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Abstract

We introduce the modular and scalable design
of Kartta Labs, an open source, open data, and
scalable system for virtually reconstructing cities from
historical maps and photos. Kartta Labs relies on
crowdsourcing and artificial intelligence consisting of
two major modules: Maps and 3D models. Each
module, in turn, consists of sub-modules that enable the
system to reconstruct a city from historical maps and
photos. The result is a spatiotemporal reference that
can be used to integrate various collected data (curated,
sensed, or crowdsourced) for research, education, and
entertainment purposes. The system empowers the users
to experience collaborative time travel such that they
work together to reconstruct the past and experience it
on an open source and open data platform.

1. Introduction

The ultimate goal of Kartta Labs is to create a
collaborative time travel experience; think of Google
StreetView (or Google Earth), but with the ability to go
far back in time [1]. As with StreetView, our system
needs to run on top of a map service; however, any
map service we use must support a temporal dimension.
Therefore the first step in this project is building a
modular and scalable system to collect, process, and
serve map data indexed by time and space. The Maps
project consists of a stack of web applications that
crowdsources collecting [2] and vectorizing historical
maps. The vectorized spatiotemporal data are open
sourced to promote the collaboration among the
community. These vectorized data are also served online
using a tile server1 and visualized within a map renderer

∗*The work was performed when the author was a visiting
researcher at Google.

1https://www.ogc.org/standards/wmts

website. We previously introduced some parts of the
Maps module in [3].

The second step in this project is to reconstruct the
historical buildings as 3D models. To this end, we
introduced an image processing pipeline in [4] where
the first step was an image segmentation job to identify
buildings facades. The identified facades were then fed
to rectification [5] and inpainting [6] jobs. The output
image was then applied on a face of a cuboid 3D mesh
as a texture. In this paper, we introduce our improved
pipeline which extracts 3D features of the facades and
incorporates accurate footprints from historical maps.
Our pipeline segments and parses a single view image
of the building to procedurally reconstruct a 3D mesh
of its facade. Subsequently, this facade is incorporated
into one face of a 3D extrusion of the building footprint.
The result is stored as a 3D mesh model in an online
repository, accessible through a public API.

We follow the principles of systems design to
layout the architecture of Kartta Labs and build a
modular system. The modules and their sub-modules
are primarily defined based on their input and output.
The output of one sub-module becomes the input
to another, creating an organic workflow. We also
outline the storage and processing requirements of
each module and briefly discuss their implementation.
As we mentioned earlier, our system consists of two
major modules: Maps and 3D models. Each module
consists of smaller sub-modules. Figure 2 shows the
major modules, their sub-modules, and the workflow.
We briefly explain each sub-module in this paper.
Most of the sub-modules are open sourced and as
they mature, are added to our GitHub organization
(https://github.com/kartta-labs). We use Kubernetes to
deploy and manage our tools, which makes it easy for
others to redeploy our suite of applications either for
development or production purposes. We currently run
a full instance of our system on Google Cloud Platform
accessible at https://re.city.
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Figure 1. Sub-modules of the Kartta Labs
software system.

2. Related Work

A geographical backdrop (e.g., maps) to be used
as a reference for integration of other datasests
has always been of interest to researchers. This
is evident by the numerous mashups developed on
top of Google Maps. As a natural extension to
this spatial reference, some use cases consider a
dynamic spatiotemporal reference system. For example,
Gapminder (www.gapminder.org), has a map feature
that allows the user to geospatially visualize a statistical
value (e.g., population) and navigate it through time
using a time-slider feature. Another example is
HistoryPin, a crowdsourced archive of historical media.
HistoryPin enables users to ”pin” their media (e.g.,
images) to Google Maps and set the time to which they
belong. Kartta Labs can act as a platform for such
systems, providing accurate historical geospatial data
over time as reference.

Endeavors to construct 3D worlds have been pursued
for decades in academia and industry. Virtual worlds
are examples of such endeavors that became relatively
popular in 1990’s and are recently gaining traction

again, thanks to the advances in virtual reality devices.
Examples of virtual worlds are Active Worlds, Second
Life, World of Warcraft among others [7]. The
geography of these virtual worlds are often a fantasy
world. For example, Active Worlds consists of hundreds
of fantasy worlds, where users can explore 3D virtual
environments built by others or build their own 3D
content. Active Worlds has inspired several academic
efforts in education [8, 9] and has served as a platform
for data collection for various studies [10]. In contrast,
Kartta Labs is meant to reconstruct the real world in time
and in space.

Esri’s CityEngine2 is another related work to Kartta
Labs. CityEngine takes a procedural approach to
construct 3D urban environments. It can procedurally
generate 3D models given footprints of buildings. While
the generated 3D models look compelling and consume
metadata such as buildings height, they are not based on
real world imagery and therefore the building facades
are not detailed. CityEngine does not natively support
a time dimension or tiling. Indeed, applications like
CityEngine can be used to generate 3D models for
Kartta Labs.

Another closely related work to Kartta Labs is
3DCityDB [11], a free 3D geo-database solution for 3D
city models based on CityGML standard issued by the
Open Geospatial Consortium (OGC). 3DCityDB does
not natively support a historical time dimension. As we
discuss in Section 8 we are considering using 3DCityDB
to host city 3D models of Kartta Labs in the future.

Google Earth is perhaps the closest application
to what we envision. Google Earth renders a
3D representation of Earth primarily based on
contemporary satellite imagery. In addition to represent
the surface of earth in 3D, Google Earth, also shows
3D building models in some cities. At the beginning, a
community was formed around Google Earth that used
applications such as SketchUp and Building Maker
to manually create the 3D buildings, resembling our
crowdsourcing approach to the problem. However, it
now uses auto-generated 3D models. Google Earth
also enables users to explore historical satellite imagery
going back a few decades. However, it does not
represent the historical satellite imagery in 3D, nor does
vectorize them.

To the best of our knowledge, Kartta Labs is the
only system that is capable of not only vectorizing
historical maps, but also reconstructing them in 3D
across time. Most of the similar solutions are focused
on contemporary data. Others either deal with only
maps or 3D reconstruction [4]. Furthermore the most
compelling solutions are based on proprietary code

2https://en.wikipedia.org/wiki/CityEngine
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and data. Kartta Labs differentiates itself from the
prior work by combining the features of several similar
applications and providing them as an open source and
open data platform.

3. Design

We designed Kartta Labs following the principles
of systems design to create a modular and scalable3

software system. A modular design was required
for Kartta Labs for several reasons. First, Kartta
Labs mission is quite complicated. Therefore, as
any software, a modular design let us divide the
problem to smaller pieces and solve them independently.
More importantly, our modular design enables us to
adopt open source solutions for some of the modules.
Furthermore, having a well defined interface between
modules let us have more than one implementation for a
module. For example, our photo annotation module has
two implementations, one based on crowdsourcing and
one based on artificial intelligence. Finally, a modular
design makes Kartta Labs scalable.

We define our system and its modules based on their
inputs and outputs, enabling us to define clean interfaces
between modules. The input to Kartta Labs, as a system,
is historical photos and maps. The output is a 3D
representation of world with a time dimension. In order
to process the input and create the output, Kartta Labs
may rely on intermediate inputs such as geotagging and
georefrencing of the input images and maps by humans.

Kartta Labs consists of two major modules: Maps
and 3D models. In Section 4 we describe the Maps
module and its sub-modules. The input of this module
is a scanned historical map and the output is the same
map, but in vector format. In Section 5 we layout
the architecture of our 3D models module. The vector
historical maps generated by the Maps module becomes
the input to 3D models module. Furthermore, the 3D
models module takes in historical urban photos as its
input. The output of this module is the overall output of
Kartta Labs: a 3D representation of world with a time
dimension. We briefly explain the sub-modules of Maps
and 3D models in their corresponding sections.

Karrta Labs is implemented in several different
languages using different technologies and development
frameworks. This is because we leveraged available
open source solutions that are developed within different
communities and perhaps for unrelated purposes.
However, we unified the deployment of all these
applications using Docker containers4 and Kubernetes5.

3Scalability is the ability of a system to handle more work by
adding more resources

4https://www.docker.com/resources/what-container
5https://kubernetes.io/

This deployment design not only makes our system a
portable solution, such that it can be deployed locally or
on different cloud platforms (e.g., Google Cloud), but
also enables it to scale out6 and scale up7 on demand.

We use Google Cloud Platform (GCP) to deploy
Kartta Labs. In addition to its Kubernetes Engine we
use GCP’s managed databases and storage to leverage its
scalability, security, and reliability. We also use Google
Clouds Functions, a serverless execution environment
for running simple, single-purpose cloud services, for
some of our simple services. Nevertheless, Kartta Labs
can be deployed on other cloud platforms or locally on
a single machine for development purposes.

4. Maps

The Maps module aims to create a map server with
a time dimension, we envision OpenStreetMap8 (OSM)
with a time slider to navigate the time dimension. We
have developed and stacked a set of open source tools
that are used to collect and vectorize scanned historical
maps, via crowdsourcing, and serve them as vector
tiles9. Maps is made up of a suite of tools that allow
users to upload historical maps, georectify them to
match real world coordinates, and then convert them
to vector format by tracing their geographic features.
These vectorized maps are then served on a tile server
and rendered as maps in the browser.

The input of the Maps module is a scanned historical
map and the output is the same map, but in vector
format. The entry point of the Maps module is a web
application, called Warper, that enables the users to
upload historical images of maps and georectify them
by finding control points on the historical map and
corresponding points on a base map. Another web
application, Editor, allows users to load the georectified
historical maps generated by Warper as the background
(through a raster tile server) and then trace their
geographic features (e.g., building footprints, roads,
etc.). These traced data are stored in OSM vector format.
They are then converted to vector tiles and served
from a vector tile server, dubbed as Server. Finally,
our browser map renderer, called Kartta, visualizes the
spatiotemporal vector tiles allowing the users to navigate
space and time on historical maps. We briefly discuss
the design of each Maps sub-module next.

6Scaling out or horizontal scaling is adding more nodes (e.g.,
virtual machines.) to a system to handle more work

7Scaling up or vertical scaling is adding more resources to a single
node by, for example, increasing its number of CPU’s, memory, or
disk storage.

8https://openstreetmap.org
9https://en.wikipedia.org/wiki/Vector tiles
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Figure 2. A screenshot of Warper showing how
a map is georectified.

4.1. Georectification

Warper is an open source web application that
crowdsources collection and georectification of
historical maps. It is based on the MapWarper10 open
source application. The input of Warper is scanned
historical maps that users may upload. Warper makes
a best guess of an uploaded map’s geolocation by
extracting textual information from the map and using
algorithms outlined in [3, 12]. This initial guess is
used to place the map roughly in its location and let
the user georeference the map pixels by placing pairs
of control points on the historical map and a reference
map.11 Given the georeferenced points, the application
warps the image such that it aligns well with the
reference map. This georectified map is the output of
this sub-module. Warper also runs a raster tiles server
that serves each georectified map at a tile URL. This
raster tile server is used to load the georectified map as
a background in the Editor application that is described
next. Figure 2 shows a screenshot of Warper where a
historical map of New York is georeferenced against a
contemporary map of the same area from OSM.

4.2. Vectorization

The Editor is an open source web application from
OSM12 stack of tools that we have modified to fit in
our system. Editor lets users extract vector geometries
(output) from georectified images (input) and then stores
them in a database. The vector data include information
such as buildings footprints, roads, addresses, names
and dates, as well as ”start date” and ”end date”
fields which represent the time dimension; a feature is
considered to exist in time between these two dates. A

10https://github.com/timwaters/mapwarper
11Note that advanced 2D georectification processes, such as [13],

can be used to automatically identify control point pairs and can be
later added to Warper.

12https://github.com/openstreetmap

Figure 3. A screenshot of the Editor application
used to trace footprints on a historical map.

screenshot of the Editor web application is shown in
Figure 3.

4.3. Tiling

To support the development of interactive map
applications with a time dimension, we serve our
spatiotemporal map data (input) as a collection of
Mapbox vector tiles13 (output) using the Tegola14 vector
tile server. We call this application Server, for short.
This service makes tiles available using the standard
OSM tile naming convention15.

In our current implementation the time dimension
is included as an attribute on the tile data; tiles
are addressed by space (and zoom level) onlyClient
applications can present a view of the data for a specific
moment in time by using the ”start date” and ”end
date” attributes to filter out features not present at that
moment.

4.4. Visualization

The endpoint of the Maps module is a time-aware,
interactive map application, called Kartta. Kartta works
like any familiar map application (e.g., Google Maps),
but also has a time slider so the user can choose the
time at which they want to see the data. By moving
the time slider, the user is able to see how features in
the map such as buildings and roads have changed over
time. The input to Kartta is a set of vector tiles and the
output is rendered images showing those tiles in a given
map style. Note that the images are rendered client-side,
i.e., in the browser. Figure 4 shows two snapshots of
this application in two different times around the Google
NYC building (111 Eighth Avenue, New York, NY).
Generating vector tiles, as opposed to raster tiles, was
required to provide a seamless navigation of the time

13https://docs.mapbox.com/vector-tiles/reference/
14https://tegola.io/
15https://wiki.openstreetmap.org/wiki/Slippy map tilenames
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(a) 1930 (b) 1932

Figure 4. Screenshots of the Kartta showing the
area of the Google NYC building in Manhattan,

before (a) and after (b) it was built.

dimension with any granularity.

5. 3D Models

The 3D Models module aims to reconstruct the
detailed full 3D structures of historical buildings using
the associated images and maps data, organize these 3D
models properly in an online repository, and render them
on the historical maps with a time dimension. The input
to this module is historical images and vector historical
maps, and the output is a 3D representation of an area
across time.

In most cases, there is at most one historical
image available for a building, which makes the 3D
reconstruction an extremely challenging problem. To
tackle this challenge, we developed a coarse-to-fine
reconstruction-by-recognition algorithm as illustrated in
Figure 5. The footprint of the building is extruded
upwards to generate the coarse 3D structure, using
any available metadata (e.g., number of floors) to
set the extrusion height. Then, the historical image
is annotated, either by crowdsourcing or automated
algorithms, and the result is used to generate 3D details
(e.g. windows, entrances, stairs) for the visible facades
of the building from the street ground level. We discuss
each sub-module next.

5.1. Photo Annotation

We need to annotate the historical photos to identify
building facades and then to identify the structural
details of each facade. We rely on crowdsourcing
and machine learning algorithms. To crowdsource the
annotation task, we developed a web application, called
Noter. It consists of a frontend based on the open source
tool MakeSense 16 connected to a backend we developed
in Python. The application allows users to upload photos
of historical buildings (input) or browse the photos
uploaded by others. Users can then annotate (output) the

16https://github.com/SkalskiP/make-sense

Figure 5. System diagram for the 3D models
module.

photos given a preset of labels (facade, window, door,
etc.). An ID is assigned to each annotation piece such as
facades. The facade ID is used to associate that facade
with part of a footprint in the Editor application. This
process geotags that specific facade but it can also be
used to roughly geolocate the rest of the facades in the
same photo. If a facade is matched with another one
in a different photo as being same, then the location
information can be propagated between those photos.
We are working on a spatial reasoning algorithm to
construct a graph of facades and propagate the location
information from one facade to others in the same
sub-graph [14]. Such an algorithm can significantly
facilitate geotagging historical photos.

5.2. Facade Parsing and Rectification

Facade parsing is the process of decomposing a
facade into its constituent components, e.g., windows,
entries, doors, and stair. We call our facade parsing
sub-module Parser. The input to this sub-module is the
photo of a building facade and the output is a rectified
photo of the same facade with its components fully
annotated. We take a supervised learning approach. A
corpus of approximately 5,000 images were annotated
by human annotators with over 500,000 boundary-level
instance annotations.

We trained binary FasterRCNN neural networks
using the facade component annotations for each target
semantic class which are used to localize bounding-box
level instances in new images. We used binary
FasterRCNN rather than a single multi-class detector
due to our observations of superior performance of a

Page 5341



suite of binary classifiers compared to the multiclass
version on held out data.

While extremely accurate, the FasterRCNN model
is only capable of producing axis aligned (relative to
the image frame) bounding box localizations requiring a
rectification post-processing step. We have had success
training and integrating semantic segmentation models
including DeepLab [15] into the Kartta Labs Facade
parsing pipeline but defer discussions of semantic
segmentation for later publications. Figure 6 visualizes
the output of the facade parsing pipeline prior to
rectification and 3D reconstruction. The facade Parsing
pipeline is written in C++ using the open-source
MediaPipe17 framework. The MediaPipe framework
allows for parallelization and thread optimization of
image processing routines on a per-process basis.

After parsing an image into facade components,
the next step in the pipeline is to extract each facade
primitive within the target (annotated) facade and
normalize them with respect to camera viewpoint. We
use a vanishing-point based rectification process to bring
all components within each facade into frontal view.
Man-made objects like facades have strong regularities
and follow architectural principles. We use predefined
grammar rules to regularize the parsing results on the
rectified facade. For example, we organize windows in
a grid and force them to share the same dimensions and
appearance (e.g. number of panels, cornices, and sills),
across each row.

5.3. 3D Reconstruction

As illustrated in Figure 5, the 3D reconstruction
sub-module, dubbed as Reconstructor, consists of the
following parts:
Footprint extrusion: The inputs to this part is a
footprint polygon and its metadata (e.g. number of
floors). We convert the geocoordinates of the footprint
into Mercator coordinates and then into meters. We
extrude the footprint vertically considering the height of
the building to output the its coarse 3D mesh.
Inverse procedural modeling: The inputs to this
part is the parsed sub-components (e.g. windows,
entries, stairs, etc.) within a rectified facade. For
each sub-component category, we first extract a set of
parameters (e.g. width/height ratio for windows) and
then use procedural modeling to generate a 3D instance
of this category to provide a realistic 3D experience
consistent with the given image.
3D mesh generation: With the help of the annotation
tool, each annotated facade is also linked to one side
of the footprint and thus linked to a 3D plane of the

17https://github.com/google/mediapipe

footprint extrusion. With this correspondence, we can
compute a transformation that maps a point on the
rectified facade to its corresponding point on the face
of the footprint extrusion. Using this transformation,
we map each reconstructed 3D sub-component to the
proper location on the footprint extrusion. At the end,
we can merge these transformed 3D sub-component and
footprint extrusion into one single mesh as the final 3D
reconstruction of the target building.

5.4. 3D Model Repository

The Kartta Labs 3D Model Repository, called
Reservoir, hosts and serves the geolocated 3D models
for downstream rendering. It is an open-sourced
web service, based on the 3DMR18 project, that hosts
the reconstructed 3D assets which can be inspected,
modified, pushed, and fetched either through a user
interface or programmatically through a REST API. An
ID is associated with each 3D model uploaded to the
Reservoir which can be used to link it to a building
footprint in Editor. Unlike other sub-modules in Kartta
Labs, Reservoir does not process its input (3D models)
to generate an output.

Reservoir is a centralized location for federated
researchers to push their temporal and geolocated
reconstructions with corresponding metadata to a
common platform for uniform downstream rendering.
This decoupling extends to the rendering process as the
open-sourced 3D assets served by the model repository
can be accessed and rendered by multiple, potentially
independent rendering projects.

5.5. 3D Rendering

The 3D renderer of Kartta Labs, called Renderer for
short, is our user facing web application that visualizes
the reconstructed 3D models on their geolocation.
Renderer is a client-side application that fetches the
map features, including building footprints, from our
database. It then extrudes a footprint if a 3D model is
not available for that building, otherwise it downloads
the associated 3D model from the Reservoir and renders
it. The input to Renderer is the vector map tiles and
the 3D models, and the output is 3D visualization of an
area. Renderer uses THREE JS library to display the
3D models. To provide a fast and seamless transition
in time, Renderer downloads the 3D models for all the
buildings disregarding their start and end dates. It then
deactivates the buildings not present in a given time set
by a slider. First-person street level view and birds-eye
view are available.

18https://gitlab.com/n42k/3dmr
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Figure 6. Kartta Labs’ facade parsing output. The input image (far left) is parsed to detect facade
sub-components such as windows, window sills, cornices, roof cornice, storefronts, entries, and stairs.

5.6. Data

Collecting: Data plays a major role in this project.
Even though we rely on our users to collect historical
data, we are actively looking for available resources for
historical maps and urban photos. To bootstrap our
historical maps database, we are discussing possible
collaborations with archives, libraries, municipalities,
etc. to load their archived maps and photos into our
pipeline. Furthermore, some parts of the contemporary
OSM data are relevant. For example, most of the streets
in large cities have not changed in the past decades or
there are many century-old buildings in Manhattan, New
York. This kind of data is readily available in the OSM
database.

Quality control: Quality control often becomes
a critical issue in any crowdsourcing project.
Furthermore, any data generated using machine
learning approaches also needs proper quality control
as these methods are inherently meant not to be perfect.
Since Kartta Labs uses both crowdsourcing and machine
learning to generate its output data, it needs to have a
procedure for quality control.

Quality is a subjective issue in general. The
expectations for different aspects of quality such
reliability, accuracy, relevancy, completeness, and
consistency [16] can significantly vary for different
projects. For example Kartta Labs tolerates incomplete
data with the expectation that it will eventually achieve
completeness. As an another example, we do not
need to precisely know the dates the historical photos
are taken. This is because buildings life often spans
several decades and it is usually enough to know the
approximate snapped time of a historical photo to
associate it with a set of certain buildings.

Similar to projects such as OpenStreetMap and
Wikipedia, the quality control in Kartta Labs heavily
relies on crowdsourcing itself. For example, users can
leave ”notes” on the map to describe discrepancy or
correct the flawed data themselves. We also rely on
automated tools to ensure the quality of our output. For
example, the Editor has a feature to detect overlapping

buildings. We are extending this feature to take the
time dimension into account. The result is that the
editing user receives a warning if a building overlaps
another one at the same time period. Another example is
our regularization sub-module that applies a certain set
of predefined rules to ensure the reconstructed facades
follow expected grammars.

Several crowdsourcing projects rely on
reputation [17] of users to ensure the quality of
their work. We took a similar but simpler approach by
defining pipelines to ban users with malicious activity
and making a small subset of users as admins with more
authority. We intent to expand our quality control after
we launch and collect more data.

License: To encourage the collaborative nature of
our project, we use the Open Database License (ODbL)
on our Maps data. Other generated and crowdsourced
data, such as 3D reconstructions and photo annotations
are also open sourced under appropriate licenses.

6. Results

To evaluate our system, we are running an
experimental instance of the Kartta Labs applications
on an internal network. We reconstructed 8 blocks of
Manhattan around the Google NYC building. More
specifically we reconstructed the blocks between 7th and
9th avenues and W. 14th and W. 18th streets. The time
was limited between 1900 to 1960. More than 1000
building footprints were traced from historical maps of
different years. We were able to reconstruct the 3D
models of 333 buildings from historical photos. Figure 7
shows the map of the area north-east of the Google NYC
building (intersection of 8th Ave and W. 16th Street)
in 1910, 1920, 1930, and 1940. The vectorized data
are extracted from scans of historical maps. Figure 8
shows an area around the Google NYC building during
the same years but in 3D and from Renderer. We
have added man-made and more accurate 3D models
for a couple of buildings, including the Google NYC
building, to Reservoir as a reference as well as to show
the capability of the system to incorporate external
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(a) 1910 (b) 1920

(c) 1930 (d) 1940

Figure 7. Vectorized maps of part of Manhattan
around Google NYC building in different years.

3D models. Finally, Figure 9 shows a reconstructed
street view of the 15th street, south of Google NYC
building, in 1910, 1920, and 1940 from our Renderer
and compares it with the modern Google StreetView
of the same location. Reconstructed buildings from
photos are shown in vivid colors to distinguish them
from those that are only extrusions of footprints. Note
that our results shown in this paper are considered
preliminary. We are working on rendering our results
in a photorealistic mode by generating textures for
buildings facades and sub-components.

7. Proposed Use Cases and Applications

The Kartta Labs system provides a valuable platform
and resource for research and education. First
and foremost, we would like to build a community
that not only utilizes our historical datasets and
open-source codes, but also contributes to both. As a
platform that collect, integrate, and visualize detailed
historical information about places, Kartta Labs can be
used to facilitate numerous educational and research
applications and use cases, such as topics in sociology
(e.g., [18]), cancer and environmental epidemiology
(e.g., [19]), urbanization, biodiversity (e.g., [20]),
human disease (e.g., [21]), and biology (e.g., [22,
23, 24]). (See [25] and [26] for examples on using
historical geographic datasets and historical Geographic
Information System in scientific studies.)

We consider Kartta Labs as the underlying frame of
reference to integrate various sources of spatiotemporal
historical data such as traffic [27], census, weather,
crime [28], pollution [29] and other environmental,

(a) 1910 (b) 1920

(c) 1930 (d) 1940

Figure 8. Part of Manhattan around Google
NYC building reconstructed in 3D in different

years from birds-eyeview of Renderer.

sensed [30], or crowdsourced [31] data with location
and time dimensions. Imagine Kartta Labs as a
generalization of Google Maps where instead of
showing the current state of affairs (e.g., current traffic,
current population), can show the same information for
past historical time frames. For example, transportation
authorities can study the impact of building certain
freeways in Los Angeles on its traffic or pollution. This
spatial integration of data to its historically relevant
underlying infrastructure (buildings and roads) can
revolutionize the way we do research and educate [32].
Beyond its educational and research applications it can
be used for journalism [33] and entertainment to tell
better and more visually accurate stories.

Kartta Labs can be used for change detection [34]
in various application domains from urban planning to
transportation and public health [35] policy making. The
decision makers can visualize seamlessly how the urban
structure has changed over time and study the impact
of these changes on the city infrastructure and public.
For example, how often and in which locations new
hospitals were built, the rate of increase (or decrease)
in parks, schools, shops and restaurants in certain
neighborhoods.

Finally, entertainment can be a major use case of
Kartta Labs. For example, location-based games such
as Ingress can extend their maps in the time-dimension,
augmented reality games such as Minecraft Earth can
pull in historical 3D buildings, etc. Movie industry can
use Kartta Labs to recreate accurate and photorealistic
historical scenes.
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(a) 1910 (b) 1920

(c) 1940 (d) 2019

Figure 9. Part of Manhattan south to the
Google NYC building reconstructed in 3D in
different years from Renderer (a,b,c) and the
same area in 2019 from Google StreetView.

8. Conclusion and Future Work

In this paper we introduced Kartta Labs, an open
source platform to reconstruct historical cities in 3D.
In order to make the system open source, we designed
Kartta Labs in a modular way with clear interface design
(e.g., input and output) for each module, so that each
module can be developed independently, potentially
by extending existing open-source components, or be
replaced easily in future by alternative implementations
and designs. Moreover, by deploying each module
in a Docker container managed by Kubernetes, we
empowered Kartta Labs to both scale out and up with
the ability to be deployed locally on a single machine
or on different cloud platforms (e.g., Google Cloud).
We also described the two main modules of the system:
Maps and 3D Models. The main challenge in developing
these modules is the lack of sufficient historical data,
especially historical photographs from which 3D models
of historical buildings can be constructed. Therefore, we
are relying on an active community that can contribute
data (and code) and help with geotagging historical
buildings and georectifying historical maps. We
developed several tools to facilitate these crowdsourced
activities. The final outcome has the potential to
revolutionize how we teach history and geography, how
we research urban planning, transportation, and public
health and how we tell stories in journalism and for
entertainment.

We are working on developing a better database
schema to share our 3D models. Currently our 3D

models are hosted individually on an online repository.
This is useful as it enables users to view and possibly
edit individual 3D models. However, it is not the
most efficient solution when it comes to rendering these
3D models on a map. We are considering 3D tiling
technologies such as 3DCityDB [11].

We intend to develop a number of new tools to help
with automatic geotagging of historical buildings. This
is challenging as the facade of the historical buildings
may have changed over time and hence image-matching
approaches such as PlaNet [36] cannot work on this
dataset. The ultimate goal is to allow users to upload
any historical photograph of buildings and automatically
use the facade of the buildings in the picture to improve
the 3D models at the correct time frame. We are also
interested in expanding the community around Kartta
Labs and supporting new applications and use-cases.
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