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Abstract

For years, researchers have demonstrated the
viability and applicability of game theory principles
to the field of artificial intelligence. Furthermore,
game theory has been shown as a useful tool for
researching human-machine interaction, specifically
their cooperation, by creating an environment where
cooperation can initially form before reaching a
continuous and stable presence in a human-machine
system. Additionally, recent developments in
reinforcement learning artificial intelligence have
led to artificial agents cooperating more efficiently with
humans, especially in more complex environments. This
research conducts an empirical study to understand how
different modern reinforcement learning algorithms
and game theory scenarios could create different
cooperation levels in human-machine teams. Three
different reinforcement learning algorithms (Vanilla
Policy Gradient, Proximal Policy Optimization, and
Deep Q-Network) and two different game theory
scenarios (Hawk Dove and Prisoners dilemma)
were examined in a large-scale experiment. The
results indicated that different reinforcement learning
models interact differently with humans with Deep-Q
engendering higher cooperation levels. The Hawk
Dove game theory scenario elicited significantly higher
levels of cooperation in the human-artificial intelligence
system. A multiple regression using these two
independent variables also found a significant ability to
predict cooperation in the human-artificial intelligence
systems. The results highlight the importance of social
and task framing in human-artificial intelligence
systems and noted the importance of choosing
reinforcement learning models.

1. Introduction

Human-artificial intelligence (AI) systems have a
massive potential to outperform either agent alone.
Human-AI systems are characterized by at least one

human and at least one AI interacting with one another
in a shared environment or task, as seen in other recent
work [1]. This potential began to be shown when
IBM’s artificial intelligence (AI) system Deep Blue
defeated Kasparov [2], shifting the field of human-AI
interaction. Human-AI systems’ ability was shown
explicitly in Kasparov’s ”advanced chess” tournament
(where AIs, humans, and human-AI systems compete
against each other), highlighting a human-AI system
that could defeat both the top AI as well as the top
human chess players. This team consisted of an amateur
human and a mediocre AI [3]. The finding suggested
that successful collaboration between humans and AI is
certainly possible.

The enhanced ability behind many human-AI
systems seen in recent research lies in leveraging
either agent’s strengths. As research published in
Nature shows bots attempting to solve a graph coloring
problem requiring high levels of coordination, fails to
achieve a globally optimal solution [4]. The study
points out a way to transcend the limitations of bots
coordinating on a macro level by adding humans
to the team [4]. Successful human-AI systems are
capable of doing more than merely playing Chess and
solving graph coloring problems; they extend even to
the medical field. Specifically, in cancer detection,
as teams of doctors partnering with machine learning
algorithms outperformed both expert teams as well as
state-of-the-art neural networks in diagnosing cancer
[5]. This level of success can be attributed to the unique
advantages that emerge from harvesting human and AI
potential in a compatible and integrated way and should
pave the way for more research of this kind.

However, these human-AI systems are not without
their challenges. Prior research has shown that effective
team behavior occurs when each team member seeks
to model their teammates’ thought process, which is
inherently more challenging in a human-AI system [6].
Specifically, humans tend to distance themselves from
teammates they perceive to be autonomous, and AIs tend
to avoid wanting to cooperate with human agents who
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do not share their thought process [7]. These challenges
can make cooperation in human-AI systems difficult,
especially when coupled with the fact that cooperation
in these human-AI systems can be significantly altered
by the nature of the task and the most mutually
beneficial outcome, a problem compounded by the fact
that task and social framing varies widely from system
to system.

Task framing is the reason for taking action, while
social framing is the context of the agents’ relationship
and the results of taking an action [8]. The importance
of task design and group dynamics is mentioned in
recent research agendas on human-machine interaction
[9], emphasizing the importance of addressing these
aspects of human-AI systems as the current study does.
Choosing the right reinforcement learning model (RL)
from the many available contributes to the problem, as
the chosen model may impact their ability to cooperate.

RL agents become more prevalent in applied settings
around the world as time goes on, serving in a variety of
different industries [10, 11], the need for further research
to clarify the dynamics behind human-AI systems is
obvious. With the numerous RL models available to
practitioners, there is a specific need to highlight the
dynamics behind the RL model used on human-AI
system dynamics like cooperation. Along with the
various settings and contexts that human-AI systems are
deployed to, it is vital to identify how the social and task
framing of these systems may potentially alter system
outcomes.

The current paper leverages the use of two
similar but distinct game theory scenarios that
specifically emphasize cooperation to construct strategic
interactions. The experimental setups incorporate three
state-of-the-art RL models whose strategic behavior
illuminates their different receptiveness to specific
incentive structures, while the two game theory
scenarios emphasize differences in social and task
framing for these same systems. In order to capture
these differences, the current study focuses on
answering the following research questions:

• Research Question 1: Does average overall
cooperation in a human-AI system differ based on
the reinforcement learning model used?

• Research Question 2: What effect does the game
theory scenario have on average overall human-AI
system cooperation?

• Research Question 3: Can the game theory
scenario and reinforcement learning model used
to predict overall human-AI system cooperation?

2. Related Work

Game theory is the study of the decision-making
process of self-interested agents in strategic situations.
Emerging from the intersection between mathematics
and economics, it functions as a highly appropriate
framework to conduct AI research in cooperation
as it provides a mathematical common ground that
humans can understand, and AI can train to be experts
in. Hence, a reward-maximizing agent embodies the
definition of a ”rational” player within these specific
contexts; however, this does not mean this mathematical
rationality would extend to other contexts as complexity,
and environmental factors could change. While a
human could achieve this rationality, AI would have
greater consistency in being rational in game theory
specific scenarios. While it is out of the scope of
this study, human rationality in different environments
could be further explored through concepts such as
bounded rationality, which would provide a more
human-centered definition of rationality, especially
in contexts outside of these simplistic game theory
scenarios. However, the game theory rationality studied
here is essential in reaching a Nash Equilibrium, where
each individual’s strategies can converge and mutually
respond to each other [12]. The use of game theory
models, and therefore game theory scenarios imply that
players are going to converge to this equilibrium.

2.1. Game Theory

While the Nash Equilibrium can be present in a
wide variety of scenarios, the optimal equilibrium can
differ from scenario to scenario. Due to the existence
of scenario-specific optimal strategies, research efforts
have created Matrix Game Social Dilemmas (MGSDs),
which allow game theory principles to be applied to
a variety of scenarios to elicit multiple factors in
creating group strategy, including group reciprocity,
norm enforcement, and social network effects [13]. The
design of these scenarios has resulted in the creation
of games where individual players are not able to
succeed solely through an individualist mindset, but
rather through group strategy [14].

Due to the implicit goal of reaching a group strategy,
game theory provides a potentially beneficial lens for
viewing human-AI interaction through; most notably,
game theory can be used to evaluate the team’s ability
to coordinate and cooperate [15]. Specifically, MGSDs
provide a powerful method for evaluating human-AI
cooperation as they provide a variety of social and task
contexts that can be used to engage joint strategy within
a team [16]. The formation of these strategies depends
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heavily on important teaming factors, like fairness,
coordination, reciprocity, and cooperation, which is
the focus of this study [17]. Due to the factors that
contribute to efficient game theory models, which are
essential to teams in general, game theory serves as a
powerful tool for observing human-agent interaction.

Due to the limitations of AI in representing
the expansive real world, limiting human-AI system
interaction around MGSDs provides a capable and fair
environment for observing and understanding human-AI
interaction. The matrix design of MGSDs and their
social nature create a platform that can put humans
and AI on an even playing field. This methodology,
and the benefits outlined above, can be extended to the
context of human-AI systems, specifically involving AI
built with RL, to observe human-AI cooperation and
the potential of using game theory to predict and plan
human-AI strategy.

2.2. Reinforcement Learning

RL is a class of machine learning algorithms that are
based upon behavioral models that reward and punish
behavior for inducing the discovery of a unique policy,
mapping situations to actions as to maximize positive
rewards over time [18]. These tradeoffs and strategies
are balanced through a series of hyperparameters
inherent to each RL model, giving unique advantages
based on the underlying algorithm. Some of the
most widely used modern RL models include Deep
Q-Network (DQN) [19], Vanilla Policy Gradients
(VPG) [20], and Proximal Policy Optimization (PPO)
[21]. In terms of similarities and differences, VPG
and PPO are more closely related to each other as
they are both on-policy methods while the DQN is
an off-policy method, which, simplistically, means the
DQN maximizes the utility of target states while VPG
and PPO maximize the utility of the current state. These
optimization differences could lead to a higher level
of convergence by the DQN, especially in the more
simplistic environments used in game theory.

One of RL’s greatest strengths is creating an
understanding of an environment through simple board
states, which has led to RL models being highly skilled
in a variety of games, such as Go, Chess, and soccer
[22]. This strength is made possible through self-play,
where AI agents can repeatedly play many games over
time to develop a sophisticated understanding of their
environment, which can be represented as a simplistic
board state and reward signals [23]. These skills are
important to navigating game theory scenarios as they
too can be represented as matrix-based board states that
can be navigated by AI systems, which includes the

ability to learn a cooperative strategy from the self-play
of simulations of game-theory games.

While RL’s strengths allow it to find optimal paths in
more simplistic contexts, such as older video games, RL
has shown a deficiency in understanding more complex
environments where multiple solutions exist and the
possibility of getting stuck in a local optimum increases
[24]. Advances in RL have seen these problems
begin to be mitigated; for example, J.W. Crandall’s
work in human-AI cooperation has produced a novel
RL model that ensures payoffs are at a minimum of
the game and also learns to cooperate [25]. These
findings are in addition to more recent work showing
the newly developed S# model to be fully capable
of cooperating with human players and AI players
in game-theoretical situations like Prisoner’s Dilemma,
which require intuition and are affected by cultural
norms and emotion [26]. Due to the potential RL
AI has shown in the past years for understanding
complex environments, it would prove to be an essential
tool in human-AI cooperation since teams are set in
more realistic environments. However, despite these
advancements, there is still a lack of empirical research
on human-AI system’s ability to converge and cooperate
on optimal strategies when observed in differing social
and task framing.

2.3. Human-AI Systems

Human-AI systems involve two or more agents
which consist of at least a single human, and a single AI.
The principal obstacle has been avoiding limiting each
agent to only local information to make processing a
complex environment tractable. Markovian games have
emerged as the primary model for human-AI systems
that include RL because they enable a distributed
decision-making process and a stochastic environment
[27]. The dominant approach in those settings relies on
the Nash-Q algorithm for general-sum stochastic games,
which enables RL agents to converge towards stable
strategies in zero-sum and common payoff games. Such
restrictive parameters have made Nash-Q challenging
to generalize from [28]. Furthermore, such tight game
structures do not lend themselves to optimal solutions
for games with multiple NEs, making learning in such
settings nontrivial [29].

Prior human-AI research has focused on independent
RL, where each RL agent is not aware of the other
agents and instead senses them as part of the interactions
with its environment. Such non-stationary environments
violate the Markovian property, which undermines
the generalizability of the policies the agents learn
[30]. Specifically, human-AI system strategies rarely
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converge towards an optimal equilibrium because, as
long future rewards are highly discounted, agents
may not risk deviating from a suboptimal equilibrium
[31]. Alternatives to independent RL involve creating
special-purpose algorithms (WoLF, JAL, AWESOME)
that privilege rationality and joint-action in many
cooperative scenarios [32]. However, recent research
has pointed out that such algorithms cannot shape the
learning behavior of the opponents to obtain higher
payouts at convergence, especially over repeated games
[22].

The current study, however, does not focus on
hyperparameter tuning, algorithm development, or other
technical advancements, but instead on the human
aspects affecting the dynamics behind these human-AI
systems, hoping to understand better and predict those
systems outcomes.

3. The Current Study

The current research study reports on an experiment
in which a human-AI system played two game theory
scenarios, Hawk Dove and Prisoners Dilemma (detailed
below in a later section). Each game theory scenario
focuses around cooperation in order to achieve the
optimal expected reward, but the motive and concept
of the two scenarios are unique. Participants also
interacted with three different reinforcement learning
models: DQN, VPG, and PPO. These two variable
groups represented the two independent variables (IV)
manipulated for this experiment: 1) game theory
scenario (Prisoners Dilemma, Hawk Dove), and 2)
reinforcement learning model (DQN, VPG, PPO). All
independent variables were examined resulting in a 2x3
factorial design conducted between subjects. Based
on the experimental design and previous research the
following hypothesis can be considered regarding RL
algorithms: (1) Due to the algorithmic design of DQN
models, we would expect them to achieve higher levels
of cooperation. Regarding scenario choice, this study
elects to take a more exploratory approach to the
effects the social framing of each scenario could have
on cooperation rather than hypothesizing the specific
superiority of either scenario.

3.1. Participants

This experiment recruited 226 participants from
Amazon Mechanical Turk to participate in the
experiment, resulting in 226 human-AI systems
completing the experiment. Participants’ demographics
were as follows: gender: 145 Male, 80 Female, 1
Other, Age: 63 between 18-25 years, 94 between
26-35 years, 41 between 36-45 years, 14 between 46-55

years, 14 between 56-65 years. The Prisoners Dilemma
condition consisted of 103 human-AI systems, while the
Hawk Dove condition consisted of the remaining 123
human-AI systems. The number of human-AI systems
per reinforcement learning model is shown below in
Table 1. The imbalance in the number of human-AI
systems completing the tasks was a result of systems
being dropped from the analysis for incomplete data
recording during the completion of the game theory task,
which was the result of client-side connectivity issues.

Table 1. Participant Numbers

Prisoners Dilemma: 103
DQN: 43 VPG: 27 PPO: 33

Hawk Dove: 123
DQN: 43 VPG: 39 PPO: 41

3.2. Task

The cooperative game theory scenarios known as
Prisoners Dilemma and Hawk Dove were selected
to provide a broad analytical base to identify the
extent to which different factors affect the willingness
to cooperate with both the human players and the
reinforcement learning agents. While both scenarios
target cooperation between the two players, the
fundamental motivations and concepts are unique,
making a detailed description of each scenario
necessary.

3.2.1. Prisoners Dilemma The Prisoners Dilemma
is an ideal scenario in game theory where two players
are posited to have been arrested by authorities for
committing a crime. Once apprehended, each player
is separated from the other so that they are unable to
communicate. Because the police do not have sufficient
evidence to convict both players, they offer each player
the opportunity to confess to gain a lighter sentence at
the expense of the other player.

Prisoner’s Dilemma’s core result is that the Nash
Equilibrium induces both players to confess, leading
to the collectively worst outcome for both players.
However, in experimental settings, this dynamic
often changes when the Prisoners Dilemma is played
iteratively. The iterative nature is because a sequential
Prisoner’s Dilemma creates the opportunity for players
to punish one another for defecting from an agreement
to remain silent, thus creating a reasonable expectation
of cooperation.
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Figure 1 is taken from the Prisoners Dilemma
interface of the custom experimental platform. The
payoffs for mutual cooperation are -1 for each player,
the payoffs for mutual defection are -2 for each
player, and the payoff for successfully defecting on a
cooperative player are 0 and -3, respectively. In a
Prisoner’s Dilemma, defecting is the dominant strategy
because both players are better off defecting, given
what they expect the other player to do. Axelrod’s
famous tournament that included both human and
computer-generated solutions found the tit for tat
strategy to be most beneficial, effectively repeating the
partner’s previous decision [33].

3.2.2. Hawk Dove The Hawk Dove game is a more
dynamic version of a Prisoner’s Dilemma where each
player is faced with a decision of whether to attack
or to remain peaceful. Hawk Dove is symmetric, so
each player abides by the same incentive structure that
rewards peace (0 payoff) over war (-2 payoff). The
only situation in which any player is better than being
peaceful is by successfully attacking when the other
player selects to be peaceful.

The Hawk Dove scenario looked the same as Figure
1 but the scenario, title, and reward square was modified
to match the Hawk Dove scenario (exact reward square
defined in measures). A successful attack occurs when
one of the players decides to remain peaceful, and
results in one point being transferred from the peaceful
player to the attacker. This payoff is significant because
it results in a smaller loss for the peaceful player when
attacked than when mutually attacking. This aspect
is essential because it creates a somewhat powerful
incentive to remain peaceful, implying that attacks result
from an essential zero-sum mentality driving the player.

3.3. Materials and Equipment

A custom experimental platform was developed
to accommodate the current study consisting of an
interface that supported each of the experimental
conditions. The interface for Prisoners Dilemma is
shown below in Figure 1, and the interface for Hawk
Dove use the same format with slight modification to
the content provided. Each move by both players was
recorded by the application and stored on a server. Each
player plays three rounds of the game theory scenario
for ten turns, with the score re-setting every round.

Figure 1. Interface for the Prisoners Dilemma game

theory scenario

The open-source RL framework TensorForce
was utilized to implement the RL agents. The
TensorForce library is focused on providing explicit
APIs, readability, and modularization to deploy RL
solutions both in research and practical applications
[34, 35].

3.4. Procedure

Participants were recruited through the Amazon
Mechanical Turk (MTurk) platform, a platform that
allows researchers to recruit participants worldwide in
return for monetary compensation [36]. The MTurk
platform is highly reliable and hugely representative of
the population compared to typical university subject
pools [37].

For the current study, participants were randomly
assigned to conditions. The first thing participants did
was give informed consent to participate in the study,
which, after consenting to participate in the study, saw
the experiment begin automatically. The participants
were shown one of two interfaces depending on the
game theory scenario they were grouped into, (Figure
1 shows the basic layout). Directions to the scenario
were shown at the top of the interface, with the players’
scores directly below, followed by the outcome table
and possible decisions. After playing the game for ten
turns the interface reinitialized and began a new game.
Participants played three games for a total of thirty turns,
with data being automatically collected and stored by
the platform. Once participants had completed the three
games, they were directed to a Qualtrics survey for
demographics collection and quality assurance. Quality
assurance involved the participants answering a question
to prove they were a human and were taking the
experiment seriously. Upon completing the experiment,
participants were paid $1 for their time (roughly ten
minutes).
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3.5. Measures

Average cooperation was the only dependent
variable recorded by the current experiment. The
operationalization of cooperation is necessary to clearly
define due to the unique differences in the reward
structure of the Prisoners Dilemma and Hawk Dove
scenarios. As can be seen in Figure 1, the participants
are shown the reward structure for their decisions (Hawk
Dove reward structure square starting from top left
to right: -2,-2, 1,-1, -1,1, 0,0). The 2x2 decision
tree consists of four outcomes, regardless of the score
displayed. These outcomes include the following: 1)
Player A and Player B both do not cooperate, 2) Player
B cooperates while Player A does not, 3) Player A
cooperates while Player B does not, 4) Both players
cooperate. Accordingly, the experimental platform’s
result was a number between 1 and 4, with 1 being
low levels of cooperation and 4 being high levels of
cooperation. This result was recorded for each turn
in all three of the ten turn games. The results were
then averaged for average overall cooperation in the
human-AI system. Outcome 2 is considered lower
cooperation than outcome 3 because the AI is rewarded
based on the global performance, making it’s tendency
to cooperate inherently higher than the human agent’s
tendency to cooperate. This ordering also aligns with
the general philosophy of game theory as the AI is much
more likely to play rationally.

4. Results

Due to the unequal sample sizes, the assumption
of homogeneity of variances was violated for this data
set, making the use of non-parametric tests necessary;
however, normality of the data set was maintained.
Accordingly, the recommendations of current literature
in statistical analysis were followed [38]. Notably, in
order to minimize the chances of committing a Type
1 error, independent groups were compared using the
Mann-Whitney U test, while the Kruskal-Wallis test was
used to compare three independent groups. Post-hoc
comparisons to Kruskal-Wallis tests were completed
using Mann-Whitney U tests with Bonferroni adjusted
p values. Finally, to do more than compare independent
group means and determine predictability, the current
analysis utilized a heteroskedasticity-consistent
standard error estimator for ordinary least squares
regression, as detailed by Hayes and Cai [39]. The
results of these analyses are detailed in the following
section, organized by research question. Additionally,
gender and age data revealed no differences when used
as control variables.

4.1. RQ1: Does Cooperation Change Based on
the AI Model Used?

In order to determine if significant differences
existed in the overall cooperation of the human-AI
systems between independent groups with different RL
models a Kruskal-Wallis test was ran on the data set in
its entirety.

Table 2. Kruskal-Wallis Test on Game Theory

Scenario and Overall Cooperation
Kruskal-Wallis Test

n H df p
226 36.22 2 < .001

Post-Hoc Tests
RL Models U Z p
DQN-VPG 1650 -4.42 < .001
DQN-PPO 1581.50 -5.48 < .001
VPG-PPO 2015.50 -1.78 .075

The Kruskal-Wallis test (see Table 2) showed that the
RL model used significantly affected overall human-AI
system cooperation, H(2) = 36.22, p = <.001. Post-hoc
Mann-Whitney U tests using a Bonferroni-adjusted
alpha level of .017 (0.05/3) was used to determine
the significance of each pairwise comparison. The
comparison between human-AI systems using the
DQN RL model and VPG RL model was significant,
U(NDQN = 86, NV PG = 66) = 1650.00, Z = -4.42, p
<.001. The difference in overall cooperation between
human-AI systems using the DQN RL model and the
PPO RL model was significant, U(NP PO = 74, NDQN

= 86) = 1581.50, Z = -5.48, p <.001. All other
pairwise comparisons were not statistically significant,
along with a follow up Kruskal-Wallis test between
RL models and improvement over the three games
was not significant. Finally, to test the interaction
effect between game theory scenario and RL model a
two-way ANOVA was used; however, the results of
this test should be interpreted carefully as ANOVA’s are
robust to violations of homoskedasticity, but only with
roughly equal sample sizes. ANOVA results revealed
a significant interaction effect between game theory
scenario and RL model, F(2, 222) = 35.69, p < .001,
η2 = .25.

Based on these results, we can tell that the AI model
used did have a significant effect on overall cooperation
within the human-AI systems. While the VPG and
PPO RL models had very similar cooperation levels, the
DQN RL model had much higher levels of cooperation,
lending credence to the notion that the RL model AI use
to train impacts their interactions with human agents.
This result also supports the earlier hypothesis that the
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DQN model would produce higher levels of cooperation
in human-AI systems.

4.2. RQ2: Is Cooperation Affected by Game
Theory Scenario?

To investigate whether overall human-AI system
cooperation was affected by the game theory scenario
the system completed, a Mann-Whitney U test was ran
on the two independent groups data set (see Table 3).

Table 3. Mann-Whitney U Test on Game Theory

Scenario and Overall Cooperation
Mann-Whitney U Test

Variable U p rpb
Average Cooperation 4575.50 < .001 -.281

Mean and Standard Deviation
Scenario n Mdn SD

PD 103 2.7 .51
HD 123 2.98 .58

Descriptive statistics revealed that the overall
cooperation of human-AI systems completing the
Prisoners Dilemma scenario (Mdn = 2.7), were lower
than those completing the Hawk Dove scenario
(Mdn = 2.98). The Mann-Whitney U test indicated
that this difference was statistically significant,
U(NP risonersDilemma = 103, NHawkDove = 123) =
4575.50, z = -3.60, p <.001, rpb = -.281. A follow up
Mann-Whitney test between game theory scenarios and
improvement over the three games was not significant.

This analysis provides additional clarity to the
importance of the task and social framing in human-AI
systems. As stated previously, while the Prisoners
Dilemma and Hawk Dove scenarios target cooperation,
the two have unique differences in context and
motivation conveyed to the two players. While the
current study cannot answer with certainty that the
different contexts and motivations are the driving force
behind these differences in cooperation, the results
emphasize their impact.

4.3. RQ3: Can the Game Theory Scenarios
and AI Model Used Predict Cooperation?

In order to move beyond simply ascertaining
whether overall cooperation differences between the
independent groups are significantly different an
ordinary least squares regression must be utilized.

Running this regression gives the current study
the ability to determine if the RL model and
game theory scenario can predict the human-AI
systems overall cooperation. To accomplish this
a heteroskedasticity-consistent standard error multiple

Table 4. Game Theory Scenario and AI Model

Linear Regression for Cooperation
Model Fit

R2 F df p
.209 26.76 3, 222 < .001

Score
Variable Coefficient Std. Error p
Constant 2.46 .06 < .001

DQN .47 .08 < .001
VPG .09 .07 .230
HD .33 .07 < .001

Setwise Hypothesis Test
F dfnum df den p

12.15 2 222 < . 001

ordinary least squares regression was used with the
HC3 estimator to predict a human-AI systems overall
cooperation from the game theory scenario used and
the RL model used (see Table 4). As all variables
were nominal each was dummy coded for use in
the regression. The model explained a statistically
significant amount of variance in overall cooperation,
F(3, 222) = 26.76, p = <.001, R2 = .21, R2

adjusted

= .20. AI type DQN was a significant predictor of
overall cooperation, β = .474, t(223) = 5.81, p = <
.001. A change in game theory scenario saw human-AI
systems overall cooperation increase by 0.474 points, B
= 0.474, 95% CI [0.315, 0.633]. AI type VPG was not
a significant predictor of overall cooperation, β = .085,
t(223) = 1.20, p = .230. Alternatively, the game theory
scenario Hawk Dove significantly predicted overall
cooperation, β = .325, t(223) = 4.75, p = <.001. A
change in game theory scenario saw human-AI systems
overall cooperation increase by 0.325 points, B = 0.325,
95% CI [0.191, 0.459].

The results of this regression analysis showcase
the impact of RQ1 and RQ2 based on the significant
predictive ability of game theory scenario and RL model
used on cooperation. This finding further cements the
point made in RQ1 and RQ2 that the social and task
framing conveyed to both humans and AI models are
highly relevant to both human-AI system outcomes.

5. Discussion

Our results show meaningful differences in the
cooperative dynamics between humans and AIs across
various settings. Instead of limiting ourselves to
just one game theory model, such as the often-used
Prisoner’s Dilemma, we explored the additional Hawk
Dove scenario for human-AI cooperation and compared
the impact of the similar but unique social and task
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framing of each. The results from each game can be
analyzed separately, but should also be understood as
indicative of a broader behavior pattern. Beforehand,
it is important to briefly discuss how the use of our
selected game theory scenarios and RL models could
have resulted in our observed results.

Specifically, the data from both scenarios have
implications for both AI as well as humans’ cooperative
dynamics. Cooperation manifested differently based
on the RL model that the AI teammate utilized. This
finding may be the result of the distinct ways in which
DQNs process strategic interactions compared to PPOs
and VPGs. This would be expected as the design of
DQNs generally leads to higher levels of convergence
overtime, which could result in a more cooperative
agent in these scenarios. Generally, the downside to
this algorithm would be the time it takes to build the
model; however, the simplistic nature of game theory
scenarios allows DQN models to be trained quickly,
resulting in higher degrees of cooperation forming in
similar training times to the PPO and VPG. It is essential
to understand, consider, and compensate for these
differences when implementing AI alongside humans.
These differences would need to be clarified for the
specific task a team is conducting, which will allow a
more intelligent and deliberate choice when deciding
the back-end design of AI teammates. For instance,
the DQN model’s higher cooperation in these two tasks
would suggest that it be utilized in similar contexts to the
Prisoner’s Dilemma and Hawk Dove scenario; however,
choosing a PPO or VPG model due to ignorance
towards models differences could significantly reduce
the cooperation within the human-AI system. Without
this knowledge and design, significant performance
differences could be seen between different human-AI
systems despite them existing in similar contexts and
environments. Additionally, differences in cooperation
levels over time were not significant between conditions,
highlighting stable development of cooperation between
all conditions.

It is also important to note that AI safety researchers
should not assume that the willingness for an AI to
cooperate with humans in one scenario necessarily
generalizes to all situations. Our setup goes a long way
in establishing a strong basis to investigate human-AI
interactions by testing cooperative dynamics across two
unique game theory scenarios where cooperation is in
the collective interest of the multi-agent system. Using
game theory in this setting is useful because sharp
deviations from Nash Equilibria indicate the complex
nature of the interactions clearly. However, limiting
empirical research on human-AI cooperation to just one
game would have only provided scant evidence about AI

and human players’ behavioral patterns. While both of
these studies and scenarios look to evaluate cooperation
in human-AI systems, the actual context and motive
given to the participants varied based on the game.
While we cannot say that these contextual differences
are the reason for cooperation differences, the existence
of these differences highlights the importance of the
social framing of a task and scenario, which is suspected
to be the reason behind varying levels of cooperation
between games. Therefore, it is essential to consider
both team, task, and evaluation contexts when looking to
understand human-AI systems. A lack of understanding
in these areas could significantly change the utility and
viability of powerful tools, such as game theory, to help
evaluate and coordinate aspects of human-AI systems.

While the bulk of contribution of this study is to the
field of human-AI interaction, additional implications
exist regarding the field of game theory. Specifically,
this study further contributes to the literature regarding
the applicability of game-theory to evaluating human-AI
interaction. Different game theory scenarios were
shown to change the level of cooperation possible during
human-AI interaction. These findings demonstrate that
the value game theory can have in the promotion and
encouragement of cooperation. Furthermore, while
identifying game theory as an evaluation tool is not
entirely novel, the ability to use game theory as
an encouragement and social scoping tool is highly
important to future game theory research, especially
regarding AI’s interactions with game theory. Building
scenarios and tasks that are scoped within the design of
game theory scenarios, especially with the framing of
the Hawk Dove, could create tasks and environments
that demonstrate a greater and more apparent benefit
from human-AI cooperating.

The more back-end consideration of algorithm
selection and the more user-facing consideration of
social and task framing show that understanding and
designing human-AI systems are reliant on multiple
layers of human-AI interactions. The continued pursuit
of advancing human-AI systems will need to consider
these features, especially in the field of research where
algorithm and task selection could significantly affect
the results human-AI systems exhibit. As research in
this area continues, a complete understanding of the
factors that affect human-AI interaction can be achieved.

6. Limitations and Future Work

The following limiting factors should be taken into
account when interpreting the results of this study.
Response times were unable to be recorded during
the game theory tasks to record the quality of the
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responses; quality checks could only be implemented in
the post-task survey. Additionally, while the scoping of
game theory used has identified advantages in observing
strategic play, its use creates some partial limitations in
this study. Firstly, the simplistic nature of the game
theory scenarios used make it easier for cooperation
to occur as the benefits can become apparent more
quickly. Real-world environments and scenarios may
not benefit from the same simplicity and may not be
able to achieve high levels of cooperation in such a short
amount of time. Secondly, game theory lends itself to
a specific definition of rationality that can be viewed
more simplistically and mathematically. However,
rational behavior theories exist within humans, such as
bounded rationality, which may go beyond the simplistic
definition in the current study. These limitations do
not mean that these results are not applicable to the
real-world where humans have complex rationales, but it
does mean that the relevancy of these results should not
be considered without consideration for the game theory
scoping used.

The two primary avenues for expanding upon this
work involve the choice of RL models and game theory
scenarios. For the former, RL’s field is expanding so
rapidly that new RL models have emerged that analyze
strategic situations in different ways. This paper limited
itself to DQNs, VPGs, and PPOs because they provide
representative models from the classical, deep learning,
and modern RL paradigms. The results strongly indicate
that the RL model the agent operates by is not ancillary
to the outcome of a human-AI interaction in a game
theory setting; thus, it would follow that empirically
testing additional models might also be useful to
generate a complete picture of human-AI cooperation.

For the latter, many game theory scenarios would
enable the exploration of human-AI cooperation under
different incentive structures. Ideally, future research
will focus on long-form games instead of iterative games
since the cooperation’s nature is different. This focus
would expand game theory’s viability to human-AI
system interaction as specific game theory scenarios
could be chosen based on the context and function of
the human-AI system being evaluated. For example, the
Centipede game, where participants take turns taking a
slightly larger payoff or passing on a pot of rewards,
would help identify how backward induction plays a
role in human-AI cooperation. This type of scenario
could be highly applicable in teams that mostly function
asynchronously but are highly dependent on shared
resources.

Overall, using cutting-edge RL models as well as
context applicable and extended duration games can
shed light on a different type of human-AI cooperation.

While this study provides insight into the viability of
using game theory to understanding human-AI systems,
further research efforts are required to ensure broader
applicability of game theory to real-world human-AI
systems.

7. Conclusion

A significant question in AI safety and AI research
as a whole for the years to come will be how to
train humans and AIs to work together. Reinforcement
learning is quickly becoming the dominant machine
learning paradigm because of its generalizability. Thus,
it is crucial to understand how the tasks human-AI
systems face need to be framed and the task-specific
benefits of differing agent design. To that end, this
paper’s methodology shows how different game theory
models can be used to frame human-AI systems and
better understand cooperation differences based on
context. To that end, it is essential that the understanding
of this research is further expanded to understand a
more extensive variety of contexts, specifically related to
human-AI interaction. As human-AI systems continue
to progress into more environments, understanding the
impact that task and social framing and context have on
interaction, along with the underlying algorithms used
for AI, will be vital to human-AI cooperation.
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