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Abstract 

Given the difficulty of fully securing complex cyber 

systems, there is growing interest in making cyber sys-

tems resilient to the cyber threat. However, quantify-

ing the resilience of a system in an organizationally-

relevant manner remains a challenge. This paper de-

scribes initial research into a novel metric for quanti-

fying the resilience of a system to cyber threats called 

the Resilience Index (RI). We calculate the RI via an 

effects-based discrete event stochastic simulation that 

runs a large number of trials over a designated mis-

sion timeline. During the trials, adverse cyber events 

(ACEs) occur against cyber assets in a target system. 

We consider a trial a failure if an ACE causes the per-

formance of any of the target system’s mission essen-

tial functions (MEFs) to fall below its assigned thresh-

old level. Once all trials have completed, the simulator 

computes the ratio of successful trials to the total num-

ber of trials, yielding RI. The linkage of ACEs to MEFs 

provides the organizational tie. 

1. Introduction 

There is increasing recognition that cyber systems 

can likely never be made fully secure [1]. A host of 

root causes contribute to this situation, including high 

system complexity, interconnectedness, and use of 

low-assurance components. The desire for missions 

and business functions that depend on such systems to 

succeed despite imperfect security gives rise to the 

idea of cyber resilience. For this paper, our working 

definition for cyber resilience is the ability of a cyber 

system to support organizational objectives by provid-

ing an acceptable level of performance for its mission 

essential functions (MEFs) in spite of adverse cyber 

events (ACEs). By MEFs, we mean that subset of a 

cyber system’s use cases [2] that most directly support 

organizational functions and mission objectives. By 

ACEs, we refer to breaches of data integrity, confiden-

tiality, or availability that could occur in a number of 

ways, such as a malicious cyber attack or physical at-

tack on cyber assets, component failure, operator er-

ror, software or hardware bugs, and acts of God. 

The remainder of this paper is organized as fol-

lows. First, we discuss related work and identify gaps, 

including a resilience quantification gap. Next, we de-

scribe the paper’s contribution relative to the gaps, the 

Resilience Index (RI)  metric and a simulator that com-

putes RI for target systems, and we present an example 

run of an instantiation of the simulator. Finally, we dis-

cuss limitations and future work areas. 

2. Related Work 

2.1. Definitions 

In addition to our working definition, the term 

cyber resilience has many other definitions. For exam-

ple, NIST 800-160 [3] defines resilience as: “The abil-

ity to anticipate, withstand, recover from, and adapt to 

adverse conditions, stresses, attacks, or compromises 

on systems that use or are enabled by cyber resources 

regardless of the source.” CNSSI 4009 [4] defines the 

term as, “The ability to prepare for and adapt to chang-

ing conditions and withstand and recover rapidly from 

disruptions. Resilience includes the ability to with-

stand and recover from deliberate attacks, accidents, 

or naturally occurring threats or incidents.” Björck, et 

al. [5] define the term more succinctly as: “The ability 

to continuously deliver the intended outcome despite 

adverse cyber events.” Our working definition is sim-

ilar to these definitions; however, we specifically 

highlight MEFs, as MEFs are our connection from 

ACEs in a cyber system to organization/mission rele-

vance of those ACEs. 

2.2. Frameworks and Mechanisms.  

A number of resilience-related cyber frameworks 

have emerged in recent years. For example, volume 2 

of NIST Special Publication 800-160, “Systems Secu-

rity Engineering Cyber Resiliency Considerations for 

the Engineering  of Trustworthy Secure Systems” [3] 

lays out a set of resilience goals (Anticipate, With-

stand, Recover, Adapt), more specific objectives (e.g., 

Prepare, Continue, Constrain), and techniques and ap-

proaches (e.g., Deception, Diversity, Redundancy). 
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NIST’s “Framework for Improving Critical Infrastruc-

ture Cybersecurity” [6] introduces the notions of 

“Identify, Protect, Detect, Respond, Recover” as a 

means to categorize resilience mechanisms. The Car-

negie Mellon University Software Engineering Insti-

tute created the CERT Resilience Management Model 

[7], which states “By improving operational resilience 

processes …, an organization can use the model to im-

prove and sustain the resilience of mission-critical as-

sets and services.” Linkov, et al. [8] describe a cyber 

resilience matrix that includes a number of resilience-

related practices. The US Department of Defense Cy-

bersecurity Survivability Endorsement [9] defines a 

set of cyber survivability attributes arranged into Pre-

vent, Mitigate, and Recover pillars. While such frame-

works are helpful in structuring our thinking about re-

silience, they do not propose analytical techniques for 

measuring overall resilience, nor do they offer analyt-

ics that recommend the best combination of resilience 

mechanisms. In addition to organizing frameworks, 

other researchers focus on specific resilience mecha-

nisms (e.g. [10]–[12]) or on resilience in narrower do-

mains, such as cyber-physical control systems [13].  

2.3. Quantification 

While quantification of resilience in other fields 

(e.g., ecology [14], mechanical engineering [15]) is 

more mature, the study of cyber resilience quantifica-

tion is in a nascent state. Linkov and Kott [16] hint at 

resilience quantification as follows, “Assuming two 

equally performing systems A and B subjected to an 

impact …that left both systems with an equal perfor-

mance degradation, the resiliency of system A is 

greater if after a given period T it recovers to a higher 

level of performance than that of system B.” For these 

authors, time to recover is the critical resilience quan-

tity. The report “Partnering for Cyber Resilience” [17] 

suggests that use of Monte Carlo modeling could pro-

vide a useful basis for quantifying resilience. In fact, 

our inspiration for RI came both from this report and 

the analogy of retirement calculators that take such an 

approach for estimating the success rate of a person's 

retirement plans (e.g., Vanguard [18] and 

retirementsimulation.com  [19]). Many variables (e.g., 

inflation rate, market return, taxation rate, funding of 

Social Security, sequence of returns, longevity), con-

tribute to the uncertainty of whether a person will have 

sufficient funds throughout retirement. The Monte 

Carlo approach treats these quantities as random vari-

ables with associated distributions. Through a run of, 

for example, 10,000 simulation trials, such calculators 

randomly sample the distributions of these variables in 

a time-based simulation to compute an overall success 

rate score. 

2.4. Risk and Resilience 

Linkov et al. [8] recognize the relationship be-

tween cyber resilience and risk, “resilient systems 

should utilize generalizable concepts distinct from but 

complementary to risk assessment.” In the case of ma-

licious attack, we hypothesize a link between risk and 

resilience in the sense that high risk portions of a sys-

tem as measured by their mission criticality and un-

mitigated exposure to anticipated threats should re-

ceive attention when considering cyber resilience 

mechanisms, as these are likely to be the most attrac-

tive to attackers.  

There are many cyber risk frameworks and ap-

proaches in use today, such as NIST 800-30 [20], OC-

TAVE [21], and INFOSEC Institute's "Quantitative 

Risk Analysis" method [22]. The RI simulator dis-

cussed in this paper leverages a risk approach called 

BluGen [23] in order to provide risk quantification. In 

BluGen, the risk, r(a), of a cyber asset, a, is a function 

of the asset’s exposure, e, and criticality, c, as shown 

in equation (1). Briefly, asset exposure is the ratio of 

the number of unmitigated threat capabilities mapped 

to an asset of a given type to the total number of appli-

cable threat capabilities. Asset criticality is a measure 

of an asset’s importance to the MEFs it supports. 

𝑟(𝑎) =  1.0 −  
√(𝑒(𝑎) − 1.0)2 −  (𝑐(𝑎) − 1.0)2

√2
 (1) 

The numerator of the second term in Equation (1) 

is the distance formula from an asset plotted in an x-y 

plane by its exposure and criticality scores to the point 

of highest risk, (1.0, 1.0), such as in a BluGen risk scat-

terplot. We divide by √2 to scale to the range 0.0 to 

1.0, and we subtract the resulting quantity from 1.0 so 

that risk rises as we approach (1.0, 1.0). BluGen pro-

vides “credit” for those mitigations added to the sys-

tem description that apply to previously unmitigated 

threat capabilities that affect assets in the system. The 

effect is to lower the exposure score for relevant assets, 

because the numerator of the ratio mentioned above is 

reduced as relevant mitigations are added. 

3. Research Gaps and Contribution 

Despite the work in cyber resilience as summa-

rized in the related work section, several research gaps 

remain: (1) a quantitative measure of overall resilience 

of a cyber system as it relates to the MEFs that a sys-

tem provides is lacking; (2) the optimal level of coor-

dination between mission-level resilience (“can we ac-

complish mission/business functions”) and cyber-

level resilience (“can we keep the system up”) is un-

explored; (3) the most effective balance of automated 
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vs. manual responses to ACEs is unknown; and (4) ob-

jective guidance on how to combine resilience mecha-

nisms into a resulting architecture that provides a 

given measure of resilience is deficient. 

The contribution of this paper is an approach called 

the “Resilience Index” (RI) for estimating the resili-

ence of a cyber-intensive system to ACEs. The pri-

mary focus of RI is the first gap listed above. The or-

ganizational relevance is RI’s tie to the MEFs of a tar-

get system, which in turn support higher level organi-

zational objectives (Figure 1).  

 

Figure 1. Organizational use of a cyber system 

An example of Figure 1 is a satellite ground system 

shown in Figure 2. Section 6 below uses the example. 

 

Figure 2. Space situational awareness example 

Here, the higher-level mission is “space situational 

awareness (SSA)” with supporting ground system 

MEFs to (1) make observations and (2) facilitate SSA 

communications among ground parties. Each MEF, in 

turn, has an acceptable range of performance deter-

mined from organizational use of the system. (We note 

that some MEFs may have multiple associated met-

rics, or measures of effectiveness, but for simplicity, 

this paper assumes one metric per MEF.) MEF values 

are often expressed by threshold (minimally accepta-

ble) and an objective (desired) values. Table 1 shows 

sample values for the SSA Mission MEFs (opm = ob-

servations per minute, mbps = megabits per second). 

Table 1: Acceptable MEF value ranges 

 MEF Values 

MEF Threshold Objective 

Make Observations 10 opm 15 opm 

Support Comms 25 mbps 75 mbps 

Figure 3 illustrates how ACEs indirectly impact 

MEFs by affecting the data processed by system assets 

that ultimately affect MEF performance. By asset we 

mean a software or hardware component, or a system 

role played by a person. In the example, Asset 1 pro-

cesses Data 1 in support of MEF2. If an ACE disrupts 

the integrity of Data 1 on Asset 1, MEF2 will be im-

pacted. 

 

Figure 3. ACE-to-MEF relationship 

Figure 4 illustrates the essence of cyber resilience. 

A given MEF can be impacted by one or more ACEs 

over a period of time. If the system is sufficiently re-

silient, MEF performance can be sustained to an ac-

ceptable level despite the ACE. The figure shows a 

system operating near its objective performance that 

encounters an ACE. Performance may degrade below 

the threshold for a time. The system or its operators 

may mount an active response to the detected ACE in 

order to reconstitute the system and recover the per-

formance of the impacted MEF to an acceptable level 

of performance in a mission-relevant timeframe. 

 
Figure 4. A cyber resilience illustration 

This brings us to the meaning of the RI value, 

which, as discussed below, is the percentage of simu-

lation trials in which none of the target system’s MEF 

performance values dropped below their threshold val-

ues in spite of ACEs occurring during the trials. 

4. Approach 

We structured our creation and examination of RI 

in the context of Design Science Research (DSR) [24]. 

In addition to the RI metric itself, other DSR artifacts 

are the RI model and method, as summarized in the 

high-level architecture shown in Figure 5, and an ini-

tial instantiation of the model and method. 
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Figure 5. RI simulator inputs and outputs 

We came to our overall approach by noting that 

there is considerable uncertainty with respect to the 

number, type, timing, and targeting of ACEs. Given 

the uncertainty, we constructed an effects-based dis-

crete event stochastic simulation that treats such quan-

tities as random variables. Unlike analogous ap-

proaches, such as retirement calculators, where dec-

ades of historical data are available to inform the ran-

dom variable distributions, certain ACE-related varia-

ble distributions are not as readily available. We none-

theless designed our approach to accommodate such 

data as it becomes available. Meanwhile, in order to 

make initial progress, we employ uniform distribu-

tions for two variables. In other cases, we seek user 

input to supply values in “what if” scenarios. 

 Figure 6 provides an overview of a given run of 

the simulation. The idea is to execute n simulations or 

trials (Tr1, Tr2, …, Trn) during an overall run, where n 

is a configurable value large enough (e.g., 1,000) to 

provide reasonable coverage of value ranges of rele-

vant variables. Each trial is in the context of an overall 

timeline, measured in discrete increments over an in-

terval [1, m], where the user enters the end time, m. 

 
Figure 6. Simulation overview 

The cyber system under study is considered to be 

operational and supporting higher level mission / busi-

ness function via its MEFs during this time interval. 

The time units can be whatever is convenient to the 

organizational / mission context (e.g., seconds, 

minutes, hours, days). Each trial takes place over a sub 

interval, [i, j], of the total timeline, [1, m], with 1 ≤ i ≤ 

j ≤ m. During a trial, a number of ACEs take place, 

represented by red dots in Figure 6. The blue squares 

represent responses to ACEs. 

As described below, we model an ACE with re-

spect to the effect it has on a particular asset in the tar-

get system and data processed by the asset. By effects-

based, we mean that we focus on the effect the ACEs 

have rather than on the multitude of ways that any 

given type of ACE could come about. For example, in 

the case of a malicious ACE, many potential attack 

vectors and paths to a target asset and data may exist, 

with numerous potential vulnerabilities to exploit 

along the way, and possibly many different exploita-

tion techniques available for use. We abstract this 

complexity away by focusing on the effects. 

ACEs may or may not cause a failure of an overall 

trial. We define a failed trial as one in which the impact 

of an ACE that takes place during the trial exceeds the 

maximum allowed impact value for the MEF affected 

by the ACE. The yellow starbursts in Figure 6 indicate 

ACEs whose effects exceed the maximum impact al-

lowable for the associated MEF, causing MEF perfor-

mance to drop below its corresponding threshold value 

for some defined period of time. The result is a failed 

trial. We consider all other trials as successes. We de-

fine the RI for a system as the ratio of successful trials 

to the total number of trials, per equation (2).  

𝑅𝐼(𝑠) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡𝑟𝑖𝑎𝑙𝑠(𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠(𝑠)
 (2) 

4.1. Simulation Method 

Figure 7 summarizes the main simulation method. 

After identifying key variables in the simulation, we 

describe the steps in the simulation method in the sec-

tions following the figure. 

 
Figure 7. Simulation method (algorithm) 
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The variables shown in Table 2 govern the simula-

tion. We treat some as random variables, while others 

that currently depend on user entry (e.g., ACE detec-

tion probabilities) may be converted to random varia-

bles in the future as suitable distributions become 

available based on accumulated empirical data. The 

sections below discuss the variables in more detail. 

The simulation method begins by generating a list 

of ACEs to execute during the trials of the simulation 

runs (line 1 in Figure 7). The simulator formulates 

ACEs based on a set of “criticality” tuples that are in-

put to the RI simulator as part of the target system de-

scription (Figure 8). These criticality tuples are similar 

to those described in [23]. We limit ACEs to the pos-

sibilities defined in the list of criticality tuples because 

they represent the mapping of data to assets and assets 

to MEFs. They also define MEF impacts should an 

ACE occur in the context of the criticality tuple. 

Table 2. Key simulation variables 

Variable Value Source 

Environment to analyze Input file or generated 

Run types to execute User entry 

Number of trials per run User entry 

Number of ACEs per trial User entry 

ACE candidates for appli-

cation during a run 

Drawn from uniform distribu-

tion over input criticality set 

Timing of ACE 
Drawn from uniform distribu-

tion over criticality time range 

ACE relative event  

probability by ACE type 
User entry 

ACE detection  

probability by C/I/A 
User entry 

Risk to Asset See equation (1) 

As Figure 8 indicates, a criticality is a 7-tuple en-

tity of the form (MEF, Asset, Data, Begin Time, End 

Time, Effect, Impact Score). One can derive such data 

from experimentation, simulation [25], or, often, sub-

ject matter expert interviews.  

The meaning of a tuple instance is that an adverse 

cyber event against a given data item processed by the 

given cyber asset that supports a given MEF at any 

time during over a given time interval will have an im-

pact on the MEF performance indicated by the given 

score. Scores range from 0.0 (no effect) to 1.0 (MEF 

performance is fully compromised). The effect is ei-

ther a breach of data confidentiality, integrity, or avail-

ability. 

 

Figure 8. Describing a target system for analysis 

Figure 9 defines an ACE, which is an assigned 

ACE type (described below), a selected criticality 7-

tuple, and a scheduled time to occur.  

 

Figure 9. Scheduled ACE 

ACE types are defined in Table 3. The RI simula-

tor selects and schedules ACEs based on user specifi-

cations, as described below. An overview of the algo-

rithm to generate the list of ACEs per the simulation 

specification appears in Figure 10. Line 6 of Figure 10 

selects an unused criticality tuple based on the ACE 

type. For a malicious attack ACE type, the simulator 

selects the criticality tuple with the highest computed 

risk, as defined in equation (1). As mentioned earlier, 

this data is provided as input to the RI simulator and 

can be produced by risk methods such as BluGen [23]. 

Table 3. ACE types 

ACE Type Example Influencing Factors 

Malicious  

Attack 

Motivation level, stealth concern, asset risk 

(risk to asset owners) 

Operator  

Error 

Operator training, experience,  

assignments in the system 

Asset  

Failure 

Asset time in service, mean time between 

failure (MTBF) 

Acts of  

God 

Asset geographic location, time of year, cli-

mate change 

Bugs in 

SW/HW 
Organizational CMMI level [26] 

For ACE types other than malicious attack, the cur-

rent simulator implementation makes a random selec-

tion from among the unused criticalities based on a 
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uniform distribution. A future implementation could 

use other approaches. For example, for the asset fail-

ure ACE type, one might select an unused criticality 

tuple whose asset has the highest mean time between 

failure (MTBF) based on its asset type. 

 
Figure 10. Algorithm to Generate Initial ACE List 

4.2. Sensitivity Analysis 

One purpose of the RI simulator is to allow for sen-

sitivity analysis of the computed RI values under var-

ious transformations of the system under analysis 

and/or active responses taken during a simulation run. 

The loop setting up the runs appears in line 2 of Figure 

7. To support sensitivity analysis, the simulation ap-

plies the ACEs to the target system in a series of runs 

or passes specified by the user. The runs facilitate sen-

sitivity analysis with respect to how changes in initial 

assumptions affect the overall RI value computed for 

each run. The simulator is built to support different 

types of runs, as shown in Table 4. 

Table 4. Available Run Types 

Run Type Description 

Passive 
A run where no responses to ACEs 

are mounted 

Actively 

Respond 

A run where active response actions 

are mounted for detected ACEs (not 

all ACEs are detected) 

Refactor 
A run where the architecture of the 

system is refactored in some way 

Change 

Risk 

A run where asset risks are modified 

by some percentage (either up or 

down) to see the resilience impact for 

malicious ACEs 

Below, we discuss two run types from Table 4, ac-

tive responses to ACEs and architectural refactoring. 

4.2.1. Active Responses to ACEs 

Per line 8 in Figure 7, a run may involve active re-

sponse to ACEs (the blue squares in Figure 6). There 

is a range of potential response actions to ACEs. In the 

RI simulator, we chose to initially focus on a key 

mechanism discussed in our 2016 paper on resilience 

in a space ground system [27]. The mechanism in-

volves having multiple alternative modes of operation. 

The primary mode is the default mode and provides 

the best mission performance, but is also the most 

complex and interconnected. If an ACE within the 

components that make up the primary mode is de-

tected and deemed serious enough, the system opera-

tor may opt to bring down the primary mode and bring 

up a secondary mode of operation that is higher assur-

ance but does not offer the same level of performance. 

This multi-mode arrangement provides time to reme-

diate assets tied to the original mode before bringing 

the original mode back on-line while still sustaining an 

acceptable level of mission performance during reme-

diation. Depending on the system, additional modes 

may be justified.  

4.2.2. Architectural Refactoring 

The simulator has a limited ability to automatically 

refactor the architecture of a target environment to as-

sess its impact on the RI score. The simulator is cur-

rently built to support the use of redundancy and de-

ception. For the redundancy approach, the simulator 

can introduce redundant assets into the architecture for 

assets that exceed a user-specified criticality threshold 

value for criticality tuples that have an availability ef-

fect. The user specifies the number of new assets to 

introduce into the architecture and the amount of crit-

icality reduction the simulator should apply to the 

original and newly introduced assets. For example, 

suppose the user does the following: opts for redun-

dancy refactoring, sets the associated criticality thresh-

old to 0.8, sets the number of new assets to introduce 

at 2, and sets the criticality reduction value to 0.2 (a 

20% reduction). Then suppose the simulator encoun-

ters an asset, a1, with a criticality value of 0.9 for avail-

ability. The simulator would introduce two new assets, 

a2 and a3, into the architecture and criticality tuple list, 

and set the criticality of a1, a2, and a3 to 0.7 for the 

availability effect. 

For deception, which is only partially implemented 

in the instantiation, the idea is to introduce decoys as-

sets into the architecture for assets that have a critical-

ity that exceeds a certain threshold value. Use of decoy 

assets can aid in detecting adversary presence. If the 

decoy assets can switch back and forth from being de-

coy assets to redundant assets under a specified (and 

unpredictable to the adversary) schedule, then they 

may contribute to a criticality reduction for the origi-

nal assets. 
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5. Model and Method Instantiation 

The current instantiation of the RI model and sim-

ulator method is a Java program with a user interface 

that appears in figures below. The simulator uses a 

tabbed interface. The first tab (Figure 11) allows the 

user to specify the target environment to analyze.  

 

Figure 11. Environment tab 

The user can load the target environment to be an-

alyzed from a file-based system description formatted 

as a structured comma-separated value (CSV) file, or 

generate a synthetic environment based on a set of pa-

rameters for experimentation purposes. 

The next tab, Sim Specification (Figure 12), allows 

the user to specify how the simulator is to run. The tab 

contains four sub-tabs down the right side: Main, 

Events, Refactoring, and Responses. In the main tab, 

the user sets the total number of trials to run, the num-

ber of ACEs per trial, the effects to simulate (Confi-

dentiality, Integrity, Availability, or some combina-

tion of these effects) during the ACEs, which passes 

the simulator is to make to allow comparison of differ-

ent RI values for the same target system under differ-

ent system conditions. Finally, the user can specify the 

overall length of the trials, and which subinterval the 

simulation should choose from within for the span of 

simulated ACEs. 

 

Figure 12. Sim. specification—main tab 

 

Figure 13. Events tab 

Figure 13 shows the Events tab, which allows the 

user to specify relative probabilities of the five ACE 

types and event detection probabilities for breaches of 

confidentiality, integrity, and availability. 

The refactoring tab (Figure 14) provides an initial 

exploration of refactoring possibilities centered 

around the introduction of redundant assets and decoy 

assets into the architecture, as discussed earlier. 
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Figure 14. Refactoring tab 

The Responses tab (not shown) allows the user to 

indicate whether to use mode switching as an ACE re-

sponse mechanism, as discussed earlier. 

6. Example 

We tested the initial simulator instantiation against 

a ground system that controls a geosynchronous satel-

lite and its optical sensing payload (this example was 

briefly referenced in Figure 2). For sensitivity reasons, 

the system is an exemplar only, but experienced 

ground segment engineers designed the exemplar sys-

tem to be realistic, similar to actual deployed ground 

systems. The higher-level mission is space situational 

awareness. In support of this mission, the system has 

two primary MEFs, as shown in Figure 2, and has 39 

assets that support the MEFs. The assets, in turn, col-

lectively process 26 data types, and there are 1,010 dis-

tinct criticality tuples that specify the mission critical-

ity of different combinations of MEF, asset, data, 

times, and compromise effects.  

We ran 1,000 trials with 10 ACEs per trial over a 

total timeline of 100 time increments. We considered 

a single time increment to be one day. For simulator 

runs, we chose only the passive case, where ACEs oc-

cur, but no active response is mounted. The ACEs gen-

erated appear in Figure 15. As shown, 9 out of 10 

ACEs are malicious attacks, with one reliability failure 

on the storage server asset. This particular mix of 

ACEs resulted from ACE type probabilities that we 

specified of Malicious=0.70, reliability=0.04, 

bugs=0.10, operator error=0.07, and acts of God=0.09. 

While we could have custom-edited the starting ACE 

list, we opted to accept the generated list. 

 

Figure 15. Generated ACE list 

The result of running the simulator against this ex-

ample appears in Figure 16. As shown, the Resilience 

Index of the exemplar system is only 19%.  

 
Figure 16. RI Simulator results summary 

The low RI value represents an initial case before 

architectural refactoring, improved mitigations (re-

sulting in lower exposure scores), and active response 

are done. Such activities could raise the RI value, but 

not all of these features are part of the instantiation yet. 

A portion of the simulator log showing the final 

trial appears in Figure 17. In the trial, three ACEs (#’s 

4, 5, and 6) had impact scores for the “Provide Obser-

vations” MEF that exceeded the allowable threshold 

of 0.8, resulting in the failure of that particular trial. 

The simulator took 5 minutes and 49 seconds to run on 

a Windows 10 desktop computer with an Intel I7 pro-

cessor and 16GB of memory. Note that at this stage we 

have not attempted any kind of performance optimiza-

tions on the simulator instantiation. 

 

Figure 17. Final section of simulator log 

Page 7072



7. Discussion and Evaluation 

Revisiting the RI simulator through the lens of De-

sign Science Research (DSR), and the Peffers et al. 

DSR model [24] in particular, we have (1) motivated 

the need for cyber resilience given the challenges of 

making complex, interconnected cyber systems fully 

secure, (2) defined a concept for resilience quantifica-

tion that manifests as an effects-based discrete event 

stochastic simulation, (3) demonstrated an instantia-

tion of the simulation against a realistic cyber system, 

(4) conducted a preliminary assessment of the model, 

method, and instantiation artifacts, and (5) communi-

cated initial results through this paper. 

There are a number of limitations related to this in-

itial work: (1) We speculate that simulated malicious 

ACE results and attacker behavior converge over the 

long run, but more data is required to evaluate this 

idea; (2) the simulator uses a simplified model of a tar-

get cyber system, not taking, for example, component 

connectivity into account; (3) The simulator does not 

currently offer a full array of automated refactoring 

and ACE response options, including game-theoretic 

interactions, that would allow the user to more fully 

explore the resilience “tradespace”; (4) The simulator 

depends on the user to specify certain values for cer-

tain variables used by the simulator, such as ACE type 

and detection probabilities. While specifying such 

probabilities allows for values that may vary by sys-

tem context, providing empirically-based initial de-

fault values could be of value; (5) Validation explora-

tion of the RI simulator has not yet been undertaken. 

8. Conclusions and Future Work 

Through its connection to MEFs, the RI simulator 

described in this paper provides, we argue, an organi-

zationally relevant quantification of cyber resilience, 

addressing the quantification gap mentioned earlier. 

The simulator represents an initial foundation for fu-

ture work in resilience exploration.   

A number of future work possibilities exist: (1) im-

prove the modularity of the design to allow new refac-

toring and response options to be plugged into the sim-

ulator and automatically explored if specified by the 

user; (2) incorporate time-to-recover to model the re-

covery of assets taken offline; (3) automatically ex-

plore combinations of refactoring and response actions 

to identify the highest RI scoring possibilities; (4) in-

corporate other tradespace priorities into the sensitiv-

ity analysis for various options, such as costing con-

straints; (5) calibrate simulator defaults with the re-

sults of empirical experiments (e.g., the degree to 

which using quantified risk estimates to prioritize ma-

licious ACE targeting is reflected in attacker behav-

ior); (6) enhance metadata about target architectures 

with data that informs ACE default probabilities (e.g., 

asset type-specific mean time between failures for re-

liability-related ACEs, training data to inform operator 

error ACEs.); (7) carry out evaluations of artifact util-

ity with an appropriate target audience, and (8) incor-

porate simulated human decision making in mounting 

certain responses; (9) as data becomes available, re-

visit the use of uniform distributions in the simulator; 

in the meantime, explore the potential use of other dis-

tributions and their impact; (10) consider other effects 

in the simulator, such as confidentiality, non-repudia-

tion, and authentication choices; (11) give further 

thought to approaches for validating RI simulator re-

sults, such as by calibrating the RI simulator variables 

and the ACE list generation approach based on data 

gathered from long-term observational studies of 

cyber systems operating in a realistic threat environ-

ment; (12) give consideration for how to model the ef-

fects of simultaneous ACEs; (13) explore the idea of 

introducing into the specification a minimum down-

time for an ACE before the effect of the ACE is regis-

tered (that is, rapid recovery from an ACE might ne-

gate the MEF impacts); (14) explore expanding the 

simulator to incorporate into resilience the idea of 

maintaining not just threshold level MEF performance 

but performance that sustainably approaches or meets 

objective MEF performance. 
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