iteration
implemented in [24].

Because the IDS is upstream of the proposed system,
we explore performance of the proposed system across
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Table 2. The translation of occurrences observed in [23] into transition probabilities for a five state Markov chain

s arrival
count

s1 s2 s3 s4 s5

count p1,i,1 count p1,i,2 count p1,i,3 count p1,i,4 count p1,i,5

s1 16,347 10,807 0.661 3,760 0.23 1,399 0.086 381 0.0230 0 0.0
s2 3,760 0 0.0 3,473 0.924 258 0.069 29 0.008 0 0.0
s3 1,657 0 0.0 0 0.0 1,307 0.789 350 0.211 0 0.0
s4 760 0 0.0 0 0.0 0 0.0 380 0.5 380 0.5
s5 380 0 0.0 0 0.0 0 0.0 0 0.0 380 1.0

Table 3. Available MTD, specifications adapted

from [4].

ai Basis Effectiveness Overhead
ps (%) Ci (sec) Avail. (%)

a1 No Action 0 0 0.000 100%

a2 Service 2
3

66.7% -0.635 93.7%

a3 IP address 255
256

99.6% -9.590 4.1%
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Figure 9. Sensitivity of attack suppression and

availability to variation in attack penalty ν.

a range of capabilities for IDS. We consider IDS
performance to be independent of MTD such that Oi =
Oj for i, j ∈ [1, ...,m] and consider system performance
for 0.74 ≤ pD ≤ 1.00 with error 1 − pD split evenly
between pFA and pMD.

Using the model to facilitate optimal
decision-making requires an agent to estimate current
system state and leverage that estimate to find the
optimal action [25]. Our agent uses an online policy
technique leveraging the determinized sparse partially
observable tree planning (DESPOT) algorithm [26]
as implemented in [27]. Attack suppression and
availability performance under simulated operation of
the proposed system are presented in Figure 10. We
highlight the mean value across all simulations and
include error bars representing the 15 and 85 quantile
values for reference as to the range of performance
expected. Even as pD degrades to 0.75, the system
maintains attack suppression at greater than 99%
and availability at greater than 94%. As compared

to repeated use of the most effective and expensive
defense, a3, the proposed system achieves nearly
equivalent attack suppression while gaining upwards of
90 percentage points in availability.
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Figure 10. Availability and attack suppression

performance under the proposed system.

6. Conclusion

This paper presented formulation of POMDP to
facilitate optimization of MTD by assessed attack
phase. Our abstraction of the defensive process into
a POMDP to achieve MTD optimization goals is the
main contribution of this paper. We described how our
mechanism uses an attack penalty scaling factor and an
absorbing ultimate state to abstract defender priorities
into the model. Based on an example formulation,
we quantified the significant gains in terms of system
availability that can be achieved while maintaining
attack suppression well beyond acceptable levels.

The most important next steps involve understanding
the impact of model accuracy. The results described
in this paper assume the model is perfectly aligned
with the real world, so we will now work to relax
this assumption and quantify the impact and source
of model error for the proposed system. Examples
of potential model error include misrepresentation of
attacker dynamics in P1 or defense effectiveness in Pi.
Either could be devastating, with the system failing
to implement defenses as needed to thwart inbound
attacks. Confident adoption of the proposed system
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requires quantification of the tolerances for model error
within which system performance remains acceptable.
Further, while progress has been made, computational
tractability of POMDP remains a concern [26] such
that more research is needed to understand the number
of MTDs and intermediate attack phases the proposed
system can incorporate before the agent becomes unable
to identify the optimal action on a reasonable time scale.

Even with the work remaining, optimization of MTD
is critical to ensuring it becomes the invaluable cyber
defense tool sought. Our work justifies continued
research and investment toward model-based strategies
for achieving MTD that is both manageable and
unpredictable.
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