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Abstract

We show that event-related potentials can be used
to detect schizophrenia with a high degree of precision.
With our machine learning algorithm we achieve a
balanced accuracy of 96.4%, which exceeds all results
with comparable approaches. For this we use additional
sensors on the left and right hemisphere in addition to the
common central sensors. The experimental design when
recording the data takes into account the dysfunction
of the schizophrenic efference copy. Due to its serious
consequences, schizophrenia is a social issue in which
early detection and prevention plays a central role. In the
future, machine learning could be used to support early
interventions. When the first symptoms appear, potential
patients could be tested for the dysfunction typical for
schizophrenia. In this way, risk groups and potential
patients could be adequately treated before the onset of
psychosis.

1. Introduction

Schizophrenia is a chronic psychiatric disorder
characterized by the heterogeneous appearance of the
symptoms hallucination, delusion and disorganization.
Worldwide, slightly less than 1% of people suffer
from the disease [1]. Schizophrenia patients show a
significantly increased suicide rate and a shortened life
expectancy of about 20 years [2]. In addition to the
strong personal suffering, schizophrenia causes annual
expenses of almost 94 billion C in Europe [3]. The
serious consequences and costs of the disease show that
systematic early detection and prevention of the disease
is urgently needed [4]. Such early detection enables the
development, testing and implementation of intervention
strategies. These can possibly prevent the outbreak of a
psychosis.

Currently a diagnosis is being made using ICD-10 and
DSM-5. For this purpose, the symptoms of the disease
are observed and questioned through clinical interviews.
This process only works if psychotic symptoms already

occur [5]. Furthermore, the process is very lengthy
and takes between one and six months. This is why
procedures are needed to detect a possible disease at an
early stage.

The first symptoms of the disease appear in childhood
and adolescence, while psychotic phases usually occur
much later [1]. Thus, a decline in cognitive and social
skills was observed in affected adolescents [6]. Affected
children sometimes also have difficulties with motor
coordination [7]. Since the development of children
is not homogeneous, it is not possible to draw any
firm conclusions about schizophrenia based on these
abnormalities alone. Therefore, biomarkers are needed
that are already present at the beginning of the disease.
Possible biomarkers are found in event-related potentials
(ERP). An increasing number of works that recognize
schizophrenia on the basis of abnormalities in ERP
through machine learning have been published in the
last years [8–11]. ERP is time-locked EEG activity that
helps to capture neural activity related to both sensory
and cognitive processes [12]. The potentials are very
small voltages that are generated in the brain structure
and are related to a specific event or stimulus [13]. Thus,
psychophysiological correlates of mental processes can
be investigated, which would not be visible in normal
EEG. For the acquisition, study participants are exposed
to n repeating sequences of a stimulus. The brain activity
measured by the EEG during the sequences is averaged
over all n sequences. The resulting signal reflects the
electrical brain activity during the processing of this
explicit stimulus. This shows characteristic features that
can also be used to detect schizophrenia.

In previous work these characteristics have been
evaluated on the basis of the conventional oddball
paradigms by machine learning [8–11]. These show
good results, but their accuracy is not yet sufficient for
practical application. In this paper we show an approach
that is not based on the common oddball paradigm but on
dysfunctions of schizophrenics in efference copies. For
this we use a very good data set and the N100 potential
that occurs between 80ms and 150ms after stimulus.
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Through predictive efference copy, our brain is based
on a survival mechanism [14, 15]. As soon as a motor
command is sent from the motor cotices to the muscles,
a copy of this motor command, the efference copy, is
also sent to the forward models. The forward models use
this information about the motor command to predict
the state of our body after the impending movement
and the sensory consequences that the movement is
likely to produce (sensory predictions) [16]. Thus the
sensory consequences of each motor action of a person
are predicted by an efference copy and compared after
the execution of the action [14].

Efference copies have a great influence on the control
of speech motor functions. Several studies have shown
that a correct prediction of the acoustic consequences
of one’s own speech production is an integral part of
the speech motor control mechanism [17]. When a tone
itself is produced verbally, the efference copy prepares
the auditory cortex for sensory input. Recent studies have
shown that the diminished cortical response, interpreted
as an indication of a functioning copy of an effect, is
already produced when a tone is not produced verbally
but by pressing a button followed by a tone [18]. If the
task of the button-tone has already been mastered several
times, the brain prepares the motor response of the button
press as well as the expected acoustic input. As can be
seen in Figure 1, the amplitude of the cortical signal
when hearing a tone (blue) in healthy people is greater
than the amplitude when processing a self-produced tone
(green).

The dysfunction of efference copies in schizophrenia
patients has been described in several papers [18, 19].
It has not been used for early detection by machine
learning so far. With this paper we want to clarify
the question whether schizophrenia can be effectively
detected by the dysfunction of efference copy using
machine learning. Furthermore, we want to identify
which sensors contribute significantly to the classification
of schizophrenia. In addition to the centrally placed
sensors, sensors of the right and left hemisphere were
therefore also included in the study. In schizophrenia
patients, abnormalities are found in both the left and right
hemispheres of the brain. Thus, schizophrenia patients
often find it difficult to correctly process semantic aspects
of language, which is mainly attributed to the left
hemisphere [20]. There is also evidence that auditory
verbal hallucinations are caused by a perceptual disorder
that originates in the left hemisphere [21]. These auditory
hallucinations are a key symptom of schizophrenia.
If we look at the right hemisphere of patients with
schizophrenia, the right hemisphere shows reduced
activity. This reduced activity is associated with the
social disorders of patients. Thus, healthy people show a

higher activity in the right prefrontal brain regions during
emotion processing than schizophrenia patients [22].

The four most important contributions of our work
are:

• We were the first to evaluate event-related
potentials with underlying efference copy by a
Random Forest.

• We outperformed the current benchmark with an
accuracy of 88.25%.

• Thanks to Random Forest, we were able to
calculate the influence of individual sensors on
our accuracy, which gives additional information.

• Our approach is accurate, fast and cost-effective,
which contributes significantly to information
systems research in healthcare [23] .

The presented approach is of practical relevance
as a contribution to the search for biomarkers of
schizophrenia. Early preventive treatment of risk groups
supports those affected. On the other hand, it will help
to reduce and better calculate the cost of the disease in
the future [24]. Such new, data-driven procedures are
important for the health care system [25, 26].

2. Related Work

In recent years, several interesting approaches to
identifying schizophrenia using machine learning and
ERP data have been published. Their results are
summarised in Table 1. Neuhaus et al. published an
approach based on a visually and auditory stimulated
N100 potential [10]. For this purpose, ERP data of 24
schizophrenics and 24 healthy subjects were collected.
The N100 and P300 potential was used to train different
machine learning algorithms. Accuracy was between
53.6% and 72.4% on the test set, with the best result
achieved by the KNN. In this work Neuhaus et al. argued
that the accuracy could probably be increased by a larger
number of subjects. In 2014 Neuhaus et al. published a
study with a significantly larger data set of 288 subjects.
The potentials P50, N100 and P300 were investigated.
The accuracy could be increased to 77.7%, whereby a
single case classification was chosen [8]. Neuhaus et
al. argue that a new approach to the classification could
be necessary due to the poor dicriminatory properties in
single subject classification.

Laton et al. published a paper in 2014 in which
schizophrenia was diagnosed on the basis of ERP data
[11]. They selected auditory and visual stimulation
of P300 potential and mismatch negativity as the
experimental design; the data were collected from a total
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Figure 1. Event-Related Potential of healthy participants at sensor Fz after acoustic stimulus (blue) and after

self-evoked acoustic stimulus (green).

of 108 subjects. Several machine learning algorithms
were trained, with the best result of 85% accuracy
achieved by the Random Forest classifier.

Shim et al. published an approach in 2016 in which
the data of 68 subjects were also classified as either
sick and healthy [9]. The auditory P300 potential was
used together with the average cortical activity of the
subjects to train an SVM algorithm. Together, this feature
selection resulted in an accuracy of 88.25%, with only
the auditory P300 potential leading to an accuracy of
80.88%.

Table 1. Comparable machine learning based
approaches

Author Year Accuracy Reference

Neuhaus et al. 2012 72.40% [10]
Neuhaus et al. 2013 77.70% [8]
Laton et al. 2014 85.00% [11]
Shim et al. 2016 88.25% [9]

While these papers have already delivered good
results and relevant insights, there is still much space
for new approaches to achieve better results.

3. Method

Since the goal of our work was to create an IT artifact,
we followed the procedure according to Hevner et al. [27].

The complete research process used in this work is shown
in Figure 2.

Figure 2. Flowchart of the research process.

As a first step the data was post-processed. In order
to train the machine learning algorithm, features were
extracted and the data set was split into a train- and test
set. A Random Forest algorithm was trained, which was
then evaluated and interpreted.

3.1. Dataset and EEG noise removal

The data set we used for this work was produced by
the National Institute of Mental Health (NIMH) and is
freely available on the internet under project number
R01MH058262. All volunteers have given their written
consent to participate. The costs of the study were borne
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by the NIMH. The results of the study were published in
Schizophrenia Bulletin in 2014 [18]. One data set with
a total of 58 subjects was collected. The data set was
subsequently supplemented by 23 subjects with whom
the identical experiment was carried out at an earlier
point in time. Thus, the data set comprised 81 subjects.
All subjects were recruited by advertising and word
of mouth. The disease schizophrenia was diagnosed
in an interview according to DSM-4. Due to the need
for comparability between the two groups, the control
group was selected for demographic characteristics
similar to those of the diseased group. The demographic
characteristics of the subjects are shown in Table 2.

Table 2. Demographics of schizophrenics (SC) and
healthy (HC) subjects

SC HC
n 49 32
Men 41 26
Women 8 6

Age (ø years) 40.02 38.38
SD (years) ± 13.48 ± 13.92

In the NIMH experiment, the subjects pressed a
button every 1-2 seconds to produce a 1000 Hz and 80
dB tone without delay. This was done for 100 repetitions.
The generated tones were then played back. In a final
experiment, the button was pressed in the same rhythm as
before without playing a sound. While these tasks were
being performed, the brain activities of the subjects were
recorded by a BioSemi ActiveTwo EEG system. For this
purpose, 64 electrodes were attached to the scalp, which
recorded voltage changes at 1024 Hz. The electrodes
were attached to the head according to the 10-20 standard
layout [28].

A crucial problem with EEG data sets is the strong
noise generated during data collection. The electrodes
attached to the scalp must record the finest signals from
the brain. This also leads to mixed signals being recorded.
In particular, the movement of the eyes, blinking, muscle
activity and heartbeat are found as disturbance data
in the EEG data set. The collected data are therefore
post-processed after recording.

Since EEG data are electrical potential fluctuations, a
reference electrode with constant equilibrium potential
is required. This must be placed in a neutral location
such as the nose, chin or earlobes. No electrical brain
activity is measured at these locations. In the case
of the data set collected by NIMH, the two electrodes
were attached to the earlobes of the test persons. In a
first step, the data of the 64 electrodes were referenced

to the averaged reference electrodes. To post-process
data, a 0.5 Hz - 15 Hz bandpass filter was applied
[18]. This reduces low-frequency interference signals.
These can be found, for example, in sweat artifacts.
The post-processing of the data thus consisted of the
referencing of the signals to the reference electrode and
the signal filtering by the band-pass filter from 0.5-15Hz.
The data were then broken down into 3-second periods,
so that each period contained a stimulus. 1.5 seconds
before and 1.5 seconds after experimental activity were
recorded. A baseline correction was then performed.
After baseline correction, further interfering artifacts
were removed. The muscle movements of the volunteers,
such as blinking or eye movements, cause interfering
signals in EEG data. In order to filter these signals from
the data, electrodes were attached to the corners of the
eyes of the volunteers. In addition, two electrodes were
placed above and below the right eye. These were used to
record electrooculography (EOG). There is an electrical
potential between the cornea and the fundus of the eye:
the cornea is positively charged, the posterior part of
the eye negatively [29]. The electrical potential of the
eye radiates into surrounding tissue. Eye movements
bring the positively charged cornea closer to one of
the electrodes so that a field change can be measured
[29]. Using a regression algorithm, the noise caused by
blinking and eye movements was filtered from the EEG
data using the EOG data [18].

Event-related potentials were then extracted by
averaging procedures. The ERPs are not visible in the
EEG because their amplitude of< 30µV is superimposed
by the spontaneous activity of the EEG. In order to make
the signal visible, the test subject is repeatedly exposed
to a stimulus. Afterwards the signal is averaged. This
is based on the assumption that event-related potentials
always occur at a fixed time. A repetition of the action
leads to an identical course, while the spontaneous
activities that accompany them fluctuate randomly from
period to period. This spontaneous activity cancels
each other out, while the desired signal becomes visible.
Figure 1 shows both the raw EEG sequences at sensor Fz
and the resulting ERP signal.

3.2. Machine Learning Method

As outlined above, the aim of this paper was to
provide a robust and well-classifying model that could
be used in medical schizophrenia diagnosis. The
step-by-step process of the experiments is shown in
Figure 3, the whole pre-processing process in Figure
5.

Event-related potentials consist of the four
components: amplitude, polarity, latency and topography.
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Figure 3. Three experiments were conducted. The

collected EEG data was then processed to ERPs.

The data set for the creation of a classification model
was created taking these components into account. As
shown in Figure 3, the original data set consists of data
from three experiments: (i) a button is pressed every 1-2
seconds to produce a sound (ii) the sounds are played
back without pressing a button, (iii) the button is pressed
every 1-2 seconds without playing a sound.

Since only the stimulus processing of the brain is
to be considered, the measured values from (iii) were
subtracted from the values from (i). The result is a
data set containing the individual’s perception of stimuli
evoked by themselves.

In order to obtain a robust model, the individual
ERPs were averaged, resulting in a dataset with ”Healthy
Controls” and ”Schizophrenia Patients”. In view of the
manageable size of the data set, such a procedure is
preferable to individual case classification [8]. While
comparable work frequently focused on central sensors,
this work should also take left and right hemispheric
sensors into account. The sensors Fz, FCz, Cz as
well as F3, C3, CP3 and FC4, C4 and CP4 were
therefore included in the data set. Sensors on the left
hemisphere are provided with odd, sensors on the right
hemisphere with even numbers; central sensors contain a
characteristic z. As a further relevant characteristic the
time was additionally appended to to adequately consider
possible latencies in the stimulus processing.

The potential influenced by the efference copy is the
N100 potential. It occurs 80-150ms after stimulus and
is therefore an endogenous component. Endogenous
components depend on cognitive and psychological

Figure 4. The signal from each sensor at each time

tn was extracted and used as feature input to train

the machine learning model.

factors that can be influenced by individual attention
and the nature of the task at hand. In healthy
individuals, a significantly inhibited N100 amplitude
occurs when a sound is generated by pressing a button,
indicating less necessary neuronal activity [30, 31].
By correctly predicting the input by the efference
copy, tone processing causes less activity. Figure 1
illustrates the mechanism of efference copy. Since the
event-related potential N100 is measured in the period
of 80ms-150ms, only this time window was considered
for the investigation. All relevant characteristics of
event-related potentials - amplitude, polarity, latency and
topography - were measured on nine sensors and used
as a data set. This results in a total data set with 144
observed sensor values at each of the nine sensors as well
as the time stamp. The individual time periods resulting
from the previously calculated individual perception of
stimuli caused by the subject itself (Exp. (iii) minus Exp.
(i)) and the N100 range were then used as features. The
features for each sensor at four different points in time
are shown in Figure 4.

The classification should be based on a model that is
as robust as possible and allows conclusions to be drawn
about the relevance of individual sensors. In order to
answer the question which the most important sensors
for the classification of schizophrenia are, Random Forest
was chosen as the classifier. The amount of data could
be efficiently processed by the Random Forest. In
addition, a direct conclusion could be drawn on the
most important variables for classification. The Random
Forest was originally designed by Breiman [32]. It
consists of a collection of tree predictors, each tree based
on independently selected vectors. The classification
outputs of the individual trees are used to determine the
overall classification. This is based on the idea that the
aggregated decisions of several trees are superior to those
of a single tree.
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In a first step, the data set is divided into two parts:
the training dataset and the test data set. A model is
trained on the training dataset, which is then validated
on the test data. The training data are transferred
to the Random Forest, where they are randomised in
a first step. This randomisation, known as bagging
(”bootstrap aggregating”) also originates from Breiman
[32]. Bagging creates new randomised data sets that
have the same cardinality as the original data set. The
Random Forest process was defined by Liaw and Wiener
as follows [33]: (i) Draw ntree bootstrap samples for
the original data, (ii) for each of the bootstrap samples,
grow an unpruned classification or regression tree, with
the following modification: at each node, rather than
choosing the best split among all predictors, randomly
sample mtry of the predictors and choose the best
split from among those variables, (iii) predict new data
by aggregating the predictions of the ntree trees (i.e.
majority votes for classification, average for regression).

As part of our classification, the Random Forest of
the caret package was used. The data set was divided as
follows: training 80% and testing 20%. The number of
trees was n = 500. The mtry = 10 considered all available
variables: nine sensors as well as the time. The entire step
by step process of data preparation is shown in Figure
5. The variable importance calculated by Random Forest
was also saved.

Figure 5. Flowchart of the step-by-step process from

the data acquisition to the model evaluation.

In order to achieve a reliable value, k-fold
cross-validation was applied. In the cross-validation
process, the data set is divided into k equal parts. The
training is performed on k-1 data, the validation on the
excluded part, which is thus used as the test data set. This
process is repeated k times so that each part is also used
as a test data set. k was set to 10 for this work.

As result, we were told which sensor values were

classified correctly and which were classified incorrectly
on the basis of the trained model. For this purpose, the
confusion matrix of the model was output. The confusion
matrix classifies as follows: (i) True Positive: The sensor
values belong to the data set of the healthy subjects and
the model assigned them correctly. (ii) False Negative:
The sensor values belong to the data set of the healthy
subjects and the model incorrectly assigned them to the
sick subjects. (iii) False Positive: The sensor values
belong to the diseased subjects but were assigned to the
healthy subjects. (iv) True Negative: The sensor values
belonged to the group of sick subjects and were correctly
assigned by the model.

4. Results

Table 3. Predictive Result of Model
Performance Indicator Value SD
Balanced Accuracy 96.4% 7.57%
Sensitivity 92.8% 13.55%
Specificity 100.0% 0.00%
Positive Predictive Values 93.3% 9.92%
Negative Predictive Values 100.0% 0.00%
Kappa 93.0% 13.55%

Of the nine sensors, 144 values were recorded for
the N100 potential. The classification model was trained
with 80% of the data and tested for the remaining 20%.
Thus, the model was tested on 28 points of the time series.
The best classification model of the N100 potential
achieved an accuracy of 96.4%. All performance metrics
can be seen in Table 3.

Table 4. Confusion Matrix of Random Forest model
using the test dataset

Reference

Prediction
0 1

0 13 0
1 1 14

In addition to the balanced accuracy of 96.4%, a
sensitivity of 92.8% was achieved. The specificity even
reached 100%. Altogether only one point of the time
series was wrongly assigned, as shown in the confusion
matrix in Table 4. The variable importance, shown in
Figure 6, also provides valuable information: the most
important sensor for the Random Forest is the CP4 at the
right hemisphere. This is followed by the central sensor
Fz followed by the left hemispheric sensor CP3. The
fourth most important feature is time.
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Figure 6. Variable Importance of the Features used

by the Random Forest Classifier.

5. Discussion

While schizophrenia is currently diagnosed by
observation and questioning according to ICD-10 and
DSM-5, the number of publications is constantly
increasing with the search for relevant biomarkers.
Biomarkers are extremely relevant in this case, as
diagnosis currently takes a long time and can be
negatively influenced by misinformation from the patient
[9]. Furthermore, biomarkers can also be used in the
urgently needed early detection. In addition to genetic
markers, ERP data evaluated by machine learning are
increasingly being used for this purpose. Considering the
technological development in the EEG segment, these
approaches could be implemented cheaply, easily and
quickly in the healthcare sector in the future. Thus, the
first mobile EEG devices already show a good accuracy
in measuring ERPs [34].

The approaches to ERP evaluation by machine
learning already presented here have produced good
results, but also show that new approaches are needed
to detect schizophrenia even more accurately [8–11].
In contrast to the approaches listed in Table 1, we
only considered the N100 potential, which in most
studies is only measured at the central sensors Fz or
Cz. We added the sensors F3, C3, CP3, and F4, C4 and
CP4. Thus, further possible features are added to the
Random Forest in order to achieve a good classification
result. Furthermore, the influence of the left and right
hemisphere of the brain on the classification result was
displayed by the variable importance and the Sensors F3,
C3, CP3, F4, C4 and CP4.

The functionality of the efference copy of healthy
and diseased people was investigated by the described
button-tone experiment. The dysfunction of the
schizophrenic efference copy reflected in N100 should

have a positive effect on the classification model as the
Random Forest recognizes clear classification patterns.
It is currently assumed that the absence or dysfunction
of the auditory efference copy is the main cause of
the acoustic hallucinations of schizophrenics. Many
of the patients suffer from this symptom [35–37]. The
pattern recognition of the potential N100 of self-evoked
stimuli has corresponding relevance. After extensive
literature research and to the best of our knowledge,
there is currently no scientific work available that has
classified schizophrenia on the basis of the dysfunction
of the auditory efference copy by Random Forest.

Looking at the achieved results, a good model could
be created with an accuracy of 96.4%, which surpasses
other current works. In contrast to many other scientific
papers, time as well as right and left hemispheric sensors
were taken into account [38, 39]. As shown by the output
of the variable importance, this feature selection was
crucial to achieving this very good result. The otherwise
neutral time value in combination with the corresponding
sensor values became very important variables for
prediction. Such delayed stimulus processing has already
been proven many times [40, 41]. The relevance of the
sensor Fz in connection with the N100 potential was
mentioned before and could also be proven in this work.
As the second most relevant variable, the sensor values
at Fz had a large influence on the trained classification
model. However, the most relevant result of this work
is the strong influence of the left and right hemispheric
sensors CP3 and CP4. Both posterior sitting sensors were
extremely relevant in creating the classification model.
While in many scientific studies it is primarily the central
sensors that have been considered, it could be shown that
the consideration of further selected sensors can have
a strong positive influence on further research results.
A positive characteristic of our approach is that each
data point tn of the time series is considered separately.
Thus, future ERP data of schizophrenia patients could be
tested individually at each of the time points between 80
- 150ms.

In the context of early intervention, Sommer et
al. also address the potential of ERP for early
detection of the disease [4]. Detection and intervention
in schizophrenia at an early age is a priority in
schizophrenia research [4]. This detection could solve the
problem of long diagnosis times. Drugs and therapeutic
support can be provided at an early point in time. The
effects of the serious illness could thus be reduced. Initial
work also indicates that early intervention can reduce
the costs of the disease [42]. A prevention system
would therefore help both the patient and the healthcare
system. A new approach to prevention could be used
as a non-invasive method. With our approach we want
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to participate in the search for a non-invasive method of
prevention and build on already existing approaches.

6. Conclusion

In this work, we present an approach that could be
applied in the early detection of schizophrenia using
ERP. The dysfunction of the predictive efference copy
in schizophrenics was the subject of the experimental
design and thus the data basis of our work. In addition,
an approach was presented in which the data of the
test persons were averaged according to their affiliation
in healthy and sick persons, in order to subsequently
transfer the ERP sensor values to the machine learning
model at every time point tn. The centrally positioned
sensors, which are normally used for ERP studies, were
supplemented by additional sensors of the left and right
hemisphere. It was shown that these additive sensors
provide important information for the algorithm. Our
model outperformed comparable works with a very good
level of accuracy of 96.4%. As explained, such an
algorithm could help in the future to detect the disease
early and intervene accordingly.

6.1. Limitations

Since the results of our research are recent, the
algorithm has not yet been tested in a clinical
environment and thus in practice. Furthermore, the
results have not yet been tested for external validity. No
other algorithms have been trained. Also the influence
of medication on the model could not yet be tested. The
data set used is also not very large, which can lead to
variations in the performance of the algorithm.

6.2. Future work

To further advance our schizophrenia diagnosis
algorithm, in terms of performance and validity, one of
the main objectives of our future work is to re-evaluate
the algorithm using a larger data set that contains a
higher number of subjects. To make further progress
in the diagnosis of schizophrenia, we would like to
combine another recently presented new ML approach
with the approach presented here. The other approach
uses EEG data that is divided into small frequency
ranges and evaluated by machine learning. With this
approach, different diseases addictions and traits can
be detected reliably [43–56]. The combination of these
two approaches could also make progress possible in
the areas of stress, concentration, mindfulness and
cognitive workload [57–63]. Furthermore, we will
triangulate psychophysiological and physiological
data (i.e., electroencephalographic data and spectra,

electrocardiographic data, electrodermal activity,
eye fixation, eye pupil diameter, facial data to
increase reliability [64–68]. In addition, we
will evaluate technology acceptance and trust in
multi-agent-simulations [69–77]. Furthermore, we will
apply a deep learning approach using convolutional
neural networks [78–82]. With these approaches we can
improve our classifier performance and further decode
schizophrenia.
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