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Abstract 
 

Previous research has examined how eye-tracking 

metrics can serve as a proxy for directly measuring the 

amount of cognitive effort and processing required for 

comprehending computer code. We conducted a pilot 

study comprising expert (n = 10) and novice (n = 10) 

computer programmers to examine group differences in 

code comprehension abilities and perceptions. 

Programmers were asked to read two pieces of 

computer code, rate the code on various attributes, and 

then describe what the code does. Results indicate that 

experts and novices significantly differ in terms of their 

fixation counts made during the task, such that experts 

had more fixations than novices. This was counter to our 

hypothesis that experts would have fewer fixations than 

novices. We found no evidence that experts and novices 

differed in their average fixation durations, 

trustworthiness and performance perceptions, or 

willingness to reuse the code.  

 

 

1. Introduction  
 

Understanding the cognitive processes involved in 

code comprehension, defined as “the process of 

understanding program code unfamiliar to the 

programmer” [1], can provide meaningful information 

about how users make decisions on whether to reuse 

code. Differences in code comprehension abilities and 

processing strategies between experienced versus 

novice programmers may underlie these decisions.  

Physiological indices, such as eye-tracking data, 

can provide quantitative measurements of the decision-

making process [2]. For example, information about 

where a user is looking during a code comprehension 

task can reveal what information users find important, 

and the amount of time needed to make decisions about 

the code. The amount of time needed for text 

comprehension can be approximated by measuring 

fixation durations within specified regions of interest 

(ROIs) [3, 4]. Additionally, the number of fixations 

made within ROIs can provide data showing the 

location of attention for different observers [5], as well 

as how efficiently different types of observers process 

that information [6, 7].  

The purpose of this research is to investigate how 

code comprehension differs between expert and novice 

coders by measuring each group’s fixation counts and 

average fixation durations within the code region using 

eye-tracking technology. Additionally, we investigate 

how these potential differences in eye movements may 

be related to programmers’ willingness to reuse code, as 

well as how trustworthiness and performance 

perceptions of code differ with experience. 

 

2. Related Work 

 
2.1. Computer Code 

 

Over the last few decades, there has been an 

emphasis placed on science, technology, engineering, 

and math (STEM) education [8]. The prevalence of 

STEM courses offered in education has led to an influx 

of graduates in fields such as computer and information 

sciences, which has almost doubled in the number of 

bachelor’s degrees awarded since the beginning of the 

21st century [9]. This large increase in programmers has 

resulted in an expansion of the amount of computer code 

that is being developed/written, shared, and re-used. 
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Code that is available through open-source libraries may 

potentially be used by thousands of people. As a result, 

code can be vetted, modified, and rated by other users.  

There are several factors that influence how 

programmers perceive computer code. In a cognitive 

task analysis [10], researchers identified three main 

factors that influence programmers' reliance on, or trust 

in, code previously written by other programmers. 

Those factors are perceived code performance, 

transparency, and reputation. Several empirical studies 

have been conducted to examine how these factors 

influence programmers’ trustworthiness perceptions 

(e.g., [11-13]). In addition to trust in the code, whether 

programmers choose to reuse code can indicate their 

understanding of that code. If programmers do not 

understand what a piece of code does, then they are less 

likely to repurpose it for their own needs [14]. As such, 

the willingness to reuse code can provide an 

approximation of code comprehension, provided the 

code compiles and is error-free.  

 

2.2. Eye-Tracking 
 

Researchers have used eye-tracking technology as 

means of studying the code comprehension strategies of 

programmers [15]. Eye-tracking technology provides 

researchers with a means of obtaining quantitative 

information about where people are looking within a 

visual scene and what information is processed by the 

observer [16]. Additionally, the amount of time an 

observer spends fixating on a stimulus is assumed to be 

proportional to the amount of time that is needed to 

process that information [5, 16]. In this way, eye-

tracking data is used to gain insight into cognitive 

processes including, but not limited to, the user’s 

allocation of attention, text comprehension, and 

problem-solving strategies [4, 5]. Importantly, these 

visual metrics can also reveal individual differences 

between people, such as prior knowledge of the 

material, reading goals, and processing efficiency [5, 

17-19].  

Research in eye-tracking literature has shown an 

inconsistent pattern of results specifically relating to the 

analysis of fixation data across levels of expertise. In a 

map visualization study, [18] found that the fixation 

counts of experts were greater than those of novices due 

to the expert group having shorter fixation durations, 

affording them more time to explore more areas of the 

image. However, [19] found the opposite pattern in a 

mathematical graph reading study in which experts had 

fewer, longer fixations, whereas novices exhibited more 

fixations with a shorter average duration. In this study, 

experts fixated for longer durations, on average, in 

regions containing important information than did 

novices; however, this difference was not significant 

when these durations were calculated as a percentage of 

total time on task, nor was the time difference 

significantly different between important and less 

important areas for experts versus novices. Additional 

studies have allowed researchers to investigate this 

mixed pattern of results. 

Some studies point to experts having more efficient 

information processing strategies compared to novices 

[20], whereby experts not only had shorter fixation 

durations, but that they also appeared to attend more to 

task-relevant areas and less to task-redundant areas. 

Others [21] suggest that fewer fixations by novices 

indicate a decrease in engagement as compared to their 

more experienced partners. Still other studies point to 

differences in visual effort [22] as an explanation for 

experts having fewer fixations and shorter fixation 

durations than novices.  

One possible explanation for why eye-tracking 

research regarding differences in expertise has shown 

mixed results and a variety of interpretations is because 

eye-movement behaviors may vary as a function of the 

task given to participants or the domain being studied. 

For this reason, using visual effort as an explanation for 

differences in eye movements within the domain of 

software engineering appears to be the most relevant to 

this research (see [15, 23-25]). In the current study, we 

add to the literature by examining eye-movement data 

alongside self-report measures of comprehension to 

better understand the relationship between fixations and 

expertise in software engineering.  

 

2.3. Code Comprehension and Expertise   
 

By definition, novices do not have as much 

experience, skill, or knowledge as compared to experts. 

As such, experts and novices differ in problem-solving 

techniques, comprehension, and ability [e.g., 26-29]. It 

is important to understand these differences and how 

they affect performance on tasks related to 

programming. For example, Soloway et al. [29] found 

that when expert and novice programmers were asked to 

write a line of code that was missing from a program, 

experts performed better and took less time completing 

the task, compared to novices. Similarly, Lee et al. [30] 

found that experts were more efficient and more 

accurate on a series of code comprehension tasks 

compared to novices.  

People attend to and process visual information 

along two routes often referred to as top-down and 

bottom-up processing [31]. Top-down processing refers 

to the process of using schemas, or information such as 

the title of a program, to infer a general idea of how the 

code ought to function. Bottom-up processing, in this 

context, refers to reading sections of code line by line to 

gather information then chunking this information 

Page 115



together with other parts of previously chucked 

information. Chunks are combined in an iterative 

manner to create a mental model and an understanding 

of the overall code piece or software [32]. Researchers 

have demonstrated that there are information-

processing differences that change with experience. For 

instance, programmers with more knowledge of a 

program use top-down processing, while those with less 

knowledge or less familiarity with a program tend to use 

bottom-up processing [32-34]. Experts form better 

mental representations (e.g., pattern recognition, 

hierarchical structure, etc. [35]) and have developed 

schemas [29, 36] of computer code based on prior 

experience, which leads to greater comprehension when 

reading computer code. Novices tend to focus on 

concrete information available within the code such as 

how the program works, whereas experts focus on 

functional information that describes what the program 

does [28, 35]. Novices are not as proficient as experts in 

areas such as chunking information together or 

debugging and encoding strategies, and often 

demonstrate a lack of efficiency when writing and 

organizing lines of code compared to experts [37-39].  

Code comprehension is particularly important 

because it can influence decision-making. In a study of 

student computer programmers, code comprehension 

influenced their decision to reuse code functions [14]. 

Results indicated that if students understood the code 

function at an abstract level rather than an algorithmic 

level, they chose to reuse a code function that was 

provided rather than re-write a new function. Novices 

may not be able to adapt code that they did not write to 

fit their current purpose; they may not make the 

connections between similar code examples and their 

own if they do not entirely know how the code 

functions. While empirical research has demonstrated 

code comprehension abilities differ with expertise, the 

reviewed research is not without limitations. 

A recent literature review summarized research 

conducted using eye trackers in the field of software 

engineers [15]. None of the reviewed studies compared 

participants’ self-report (subjective) data to their 

behavioral (objective) data, while also accounting for 

experience. While behavioral data is invaluable, self-

reports allow researchers to understand programmers’ 

perceptions of code, which eye-tracking data cannot 

directly measure. Another limitation concerns the length 

of computer code used as stimuli. Researchers often 

used smaller snippets of code (e.g., 30 lines [40]) that 

were presented on a single screen, without the ability to 

scroll through the code [15, 40]. When programmers 

read, write, or edit code, the programs they view often 

consist of hundreds or even thousands of lines of text, 

sometimes across multiple screens or windows. With 

the development of new eye-tracking technology, 

researchers are now able to capture eye-tracking data 

while users scroll through a web page or document, or 

when accessing multiple windows on a single screen 

[40], which older eye-tracking technologies are not able 

to capture. Studies can now be conducted on longer 

pieces of code, thus increasing the ecological validity of 

the results that are found. We utilize this advancement 

in the current study by incorporating multiple pieces of 

code, each spanning a few hundred lines of text.  

 

2.4. Research Questions 
 

Based on previous findings reported above, we 

explored whether there were differences in 

programmers’ code comprehension abilities and 

perceptions of code, depending on their expertise (i.e., 

experts versus novices), when longer pieces of code are 

provided. There is research to support that fixation 

metrics (e.g., fixation count and average fixation 

duration) approximate visual effort [23-25]. However, 

because there are multiple, and sometimes 

contradictory, interpretations of eye movements across 

experts and novices, we measure and present fixation 

counts and average fixation durations rather than 

combining these two metrics into a single variable (i.e.,  

visual effort). Two additional measures were used to 

determine code comprehension: the ability to accurately 

describe the code function, and the willingness to reuse 

code. Additionally, two questions were used to evaluate 

programmers’ perceptions of code: 1) trustworthiness 

ratings and 2) performance ratings. More specifically, 

we have the following hypotheses and research 

questions:  

Hypothesis 1: Compared to novices, experts will 

show more effective code comprehension evidenced by 

A) fewer fixation counts and shorter fixation durations, 

B) accurately describing the code functions more 

frequently, and C) intending to reuse the code pieces 

more often. 

Research Question 1: Are there differences 

between experts’ and novices’ code reuse intentions, 

after controlling for fixation counts and average fixation 

durations? 

Research Question 2: Are there differences 

between experts and novices on perception of A) code 

trustworthiness, and B) code performance when 

controlling for fixation counts and average fixation 

durations?  

 

3. Method  
 

3.1. Participants 
 

A total of 36 participants were recruited for pilot 

data as part of a larger study. Novice programmers (n = 
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22) were recruited from a Midwestern college, and 

Expert programmers (n = 14) were recruited from local 

industry around the college. Requirements to participate 

were at least three years of programming experience and 

participants had to know Java well enough to read and 

understand Java code. In total, 16 cases were excluded 

from analysis due to poor data quality and/or lack of 

experience (less than three years), or if there was an 

average track loss of 15% or greater on any of the 

stimuli pages. The remaining 20 participants ranged 

from 20-48 years of age (M = 29.85, SD = 8.31). The 

average age of Novices was 24 years (SD = 3.00), while 

the average age of Experts was 36 years (SD = 7.63). 

Total years of programming experience of participants 

ranged from 4-20 years, (M = 7.25, SD = 4.22), 45% 

listed Java as their primary programming language, 90% 

were male, and 50% were students. Participants were 

recruited from flyers, email, and by word of mouth. 

Participants received compensation in the form of a $50 

gift card. The study was overseen by the Air Force 

Research Laboratory institutional review board. 

 

3.2. Task and Stimuli  
 

Participants viewed two pieces of computer code as 

part of a code comprehension task. All participants 

viewed each piece of code in the same order. Code 1 

was a default properties parser (277 lines, 952×3070 

pixels), while Code 2 was an encryptor (264 lines, 

952×2412 pixels). Both pieces of code were described 

as coming from a reputable source.  

 

3.3. Eye-tracking Metrics  
 

Based on previous literature utilizing eye trackers 

in software engineering research (for review see [15]), 

we have included two eye-tracking metrics that are 

commonly collected when participants read computer 

code: fixation count (FC) and average fixation duration 

(AFD). Gaze data were collected using a Smart Eye 

Aurora remote eye tracker, which uses infrared light to 

record where a participant is looking on the screen at a 

sampling rate of 60 Hz. Using a remote eye tracker as 

opposed to head-mounted eyewear allows for the 

researcher to study participants in a way that is similar 

to how users would naturally read code. The iMotions 

Screen-Based Eye Tracking Module was used to 

conduct a calibration procedure and collect recordings 

of gaze data during the data collection process. Offline, 

the iMotions software performed preliminary analyses 

including estimates of data quality (e.g., track loss) and 

markers for fixations made within each presented 

screen. The iMotions software defined fixations as the 

periods during which eye movements did not exceed 30 

degrees per second (with an average tracking error of 

about 0.5 degrees [41]) for a minimum of 60 

milliseconds [42]. The x,y screen coordinates of each 

fixation were calculated by averaging all gaze positions 

within a fixation. 

 

3.3.1. Fixation Count. Fixation count (FC) was defined 

as the number of fixations made within the pixel range 

of code for each participant and for Code 1 and Code 2 

separately.  

 

3.3.2. Average Fixation Duration. Average fixation 

duration (AFD) was computed separately for each 

participant and for Code 1 and Code 2 separately by 

computing the average duration in milliseconds of each 

fixation spent within the pixel range of the code regions.  

 

3.4. Self-Report Measures 
 

3.4.1. Programming Experience. Participants were 

asked if they were a student or not. Those that answered 

“Yes, I am a student” were classified as Novice 

programmers. Participants that selected “No, I am not a 

student” were classified as Expert programmers. 

Novices had a range of 5-7 years of programming 

experience (M = 5.9), and Experts ranged from 4-20 

years of experience (M = 8.6). 

 

3.4.2. Code Description. At the end of each page 

containing code, participants were asked to describe 

what the code does with the following prompt, “To the 

best of your knowledge, please describe what this code 

does in the text box below.” 

 

3.4.3. Code Reuse. After viewing each code, 

participants were asked if they would reuse the code 

without changes using a single-item measure. 

Participants could reply with the binary responses “Use” 

or “Don’t use.” 

 

3.4.4. Perceptions of Code.  Participants were asked to 

answer the following questions about each code using a 

7-point scale: “How trustworthy is the code?” (1 = Not 

at all trustworthy to 7 = Very trustworthy), and “How 

well do you think this code will perform?” (1 = Not at 

all well to 7 = Very well).   

 

3.5. Procedure 
 

After consenting to take part in the research, 

participants were seated approximately 70 cm from the 

screen on which they completed a 4-point calibration 

procedure using the iMotions Screen-Based Eye 

Tracking Module at a 1920x1080 screen resolution. 

Failure to reach an appropriate level of calibration 

resulted in dismissal from the study; otherwise, 
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participants continued through the experiment by 

completing a demographics survey. 

After the survey and prior to the task, participants 

were shown the task instructions. All comments had 

been removed from the code. All packages had been 

modified to remove original sources. All the code 

compiled and was error-free. After reading the 

instructions, participants saw the first piece of code and 

then evaluated the code using the ratings provided and 

wrote a brief description of the code’s function. These 

evaluations were completed separately for each code. 

Only one code was viewed and evaluated at a time. After 

the task was completed, participants were debriefed, 

thanked for their participation, and compensated for 

their time. 
 

4. Results 
 

4.1. Code Comprehension (H1) 
 

4.1.1. Fixation Measurements (H1:A). The number of 

fixations (FC) and their average durations (AFD) 

collected for each Code may have varied by the function 

of the code, text length, etc. Because of these differences 

across Code 1 and Code 2, we decided to conduct 

separate analyses for each Code. A one-way mixed-

design multivariate analysis of variance (MANOVA) 

was conducted for both Code 1 and Code 2 to determine 

the relationship between Expertise (Experts versus 

Novices) and FC and AFD. We analyzed the data 

against a null hypothesis that no significant differences 

exist between Experts and Novices regarding their eye-

movement data collected during the task.  

The results of the MANOVAs revealed that 

Expertise had a significant main effect on fixation 

measurements for Code 1, [F(2, 17) = 6.51, p = .008, ηp
2 

= .43, power = .85], and for Code 2, [F(2, 17) = 11.03, 

p < .001, ηp
2 = .57, power = .98]. Univariate ANOVAs 

were conducted for Code 1 and Code 2 to determine the 

simple effects of Expertise for FC and AFD. Means and 

standard errors are listed in Table 1. There was a 

significant difference between Novices and Experts for 

FC on Code 1 [F(1, 18) = 13.37, p = .002, ηp
2 = .43, 

power = .93], and Code 2 [F(1, 18) = 23.35, p < .001, 

ηp
2 = .56, power > .99]. See Figure 1. No significant 

differences were found in AFD for either Code 1 or 

Code 2. See Figure 2.  

Although the MANOVA results were significant, 

they were in the opposite direction hypothesized. 

Experts had more fixations for both Code 1 and Code 2 

compared to Novices, contrary to our hypothesis that 

Experts would have fewer fixations compared to 

Novices. Thus, Hypothesis 1:A was not supported.  

In general, participants fixated longer and on more 

aspects of Code 1 compared to Code 2. One reason for 

this may have been because Code 1 was the first code 

introduced during the task. Participants may have taken 

longer examining the code and fixated more as they 

were not only figuring out what the code does, but also 

discovering what information they had to glean from the 

code as indicated by the self-report responses. That is, 

participants were getting used to the task. For Code 2, 

participants were presumed to be more familiar and 

proficient with the study task.  

 

 

Figure 1. Number of fixations (FC) users had on Code 1 

and Code 2. Error bars represent standard errors. 
 

 

Figure 2. Average amount of time (milliseconds) of users’ 

fixations (AFD) on Code 1 and Code 2. Error bars represent 

standard errors. 
 

4.1.2. Code Description (H1:B). To test whether 

Experts accurately described the code functions more 

often than Novices, as indicated by their answers of 

code descriptions, a Fisher's Exact Test was calculated. 

Each of the programmer’s answers to the question, 

“Describe what this code does” was screened for 

accuracy. For Code 1, all Experts correctly described 

what the code did, and 6 of the Novices were correct, 

while 4 Novice programmers were incorrect in 

describing the code’s functionality. The difference 

between the code description accuracy of Experts and 

Novices was not significant. For Code 2, all 

programmers correctly described the code’s function, 

regardless of Expertise. Hypothesis 1:B was not 

supported.  
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Table 1. Means and standard errors of fixation measurements and self-reports for Experts and Novices. 

 Code 1  Code 2 

 Novices Experts  Novices Experts 

Fixation Measurements           

Fixation Count  616.00 (135.43) 1397.90 (165.46)   233.80 (45.41) 617.20 (65.06) 

Average Fixation Duration (in ms) 451.37 (48.97) 416.01 (30.49)   437.99 (55.66) 439.31 (22.25) 

Self-Reports           

Trustworthiness Perceptions 5.00 (0.45) 4.40 (0.37)   5.70 (0.26) 4.40 (0.62) 

Performance Perceptions 5.30 (0.30) 4.40 (0.43)   5.90 (0.35) 5.30 (0.42) 

Code Reuse Intentions - Use 7 5  9 6 

Code Reuse Intentions - Don’t Use 3 5  1 4 

Note. Standard errors in parentheses. Trustworthiness and Performance items were measured on a 7-point scale. Code reuse 

intentions are reported as total number of participants that chose to either Use or Don’t Use the code. 

4.1.3. Code Reuse (H1:C and RQ1). A Generalized 

Estimating Equation (GEE) analysis was conducted for 

each Code to evaluate differences in Code Reuse 

intentions between Experts and Novices. This analysis 

was chosen due to the binary nature of the dependent 

variable. Results indicated that neither Expertise nor the 

intercept was significant for Code 1. The intercept was 

significant for Code 2, [Wald χ2 (1, N = 20) = 4.35, β = 

-2.20, p = .037], though Expertise was not, indicating 

that factors other than programmer experience 

significantly contribute to Code Reuse intentions. 

Although not significantly different, an inspection of the 

means revealed Experts appeared more willing to reuse 

Code 1 and Code 2 than Novices (see Table 1). 

Because the intercept in the above analysis was 

significant, we had justification for examining if 

fixation measurements contributed to the variance in 

Code Reuse that was not accounted for by Expertise. 

Separate GEE analyses were conducted for Code 1 and 

Code 2, which included Expertise, FC, and AFD 

(standardized for ease of interpretation), with Reuse 

intentions as the outcome variable. The interaction 

between Expertise and AFD was found to significantly 

contribute to the variance in Code Reuse intentions for 

both Code 1 [Wald χ2 (1, N = 20) = 16.47, β = -5.79, p 

< .001], and for Code 2 [Wald χ2 (1, N = 20) = 4.44, β 

= -4.94, p = .035]. 
This interaction revealed that Novices (Code 1: M 

= 426.71, SE = 22.59; Code 2: M = 440, SE = 58.99) had 

shorter AFDs than Experts (Code 1: M = 482.46, SE = 

20.54; Code 2: M = 475.88, SE = 20.74) when they had 

the intention to Reuse Code, but longer AFDs (Code 1: 

M = 508.92, SE = 92.48; Code 2: M = 419.66, SE = 0.00) 

than Experts (Code 1: M = 349.57, SE = 23.80; Code 2: 

M = 384.44, SE = 9.96) when they did not intend to 

Reuse Code (see Figures 3 and 4). The standard errors 

for this data should be interpreted with caution because 

the sample of participants who were both Novices and 

did not intend to Reuse Code was so small (see Table 1). 

The intercept was also significant for the model for 

Code 2 [Wald χ2 (1, N = 20) = 10.13, β = -3.91, p = 

.001], suggesting that other variables not accounted for 

in the model influence the relationship between 

Expertise and Reuse intentions.  

 
Figure 3. Interaction between Expertise and average 

amount of time (milliseconds) of users’ fixations (AFD) on 

Code 1. 

 

Figure 4. Interaction between Expertise and average 

amount of time (milliseconds) of users’ fixations (AFD) on 

Code 2. 
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Code to explore if there was a relationship between 

Expertise and perceptions of Code Trustworthiness, 

while controlling for FC and AFD. There were no 

significant results for either Code 1 or Code 2 (see 

Figure 5).  

 

Figure 5. User ratings of Trustworthiness perceptions of 

Code 1 and Code 2. Error bars represent standard errors. 
 

4.2.2. Perceived Performance (RQ2:B). Separate one-

way ANCOVAs were also conducted for each Code to 

examine the relationship between Expertise and 

perceptions of Code Performance, when controlling for 

FC and AFD. For Code 1, there was a significant main 

effect of Expertise, [F(1, 14) = 9.18, p = .009, ηp
2 = .40, 

power = .80], on perceptions of Code Performance after 

controlling for FC and AFD. On average, Novices 

perceived the Code Performance as higher than Experts 

(see Figure 6). For Code 2, all results were non-

significant.  

 
Figure 6. User ratings of Performance perceptions of Code 

1 and Code 2. Error bars represent standard errors. 

 

5. Discussion 
 

This paper explored how code comprehension—

measured by eye-tracking metrics, accuracy of code 

descriptions, and reuse intentions—and programmer 

perceptions of code trustworthiness and performance 

differed between expert and novice programmers. With 

regard to code comprehension, group differences were 

only observed with eye-tracking metrics. By measuring 

fixation counts and average fixation durations for both 

novices and experts across Code 1 and Code 2, we found 

evidence that there are differences between groups, such 

that experts had more fixations compared to novices. 

However, average fixation duration did not differ 

between experts and novices. We also explored how 

programmers' perceptions of the code pieces differed 

between experts and novices, after controlling for 

fixation counts and average fixation durations. While 

many of our analyses lacked the statistical power 

necessary to draw conclusive inferences, we found a 

significant interaction between expertise and average 

fixation duration on intention to reuse code.  

While the analyses for Hypothesis 1:A did reveal 

statistically significant differences in fixation counts 

between experts and novices, these results were in the 

opposite direction that we predicted. Based on existing 

literature on code comprehension, we hypothesized that 

experts would have fewer fixation counts compared to 

novices. In this study, experts had higher fixation counts 

on Code 1 and Code 2 compared to novices. Past 

neuroscience research may shed some light on these 

results. In an electroencephalogram (EEG) study, Lee et 

al. [30] found that expert programmers, compared to 

novices, showed greater beta and gamma wave 

activation while performing comprehension tasks. The 

authors interpreted these findings as indicating that 

experts were devoting more concentration toward, and 

utilizing more cognitive skills in, the tasks. Similarly, 

eye-tracking metrics provide insight into ongoing 

cognitive processes with longer fixation durations and 

higher fixation counts indicating more complex 

processing [16], which may indicate that the experts in 

the present study were engaging in more complex 

processing than the novices. 

Theeuwes and Belopolsky [43] explain that 

rewarding stimuli will draw more fixations to their 

locations than stimuli that are not associated with a 

reward. In the context of this research, certain functions 

or subsections of the code may have been perceived as 

rewarding or relevant to experts who would know how 

to apply those functions to the answers in their 

descriptions of the purpose of the code. Theeuwes and 

Belopolsky also note that the rewarding stimuli do not 

hold attention at those locations for longer durations of 

time than other aspects of the environment, which could 

explain why AFD was not significantly different 

between experts and novices. Future examination of this 

data could explore which subsections of code drew 

relatively more fixations to help clarify the reason why 

experts made, on average, more fixations than novices. 

In this study, we defined the region of interest as the 

global piece of code, but further examination into which 

area of the code drew more fixations would provide 

greater insight into the different processing strategies 

between groups. An analysis of scan path data may 

show that the way readers navigate through code can 

differentiate between experts and novices. 
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Although the results for code reuse were not 

statistically different between experts and novices, an 

examination of the means showed that overall, experts 

chose to use Code 1 and Code 2 less often than novices. 

These differences may become significant with a larger 

sample of participants. Because the code stimuli that 

were included in our task were error-free and compiled, 

both novices and experts could have intended to reuse 

the code without the need to check for syntax errors. It’s 

possible that novices would elect to reuse code more 

often than experts due to their relative inability to create 

new code from scratch.  

Even though we found no statistical differences 

between experts’ and novices’ reuse intentions, the 

intercept in the original GEE model was significant, 

which indicated that other variables significantly 

contributed to the variance in reuse intentions. We 

added fixation measurements to the model and found a 

significant interaction between expertise and average 

fixation durations. For both Code 1 and Code 2, novices 

had shorter fixations than experts when they intended to 

reuse the code but longer fixations than experts when 

they did not intend to reuse the code. This might have 

been the case because once novices indicated they 

intended to reuse the code, they did not need to gather 

as much evidence to support this decision. Experts, on 

the other hand, may have continued to evaluate their 

decision while reading through the code, such that they 

may have spent more time reading each line to ensure 

that the code could be reused. When novices did not 

intend to reuse the code, they spent more time on each 

fixation possibly because they were figuring out if they 

knew enough about the code’s functions that they could 

modify it appropriately for a future purpose. In contrast 

to this, experts could quickly decide that they would not 

reuse the code after finding a section of code that did not 

align with their mental model of how the code should be 

written. Once this decision was made, they would only 

need to gather as much detail from each fixation as 

would be needed to report the code’s overall function 

for the final code description question. 

It is important to note that the accuracy of 

participants’ code descriptions did not significantly 

differ with expertise. There are two explanations as to 

why this occurred. First, we measured expertise by 

whether participants indicated they were a student. 

Some participants that were students had more years of 

experience coding than programmers who were not 

students, and vice versa. However, exploratory analyses 

using years of experience, as well as age, in place of 

student status did not change the results of our analyses, 

and thus were not reported, providing support for our 

chosen expertise classifier. Second, at the top of every 

piece of code there was a line that stated what the code 

was used for (e.g., “public abstract class 

BasicAnnotationProcessor”), which may have helped 

guide the responses that participants gave in their code 

descriptions. Future analyses of differences between 

experts and novices may benefit from not including this 

preliminary description of the code and also removing 

cases for which the user was not able to accurately 

describe the code’s function or purpose.  

This research was conducted on pilot data that 

included a small sample size of programmers. Although 

we had some statistically significant results and data 

trending towards significant differences, we had low 

power for many of our analyses, which indicates that we 

need to continue collecting more data in order to obtain 

results that can be interpreted with confidence. 

 
5.1. Implications 
 

When it comes to integrating eye-tracking 

technology into applied research, the stimuli that 

comply with the allowances of the equipment can be 

seen as a limitation to researchers. That is, there may be 

the perception that eye-tracking integration requires 

images used for visual stimuli to be contained within a 

single screen length. However, the code stimuli that 

were used in this research were quite long and extended 

several screen lengths. Participants needed to scroll 

through the code in order to comprehend the piece in its 

entirety and answer the questions that followed. Our 

study adds to the existing literature of eye-movement 

behavior during computer code comprehension by 

including these longer pieces of code and scrolling 

behavior. 

The combination of both behavioral (eye-tracking) 

and subjective (self-reports) measures of code 

comprehension are similarly lacking from the existing 

literature, although studies combining the two facets are 

beginning to emerge (e.g., [44]). Our study integrates 

these two aspects, providing a more complete picture of 

the factors that influence code comprehension. While 

not included in this research, future directions for this 

comparison might include directly comparing 

functionally similar pieces of source code with various 

changes to other code aspects (e.g., readability, 

organization). This analysis could reveal other factors 

that influence code reuse, such as what types of code are 

easier for novices to adopt, are more trustworthy, 

perform better, etc. 

 

5.2. Conclusion 
 

In summary, analyzing eye-tracking data does show 

that there are meaningful differences in the eye 

movements of experts versus novices during a code 

comprehension task. These results could be interpreted 

in different ways. There is a growing need for eye-
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tracking research in this area. As indicated by our 

results, there are alternative interpretations from what 

would be posited by some of the existing literature. 

Principally, there are multiple avenues for including 

eye-tracking research in code comprehension tasks that 

have not yet been explored, which can help explain or 

uncover critical differences between levels of expertise. 
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