
Using Eye-Tracking Data to Compare Differences in Code Comprehension

and Code Perceptions between Expert and Novice Programmers

Sarah A. Jessup

Air Force Research Laboratory

Wright Patterson AFB, OH

sarah.jessup.ctr@us.af.mil

Sasha M. Willis

General Dynamics Information

Technology, Dayton, OH

sasha.willis@gdit.com

Gene M. Alarcon

Air Force Research Laboratory

Wright Patterson AFB, OH

gene.alarcon.1@us.af.mil

Michael A. Lee

General Dynamics Information

Technology, Dayton, OH

michael.lee@gdit.com

Abstract

Previous research has examined how eye-tracking

metrics can serve as a proxy for directly measuring the

amount of cognitive effort and processing required for

comprehending computer code. We conducted a pilot

study comprising expert (n = 10) and novice (n = 10)

computer programmers to examine group differences in

code comprehension abilities and perceptions.

Programmers were asked to read two pieces of

computer code, rate the code on various attributes, and

then describe what the code does. Results indicate that

experts and novices significantly differ in terms of their

fixation counts made during the task, such that experts

had more fixations than novices. This was counter to our

hypothesis that experts would have fewer fixations than

novices. We found no evidence that experts and novices

differed in their average fixation durations,

trustworthiness and performance perceptions, or

willingness to reuse the code.

1. Introduction

Understanding the cognitive processes involved in

code comprehension, defined as “the process of

understanding program code unfamiliar to the

programmer” [1], can provide meaningful information

about how users make decisions on whether to reuse

code. Differences in code comprehension abilities and

processing strategies between experienced versus

novice programmers may underlie these decisions.

Physiological indices, such as eye-tracking data,

can provide quantitative measurements of the decision-

making process [2]. For example, information about

where a user is looking during a code comprehension

task can reveal what information users find important,

and the amount of time needed to make decisions about

the code. The amount of time needed for text

comprehension can be approximated by measuring

fixation durations within specified regions of interest

(ROIs) [3, 4]. Additionally, the number of fixations

made within ROIs can provide data showing the

location of attention for different observers [5], as well

as how efficiently different types of observers process

that information [6, 7].

The purpose of this research is to investigate how

code comprehension differs between expert and novice

coders by measuring each group’s fixation counts and

average fixation durations within the code region using

eye-tracking technology. Additionally, we investigate

how these potential differences in eye movements may

be related to programmers’ willingness to reuse code, as

well as how trustworthiness and performance

perceptions of code differ with experience.

2. Related Work

2.1. Computer Code

Over the last few decades, there has been an

emphasis placed on science, technology, engineering,

and math (STEM) education [8]. The prevalence of

STEM courses offered in education has led to an influx

of graduates in fields such as computer and information

sciences, which has almost doubled in the number of

bachelor’s degrees awarded since the beginning of the

21st century [9]. This large increase in programmers has

resulted in an expansion of the amount of computer code

that is being developed/written, shared, and re-used.

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 114
URI: https://hdl.handle.net/10125/70624
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

Code that is available through open-source libraries may

potentially be used by thousands of people. As a result,

code can be vetted, modified, and rated by other users.

There are several factors that influence how

programmers perceive computer code. In a cognitive

task analysis [10], researchers identified three main

factors that influence programmers' reliance on, or trust

in, code previously written by other programmers.

Those factors are perceived code performance,

transparency, and reputation. Several empirical studies

have been conducted to examine how these factors

influence programmers’ trustworthiness perceptions

(e.g., [11-13]). In addition to trust in the code, whether

programmers choose to reuse code can indicate their

understanding of that code. If programmers do not

understand what a piece of code does, then they are less

likely to repurpose it for their own needs [14]. As such,

the willingness to reuse code can provide an

approximation of code comprehension, provided the

code compiles and is error-free.

2.2. Eye-Tracking

Researchers have used eye-tracking technology as

means of studying the code comprehension strategies of

programmers [15]. Eye-tracking technology provides

researchers with a means of obtaining quantitative

information about where people are looking within a

visual scene and what information is processed by the

observer [16]. Additionally, the amount of time an

observer spends fixating on a stimulus is assumed to be

proportional to the amount of time that is needed to

process that information [5, 16]. In this way, eye-

tracking data is used to gain insight into cognitive

processes including, but not limited to, the user’s

allocation of attention, text comprehension, and

problem-solving strategies [4, 5]. Importantly, these

visual metrics can also reveal individual differences

between people, such as prior knowledge of the

material, reading goals, and processing efficiency [5,

17-19].

Research in eye-tracking literature has shown an

inconsistent pattern of results specifically relating to the

analysis of fixation data across levels of expertise. In a

map visualization study, [18] found that the fixation

counts of experts were greater than those of novices due

to the expert group having shorter fixation durations,

affording them more time to explore more areas of the

image. However, [19] found the opposite pattern in a

mathematical graph reading study in which experts had

fewer, longer fixations, whereas novices exhibited more

fixations with a shorter average duration. In this study,

experts fixated for longer durations, on average, in

regions containing important information than did

novices; however, this difference was not significant

when these durations were calculated as a percentage of

total time on task, nor was the time difference

significantly different between important and less

important areas for experts versus novices. Additional

studies have allowed researchers to investigate this

mixed pattern of results.

Some studies point to experts having more efficient

information processing strategies compared to novices

[20], whereby experts not only had shorter fixation

durations, but that they also appeared to attend more to

task-relevant areas and less to task-redundant areas.

Others [21] suggest that fewer fixations by novices

indicate a decrease in engagement as compared to their

more experienced partners. Still other studies point to

differences in visual effort [22] as an explanation for

experts having fewer fixations and shorter fixation

durations than novices.

One possible explanation for why eye-tracking

research regarding differences in expertise has shown

mixed results and a variety of interpretations is because

eye-movement behaviors may vary as a function of the

task given to participants or the domain being studied.

For this reason, using visual effort as an explanation for

differences in eye movements within the domain of

software engineering appears to be the most relevant to

this research (see [15, 23-25]). In the current study, we

add to the literature by examining eye-movement data

alongside self-report measures of comprehension to

better understand the relationship between fixations and

expertise in software engineering.

2.3. Code Comprehension and Expertise

By definition, novices do not have as much

experience, skill, or knowledge as compared to experts.

As such, experts and novices differ in problem-solving

techniques, comprehension, and ability [e.g., 26-29]. It

is important to understand these differences and how

they affect performance on tasks related to

programming. For example, Soloway et al. [29] found

that when expert and novice programmers were asked to

write a line of code that was missing from a program,

experts performed better and took less time completing

the task, compared to novices. Similarly, Lee et al. [30]

found that experts were more efficient and more

accurate on a series of code comprehension tasks

compared to novices.

People attend to and process visual information

along two routes often referred to as top-down and

bottom-up processing [31]. Top-down processing refers

to the process of using schemas, or information such as

the title of a program, to infer a general idea of how the

code ought to function. Bottom-up processing, in this

context, refers to reading sections of code line by line to

gather information then chunking this information

Page 115

together with other parts of previously chucked

information. Chunks are combined in an iterative

manner to create a mental model and an understanding

of the overall code piece or software [32]. Researchers

have demonstrated that there are information-

processing differences that change with experience. For

instance, programmers with more knowledge of a

program use top-down processing, while those with less

knowledge or less familiarity with a program tend to use

bottom-up processing [32-34]. Experts form better

mental representations (e.g., pattern recognition,

hierarchical structure, etc. [35]) and have developed

schemas [29, 36] of computer code based on prior

experience, which leads to greater comprehension when

reading computer code. Novices tend to focus on

concrete information available within the code such as

how the program works, whereas experts focus on

functional information that describes what the program

does [28, 35]. Novices are not as proficient as experts in

areas such as chunking information together or

debugging and encoding strategies, and often

demonstrate a lack of efficiency when writing and

organizing lines of code compared to experts [37-39].

Code comprehension is particularly important

because it can influence decision-making. In a study of

student computer programmers, code comprehension

influenced their decision to reuse code functions [14].

Results indicated that if students understood the code

function at an abstract level rather than an algorithmic

level, they chose to reuse a code function that was

provided rather than re-write a new function. Novices

may not be able to adapt code that they did not write to

fit their current purpose; they may not make the

connections between similar code examples and their

own if they do not entirely know how the code

functions. While empirical research has demonstrated

code comprehension abilities differ with expertise, the

reviewed research is not without limitations.

A recent literature review summarized research

conducted using eye trackers in the field of software

engineers [15]. None of the reviewed studies compared

participants’ self-report (subjective) data to their

behavioral (objective) data, while also accounting for

experience. While behavioral data is invaluable, self-

reports allow researchers to understand programmers’

perceptions of code, which eye-tracking data cannot

directly measure. Another limitation concerns the length

of computer code used as stimuli. Researchers often

used smaller snippets of code (e.g., 30 lines [40]) that

were presented on a single screen, without the ability to

scroll through the code [15, 40]. When programmers

read, write, or edit code, the programs they view often

consist of hundreds or even thousands of lines of text,

sometimes across multiple screens or windows. With

the development of new eye-tracking technology,

researchers are now able to capture eye-tracking data

while users scroll through a web page or document, or

when accessing multiple windows on a single screen

[40], which older eye-tracking technologies are not able

to capture. Studies can now be conducted on longer

pieces of code, thus increasing the ecological validity of

the results that are found. We utilize this advancement

in the current study by incorporating multiple pieces of

code, each spanning a few hundred lines of text.

2.4. Research Questions

Based on previous findings reported above, we

explored whether there were differences in

programmers’ code comprehension abilities and

perceptions of code, depending on their expertise (i.e.,

experts versus novices), when longer pieces of code are

provided. There is research to support that fixation

metrics (e.g., fixation count and average fixation

duration) approximate visual effort [23-25]. However,

because there are multiple, and sometimes

contradictory, interpretations of eye movements across

experts and novices, we measure and present fixation

counts and average fixation durations rather than

combining these two metrics into a single variable (i.e.,

visual effort). Two additional measures were used to

determine code comprehension: the ability to accurately

describe the code function, and the willingness to reuse

code. Additionally, two questions were used to evaluate

programmers’ perceptions of code: 1) trustworthiness

ratings and 2) performance ratings. More specifically,

we have the following hypotheses and research

questions:

Hypothesis 1: Compared to novices, experts will

show more effective code comprehension evidenced by

A) fewer fixation counts and shorter fixation durations,

B) accurately describing the code functions more

frequently, and C) intending to reuse the code pieces

more often.

Research Question 1: Are there differences

between experts’ and novices’ code reuse intentions,

after controlling for fixation counts and average fixation

durations?

Research Question 2: Are there differences

between experts and novices on perception of A) code

trustworthiness, and B) code performance when

controlling for fixation counts and average fixation

durations?

3. Method

3.1. Participants

A total of 36 participants were recruited for pilot

data as part of a larger study. Novice programmers (n =

Page 116

22) were recruited from a Midwestern college, and

Expert programmers (n = 14) were recruited from local

industry around the college. Requirements to participate

were at least three years of programming experience and

participants had to know Java well enough to read and

understand Java code. In total, 16 cases were excluded

from analysis due to poor data quality and/or lack of

experience (less than three years), or if there was an

average track loss of 15% or greater on any of the

stimuli pages. The remaining 20 participants ranged

from 20-48 years of age (M = 29.85, SD = 8.31). The

average age of Novices was 24 years (SD = 3.00), while

the average age of Experts was 36 years (SD = 7.63).

Total years of programming experience of participants

ranged from 4-20 years, (M = 7.25, SD = 4.22), 45%

listed Java as their primary programming language, 90%

were male, and 50% were students. Participants were

recruited from flyers, email, and by word of mouth.

Participants received compensation in the form of a $50

gift card. The study was overseen by the Air Force

Research Laboratory institutional review board.

3.2. Task and Stimuli

Participants viewed two pieces of computer code as

part of a code comprehension task. All participants

viewed each piece of code in the same order. Code 1

was a default properties parser (277 lines, 952×3070

pixels), while Code 2 was an encryptor (264 lines,

952×2412 pixels). Both pieces of code were described

as coming from a reputable source.

3.3. Eye-tracking Metrics

Based on previous literature utilizing eye trackers

in software engineering research (for review see [15]),

we have included two eye-tracking metrics that are

commonly collected when participants read computer

code: fixation count (FC) and average fixation duration

(AFD). Gaze data were collected using a Smart Eye

Aurora remote eye tracker, which uses infrared light to

record where a participant is looking on the screen at a

sampling rate of 60 Hz. Using a remote eye tracker as

opposed to head-mounted eyewear allows for the

researcher to study participants in a way that is similar

to how users would naturally read code. The iMotions

Screen-Based Eye Tracking Module was used to

conduct a calibration procedure and collect recordings

of gaze data during the data collection process. Offline,

the iMotions software performed preliminary analyses

including estimates of data quality (e.g., track loss) and

markers for fixations made within each presented

screen. The iMotions software defined fixations as the

periods during which eye movements did not exceed 30

degrees per second (with an average tracking error of

about 0.5 degrees [41]) for a minimum of 60

milliseconds [42]. The x,y screen coordinates of each

fixation were calculated by averaging all gaze positions

within a fixation.

3.3.1. Fixation Count. Fixation count (FC) was defined

as the number of fixations made within the pixel range

of code for each participant and for Code 1 and Code 2

separately.

3.3.2. Average Fixation Duration. Average fixation

duration (AFD) was computed separately for each

participant and for Code 1 and Code 2 separately by

computing the average duration in milliseconds of each

fixation spent within the pixel range of the code regions.

3.4. Self-Report Measures

3.4.1. Programming Experience. Participants were

asked if they were a student or not. Those that answered

“Yes, I am a student” were classified as Novice

programmers. Participants that selected “No, I am not a

student” were classified as Expert programmers.

Novices had a range of 5-7 years of programming

experience (M = 5.9), and Experts ranged from 4-20

years of experience (M = 8.6).

3.4.2. Code Description. At the end of each page

containing code, participants were asked to describe

what the code does with the following prompt, “To the

best of your knowledge, please describe what this code

does in the text box below.”

3.4.3. Code Reuse. After viewing each code,

participants were asked if they would reuse the code

without changes using a single-item measure.

Participants could reply with the binary responses “Use”

or “Don’t use.”

3.4.4. Perceptions of Code. Participants were asked to

answer the following questions about each code using a

7-point scale: “How trustworthy is the code?” (1 = Not

at all trustworthy to 7 = Very trustworthy), and “How

well do you think this code will perform?” (1 = Not at

all well to 7 = Very well).

3.5. Procedure

After consenting to take part in the research,

participants were seated approximately 70 cm from the

screen on which they completed a 4-point calibration

procedure using the iMotions Screen-Based Eye

Tracking Module at a 1920x1080 screen resolution.

Failure to reach an appropriate level of calibration

resulted in dismissal from the study; otherwise,

Page 117

participants continued through the experiment by

completing a demographics survey.

After the survey and prior to the task, participants

were shown the task instructions. All comments had

been removed from the code. All packages had been

modified to remove original sources. All the code

compiled and was error-free. After reading the

instructions, participants saw the first piece of code and

then evaluated the code using the ratings provided and

wrote a brief description of the code’s function. These

evaluations were completed separately for each code.

Only one code was viewed and evaluated at a time. After

the task was completed, participants were debriefed,

thanked for their participation, and compensated for

their time.

4. Results

4.1. Code Comprehension (H1)

4.1.1. Fixation Measurements (H1:A). The number of

fixations (FC) and their average durations (AFD)

collected for each Code may have varied by the function

of the code, text length, etc. Because of these differences

across Code 1 and Code 2, we decided to conduct

separate analyses for each Code. A one-way mixed-

design multivariate analysis of variance (MANOVA)

was conducted for both Code 1 and Code 2 to determine

the relationship between Expertise (Experts versus

Novices) and FC and AFD. We analyzed the data

against a null hypothesis that no significant differences

exist between Experts and Novices regarding their eye-

movement data collected during the task.

The results of the MANOVAs revealed that

Expertise had a significant main effect on fixation

measurements for Code 1, [F(2, 17) = 6.51, p = .008, ηp
2

= .43, power = .85], and for Code 2, [F(2, 17) = 11.03,

p < .001, ηp
2 = .57, power = .98]. Univariate ANOVAs

were conducted for Code 1 and Code 2 to determine the

simple effects of Expertise for FC and AFD. Means and

standard errors are listed in Table 1. There was a

significant difference between Novices and Experts for

FC on Code 1 [F(1, 18) = 13.37, p = .002, ηp
2 = .43,

power = .93], and Code 2 [F(1, 18) = 23.35, p < .001,

ηp
2 = .56, power > .99]. See Figure 1. No significant

differences were found in AFD for either Code 1 or

Code 2. See Figure 2.

Although the MANOVA results were significant,

they were in the opposite direction hypothesized.

Experts had more fixations for both Code 1 and Code 2

compared to Novices, contrary to our hypothesis that

Experts would have fewer fixations compared to

Novices. Thus, Hypothesis 1:A was not supported.

In general, participants fixated longer and on more

aspects of Code 1 compared to Code 2. One reason for

this may have been because Code 1 was the first code

introduced during the task. Participants may have taken

longer examining the code and fixated more as they

were not only figuring out what the code does, but also

discovering what information they had to glean from the

code as indicated by the self-report responses. That is,

participants were getting used to the task. For Code 2,

participants were presumed to be more familiar and

proficient with the study task.

Figure 1. Number of fixations (FC) users had on Code 1

and Code 2. Error bars represent standard errors.

Figure 2. Average amount of time (milliseconds) of users’

fixations (AFD) on Code 1 and Code 2. Error bars represent

standard errors.

4.1.2. Code Description (H1:B). To test whether

Experts accurately described the code functions more

often than Novices, as indicated by their answers of

code descriptions, a Fisher's Exact Test was calculated.

Each of the programmer’s answers to the question,

“Describe what this code does” was screened for

accuracy. For Code 1, all Experts correctly described

what the code did, and 6 of the Novices were correct,

while 4 Novice programmers were incorrect in

describing the code’s functionality. The difference

between the code description accuracy of Experts and

Novices was not significant. For Code 2, all

programmers correctly described the code’s function,

regardless of Expertise. Hypothesis 1:B was not

supported.

0

300

600

900

1200

1500

1800

Code 1 Code 2

N
u
m

b
er

 o
f

F
ix

at
io

n
s

Novices

Experts

0

100

200

300

400

500

600

Code 1 Code 2A
v
er

ag
e

F
ix

at
io

n
 D

u
ra

ti
o

n

(i
n
 m

s)

Novices

Experts

Page 118

Table 1. Means and standard errors of fixation measurements and self-reports for Experts and Novices.

 Code 1 Code 2

 Novices Experts Novices Experts

Fixation Measurements

Fixation Count 616.00 (135.43) 1397.90 (165.46) 233.80 (45.41) 617.20 (65.06)

Average Fixation Duration (in ms) 451.37 (48.97) 416.01 (30.49) 437.99 (55.66) 439.31 (22.25)

Self-Reports

Trustworthiness Perceptions 5.00 (0.45) 4.40 (0.37) 5.70 (0.26) 4.40 (0.62)

Performance Perceptions 5.30 (0.30) 4.40 (0.43) 5.90 (0.35) 5.30 (0.42)

Code Reuse Intentions - Use 7 5 9 6

Code Reuse Intentions - Don’t Use 3 5 1 4

Note. Standard errors in parentheses. Trustworthiness and Performance items were measured on a 7-point scale. Code reuse

intentions are reported as total number of participants that chose to either Use or Don’t Use the code.

4.1.3. Code Reuse (H1:C and RQ1). A Generalized

Estimating Equation (GEE) analysis was conducted for

each Code to evaluate differences in Code Reuse

intentions between Experts and Novices. This analysis

was chosen due to the binary nature of the dependent

variable. Results indicated that neither Expertise nor the

intercept was significant for Code 1. The intercept was

significant for Code 2, [Wald χ2 (1, N = 20) = 4.35, β =

-2.20, p = .037], though Expertise was not, indicating

that factors other than programmer experience

significantly contribute to Code Reuse intentions.

Although not significantly different, an inspection of the

means revealed Experts appeared more willing to reuse

Code 1 and Code 2 than Novices (see Table 1).

Because the intercept in the above analysis was

significant, we had justification for examining if

fixation measurements contributed to the variance in

Code Reuse that was not accounted for by Expertise.

Separate GEE analyses were conducted for Code 1 and

Code 2, which included Expertise, FC, and AFD

(standardized for ease of interpretation), with Reuse

intentions as the outcome variable. The interaction

between Expertise and AFD was found to significantly

contribute to the variance in Code Reuse intentions for

both Code 1 [Wald χ2 (1, N = 20) = 16.47, β = -5.79, p

< .001], and for Code 2 [Wald χ2 (1, N = 20) = 4.44, β

= -4.94, p = .035].
This interaction revealed that Novices (Code 1: M

= 426.71, SE = 22.59; Code 2: M = 440, SE = 58.99) had

shorter AFDs than Experts (Code 1: M = 482.46, SE =

20.54; Code 2: M = 475.88, SE = 20.74) when they had

the intention to Reuse Code, but longer AFDs (Code 1:

M = 508.92, SE = 92.48; Code 2: M = 419.66, SE = 0.00)

than Experts (Code 1: M = 349.57, SE = 23.80; Code 2:

M = 384.44, SE = 9.96) when they did not intend to

Reuse Code (see Figures 3 and 4). The standard errors

for this data should be interpreted with caution because

the sample of participants who were both Novices and

did not intend to Reuse Code was so small (see Table 1).

The intercept was also significant for the model for

Code 2 [Wald χ2 (1, N = 20) = 10.13, β = -3.91, p =

.001], suggesting that other variables not accounted for

in the model influence the relationship between

Expertise and Reuse intentions.

Figure 3. Interaction between Expertise and average

amount of time (milliseconds) of users’ fixations (AFD) on

Code 1.

Figure 4. Interaction between Expertise and average

amount of time (milliseconds) of users’ fixations (AFD) on

Code 2.

4.2. Code Perceptions (RQ2)

4.2.1. Perceived Trustworthiness (RQ2:A). We ran a

one-way analysis of covariance (ANCOVA) on each

300

400

500

600

700

Use Don't Use

A
v
er

ag
e

F
ix

at
io

n
 D

u
ra

ti
o

n

(i
n
 m

s)

Novices

Experts

300

350

400

450

500

550

Use Don't Use

A
v
er

ag
e

F
ix

at
io

n
 D

u
ra

ti
o

n

(i
n
 m

s)

Novices

Experts

Page 119

Code to explore if there was a relationship between

Expertise and perceptions of Code Trustworthiness,

while controlling for FC and AFD. There were no

significant results for either Code 1 or Code 2 (see

Figure 5).

Figure 5. User ratings of Trustworthiness perceptions of

Code 1 and Code 2. Error bars represent standard errors.

4.2.2. Perceived Performance (RQ2:B). Separate one-

way ANCOVAs were also conducted for each Code to

examine the relationship between Expertise and

perceptions of Code Performance, when controlling for

FC and AFD. For Code 1, there was a significant main

effect of Expertise, [F(1, 14) = 9.18, p = .009, ηp
2 = .40,

power = .80], on perceptions of Code Performance after

controlling for FC and AFD. On average, Novices

perceived the Code Performance as higher than Experts

(see Figure 6). For Code 2, all results were non-

significant.

Figure 6. User ratings of Performance perceptions of Code

1 and Code 2. Error bars represent standard errors.

5. Discussion

This paper explored how code comprehension—

measured by eye-tracking metrics, accuracy of code

descriptions, and reuse intentions—and programmer

perceptions of code trustworthiness and performance

differed between expert and novice programmers. With

regard to code comprehension, group differences were

only observed with eye-tracking metrics. By measuring

fixation counts and average fixation durations for both

novices and experts across Code 1 and Code 2, we found

evidence that there are differences between groups, such

that experts had more fixations compared to novices.

However, average fixation duration did not differ

between experts and novices. We also explored how

programmers' perceptions of the code pieces differed

between experts and novices, after controlling for

fixation counts and average fixation durations. While

many of our analyses lacked the statistical power

necessary to draw conclusive inferences, we found a

significant interaction between expertise and average

fixation duration on intention to reuse code.

While the analyses for Hypothesis 1:A did reveal

statistically significant differences in fixation counts

between experts and novices, these results were in the

opposite direction that we predicted. Based on existing

literature on code comprehension, we hypothesized that

experts would have fewer fixation counts compared to

novices. In this study, experts had higher fixation counts

on Code 1 and Code 2 compared to novices. Past

neuroscience research may shed some light on these

results. In an electroencephalogram (EEG) study, Lee et

al. [30] found that expert programmers, compared to

novices, showed greater beta and gamma wave

activation while performing comprehension tasks. The

authors interpreted these findings as indicating that

experts were devoting more concentration toward, and

utilizing more cognitive skills in, the tasks. Similarly,

eye-tracking metrics provide insight into ongoing

cognitive processes with longer fixation durations and

higher fixation counts indicating more complex

processing [16], which may indicate that the experts in

the present study were engaging in more complex

processing than the novices.

Theeuwes and Belopolsky [43] explain that

rewarding stimuli will draw more fixations to their

locations than stimuli that are not associated with a

reward. In the context of this research, certain functions

or subsections of the code may have been perceived as

rewarding or relevant to experts who would know how

to apply those functions to the answers in their

descriptions of the purpose of the code. Theeuwes and

Belopolsky also note that the rewarding stimuli do not

hold attention at those locations for longer durations of

time than other aspects of the environment, which could

explain why AFD was not significantly different

between experts and novices. Future examination of this

data could explore which subsections of code drew

relatively more fixations to help clarify the reason why

experts made, on average, more fixations than novices.

In this study, we defined the region of interest as the

global piece of code, but further examination into which

area of the code drew more fixations would provide

greater insight into the different processing strategies

between groups. An analysis of scan path data may

show that the way readers navigate through code can

differentiate between experts and novices.

1

2

3

4

5

6

7

Code 1 Code 2

R
at

in
g
s

o
f

T
ru

st
w

o
rt

h
in

es
s

Novices

Experts

1

2

3

4

5

6

7

Code 1 Code 2

R
at

in
g
s

o
f

P
er

fo
rm

a
n
ce

Novices

Experts

Page 120

Although the results for code reuse were not

statistically different between experts and novices, an

examination of the means showed that overall, experts

chose to use Code 1 and Code 2 less often than novices.

These differences may become significant with a larger

sample of participants. Because the code stimuli that

were included in our task were error-free and compiled,

both novices and experts could have intended to reuse

the code without the need to check for syntax errors. It’s

possible that novices would elect to reuse code more

often than experts due to their relative inability to create

new code from scratch.

Even though we found no statistical differences

between experts’ and novices’ reuse intentions, the

intercept in the original GEE model was significant,

which indicated that other variables significantly

contributed to the variance in reuse intentions. We

added fixation measurements to the model and found a

significant interaction between expertise and average

fixation durations. For both Code 1 and Code 2, novices

had shorter fixations than experts when they intended to

reuse the code but longer fixations than experts when

they did not intend to reuse the code. This might have

been the case because once novices indicated they

intended to reuse the code, they did not need to gather

as much evidence to support this decision. Experts, on

the other hand, may have continued to evaluate their

decision while reading through the code, such that they

may have spent more time reading each line to ensure

that the code could be reused. When novices did not

intend to reuse the code, they spent more time on each

fixation possibly because they were figuring out if they

knew enough about the code’s functions that they could

modify it appropriately for a future purpose. In contrast

to this, experts could quickly decide that they would not

reuse the code after finding a section of code that did not

align with their mental model of how the code should be

written. Once this decision was made, they would only

need to gather as much detail from each fixation as

would be needed to report the code’s overall function

for the final code description question.

It is important to note that the accuracy of

participants’ code descriptions did not significantly

differ with expertise. There are two explanations as to

why this occurred. First, we measured expertise by

whether participants indicated they were a student.

Some participants that were students had more years of

experience coding than programmers who were not

students, and vice versa. However, exploratory analyses

using years of experience, as well as age, in place of

student status did not change the results of our analyses,

and thus were not reported, providing support for our

chosen expertise classifier. Second, at the top of every

piece of code there was a line that stated what the code

was used for (e.g., “public abstract class

BasicAnnotationProcessor”), which may have helped

guide the responses that participants gave in their code

descriptions. Future analyses of differences between

experts and novices may benefit from not including this

preliminary description of the code and also removing

cases for which the user was not able to accurately

describe the code’s function or purpose.

This research was conducted on pilot data that

included a small sample size of programmers. Although

we had some statistically significant results and data

trending towards significant differences, we had low

power for many of our analyses, which indicates that we

need to continue collecting more data in order to obtain

results that can be interpreted with confidence.

5.1. Implications

When it comes to integrating eye-tracking

technology into applied research, the stimuli that

comply with the allowances of the equipment can be

seen as a limitation to researchers. That is, there may be

the perception that eye-tracking integration requires

images used for visual stimuli to be contained within a

single screen length. However, the code stimuli that

were used in this research were quite long and extended

several screen lengths. Participants needed to scroll

through the code in order to comprehend the piece in its

entirety and answer the questions that followed. Our

study adds to the existing literature of eye-movement

behavior during computer code comprehension by

including these longer pieces of code and scrolling

behavior.

The combination of both behavioral (eye-tracking)

and subjective (self-reports) measures of code

comprehension are similarly lacking from the existing

literature, although studies combining the two facets are

beginning to emerge (e.g., [44]). Our study integrates

these two aspects, providing a more complete picture of

the factors that influence code comprehension. While

not included in this research, future directions for this

comparison might include directly comparing

functionally similar pieces of source code with various

changes to other code aspects (e.g., readability,

organization). This analysis could reveal other factors

that influence code reuse, such as what types of code are

easier for novices to adopt, are more trustworthy,

perform better, etc.

5.2. Conclusion

In summary, analyzing eye-tracking data does show

that there are meaningful differences in the eye

movements of experts versus novices during a code

comprehension task. These results could be interpreted

in different ways. There is a growing need for eye-

Page 121

tracking research in this area. As indicated by our

results, there are alternative interpretations from what

would be posited by some of the existing literature.

Principally, there are multiple avenues for including

eye-tracking research in code comprehension tasks that

have not yet been explored, which can help explain or

uncover critical differences between levels of expertise.

6. Acknowledgement

This material is based upon work supported by U.S. Air

Force Research Laboratory contracts FA8650-16-D-

6616, 0003. Any opinions, findings, and conclusions or

recommendations expressed in this article are those of

the authors and do not necessarily reflect the views of

the U.S. Air Force. DISTRIBUTION STATEMENT A.

Approved for public release: 88ABW Cleared 07/10/19;

88ABW-2020-2192.
This research was also supported, in part, by an

appointment to the Postgraduate Research Participant

Program at the U.S. Air Force Research Laboratory

administered by the Oak Ridge Institute for Science and

Education through an interagency agreement between

the U.S. Department of Energy and USAFRL.

7. References

[1] J. Koenemann and S.P. Robertson, “Expert problem-

solving strategies for program comprehension”, In

Proceedings of the Conference on Human Factors in

Computing Systems (CHI), Association for Computing

Machinery, United States, 1991, pp. 125-130.

[2] S. Kurimori and T. Kakizaki, “Evaluation of Work Stress

Using Psychological and Physiological Measures of Mental

Activity in a Paced Calculating Task”, Industrial Health,

National Institute of Occupational Safety and Health, Japan,

1995, pp. 7-22.

[3] W.C. Li, J.J. Lin, G. Braithwaite, and M. Greaves, “The

Development of Eye Tracking in Aviation (ΗP2) Technique

to Investigate Pilot's Cognitive Processes of Attention and

Decision-Making”, In Proceedings of the Conference of the

European Association for Aviation Psychology, Hogrefe

Publishing Group, Portugal, 2016, pp. 26-30.

[4] M.K. Eckstein, B. Guerra-Carrillo, A.T.M. Singley, and

S.A. Bunge, “Beyond eye gaze: What else can eyetracking

reveal about cognition and cognitive development?”,

Developmental Cognitive Neuroscience, Elsevier,

Netherlands, 2017, pp. 69-91.

[5] G.E. Raney, S.J. Campbell, and J.C. Bovee, “Using Eye

Movements to Evaluate the Cognitive Processes Involved in

Text Comprehension”, Journal of Visualized Experiments,

JoVE, United States, 2014, Article e50780.

[6] N.P. Murray and C.M. Janelle, “Anxiety and performance:

A visual search examination of the processing efficiency

theory”, Journal of Sport and Exercise Psychology, Human

Kinetics Journals, United States, 2003, pp. 171-187.

[7] M.G. Calvo, P. Avero, and D. Lundqvist, “Facilitated

detection of angry faces: Initial orienting and processing

efficiency”, Cognition and Emotion, Taylor & Francis, United

Kingdom, 2006, pp. 785-811.

[8] N.K. Dejarnette, “America’s Children: Providing Early

Exposure to STEM (Science, Technology, Engineering and

Math) Initiatives”, Education, Project Innovation, United

States, 2012, pp. 77-84.

[9] T.D. Snyder, C. de Brey, and S.A. Dillow, “Digest of

Education Statistics 2018”, National Center for Education

Statistics, United States, 2019, retrieved from

https://nces.ed.gov/programs/digest/d19/tables/dt19_322.10.a

sp

[10] G.M. Alarcon, L.G. Militello, P. Ryan, S.A. Jessup, C.S.

Calhoun, and J.B. Lyons, “A Descriptive Model of Computer

Code Trustworthiness”, Journal of Cognitive Engineering and

Decision Making, SAGE Publications, United States, 2016,

pp. 107-121.

[11] G.M. Alarcon, A.M. Gibson, C. Walter, R.F. Gamble,

T.J. Ryan, S.A. Jessup, B.E. Boyd, and A. Capiola, “Trust

Perceptions of Metadata in Open-Source Software: The Role

of Performance and Reputation”, Systems, MDPI,

Switzerland, 2020, Article 28.

[12] G.M. Alarcon, A.M. Gibson, S.A. Jessup, A. Capiola, H.

Raad, and A.M. Lee, “Effects of Reputation, Organization,

and Readability on Trustworthiness Perceptions of Computer

Code”, In Proceedings of the Conference on Human-

Computer Interaction (HCI), Springer, Germany, 2020, pp.

367-381.

[13] G.M. Alarcon, R.F. Gamble, S.A. Jessup, C. Walters, T.J.

Ryan, D.W. Wood, and C.C. Calhoun, “Application of the

Heuristic-Systematic Model to Computer Code

Trustworthiness: The Influence of Reputation and

Transparency”, Cogent Psychology, Taylor & Francis, United

States, 2017, Article 1389640.

[14] C.M. Hoadley, M.C., Linn, L.M. Mann and M.J. Clancy,

“When, Why and How Do Novice Programmers Reuse Code”,

W. Gray and D. Boehm-Davis (Eds.), Empirical Studies of

Programmers: Sixth Workshop, Ablex Publishing, United

States, 1996, pp. 109-130.

[15] Z. Sharafi, Z. Soh, and Y.G. Guéhéneuc, “A Systematic

Literature Review on the Usage of Eye-Tracking in Software

Engineering”, Information and Software Technology,

Elsevier, Netherlands, 2015, pp. 79-107.

[16] M.A. Just and P.A Carpenter, “The Role of Eye-Fixation

Research in Cognitive Psychology”, Behavior Research

Methods & Instrumentation, Springer, Germany, 1976, pp.

139-143.

[17] J.K. Kaakinen and J. Hyönä, “Perspective Effects in

Repeated Reading: An Eye Movement Study”, Memory &

Cognition, Springer, Germany, 2007, pp. 1323-1336.

[18] K. Ooms, P. De Maeyer, and V. Fack, “Study of the

attentive behavior of novice and expert map users using eye

tracking”, Cartography and Geographic Information Science,

Taylor & Francis, United States, 2014, pp. 37-54.

Page 122

[19] V. Embse, “An eye fixation study of time factors

comparing experts and novices when reading and interpreting

mathematical graphs”, Doctoral dissertation, The Ohio State

University, United States, 1987, pp. 1-158.

[20] A. Gegenfurtner, E. Lehtinen, and R. Säljö, “Expertise

differences in the comprehension of visualizations: A meta-

analysis of eye-tracking research in professional domains”,

Educational Psychology Review, Springer, Germany, 2011,

pp. 523-552.

[21] M. Villamor, M. Rodrigo, and T. Mercedes,

“Characterizing Individual Gaze Patterns of Pair

Programming Participants”, Proceedings of the 26th

International Conference on Computers in Education (ICCE

2018), APSCE, Taiwan, 2018, pp. 193-198.

[22] R. Turner, M. Falcone, B. Sharif, and A. Lazar, “An eye-

tracking study assessing the comprehension of C++ and

Python source code”, Proceedings of the Symposium on Eye

Tracking Research and Applications, ACM, United States,

2014, pp. 231-234.

[23] D. Binkley, M. Davis, D. Lawrie, J. Maletic, C. Morrell,

and B. Sharif, “The impact of identifier style on effort and

comprehension”, Empirical Software Engineering, Springer,

Germany, 2013, pp. 219-276.

[24] B. Sharif and J. Maletic, “An eye tracking study on

camelcase and under_score identifier styles”, 2010 IEEE 18th

International Conference on Program Comprehension, Wiley-

IEEE Press, Netherlands, 2010, pp. 196-205.

[25] N. Ali, Z. Sharafi, Y.G. Guéhéneuc, and G. Antoniol, “An

empirical study on the importance of source code entities for

requirements traceability”, Empirical Software Engineering,

Springer, Germany, 2015, pp. 442-478.

[26] W.G. Chase and H.A. Simon, “Perception in Chess”,

Cognitive Psychology, Elsevier, Netherlands, 1973, pp. 55-51.

[27] K.A. Ericsson and J. Smith, “Toward a General Theory

of Expertise: Prospects and Limits”, Cambridge University

Press, United Kingdom, 1991.

[28] B. Adelson, “When Novices Surpass Experts: The

Difficulty of a Task Increases with Expertise”, Journal of

Experimental Psychology: Learning, Memory, and Cognition,

APA, United States, 1984, pp. 483-495.

[29] E. Soloway, E. Adelson, and K. Ehrlich, “Knowledge and

Processes in the Comprehension of Computer Programs”,

M.T.H. Chi, R. Glaser, and M.J. Farr (Eds.), The Nature of

Expertise, Lawrence Erlbaum Associates, United States, 1988.

[30] S. Lee, A. Matteson, D. Hooshyar, S. Kim, J. Jung, G.

Nam, and H.S. Lim, “Comparing Programming Language

Comprehension between Novice and Expert Programmers

Using EEG Analysis”, In Proceedings of the International

Conference on Bioinformatics and Bioengineering (BIBE),

Wiley-IEEE Press, Netherlands, 2016, pp. 350-355.

[31] M. Corbetta and G.L. Shulman, “Control of goal-directed

and stimulus-driven attention in the brain”, Nature

Neuroscience, Springer, Germany, 2002, pp. 201-215.

[32] C.L. Corritore and S. Wiedenbeck, “An Exploratory

Study of Program Comprehension Strategies of Procedural

and Object-Oriented Programmers”, International Journal of

Human-Computer Studies, Elsevier, Netherlands, 2001, pp. 1-

23.

[33] A.J. Ko and B. Uttl, "Individual Differences in Program

Comprehension Strategies in Unfamiliar Programming

Systems", In Proceedings of the International Workshop on

Program Comprehension (ICPC), Wiley-IEEE Press,

Netherlands, 2003, pp. 175-184.

[34] A. von Mayrhauser, and A.M. Vans, “Program

Understanding During Software Adaptation Tasks”, In

Proceedings of International Conference on Software

Maintenance (ICSME), Wiley-IEEE Press, Netherlands, 1998,

pp. 316-325.

[35] V. Fix, S. Wiedbeck, and J. Scholtz, “Mental

Representations of Programs by Novices and Experts”, In

Proceedings of the Conference on Human Factors in

Computing Systems (CHI), Association for Computing

Machinery, United States, 1993, pp. 74-79.

[36] A.C. Graesser, Prose Comprehension: Beyond the Word,

Springer-Verlag, United States, 1981.

[37] W. Barfield, “Skilled Performance on Software as a

Function of Domain Expertise and Program Organization”,

Perceptual and Motor Skills, SAGE Publications, United

States, 1997, pp. 1471-1480.

[38] I. Vessey, “Expertise in Debugging Computer Programs:

A Process Analysis”, International Journal of Man-Machine

Studies, Academic Press, United States, 1985, pp. 459-494.

[39] N. Ye and G. Salvendy, “Quantitative and Qualitative

Differences between Experts and Novices in Chunking

Computer Software Knowledge”, International Journal of

Human‐Computer Interaction, Taylor & Francis, United

Kingdom, 1994, pp. 105-118.

[40] B. Sharif, and J.I. Maletic, “iTrace: Overcoming the

Limitations of Short Code Examples in Eye Tracking

Experiments”, In Proceedings of IEEE International

Conference on Software Maintenance and Evolution

(ICSME), Wiley-IEEE Press, Netherlands, 2016, pp. 647.

[41] G. Funke, E. Greenlee, M. Carter, A. Dukes, R. Brown,

and L. Menke, “Which eye tracker is right for your research?

Performance evaluation of several cost variant eye trackers”,

In Proceedings of the Human Factors and Ergonomics Society

Annual Meeting, SAGE Publications, United States, 2016, pp.

1240-1244.

[42] “I-VT Fixation Filter: Configurations in iMotions”,

iMotions A/S, Denmark, n.d., retrieved from

https://help.imotions.com/hc/en-us/articles/207696189-I-VT-

Fixation-Filter-Configurations-in-iMotions.

[43] J. Theeuwes and A.V. Belopolsky, “Reward Grabs the

Eye: Oculomotor Capture by Rewarding Stimuli”, Vision

Research, Elsevier, Netherlands, 2012, pp. 80-85.

[44] S. Papavlasopoulou, K. Sharma, and M.N. Giannakos,

“How do You Feel about Learning to Code? Investigating the

Effect of Children’s Attitudes Towards Coding Using Eye-

Tracking”, International Journal of Child-Computer

Interaction, Elsevier, Netherlands, 2018, pp. 50-60.

Page 123

