
A Dynamic Model of Platform Versioning and the Impact on Cumulative
Package Downloads and Costs for Developers

Burcu Tan
The University of New

Mexico
btan@unm.edu

Shi-Ying Lim
National University

of Singapore
sylim@nus.edu.sg

Edward Anderson
University of Texas at Austin
edward.anderson@mccombs.

utexas.edu

Sungyong Um
National University of

Singapore
umsy@comp.nus.edu.sg

Abstract

Using the system dynamics methodology, we leverage
extant research on digital platforms and Agile
development from the information systems and
strategic management literatures to create a dynamic
framework for considering the effect of digital platform
versioning under different levels of market dynamism.
We find that the impact of platform versioning release
cycle time (RCT) and the scope of platform updates on
platform outcomes (number of packages available and
number of downloads) depends on market dynamism,
sensitivity of users’ utility to app breakage, and value
of the platform’s core functionality to the developers.
Among other results, we show that smaller,
incremental updates of functionality are generally
preferable to larger, radical updates, even in dynamic
markets. In contrast, longer RCTs are preferred in less
dynamic markets, while small to moderate RCTs are
preferred in more dynamic markets. We conclude with
an agenda for future research.

1. Introduction

Platform owners rely on third-party developers,
who build add-on complementary assets (e.g.
applications) that increase platform functionality.
Examples of these assets include mobile applications
on the iOS app store or statistical packages on the R
platform. Through leveraging the third-party
developers’ complementary assets, platforms can offer
value to users (e.g. [13, 8, 20]) without creating the
functionality themselves.

To facilitate developer participation, platform
owners provide resources [17], such as APIs, SDKs,
code libraries, and templates [13, 23], with which
third-party developers create apps. Updates to a
platform can attract third-party developers with the
availability of new platform resources [13]. There is a

growing literature examining the role of these
resources. However, not much has been done to
understand the impact of platform updates on third-
party developers and on platform outcomes.

 On the one hand, platform versioning through
updates improves the platform's functionalities and
architecture [24]. This is critical for third-party
developers to continue enhancing their applications to
create new functionality (e.g. [9]). On the other hand,
certain type of platform updates come with costs for
developers and users. For instance, radical updates that
change some core functionality upon which third-party
applications depend cause application breakages [21].
This deteriorates the user experience and increases
developers’ maintenance costs as the developers will
have to update their apps to maintain compatibility
with the platform [1]. The latter is particularly true
when an app or a package in an open source context
leverages exogenous codebases in other applications
by third party developers. Reliance on exogenous
codebases creates interdependencies between packages
or apps. For instance, Uber’s app relies on the Google
Map API to access its database of maps. Thus, a
platform update that affects the functional uses of
Google Maps will increase the risk of the Uber app
breaking.

While scholars typically assume that platform
resources are stable sets of standardized interfaces
upon which third-party developers leverage app
development (e.g. [12]), platform versioning
challenges the assumed stability (e.g. [18, 21]). The
findings about the impact of platform versioning on
developers are conflicting; some find that frequent
updates to the platform lead to inferior performance for
third-party developers ([18, 21]), whereas others find
the reverse, particularly if the apps have higher
functional interdependencies with other apps [1].
Scholars are also silent on the implications of platform
versioning for platform owners.

As platforms evolve and compete with other
platforms, there is a need to adapt platforms’ offerings

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 6765
URI: https://hdl.handle.net/10125/71433
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

for users and third party developers to ensure the
incorporation of the newest functionalities. To that end,
the Agile development scholars find that shorter sprints
enable faster feedback loop from development efforts
and improve development outcomes [e.g. 4]. Shorter
sprints will also allow platform owners to keep up with
the market dynamism [e.g. 10]. However, this raises
important questions that, to the best of our knowledge,
have not been addressed in the literature: What is the
effect of the frequency and scope of platform
versioning on platforms? How does the scope of
platform updates (e.g. radical changes in core
functionality or platform interfaces vs incremental
updates) affect platforms? How do these effects change
with market dynamism and developers’ use of
exogenous code? The goal of this study is to question
the conventionally perceived benefits of Agile
development in the platform context by identifying
boundary conditions that facilitate or inhibit platform
package availability and downloads.

We approach this question by developing a
dynamic model rooted in extant research on digital
platforms in the Information Systems and strategic
management literatures. We use the model to run
computational "experiments." Simulation is helpful for
analyzing multiple interdependent processes operating
simultaneously by extending experimental time
horizons beyond the limited measurement periods in
laboratory and field research. At the same time, we can
examine the conditions influencing the developers’
decisions and outcomes and their implications for the
platform, which are typically infeasible with qualitative
interviews or archival data. This allows us to explicate
the interdependencies between the outcomes and
processes involved. In the following section, we briefly
review the platform literature to understand how
platform versioning impacts owners, developers, and
users. We then describe our model specifications and
the preliminary results of our computational
experiments. Finally, we highlight the theoretical and
managerial implications of this work.

2. Conceptual background

2.1. Impact of platform versioning on platform
owners

New platform resources created through platform
versioning allow third-party developers to create more
functionalities and provide more value (e.g., product
heterogeneity) to the user, which, in turn, benefits the
platform owner (e.g., the increased functional utility of
the platform) [6]. Thus, third-party developers help
maximize a platform owner’s value to users while

minimizing the platform owner’s investment in
development. For this reason, platform owners have to
keep third-party developers motivated in order to
ensure the platform ecosystem’s viability [23].

How this changes in a dynamic market is unclear.
On the one hand, the work on Agile Development and
dynamic capabilities suggest that firms need to work
fast to co-evolve with the environment [10]. The idea
underlying Agile Development methods, such as scrum
or Extreme Programming, is that incremental and
iterative design makes platform development faster,
nimbler and more aligned to the needs of the users [4,
5]. A shorter RCT (release cycle time) is thus rooted in
the principles of iterative design.

While Agile Development provides structure and
speed in platform development, it may lead to
incremental, and thus insufficient, improvements in
platform functionalities, because of its focus on speed
and iteration. The incremental platform updates may
inhibit the development of innovative, disruptive
solutions that third party developers may need to create
packages for a dynamic environment. However, radical
updates have their adverse effects as well. Frequent,
radical changes of the core functionality in the
platform can result in a platform that appears less
stable than competing platforms [21, 27]. Platform
updates that change functionalities and interfaces upon
which developers rely on may create disincentives and
costs for third-party developers such that they may stop
developing for the platform [24], thus reducing the
apps available on a platform.

Overall, there is thus a gap in our understanding of
the tradeoffs of speed and scope of platform versioning
and its implications for platforms. It has not yet been
elaborated in depth in the literature how to organize
and optimize platform release cycles to improve
package availability and number of downloads.

2.2. Impact of platform versioning on third-
party developers

Platform updates can reduce the development costs
of new applications if they offer more functionality.
Developers can also leverage “exogenous” codebases
(i.e. reusing other existing applications) to support their
own application functions [14, 15 26]. By reusing
exogenous code, developers can further reduce their
app development cost, increase development speed
[26] and add more functionalities efficiently.

However, frequent and radical platform versioning
can introduce breaking changes or app malfunctions
[1] for all apps. For example, many applications were
not ready for iOS 11 when it was released. These
updates required developers to significantly adapt or

Page 6766

reconfigure their apps to leverage functionality
improvements (e.g. [26]). Thus, the scope and
frequency of platform versioning can increase costs for
developers. While certain updates like stability
enhancements and security patches might not cause
breakages or other issues for third-party developers, a
radical update may reduce the accessibility of older
apps and require developers to maintain backward
compatibility [21], especially if the platform
architecture is not designed in a way to facilitate
integrability [19]. As a result, frequent radical updates
can limit the resources available for new app
development [3] particularly for applications with
higher interdependencies with other apps. Developers
may have to wait for other apps to be updated before
they can update their apps with new platform versions
[1]. The extant research does not explain the
interdependencies between platform versioning and
developers’ design choices and outcomes.

2.3. Impact of platform versioning on users

While the focus of this paper is on platform owners
and developers, the scope and frequency of platform
updates affects the users as well. Platform versioning
can improve the platform’s user interface and can
increase user interest through better availability of
apps. Increased user interest in the platform further
attracts developers and can lead to an even higher
number of apps available on the platform, creating a
virtuous circle [7, 20].

However, frequent and more radical updates can
result in usage interruptions or inconvenience for the
users due to app breakages (e.g. [1, 21]). For example,
Kapoor and Agarwal [18] noted that there were huge
spikes in users searching for “iOS app not working” on
the Google search engine during the months when the
new platform version was launched. The challenges
faced by the users include adapting to changes in the
user interface [16] and a lack of backward
compatibility. Developers with resource or capability
constraints may not be able to adapt to the changes in
platforms [7] quickly, which can discourage app use
and result in users’ and developers’ departures from
the platform [21].

3. The model

We outline a number of assumptions used in the
model, before delving into the casual loop diagram of
the model and describing the different loops. Finally,
we introduce some of the key equations of the model.

3.1. Model assumptions

1. Each simulation runs from an initial time of 0.0

weeks to a final time of 250 weeks.
2. We assume that the platform owner cares about

the cumulative number of downloads and the
functionality of the platform (proxied by the
number of packages available). We use the term
packages and apps synonymously.

3. We assume that third-party developers care about
the number of downloads, the platform’s core
functionality, and development and maintenance
costs of the applications on this platform.

4. The release of new platform versions is assumed
to be exogenous to the model, although, these
decisions may be influenced by platform
outcomes. Platform releases have several effects
on developers and users:
a. Platform releases improve the platform’s core

functionality. New platform versions may
increase the scope of functions that developers
can leverage, increasing the attractiveness of
the platform for third-party developers.

b. Our model focuses on releases that change at
least some property that third party developers
rely on. As a result, following the release of a
platform version, some packages break due to
incompatibility. The rate of package breakage
depends on the extent (scope) of platform
update and the frequency of updates. Frequent
(i.e. shorter release cycle time) and more
radical platform updates lead to more
packages breaking, which increases
developers’ maintenance costs and reduces the
attractiveness of the platform for developers.
Moreover, package breakages reduce users’
utility from platform use. A lowered user
interest also reduces the attractiveness of the
platform for the developers.

c. We assume that developers can use exogenous
codebases. The effect of platform updates on
package breakage depends on the scope of the
platform update, and the extent of exogenous
codebases used in packages. A higher number
of packages break if more packages rely on
other packages for functionality.

5. The increase in the number of packages has two
contradictory effects on developers. The cost of
development drops, as the number of packages on
the platform increases, since new packages can
take advantage of a wider range of exogenous
codebases. Yet, the availability of many packages
can create a crowding effect, making it harder for
users to notice and download a package.

6. Some packages lose relevance over time as market
needs or tastes shift. Similarly, some resources

Page 6767

that make up the platform’s core functionality also
lose relevance with time. The degree of market
dynamism determines how fast packages or

platform resources become obsolete. In highly
dynamic markets, the obsolescence rate is higher.

Figure 1. Causal loop diagram

Figure 2. Model structure

3.2. Causal loop diagram

 The casual loop diagram (Figure 1) illustrates the
model’s assumptions and highlights the feedback
processes that govern the model behavior. At the
center of the model structure is a positive feedback
loop of cross-side network effects. The release of new
platform versions improves the platform’s core
functionality, which makes the platform more
attractive to third-party developers. The more
attractive the platform is to developers, the higher the
number of packages developed, which makes the
platform more attractive to users. With increased user

utility, more users download the platform and the
packages, which further increases the attractiveness
of the platform to developers, creating a positive
feedback loop. Note that the degree of market
dynamism affects the strength of this loop. In a more
dynamic market with quickly shifting tastes and
technologies, packages and platform resources lose
relevance at a faster rate, diminishing the strength of
the cross-side network effect.
 As the number of packages increases, three more
feedback loops are activated. First, package
development time shortens with the wider availability
of exogenous codebases that can be incorporated into
a package. This improves the attractiveness of the
platform for developers and stimulates more package

Page 6768

development, creating a positive feedback
(leveraging exogenous codebases loop). However, as
reliance on exogenous codebases increases, packages
break more easily after a platform update since the
exogenous codebases may also be broken during the
platform update.

 A higher package breakage rate means higher
maintenance costs over time, which reduces the
attractiveness of the platform for developers, creating
a negative feedback (too much reliance on exogenous
codebases loop). Note that a higher breakage rate
also reduces the user utility, potentially turning the
cross-side network effects loop from a virtuous circle
to a vicious one.
 Finally, as more and more packages are
developed, the likelihood of a package to be
downloaded by a user goes down due to a crowding
effect. This crowding effect reduces the attractiveness
of the platform for developers, creating another
negative feedback (developer competition loop) that
limits the growth of number of packages.

3.3. Overview of the model structure

 The model is built and validated following
standard system dynamics methodology practices
[11, 22]. An overview of the model is presented as a
stock-flow diagram in Figure 2. Because of space
limitations, only key model equations are described
below.

Number of Market Relevant Packages is a state
variable (stock) that represents the number of
packages (apps) developed for the platform that are
still relevant to the market’s needs and tastes. The
higher the market dynamism fraction, the faster the
packages lose relevance.

Ind packages(t) is a proxy for developers’ interest in
the platform given the current market conditions. It 1)
increases with number of downloads of the platform

(a proxy for user interest in packages), 2) increases
with platform’s core functionality, 3) decreases with
the platform package development cost, and 4)
decreases with package maintenance cost.

where fDownloads(t) is concave increasing in the
Number of Downloads(t), fCoreFunctionality(t) is
concave increasing in Platform Core Functionality(t),
fDevCost(t) is convex decreasing in Package
Development Cost(t) and fMaintenanceCost(t) is
convex decreasing in Package Maintenance Cost(t).

Number of Downloads is a state variable that
represents the number of users that have adopted the
platform.

Similar to Ind packages(t), Ind Downloads(t)
represents the number of users that would be willing
to adopt the platform under the current conditions.
Ind Downloads(t) increases with the number of
market relevant packages and the standalone value of
the platform, whereas it decreases by the rate of
package breakages.

where svf is the weight of the platform’s standalone
value in User Utility, fPackages(t) is concave
increasing in the Number of Market Relevant
Packages(t), and fPackageBreakages(t) is convex
decreasing in Package Breakage Rate(t).

Platform Core Functionality is the third state variable
in the model. It represents the current technological
capabilities and resources that the platform offers to
developers. The platform’s core functionality
becomes obsolete over time, the rate of which is
determined by market dynamism, similar to Packages
losing relevance(t). The core functionality increases
with planned platform updates. For simplicity, we
model Increase in core functionality(t) as uniform

!
!" #$%&'(*+	,-(.'"	/'0'1-2"	3-4.-5'6(")

= #$%&'(*+	2':	;-4.-5'6(")
− 3-4.-5'6	0*6=25	('0'1-24'(")

where
 !"#$%&	()	*%+ 	,-./-0%1(3)

=
Ind	packages(t)−Number	of	Market	Relevant	Packages(t)

,-./-0%	N%O	3P#%

Q-./-0%1	R(1P*0	&%R%O-*.%(3)
= !"#$%&	()	S-&/%3 	T%R%O-*3	Q-./-0%1(3) ∗ #-&/%3	NV*-#P1#

 and #-&/%3	NV*-#P1#	 ∈ (0,1)

		"#$	%&'(&)*+(-)
= 0&1	2&'(&)*+ ∗ 4567#86&$+(-)

∗ 496:*;<#'-=6#&8=->(-) ∗ 45*?96+-(-)
∗ 40&=#-*#&#'*96+- (-)

!
!"#$%&'(*+	,*-./*0!1(")

= #$%&'(*+	.'- 	!*-./*0!1(")

#$%&'(*+	.'- 	567896:5;(")

= <.!	,*-./*0!1(") −#$%&'(*+	,*-./*0!1(")
">%'	"*	0!*?"	"ℎ'	?/0"+*(%

!"#	%&'(&)*+(-)
= 0&1	234"53&#+ ∗ (+78 + 8:&'(&)*+(-)

∗ 8:&'(&)*;<*&(&)*+(-) ∗ (1− +78))

Page 6769

over time, instead of jumps in functionality at the
times of platform releases. Increase in core
functionality(t) is 1) inversely related to the Release
Cycle Time, which is exogenous, 2) linearly
increasing in Extent of Platform Update, which is
also exogenous, and finally 3) capped such that
Platform Core Functionality(t) does not go beyond
the max functionality.

An important contribution of our study is analyzing
the effect of platform updates and exogenous code
usage on package breakages. As highlighted in
assumptions, package breakage rate is higher when
platform updates are frequent, when more packages
rely on other packages for functionality, and when
updates are more extensive.

where fRCT is a convex decreasing function of the
platform’s Release Cycle Time, which is a constant in
the model, fAvgExogenousCodebase(t) is a linear
increasing function of the average % of exogenous
codebases used in packages(t), and fExtentOfUpdates
is a linear increasing function of Extent of Updates.
 Note that average % of exogenous codebases
used in packages(t) is an increasing function of
Number of Market Relevant Packages(t) since the
higher availability of market relevant packages
makes it easier for a developer to find relevant
exogenous codebases to incorporate in a new
package. Further, as the average % of exogenous
codebases used in packages(t) increases, Package
Development Cost(t) decreases. Finally, note that
Package Maintenance Cost(t) is an increasing
function of Package Breakage Rate(t), which means
that the maintenance cost increases with Release
Cycle Time and average % of exogenous codebases
used in packages(t).

4. Findings

We now delve into the findings of the model.

4.1. Effect of platform version release cycle
time (RCT) for package availability and
downloads

In general, over time, the number of packages
available and the number of downloads increase.
However, the impact of platform release cycle time
(RCT) on the number of downloads and packages
available is not monotonic. In this simulation
(Figures 3a-b), an RCT of 18 weeks appears to have
the best impact on the number of packages and
downloads. This underscores the tradeoffs associated
with platform release cycle: The costs of developing
and maintaining packages outweigh the benefits of
improved platform functionality when RCT is short,
but too long an RCT, the loss of benefits associated
with platform updates outweigh the costs.

Note that an RCT that performs well in the short
term may not be ideal in the long term. Figures 3a-b
shows that initially an RCT of 12 weeks has a better
impact on the number of packages and downloads
than an RCT of 18 weeks. However, in the long run,
the order is reversed. This is because of the shifting
dominance of the feedback loops. Shorter RCT
results in a higher platform core functionality, which
has a dominant effect on the platform’s performance
in the short run. However, over time, the platform’s
core functionality reaches an equilibrium and the
advantage of a shorter RCT weakens. Instead, the
negative effect of a shorter RCT on maintenance cost
becomes the dominant effect, making a higher RCT
better for the platform performance in the long run.

Figure 3a. Effect of RCT on market relevant packages
available

!
!"
#$%"&'()	+'(,	-./0"1'/%$1"2(")

= 6/0(,%7,	1/	0'(,	&./0"1'/%$1"2(")
−9:7'$,70,/0,	'&	&./0"1'/%$1"2(")

;<=>?@=A@BA@ 	>C	CDBAEF>BG?FEH(E)
= I?GEC>JK	L>J@	MDBAEF>BG?FEH(E)
∗KGJO@E	PHBGKF=K

!"#$%&'%)"	#*$%	+,"#-)*"&.)-/(-)

= 3!4(5&6	+,"#-)*"&.)-/−8.&-+*$5	9*$%	:,"#-)*"&.)-/(-),<.&""%=	+,"#-)*"&.)-/	<%$,<=&-%)
>%.%&'%	9/#.%	?)5%

Page 6770

Figure 3b. Effect of RCT on the number of downloads

4.2. Moderating factors: Effect of Market
dynamism, value of platform functionality
and sensitivity of app breakages

 The platform release cycle is not the only factor
affecting the number of packages offered and the
number of downloads. In the following section, we
conduct sensitivity analyses on several parameters.

4.2.1. Effect of market dynamism on downloads
and number of market relevant packages We find
that in highly dynamic markets, shorter RCTs are
typically preferred to longer ones. This need for
faster RCT is in line with Agile development
principles, which recommends rapid release cycles
for better market validation [4]. Shorter release
cycles helps firms understand market needs, which is
particularly important when market needs change
quickly in dynamic markets [5]. However, our model
shows that even in markets with high dynamism, it is
not guaranteed that the shortest RCT will yield the
best performance.

Figure 4a. High market dynamism

Figure 4b. Low market dynamism

In Figure 4a, we see that an RCT of 6 weeks does not
perform as well as an RCT of 12 weeks. This is due
to the aforementioned adverse effects of rapid
versioning on developers and users. Conversely,
longer RCTs are preferred in less dynamic markets as
the disutility from app breakage outweighs any
benefits from increases in functionalities from more
frequent platform updates.

4.2.2. Effect of developers’ sensitivity to platform
core functionality Next, we examine if the value of
platform core functionality for developers can affect
the need for radical and rapid updates. We find that if
the platform’s core functionality is of critical value to
the developers, then, in general, a shorter release
cycle time would improve the number of packages
available for download; because with more frequent
updates, the platform’s core functionality tends to be
higher at equilibrium (Figure 5a). The reverse is also
true: If the platform’s core functionality is not of
significant value to the developers, then generally
infrequent versioning is preferred, as the costs of
package updates to developers outweigh the benefits
from improved core functionality (Figure 5b). Note
that the scope of updates as well as the degree of
market dynamism also play a role in these dynamics,
as we discuss next.

Figure 5a. High developer sensitivity to the platform’s

core functionality

Page 6771

Figure 5b. Low developer sensitivity to the platform’s
core functionality

4.2.3. Relationship between scope, frequency of
platform versions, market dynamism, and value of
platform functionality Dynamic markets may lead
to greater obsolescence of platform and application
functionality, we wondered if the platform owners
needed to compensate for this obsolescence with
more radical updates. This creates an interesting
tension, as more radical updates can create more
functionality but also more breakages, particularly if
updates were happening frequently.

Figure 6a: Effect of market dynamism (md) and extent of

updates (EU) on number of market relevant packages
(RCT = 18 weeks, low developer sensitivity to platform

core functionality)

Fig
ure 6b: Effect of market dynamism (md) and extent of
updates (EU) on number of downloads (RCT = 18 weeks,
low developer sensitivity to platform core functionality)

Conversely, incremental updates will lead to
lower breakages and incremental improvements in
functionality. The frequency of updates may be able
to compensate for the lower levels of improvement in
functionality in the latter context.

In Figures 6a-b, we examine a case where the
importance of the platform core functionality for
developers is relatively low. We see that smaller
updates outperform bigger updates regardless of
market dynamism. Despite the high dynamism (green
line) in the market, smaller updates are better in this
case, as they reduce the rate of package breakages
and developers do not place a high value on platform
core functionality. Our sensitivity analysis shows that
this effect still holds for different values of RCT.

We then examine whether radical updates are
preferred for critical platform core functionality
(Figures 7a-c). We find that this is true in highly
dynamic markets (grey line in Figures 7a-c), as long
as user and developer disutility from breakages are
not prohibitively high. In a dynamic market, platform
core functionality becomes obsolete at a faster rate.
When developers greatly value platform core
functionality, bigger updates are preferred since they
compensate for this high rate of obsolescence. With
lower market dynamism, however, incremental
updates (low EU) are still preferred (red line).

Finally, we test if the positive relationship
between scope of update and platform outcomes in
dynamic markets observed in Figures 7a-b holds true
for different RCTs. Our sensitivity analysis shows
that while the relationship still holds for long RCTs,
the combination of radical updates and short RCTs
results in inferior platform outcomes. Comparing
Figures 7b (RCT=18) and 7c (RCT=6), even with a
high value of platform functionality, frequent and
incremental updates still lead to more total
downloads in dynamic markets (green line).

Figure 7a. Effect of market dynamism (md) and extent of

updates (EU) on number of market relevant packages
(RCT = 18 weeks, high developer sensitivity to platform

core functionality)

Page 6772

Figure 7b Effect of market dynamism (md) and extent of
updates (EU) on number of downloads (RCT=18 weeks,
high developer sensitivity to platform core functionality)

Figure 7c Effect of market dynamism (md) and extent of
updates (EU) on number of downloads (RCT=6 weeks,

high developer sensitivity to platform core functionality)

5. Discussion and implications

In this paper, we examine the implications of
platform versioning by simulating the conditions
under which different frequencies and scopes of
platform updates can benefit or hurt platform owners.
Previous literature has mostly focused on governance
mechanisms, such as control vs. functionality as well
as pricing and the provision of platform resources
(e.g. [13]). Little has been done to study how
platform versioning choices can create tradeoffs for
platform owners because of the direct and indirect
effects on third-party developers and users. Like
Song et al. [21], we show how frequent platform
versioning can be disruptive to third-party
developers’ app design process and app releases. We
extend this by examining the interaction of scope and
frequency of platform versioning and find that the
effects are contingent on factors, such as the
developers’ sensitivity to the platform’s core
functionality and the sensitivity of package breakage
rate.

Overall, our findings support conventional
wisdom with respect to shorter release cycles in the
Agile development literature in dynamic markets.
Shorter cycles can improve package availability and
downloads but too short a release cycle creates
disutility from package breakages that harm the users
and developers and consequently, the platform
owners. Shorter release cycle times enable platform
owners to get more frequent feedback and the
opportunity to try more options that could potentially
reduce the likelihood of developing the wrong
functionalities. This is not the case in markets with
lower dynamism with more stable user needs.

However, the shorter RCT is beneficial only if
the platform owner reacts incrementally rather than
radically to the additional market signals gained from
short release cycles, even in dynamic markets. We
suggest that this implies the need for incremental
evolution of the platform over time, because of the
interdependencies between the platform owners,
developers and users that need to be managed.
Stability is needed to encourage continued use of the
product. Frequent changes may be detrimental to the
long term growth of the developers and cause app
fatigue amongst developers and users alike given
constant app breakage and release of new apps.

Together, these findings suggest that the platform
versioning decisions can be further optimized based
on market dynamism. These results provide a more
nuanced understanding of how the platform’s update
frequency and scope may affect developers and
owners, thus providing more insight into the
mechanisms underlying the conflicting effects of
platform versioning on package performance (e.g.
[1]).

6.0 Limitations

This model offers a stylised view of the dynamics
of platform versioning. While these findings are all
intriguing, there is still a great deal of research that
must be done to further examine the interactions and
mechanisms. As with any simulation model, many
assumptions had to be made in terms of functional
forms and underlying mechanisms. For instance, in
this version we did not distinguish between the types
of platform updates and their effect on app breakage
and platform outcomes. We are collecting data from
platforms to test these assumptions and conduct
further computational experiments as part of the
model validation process following standard
procedures in the system dynamics literature [2]. Our
subsequent computational tests will examine the
impact of platform versioning on other aspects such

Page 6773

as the effect of package development and
maintenance costs. Future extensions of the model
will incorporate the platform owner’s decision-
making about the timing and scope of platform
updates.

7.0 Implications for practice

 This paper was motivated by our desire to
understand the impact of platform versioning (speed
and scope) for the different stakeholders in the
ecosystem. Our findings offer guidance on the
frequency of platform updates and ways to support to
third-party app developers during platform
versioning. We suggest that platforms should create
smaller, but more frequent updates to reduce the
extent of breakage, while providing improvements in
functionality incrementally. This may reduce the
negative impacts outlined earlier and sustain the
growth of the platform ecosystem.

7.0 References

[1] Agarwal, S., and Kapoor, R. 2018. “Two Faces of
Value Creation in Business Ecosystems: Leveraging
Complementarities and Managing Interdependencies,”
Working paper.
[2] Barlas, Y. 1996. “Formal aspects of model validity and
validation in system dynamics,” System Dynamics Review:
The Journal of the System Dynamics Society, 12(3), pp.
183-210.
[3] Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R.,
and Palomba, F. 2015. “An Experimental Investigation on
the Innate Relationship between Quality and Refactoring,”
The Journal of Systems and Software (107), pp. 1–14.
[4] Beck, K., 1999. “Embracing change with extreme
programming”. Computer, 32(10), pp.70-77.
[5] Beinhocker, E.D., “Robust adaptive strategies,” MIT
Sloan Management Review 40, (3) (1999), 95.
[6] Bender, B., and Gronau, N. 2017. “Coring on Digital
Platforms-Fundamentals and Examples from the Mobile
Device Sector,” in ICIS.
[7] Boudreau, K. J. 2012. “Let a Thousand Flowers
Bloom? An Early Look at Large Numbers of Software App
Developers and Patterns of Innovation,” Organization
Science (23:5), INFORMS, pp. 1409–1427.
[8] Boudreau, K. J., and Jeppesen, L. B. 2015. “Unpaid
Crowd Complementors: The Platform Network Effect
Mirage,” Strategic Management Journal (36:12), pp. 1761–
1777.
[9] Eisenmann, T., Parker, G., and Van Alstyne, M. 2011.
“Platform Envelopment,” Strategic Management Journal
(32:12), NBER Working Paper, pp. 1270–1285.
[10] Eisenhardt, K.M. and Martin, J.A., 2000. Dynamic
capabilities: what are they?. Strategic management journal,
21(10-11), pp.1105-1121.
[11] Forrester, J. W. 1961. Industrial Dynamics, M.I.T.
Press.

[12] Gawer, A. 2009. Platforms, Markets and Innovation.
[13] Ghazawneh, A., and Henfridsson, O. 2013. “Balancing
Platform Control and External Contribution in Third-Party
Development: The Platform resources Model: Control and
Contribution in Third-Party Development,” Information
Systems Journal (23:2), pp. 173–192.
[14] Haefliger, S., et al. 2008. "Code reuse in open source
software." Management science 54(1): 180-193.
[15] Henfridsson, O., and Bygstad, B. 2013. “The
Generative Mechanisms of Digital Infrastructure
Evolution,” MIS Quarterly, pp. 907–931.
[16] Hughes, A. K. 2012. 600, 000 Apps in Apple’s App
Store, yet I Can’t Find Anything I Want,”, ZDNet.
[17] Iansiti, M., and Levien, R. 2004. “Keystones and
Dominators: Framing Operating and Technology Strategy
in a Business Ecosystem,” Harvard Business School,
Boston, Citeseer, pp. 24–25.
[18] Kapoor, R., and Agarwal, S. 2017. “Sustaining
Superior Performance in Business Ecosystems: Evidence
from Application Software Developers in the iOS and
Android Smartphone Ecosystems,” Organization Science
(28:3), INFORMS, pp. 531–551.
[19] Kazman, F., Bianco, P., Ivers, J. and Klein, J., 2020.
“Integrability”. Carnegie Mellon University. Journal
contribution. https://doi.org/10.1184/R1/12363779.v1
[20] Parker, G. G., and Van Alstyne, M. W. 2005. “Two-
Sided Network Effects: A Theory of Information Product
Design,” Management Science, pp. 1494–1504.
[21] Song, P., Xue, L., Rai, A. and Zhang, C., 2018. The
ecosystem of software platform: A study of asymmetric
cross-side network effects and platform governance. Mis
Quarterly, 42(1), pp.121-142.
[22] Sterman, J. 2000. Business Dynamics: Systems
Thinking and Modeling for a Complex World, McGraw-
Hill Education.
[23] Tan, B., Anderson, E.G., and Parker, G. 2020.
“Platform Pricing and Investment to Drive Third-Party
Value Creation in Two-Sided Networks,” Information
Systems Research (31:1), pp. 217–239.
[24] Tiwana, A. 2014. “Real Options Thinking in
Ecosystem Evolution,” Platform Ecosystems, pp. 179–190.
[25] Warren, T. 2020. “A new iOS text bug is again
crashing iPhones,” The Verge.
https://www.theverge.com/2020/4/24/21234191/apple-
iphone-crash-text-bug-ios-13-problem
[26] Yoo, Y., Henfridsson, O., and Lyytinen, K. 2010. “The
New Organizing Logic of Digital Innovation: An Agenda
for Information Systems Research,” Information Systems
Research (21:4), pp. 724–735.
[27] Zhu, F., and Iansiti, M. 2012. “Entry into Platform-
Based Markets,” Strategic Management Journal (33:1), pp.
88–106.

Page 6774

