
The Abacus: A New Architecture for Policy-based Authorization

Jacob A. J. Siebach

Brigham Young University

jacob_siebach@byu.edu

Justin Scott Giboney

Brigham Young University

justin_giboney@byu.edu

Abstract
Modern authorization architectures using role-

based, policy-based, and even custom solutions have

numerous flaws and challenges. A new design for

authorization architecture is presented called the

Abacus. This paper discusses the architecture that the

Abacus utilizes to overcome the issues inherent in other

proprietary and open-source authorization solutions.

Specifically, the Abacus respects domain boundaries, is

less complex than existing systems, and does not require

direct connections to domain data stores.

1. Introduction

Said Eric Evans, “Every software program relates

to some activity or interest of its user. That subject area

to which the user applies the program is the domain of

the software” [1]. Domains are areas that control a

specific set of data for an organization, e.g. HR,

engineering, or customer support. Domains are at the

heart of every computer system, storing data and

enabling the business functions of the organization.

Every existing computer system has rules

governing who is allowed to perform certain tasks or

view specific data within that system, even if the rule is

that anyone with access to the device is allowed to use

it. These rules are called authorization policies.

Domains use policies to safeguard the data within them.

Numerous commercial and custom systems in the world

today use roles and groups to control authorization, but

these have proved to lack the fine-grained control

needed, are prone to role explosion [2], and are often

difficult to keep in sync with who should be allowed to

have access [3]. In the past twenty years, several

enterprise systems have been created to allow

organizations to control authorization via authorization

policies that rely on data attributes instead of roles or

groups. While this reliance on data attributes allows for

fine-grained authorization, one problem of many

modern systems is the method of attribute gathering.

For a policy to grant authorization, the system using

the policy needs access to the attributes of the user

requesting authorization. Many current systems get

these attributes by directly accessing the database tables

where the attributes are stored. While this access method

may allow the authorization system to get the current

value of the attribute at run-time, it poses numerous

security and domain-boundary issues, among which are

tight coupling of the authorization system to the

domains, the ability for a malicious actor to utilize the

authorization system as a pivot into production

databases, and increased authorization latency.

We propose that authorization gathering should not

be a function of the authorization system, but that the

attributes should be pushed to the authorization system

from the source domains. In storing the attributes as they

are pushed to the authorization system, checks for

authorization never require external calls (which

decreases latency), nor does the authorization system

require direct pipes to domain data stores (increasing

security and decreasing database load). We achieve this

goal by reviewing current literature and commercial

systems, identifying the strengths and weaknesses of

current technology, and providing a case study of the

implementation of the new system at a large U.S.

university.

In the past two and a half years we have created and

implemented a new authorization system that addresses

the issues above and becomes a faster, more secure, and

more architecturally-sound solution than the other

options in the authorization space. We have found that

it is possible to completely decouple the authorization

system from domain databases, allowing the domains to

truly own the attributes that they own. This paper

introduces this new solution.

2. Background

2.1. Identity and Access Management

To comprehend the problem space of authorization,

it is vital to recognize the distinction between the four

components of Identity and Access Management

(IAM): identity management, authentication, access

management, and authorization. While many domain

models conflate these components, decoupling the

functions allows us to investigate authorization without

focusing on the issues present in the other IAM pieces.

According to Recordon and Reed [4], identity

management consists of the use of identifiers and

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 7055
URI: https://hdl.handle.net/10125/71469
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

personally-identifiable information. An identity consists

of a minimal amount of data, possibly including keys,

certificates, or tokens [5], used to distinguish one user

from another. Identity keys, such as name, address,

membership number, exist in a system to allow humans

to make sense of the identities stored within the system.

Entities that may have an identity include users of the

system, organizations, computer applications, and

physical devices.

The process of confirming that a person or system

is who they profess to be is called authentication. It is

easy in a digital world to pretend to be someone or

something else (as evidenced by a popular cartoon, On

the Internet, nobody knows you’re a dog) [6], but

through verification of credentials and other methods [7]

a system can be more certain that the entity being

communicated with is indeed who they say that they are.

Certain attributes are maintained by the pillar of

access management. This includes role and group

management systems. While the aim of policy-based

access control (PBAC) is to reduce the requirement for

roles and groups, legacy systems often rely on roles and

groups. Manual designations are most easily designated

by adding them to a group or giving them a specific role.

With authorization a user has the permission to

perform the actions desired. Depending on the system,

authorization is a result of arbitrary designation by the

business, inherent from a position, or granted by

delegation. It is herein proposed that authorization

should be granted through policies that rely on

attributes, with a specific architecture to enable such.

2.2. Individual Authorization and Access

Control Lists

When computers were first invented, a user could

type the command for a program and it would run. As

systems began to allow multiple users to access them,

authorization was required to prevent unauthorized

access to specific data. Oft times a table with a list of

users authorized for a specific program was kept, and if

the user was in the table, then they could run the

program. Sometimes an Access Control List (ACL) only

allowed communication from specific IP addresses to

protect access.

While ACLs and individual authorization were

good as an initial step, they had their problems. To begin

with, every person or system address had to be

individually added to the access table. This required

manual effort on the part of the administrator, and if they

were not in the office when a new user wanted access,

then the new user may have to wait for hours or days

before receiving access. This also presented a problem

in the opposite direction: it was also common for a user

to still have authorization when they left an organization

because the administrator forgot to remove them from

the list, either by oversight or from being uniformed

about the departure.

2.3. Roles and Groups

The next type of authorization came in the form of

roles and groups. A role is like a permission for a

specific task or function, and a group was simply a

group of people in a list. Functionally equivalent, a

system would check if the user had a specific role or a

was in a certain group to grant authorization to the user.

This meant that program code could specify a role or

group instead of looking for a certain user in a table, but

the manual challenges of adding or removing

roles/groups from the user remained.

Roles and groups have been the de-facto standard

for decades. Almost every enterprise resource planning

(ERP) system in existence uses roles and groups to

administer access and grant authorization to program

functions and data. Numerous commercial [8] and

open-source solutions [9] have been developed to

manage roles and groups.

2.4. Attribute and Policy-based Systems

While the idea for authorization systems relying on

policies and attributes has been around for decades, the

real effort in this area did not begin until the turn of the

millennium. Attribute-based Access Control (ABAC)

and PBAC serve to provide an authorization decision by

utilizing an authorization engine that is separate from

the system that the user is attempting to access. This

engine is commonly called the Policy Decision Point

(PDP). Other common components of authorization

systems include the Policy Administration Point (PAP)

which allows domain owners to create policies, and

Policy Information Points (PIPs) that are responsible for

gathering attributes [10].

There are many advantages to using attributes and

policies over roles and groups, to the point that research

has been conducted to see if ABAC policies can be used

within a Role-Based Access Control (RBAC)

framework [11]. The benefits of PBAC including the

ability to know which systems use which attributes, ease

of auditing, enabling systems to use attributes from

other domains in their policies, and separation of

authorization logic from business logic. It is unknown

to the authors of any commercial systems that utilize this

Page 7056

methodology inherently, yet there are several

companies that offer ABAC/PBAC services to

organizations [12]–[14]. While these systems offer a

simpler way of checking authoring and evaluating

authorization logic, most modern architectures do not

respect domain boundaries and suffer from inherent

latency issues.

2.5. Domain Authorization Through

Authorization Policies

A well-implemented domain consists of several

parts: a central data store (CDS) that holds the relevant

domain data, events that are raised as certain business

processes occur, application programmable interfaces

(APIs) that enable other systems to interact with the

domain, data retrieval integration protocols (DRIP) for

data lakes that enable metrics, and other such features.

In an idea promoted as “Hexagonal Architecture”,

Cockburn says that there should be no “...infiltration of

business logic into the user interface code” [15] and that

the APIs should make available the business functions

of the domain. Vernon states that domain models should

be “technology-free” [16] and not contain

implementation-specific details. In this way “the data

model should be subordinate” [17], meaning that the

domain model should care about the business of the

domain and not the data model that becomes the

implementation of the business model.

We support Cockburn’s assertion that domain

business logic should be controlled from inside of the

domain and Vernon’s statements regarding domain

models focused on the business processes. We seek to

expand upon these ideas with what we call General

Moore’s Medallion, named after Brent Moore, Chief

Solutions Architect at Brigham Young University. In

Figure 1 we see that the core of a domain is surrounded

by authorization policies, and these policies protect

access to the domain components. For example, when

an API is queried, the authorization policies for that API

should be evaluated to see if the calling user/system is

authorized for the data. Similarly, if an event is raised

by the domain, policies should govern what subscribers

are authorized by the domain to receive the event. This

pattern should persist in all accesses to the domain.

Using policies to govern authorization provide

several advantages over previous authorization

methodologies [18]. Fine-grained control is possible

with policies, and access can be based on dynamic

properties such as time of day, calling client system,

user employment status, or other volatile factors—

things that are not necessarily available to ACLs or role-

based systems.

This paper will enumerate the advantages of

attributes and policies in authorization. It will then

evaluate the difficulties of current implementations and

provide solutions using a new methodology contained

in a technology that we call the Abacus.

Figure 1. General Moore's Medallion shows that

authorization policies should protect every aspect
of a domain.

3. Issues with Existing Technologies

While developing code to give access to a user with

a specific role was a large step forward, decades of this

method of authorization has revealed massive issues.

The problems range from maintenance to authorization

granularity to data leakage will now be enumerated and

explained.

3.1. Role Explosion

Over time it was discovered that role-based systems

suffered from role explosion [2], a phenomenon

resulting from authorization requiring a granularity that

is not available with roles. With attributes it is easy to

create a policy that requires specific attribute values, but

a system that can only check for a single role suffers

from an issue of combinatorics. If there are three

attributes, each with three possible values, then a total

of sixty-three roles would need to be created to express

every combination of these three attributes together:

nine individual roles (one for each attribute value), plus

another twenty-seven roles (for each combination of

only two attribute values), plus another twenty-seven

roles (for the possibilities of all three attributes).

For example, a system might allow a user to access

it if the user is a faculty member. The role of “Faculty”

Page 7057

may be given to the user, and this will enable them to

access the said system. The problem begins when such

a wide role is not enough; additional roles of “Tenured

Faculty” and “Associate Faculty” might be created for

more specific system functionality. When the

distinction of “Research Faculty” or “Teaching Faculty”

arises, the number of roles increases. The number of

roles continues to grow over time, requiring

increasingly precise niches, such as “Research Faculty

with Federal Grant” or “Research Faculty without

Funding”.

Eventually, systems with roles required hundreds or

thousands of roles to express what was going on for

individual functions in systems. At this point, when a

new system would be developed, instead of just finding

a role that matched the need, the developer would just

create a new role, to avoid spending exorbitant amounts

of time looking through the existing roles. Similarly,

role explosion makes maintenance completely

untenable for an administrator of a role management

system. With thousands of roles, it is extremely time-

consuming to find roles that match the required

functionality of a new system, or to find which roles are

no longer in use.

3.2. Data Leakage

Another problem with roles and groups is the issue

of data leakage. If a person has the permission to view

the roles and groups of an individual user, then they can

learn confidential things about that user. For instance, if

the user has a role called “Six-figure salary”, then it can

be determined that the user makes a lot of money. If the

group “Sexual harassment victim” is present, then

someone can know information that should not be made

available. Such data leakage can have extremely

detrimental effects on individuals and on an

organization, not to mention legal ramifications.

3.3. Usage Invisibility

The problem with a role/group governance system

is the lack of knowing what other systems utilize which

roles or groups. If Program A requires Role B, then

Program A will ask the role manager if the current user

has Role B in order to authorize the use for their current

operation. While this is useful to Program A, the role

manager has no inherent way to know that Program A

uses Role B. This presents a massive issue when

transitioning from old systems to new ones, as system

administrators do not know which applications need to

be updated.

To illustrate this fact, one organization had the

following experience. Years ago, the Federal

Government of the United States changed the definition

of part-time employee. The organization had certain

groups that signified the description for the old part-time

status, and they were forced to create new groups based

on the new government definitions. There was no way

to tell from the group database who was using which

groups, nor was there any way to know from the LDAP

directories that housed copies of these groups. The only

way to know was to look at the code for every system in

the organization.

The engineer tasked with this change had an idea:

every Monday morning he would remove the old part-

time groups from the database and LDAP directories.

He would then wait until a couple of departments had

called to complain that their systems were no longer

working. He would then restore the groups and spend

the remainder of the week moving those departments to

the new part-time groups. Come Monday morning he

would repeat the process and work with the new callers

to fix the groups used by their departments’ code.

Sometimes a department would call multiple times,

because their authorization logic was in multiple

segments of code. It was six months before all the

organization had been moved to the new part-time

groups.

From such a painful example it is easy to see the

benefit that comes from being able to quickly query

what systems utilize which attributes.

4. Problems with Modern ABAC/PBAC

Architectures

There are numerous architectural considerations

with modern commercial authorization system that arise

out of the architectural model of said systems. The

central design of these systems is to host a decision

engine, the PDP, that is responsible for calculating an

authorization decision for an identity. When the PDP is

queried, the common method is for the PDP to call a PIP

to gather the attributes in real-time from the domains

that own the attributes. The PIPs are often “connectors”

that go straight to the central data store (CDS) of the

domain and directly retrieve the attribute value from a

database table. It is this method of attribute gathering

that causes significant issues with security, latency, and

maintainability. We will address several issues with the

current methodologies before proposing our solutions in

this section.

Page 7058

4.1. Current Authorization Flow

For many instances, the process to get data from a

domain begins with a user or other system that makes a

request to the domain (see Figure 2). The domain

verifies that the caller is approved for such data, then

returns it. Several modern authorization systems

modify this by placing a Policy Enforcement Point

(PEP) before the domain. The PEP is responsible for

calling the Policy Decision Point (PDP) which

calculates the authorization decision, and if approved,

the PEP passes the calling request to the domain. The

domain gets the data and returns it to the PEP. The PEP

may then filter the data, based on the authorization

policies, before returning it to the caller. Here is the

normal flow of modern systems:

1. A user or system requests access to a resource.

2. The PEP takes the request, determines who/what is

making the call, and sends a request to the PDP for

authorization.

3. PIPs request data from other domain stores.

4. Attribute data is returned to the PDP.

5. The PDP calculates the authorization and returns a

response to the PEP.

6. a. If the result is “Deny”, then the PEP is directed

to return a “Not Authorized” message to the caller.

b. If the result is “Permit”, then the request is

forwarded to the domain.

7. The domain checks the business rules to see if it

should send an error or the requested resource.

8. If the business rules check out, the domain queries

its CDS to get the data.

9. The CDS returns the relevant data to the domain.

10. The domain returns the data to the PEP.

11. The PEP may filter the data based on various

authorization configurations.

12. The PEP returns the authorized data to the caller.

This model requiring a PEP has several

disadvantages: increased cost, increased latency,

conflated authorization and business logic, connectivity

configuration complexity, and endpoint configuration

complexity.

First, the greater the number of components

required for authorization, the greater the cost. Both the

PEP and the PDP have a cost to install, configure, and

run. Both must be operative for this model to work,

requiring additional server allocation and running

expense.

Second, if the domain were calculating

authorization on its own, it would only require the

network hops to get the attributes needed for its

decision. With a PEP in place, the number of network

hops is reduced for authorization, only to replace it with

four more hops: going to the PEP, going to the PDP,

returning from the PDP to the PEP, and from the PEP

back to the caller. Additionally, the PEP can become a

network bottleneck if there are a significant number of

requests going to various domains that must all be sent

via the PEP.

Third, since all traffic must pass through the PEP,

the PEP must be configured to know the location of

every system that it may stand as the guardian for. This

requires significant operational resources to make sure

that any change in domain location is accurately updated

within the PEP. This places increased demand on

DevOps teams to ensure that nothing in a domain

change has broken the ability for extant entities to

contact it.

Finally, being a gatekeeper, the PEP must know

every endpoint, protocol type, and available contact

methods for the domains that it is protecting. Setting this

configuration is well beyond the realm of the domain’s

business owners and falls squarely into the hands of IT.

By placing this burden on IT, the business owner is

further removed from the ability to easily change things,

should they require it.

Figure 2. Existing authorization architecture

Page 7059

4.2. Breaking Domain Boundaries

The core tenants of Domain-Driven Design (DDD)

espouse that the business processes of the domain

govern the access and use of the data within the domain.

When any external entity connects to the CDS of a

domain, all data governance is lost, for the domain has

no way to mitigate access to the data. The domain itself

should maintain the protection of data from external

sources, making that data only available via APIs,

events, claims, and so forth, each validating requests

through domain-controlled policies.

Letting users and systems connect directly to data

stores without their domain creates a major security risk.

The more connections that come into a database, the

more likely it is that one of those users will be

compromised at some point, allowing access.

4.3. Attribute Gathering

All retrieval of attributes in any authorization

methodology must be fast. While there are numerous

ways to accomplish this, each has limitations. Possible

options include the run-time retrieval of attributes,

caching attributes within the memory space of the

decision engine itself, utilizing an external cache with

complex logic to determine when to expire attributes

and when to refresh them from the central data stores, or

employing a persistent cache that always contains the

full set of existing attributes. We will now evaluate each

option to provide its drawbacks and advantages.

It is possible to keep cached data within the

memory space of the engine, but this requires the

implementation of the cache code within the engine,

adding complexity. It also requires that the system

running the engine use larger and larger amounts of

memory as the number of attributes in the cache grows.

Run-time retrieval of attributes is the best way to

ensure that the attribute is accurate at the time of the

request. The issues that arise in this situation are those

of latency and domain resiliency. For the engine to

make a request out to the domain with attributes, PIP

must either go directly against the data source (which

has been addressed before), or they must query an

intermediary system. To query an API or data system

requires additional time and configuration. If a domain

goes down, then all authorization dependent upon the

attributes in that domain will no longer work until the

domain is back online.

The problems of complexity, latency, and possible

outages can be avoided if the system is correctly

designed. We will present the proper architecture next.

5. The Abacus: A New Architecture for

Authorization

The Abacus is a policy-based authorization

management system (see Figure 3). It sits inside of the

same network as the business systems and the only

systems that are inside this network can invoke the

Abacus. The data flow of Abacus consists of 7 steps:

1. A user or system requests access to a resource.

2. The domain takes the request, determines who/what

is making the call, and sends a request to the Abacus

for authorization.

3. The Abacus calculates the authorization and returns

a response to the domain.

4.

a. If the result is “Deny”, then the domain returns

a “Not Authorized” message to the caller.

b. If the result is “Permit”, then the domain

checks the business rules to see if it should

send an error or the requested resource.

5. If the business rules check out, the domain queries

its CDS, with whatever business rules it requires, to

get the data.

6. The CDS returns the relevant data to the domain.

7. The domain returns the data to the caller.

Compared to existing models, this architecture

provides several advantages: reduced cost, decreased

latency, separation of authorization and business logic,

simplified connectivity configuration, simplified

endpoint configuration. We will expound upon these

further in the next major section.

As mentioned previously in this paper, existing

authorization systems require either 1) a connection to

domain data for run-time retrieval, or 2) that all

information required to calculate a decision is passed in

the request to the PDP. The Abacus solves the

challenges presented through these methodologies by

utilizing a persistent cache of all attributes that the

policies need. The cache is kept current through the

updates of the domains that own the attributes: when an

attribute that the domain controls changes for a user, that

change is then pushed to the Abacus via a simple API.

5.1. Defining Policies

All PBAC systems define policies, as does the

Abacus, but the method at which those policies are

combined to define authorization for resources differs.

While other systems require an administrator to define a

resource, then define the actions available to a resource,

the Abacus simplifies this process into one step: a policy

set is defined as an action on a resource. By so doing,

the policy set becomes technology-agnostic. Many

systems today promote REST methods for web

Page 7060

contexts. Should a new protocol come around, all of the

existing systems will need to change, but the Abacus can

continue unhindered.

For example, an authorization system may define

resource A as an HTTPS endpoint representing certain

records for the domain, and then it configures GET,

POST, and DELETE methods. If a user invokes the

GET method to view records, the PDP will evaluate the

policy set for that method on that resource. But if in the

future the technology moves away from REST, then the

whole of this configuration must be redone.

In contrast, the Abacus would define a policy set of

“ViewResourceA”, and then the calling API can

interpret the technology that it uses (which may be a

GET method) to request “ViewResourceA”. In the

future, if the domain changes to a new technology

(which does not use “GET”), the action on the resource

does not change, and the domain still calls for

“ViewResourceA”, no matter how the technology of the

API is administered. This forward-compatible

architecture further decouples authorization from the

domains.

5.2. Persistent Cache

The most efficient way to return information from

a data store is to keep that data in memory. Thus, the

most effective model for attribute retrieval involves the

use of a persistent cache, one that never expires rows

and contains a complete copy of all attributes needed for

authorization policies. This Attribute Cache is located

as close to the decision engine as possible to reduce the

latency between the two. It has the advantage in

providing the engine with all available attributes as

needed—even if the domain that owns a set of required

attributes goes off-line. In this way, authorization can

continue even as domains are serviced for maintenance

or become inaccessible in unforeseen instances.

Only attributes that exist should be placed in the

cache, to wit, only attributes that will cause a policy to

evaluate to “true”. For instance, if a policy requires that

the user be an employee to access a specific resource,

then the system should only store the employee attribute

for those that work for the organization. There may be

thousands, or millions, of other IDs within the system

that the Attribute Cache contains attributes for who are

not employees: clients, customers, devices, etc.

Restricting the cache to contain only attributes that exist

for an ID allows for data reduction in the cache size by

orders of magnitude. Another added benefit is

simplification of the decision engine logic: if an

attribute is not present in the cache for an ID, then that

entity does not have the attribute and processing will

respond appropriately.

5.3. Attribute Database

While a cache is excellent for performant data

retrieval during decision requests, it does not provide a

permanent store for the collection of attributes known to

the system. It is possible to replicate the cache database,

but there are not many tools (if any) for this. By design,

the cache is kept with as little information within it to

make it lightweight and fast. No data about who or what

added the attribute, when it occurred, or what the

definition of the attribute even is, exists in the cache.

There must be Attribute Database to maintain the master

record of the attributes stored in the engine which keeps

these points of data.

The Attribute Database should contain the expected

items for attributes, such as the attribute type, value, and

the ID that has the attribute, but it should also maintain

the ID of the user or system that added the attribute,

Figure 3. The Abacus

Page 7061

timestamp of when the attribute was added, and other

such things that are too bulky to be stored in the

Attribute Cache.

A persistent store of all known attributes provides

several advantages to the decision engine, though it

never directly interacts with the engine. When a new

Attribute Cache is initialized, it can pull the list of

attributes from the Attribute Database and be operative

in a matter of seconds. This also enables the

administrators to remove all data from the cache and

quickly restore the full record if there are ever concerns

about data integrity. Backup and recovery of the

Attribute Database is easy with tools that exist for

whatever platform the organization chooses to work

with.

5.4. Attribute Updates

When using a cache that does not expire rows, the

natural question of data integrity arises. What happens

when an attribute changes in a domain? There must be a

system that allows attributes in the cache to be modified.

For the Abacus, we take the complexity of cache

ejections, refreshes, and so forth away from the cache

and put it in the hands of the domain, where it rightly

belongs. The system has an API that allows domains to

push attributes changes (that they control) into the

Abacus. Since the domain alone knows when an

attribute within it changes, and the domain knows the

components of data that make up said attribute, then the

domain can easily call the Attribute Update API in the

Abacus to add or delete an attribute for a user.

The method of updating attribute in the Abacus can

be accomplished in several ways. We suggest that the

best solution is for the domain to raise events when the

governed attributes change, and to also write event

consumers that translate those events into attributes that

are then pushed to the authorization engine. By so doing,

these attribute-updating consumers can be kept in one

place and easily reviewed. Additionally, all the

implementation details of the domain are abstracted

from the consumers and code can be focused on only

pushing attributes as they are defined by the business

logic. Should any of the underlying infrastructure of the

domain change, be it database, API code, or otherwise,

the event consumer will not need to be rewritten and

authorization updates can continue without hindrance.

6. Advantages of the Abacus

Having explained the architecture of the Abacus,

we will now enumerate upon the advantages that this

new design gives over the existing systems, and we will

show how it solves the problems of previous

authorization methodologies.

6.1 Domains Define Attributes

All business logic for a domain should be contained

and maintained within the domain. Because the Abacus

specifically requires the domains to push attributes into

it, the business definition of the attribute is maintained

by the domain itself. We suggest that all domains record

the definitions of their attributes in a central tool so that

any other domain within the organization can

understand the attributes as well.

By allowing domains to truly control their

attributes, the authorization system no longer needs to

completely understand the domain business in order to

do its job. This allows the authorization administrators

to focus on other tasks, plus it allows those from other

domains to learn the ubiquitous language of the domain

in question (and vice versa).

The domain also knows best about how and what it

should filter before returning data to a user. Removing

the PEP allows the domain to fully perform its primary

functions (including data filtration). Instead of requiring

the business logic to be placed inside of the

authorization component, this architecture allows for

good microservice design, letting the authorization be a

complete package in its sphere while the domain

handles the business filtering that it understands

inherently. This both gives the domain control over data

and simplifies the authorization process as well.

6.2 Respected Domain Boundaries

The web of interconnected, tightly-coupled

domains goes away with the design of the Abacus.

DDD principles are respected when only the domain has

access to its data stores. No longer are other systems

reaching into the domain database, and the domain is

free to change the underlying structure as it sees fit, per

its business needs, without the threat of breaking other

systems.

This massive decoupling allows each domain to

operate effectively as a microservice. The business

owners can define the domain logic while the

developers can implement each component completely

independent of other systems, and authorization can be

provided as an external service that places no load on

the domain itself.

As domains push their attributes into the Abacus,

both systems are utilizing a well-defined contract, and

Page 7062

the authorization system itself becomes a domain that

also has its boundaries respected.

6.3 Efficiency

Using the domain as the PEP itself provides

financial and chronotical advantages. If the domain

enforces the decision of the authorization engine, it

removes the cost of running a PEP server. Besides the

hardware and electricity cost, there is also the reduced

work of the professionals that would have had to

configure the PEP.

From a latency perspective, removing the PEP and

PIP calls to domain stores eliminates at least six extra

network hops. This in addition to the time spent in the

PEP filtering data, allows the Abacus to provide a more

efficient response.

Additionally, because the Abacus is constructed

with a policy grammar specifically designed for its

architecture, it is more efficient than other systems (we

will be writing another paper in the future to discuss this

in depth).

6.4 Simplified Configuration

Modern authorization architectures often require

specific configuration of domain endpoints, including

endpoint address, method types, authentication tokens,

etc. Such technical specificity means that the IT staff

must be the ones to define the interactions with the PDP.

By design, the Abacus only defines actions on

resources, which removes the need for specific

connections to other systems. This simplifies

configuration, as the authorization engine does not need

to have any explicit connections to other domains

defined within it. A domain may change its endpoints,

but since the Abacus defines its policy sets as actions on

a resource, no reconfiguration is needed.

6.5 Data Security

The ability to ask the Abacus for an authorization

decision without passing lots of data back and forth is a

huge win for data security and privacy. As with the

example of the bouncer at a club, instead of handing

over all your information on your ID, just to get an

authorization decision about your age, the bouncer can

now ask the Abacus, which checks the necessary

attributes and returns an authorization to the bouncer,

who then acts based on the response. No longer do

systems need the information from other domains, just

to find out if the caller is authorized. A domain can make

available sensitive attributes to the authorization domain

and have no worries about those attributes ever being

leaked to other systems, yet that data can still be used

for decisions.

As DDD is respected, a domain will have few

connections to its CDS. This results in easier

administration of the domain, and there are less

concerns about access from compromised credentials as

there are less credentials available. Security is more

easily moderated when there are only a few people with

manually-assigned roles or groups while policies take

care of the majority of the cases.

6.6 Reverse Query Functionality

The most powerful advantage of the Attribute

Database is the ability to run queries against it. Domain

owners often want to know, for auditing purposes or

otherwise, “Who has access to this resource?” Because

all the policies authorizing the resource are known to the

engine, and thus the attributes needed, and since the

Attribute Database contains the list of current resources,

SQL statements can be constructed that query the

Attribute Database for the IDs that have the requisite

attributes.

Some modern PBAC systems contain reverse query

functionality, but some do not. Of those that do, some

require queries to be executed directly against domain

production databases. This has the disadvantages of

increased load on production systems. Also, if the data

store is not a relational database, multiple types of

queries must be constructed and then combined to give

a response. With the Abacus, these reverse query

statements are executed against the Attribute Database

which neither 1) impacts domain servers, nor 2) impacts

the performance of the decision engine itself.

Production domains can use any type of storage model

that they want, and the Abacus can still quickly generate

a list of authorized entities because the attribute storage

is decoupled from the domains.

7. Disadvantages of the Abacus

The Abacus provides significant advantages over

existing architectures, as previously presented. While

powerful, flexible, and novel, there are some

considerations that must be evaluated before it can be

implemented.

First, there is initial setup of the attributes takes

time and effort. Domain owners must agree on the

definition of an attribute. The technical integration work

must then be done to push new attribute values to the

Page 7063

Abacus whenever the values change for identities in the

system. Additionally, if domain A requires attributes

from domain B, then the same work must be done in

domain B to enable the policies from A to work

properly, and this effort needs to be budgeted within B’s

schedule.

While not a technical challenge, the process of

making business owners more directly responsible for

their data governance does invoke push-back from some

people. Traditionally, businesses will hand the policy

requirements to IT teams and expect the work to be

done. We have found that asking business owners to

take ownership of the policies occasionally produces

feelings of resentment and stubbornness where some

feel that “that’s IT’s job”.

The most difficult concern is data synchronization

issues. When a message changing an attribute is dropped

somewhere, then the Abacus may be permitting or

denying inaccurately. One possible mitigation technique

is to use database ETL (extract-transform-load)

processes to verify accuracy with the source domains,

but this breaches domain boundaries. Alternatively, an

API could be created to allow domains to view the

attributes that they own within the Abacus. The domains

could then compare what the Abacus has with what they

contain and (re)push needed changes. Future research

should investigate this problem.

8. Conclusion

In this paper we presented a new architecture for

authorization that completely respects DDD principles,

simplifies the architecture of the authorization domain,

more effectively secures data within domains, and gives

more control over data access to domain owners. The

Abacus ensures that domains may change technology

without needing to rewrite their authorization logic, and

domains can use attributes that are governed and

maintained by other systems without needing to know

the implementation and/or business logic of those

systems. Configuration becomes much easier and

simpler than utilizing roles or groups, or even than

systems which require implementation details of the

domain itself. We affirm that the Abacus is breaking

new ground in authorization.

9. References

[1] E. Evans, Domain-Driven Design. Addison-Wesley,

Boston, MA. 2004.

[2] A. Elliott and S. Knight, “Role Explosion:
Acknowledging the Problem,” Software Engineering

Research and Practice, 2010, pp. 349-355.

[3] “A Third of Ex-Employees Accessing Company Data,”

IS Decisions blog. https://www.isdecisions.com/blog/it-
security/a-third-of-ex-employees-accessing-company-

data/. Accessed: June 2020.

[4] D. Recordon and D. Reed, “OpenID 2.0: A Platform for

User-Centric Identity Management,” In Proceedings of
the second ACM workshop on Digital identity

management, 2006, pp. 11-16.

[5] D. B. Cross, P. J. Hallin, M. W. Thomlinson, and T. C.

Jones, “Digital Identity Management,” US 7,703,128 B2,
2010.

[6] P. Steiner, On the Internet, nobody knows you’re a dog.

The New Yorker, 5 July 1993.

[7] P. A. Grassia, M. E. Garcia, and J. L. Fenton, “Digital
Identity Guidelines.” DRAFT NIST Special Publication

800-63-3 Digital Identity Guidelines. National Institute

of Standards and Technology, Los Altos, CA, 2017.

[8] SolarWinds Access Rights Manager. SolarWinds
Worldwide, LLC. https://www.solarwinds.com/access-

rights-manager

[9] Grouper.InCommon.

https://incommon.org/software/grouper/
[10] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K.

Sandlin, R. Miller, K. Scarfone. “Guide to Attribute

Based Access Control (ABAC) Definition and

Considerations.” NIST special publication 800.162
(2013).

[11] G. Batra, V. Atluri, J. Vaidya, and S. Sural, “Deploying

ABAC Policies using RBAC Systems,” Journal of

Computer Security, vol. 27, no. 4, 2019, pp. 483–506.
[12] PingIdentity. Ping Identity.

https://www.pingidentity.com/en.html

[13] NextLabs. Next Labs Inc.

https://www.nextlabs.com/
[14] PlainID. PlainID. https://www.plainid.com/

[15] A. Cockburn, “Hexagonal architecture,” 2012.

http://alistair.cockburn.us/Hexagonal+architecture.

[16] V. Vernon, Domain-Driven Design Distilled. Addison-

Wesley, 2016.

[17] V. Vernon, Implementing Domain-Driven Design.

Addison-Wesley, 2013.

[18] G. Helemski, “PBAC vs RBAC: Why Role Based Access
Control Is Not Enough,” Feb. 23, 2020.

https://blog.plainid.com/why-role-based-access-control-

is-not-enough.

[19] G. Orwell, Animal Farm. Secker and Warburg, London,
England. 1945.

Page 7064

