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Abstract

Today, data centers deal with fast-growing data
volumes. To deliver services, they deploy a growing
amount of heterogeneous hardware. As a result, it
becomes practically impossible to apply human-based
data center management. For instance, in a
real-world data center with 500+ computers –
delivering data, computational, and network services,
it becomes impossible to visualize and understand
causal relationships among variables describing the
performance of monitored resources. However, it is
possible to collect data describing the behavior of
individual nodes. Hence, such data may be used to
analyze/model system performance. In particular, it
may be applied to recognize and predict anomalies in
system behavior. Furthermore, collected data should
allow finding the cause(s) of anomalies. Therefore,
“data-driven approaches” have been applied to the
real-world data, to find Root Cause of anomalies.

1. Introduction

One of the key developments of the “second wave
of the Internet” are ecosystems of connected resources
(sensors, actuators, gateways, data repositories, servers,
etc.). Their nascent results in the growth of the volume
of generated, stored, and processed data. As stated
in [1], analysis of Big Data can bring business to
the next level, allowing better decision-making, cost
optimization, and other benefits. However, access to
available data has to go in tandem with the delivery of
new analytical tools.

The prevalent approach of dealing with data deluge
is based on cloud computing. As a result, big cloud
providers (e.g. Amazon, Google, and Microsoft) started
to dominate the landscape. Nevertheless, numerous
companies, SMEs in particular, facilitate data managing
infrastructures. They work, mainly, with “local
businesses”. While there exist several reasons why
companies elect use of local data centers, addressing

them is out of the scope of this work.
EMCA Software is a vendor of the Energy Logserver

(EL) system, which collects data concerning IT
infrastructure metrics. In actual customer deployments,
EL collects metrics from hundreds, up to thousands
of devices. Working in many sectors, e.g. finance,
insurance, energy, retail, EL collects data from streams,
with a speed of a hundred thousand values per second.
Note that, the trend of enterprise IT is to centralize data,
and collected metrics/logs, in one place. Specifically,
values related to CPU utilization, disk space occupancy,
and application performance, among others, are brought
together, to observe trends and baselines. EMCA, as
a solution provider, has as its goal to help enterprises
to detect suspicious changes in performance data,
especially when they can influence business continuity
and its expected level.

The underlying assumption behind the presented
work is that it may be possible to use performance data
to predict anomalies and their causes. Specifically, Root
Cause Analysis (RCA) concerns the situation when an
anomaly occurred within the data center. The goal of
the data-driven investigation is to establish its actual
cause. Moreover, after establishing what was the source
of a given problem, a way to prevent future faults from
occurring can be sought. However, the latter is out of
the scope of the current contribution, which presents the
initial results of an ongoing investigation.

In this context, a discussion of data that is
collected by EMCA can be found in Section 2. Once
characteristics of available data are presented, the
related works are discussed (Section 3). Systematic
discussion on undertaken approaches follows in
Section 4. Finally, in Section 5, a brief explanation of
obtained results, and an outline of the future research
directions, are provided.

The main contributions of this work are: (1) The
proposed solution to anomaly detection in data center
streaming data outperforms current state-of-the-art
models. (2) A scalable end-to-end solution that works in
unsupervised environment, to perform RCA is proposed.
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Moreover, the presented RCA process is unique for Big
Data ecosystems, such as data centers.

2. Available data as the “driver”

Let us start by discussing data collected by EMCA,
in its installed systems. Here, three types of resources
can be identified: computational, data, and network
servers. However, this distinction is not considered.
This is related, in large part, to the fact that all
servers work as, so-called, “analytical groups” serving
customers, applications, etc. Therefore, an analytical
group (of servers) is treated jointly (see, Section 4.1).
Table 1 contains an overview of the dataset used in this
study. Note that this Table summarizes data from 2
weeks. Therefore, the size of one full year of data would
be ∼ 13 TB. This number should be kept in mind when
considering methods, that could be applied. While it
does not preclude any anomaly detection method, but it
is a realistic “constraint” that has to be dealt with.

Volume ∼ 500 GB
Time period 14 days
Time-step 5 minutes
Number of monitored resources 537
Number of monitored services ∼ 122 thousand
Number of data instances ∼ 495 milion
Table 1. Meta-level summary of the complete

EMCA Dataset.

In machine learning, three situations can be
distinguished (see, [2], Chapter 15). (1) When the
training data is tagged; capturing all situations where
behavior(s) are to be distinguished. Here, supervised
learning can be applied. (2) When some behaviors are
tagged, while others are “not known to be present”. A
typical example is when a distributed denial of service
(DDOS) traces are tagged, and used for learning, while
the system should generalize, to recognize other DDOS
cases. This brings semi-supervised learning. (3) Finally,
unsupervised learning is applied to “raw data” (no tags
available). This applies to the EMCA Dataset.

Currently, EMCA anomaly detection is based on
an assumption that an occurring anomaly results
in unusually high readings of selected parameters
(exceeding established thresholds). However, as shown
in, for instance [3]), an unusually high reading of a
parameter may not mean that an anomaly occurred.
Thus, such an approach is inadequate.

Note that one should distinguish between: point,
contextual, and collective anomalies. Point anomaly
occurs when a data instance significantly differs from
others, within the same time series. Such instance
can be compared either to the other values in the time

series (globally) or to its closest (in time) data instances
(locally). Here, an example is a sudden, unexpected,
increase of node usage, observed for a short time.
Contextual anomaly occurs when data instances can
only be considered abnormal when viewed against some
meta information. Here, temporal or spatial information,
for a given time series, can be used. An example of
an anomaly, with a temporal context, is when during
peak-hours, expected high usage of CPU or data transfer
is not found in the data. Finally, collective anomalies are
recognized when to define whether an anomaly occurs
or not, it has to be confronted with other reference time
series. Individual data instances may not be anomalous,
but their co-occurrence with others indicates that the
“group is anomalous”. An example concerns a group of
cooperating nodes. Here, higher (varying) use of some
nodes is considered to be typical behavior. However,
when all computing units reach maximum load, then a
collective anomaly occurs.

Therefore, static “critical threshold(s)” related to
one, or more, individual parameter(s), result in detecting
point anomalies, while leaving other anomaly types
untreated. Moreover, exceeding a single threshold (or
a few of them) may not indicate an anomaly. Hence,
the current approach may lead to incorrect indicators
(false-positives, detecting a non-existing anomaly, or
false-negatives, not detecting an existing anomaly).
To deal with the incorrect anomaly detection, and to
correctly recognize (only) cases when there was a
problem, expert knowledge would have to be applied.
However, this is not an easy task, even for the best
specialists.

Recall that the collected data may originate from
multiple resource types. Moreover, nodes belonging to
a single “resource category”, are also heterogeneous.
This is because they have been purchased (added to
the infrastructure), over a certain period (e.g. 3+
years). Hence, what for one node will be an “alarming
behavior” (e.g. running CPU utilization close to 100%
on the newest server), may be quite normal on other
machines (the oldest nodes, in the infrastructure).

As noted in Table 1, data is collected “every
5-minutes”. Hence, 35 Gbytes of data, generated each
day, need to be analyzed. This data originates from
537 nodes, which can influence each-other. Here, even
if it would be possible to draw a graph of interactions
among 537 nodes, understanding its meaning becomes
extremely difficult. Moreover, each node is likely
to exhibit its periodic behavior. Thus, it might be
extremely hard, if not impossible, for an expert to notice
a “strange behavior” with so many others (co-)occurring
in the system; and tag it as anomalous.

Finally, while it is easy to “capture” a major failure,
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catastrophic events occur rarely. Hence, they do not
deliver enough training data, even for semi-supervised
machine learning. No company should wait for a major
crash, to look for the cause of problems.

Overall, experts may not uncover all anomalies (they
may hide in deluge of data, in complex behaviors
of individual nodes, and/or relations between nodes
in the ecosystem). Moreover, tagging data, even for
semi-supervised approaches, would require enormous
effort (and costs), while its performance would be
limited by human capabilities (to analyze complex
problems, often under time pressure). Therefore,
the raw data RCA will have to be performed and
unsupervised machine learning applied.

It should be noted that, as mentioned in Section 3,
in similar cases, i.e. finding anomalies in data
centers/clouds, researchers reported their results based
on the “Yahoo! Dataset” [4]. This dataset consists of
four subsets (A1-A4), containing real and synthetic time
series. Moreover, each data point is tagged as anomalous
(or not). Yahoo! Dataset allows for anomaly detection
performance benchmarking. In the synthetic subsets,
multiple scenarios are represented, e.g.: non-stationarity
(by a change in mean value, or variance); high noise;
and periodicity. Nevertheless, the most important is
the A1 series, representing metrics from the actual
Yahoo! computational services. However, it is not
directly specified what specific metrics are present in
this dataset. A detailed summary of the datasets can be
found in Table 2. Supervised learning can be applied to
it. This fact will be used in this work (see, Section 4.3).

Dataset No. time series Characteristics

A1 67
Real world data from Yahoo!
cloud infrastructure

A2 100
Synthetic data with seasonal,
noise, trend components.
Contain mostly point anomalies.

A3 100
Synthetic data with
characteristics as A2 datset
with higher noise contribution.

A4 100
Synthetic data with A2
components changing over time.

Table 2. Meta-level summary of the Yahoo Dataset.

3. Related work (SoTA)

First, recall that only “raw data” is available
and thus, unsupervised learning has to be applied.
This restricts the scope of the SoTA considerations.
Moreover, only algorithms developed for Big Data
analysis are presented. Finally, the key aspect of
research is to investigate whether the application of
standard RCA approaches is possible to data center size

systems.
In “smaller systems”, where the number of devices

and their properties is limited, data reconstruction has
been successfully applied. The idea is to encode the
original data in a smaller latent space, and reconstruct
it “back”. A high reconstruction error may indicate
an anomaly. Here, one of the popular models is the
Principal Component Analysis (PCA). For instance,
a solution found in [5], employed PCA to detect
anomalies in manufacturing. However, it’s hard to
use the PCA in a data center, because of dynamic
changes and nonlinear relations within data. Moreover,
establishing the “right number of components” (for large
real-world data) is a research topic on its own (see,
Section 4.2).

A remedy might be an Autoencoder (AE [2]) neural
network architecture. AE models consist of: an
encoder that maps the input into the latent space,
and a decoder, which reconstructs the input data.
Autoencoders should catch nonlinear relations between
variables. A comparison between PCA and AE models
presented in [6], indicated the primacy of Autoencoders.
Similar approach has been described in [7]. Variational
Autoencoders [2] were used to keep track of anomalies
occurring in network traffic, in data center systems.

Despite advantages, reconstruction models have
significant shortcomings. (1) In real-world systems, data
is collected with “different timestamps” (individually,
by each device). Hence, the reconstruction models
have to “wait” for complete set of observations. (2)
Thus, it might be difficult to apply them to stream data
analysis. This is crucial when the system is “dynamic”
and its state changes very fast. If anomalies have to
be detected “fast”, then reconstruction models may not
work. (3) Moreover, with the growth of the system, the
reconstruction time is also growing. For instance, the
complexity of the PCA is O(N4) (where N is the size
of the input data), whereas training neural networks is
known to be unpredictable, and very time-consuming.

As a result, methods for soft real-time anomaly
detection were proposed. They focus on individual time
series. One of the simplest models uses an iterative
implementation of the classical ARIMA [8]. Since an
autoregressive model is a special case of ARIMA, the
iterative estimation of model parameters can be applied.
Performance of the Online ARIMA was tested on data
from a cloud environment, with seven computational,
and three controller nodes. The proposed model
achieved a low false-positive rate. A known drawback
of this solution is its difficulty in handling of seasonal
time series, with variation changing over time.

Approach drawn from image analysis was
employed in [9], and used in cloud infrastructure

Page 220



anomaly detection. Here, Fourier transform is used
for calculating Spectral Residuals, a compressed
representation of time series that emphasizes its unique
parts. Next, an inverse Fourier transform is applied,
delivering so-called, saliency map. It provides an
anomaly score for each time step. By comparing with a
static threshold, each data instance can be classified as
“normal” or “anomalous”. Here, the performance of the
presented model was tested on two datasets: the Yahoo!
Dataset, and an internal private dataset with similar
characteristics. However, while this method does well
with stable and seasonal time series, it underperforms
for noisy data. Moreover, for longer (persisting)
contextual anomalies, it tends to indicate only the
beginning of an anomaly. This might be misleading, as
one might see it as a point anomaly, while the actual
problem is more complex.

Another approach is based on the Extreme Value
Theory (EVT, [10]), and was used in network traffic
analysis (see, [11]). Here, anomaly detection is
based on modeling the tail of the data distribution.
Two models of anomaly detection are proposed: (i)
SPOT, for stationary time series, and (ii) DSPOT,
capturing concept drift. For streaming data, both models
employ Peaks-Over-Thereshold [12] method, for tail
distribution estimation. Overall, EVT-based methods
work best with point anomalies. They underperform for
seasonal time series and contextual anomalies.

For seasonal and periodic time series, the DeepAnt
approach, based on convolutional neural networks
(CNN, [2]), was proposed ([13]). In every iteration,
DeepAnt predicts the next timestep. Based on the
Euclidean distance, between real and predicted values,
data is considered anomalous, when it exceeds a chosen
static threshold. A shortcoming of this approach is
the complexity of the model, preventing immediate
parameter adjustment, in case of sudden concept drift.

Autoencoders can be used not only to reconstruct the
whole system but can also be applied to individual time
series. As shown in [14, 15], VAE can be applied to
monitor web application services. Introduced models
try to capture “normal characteristics” of the time series,
and to recreate them. Different configurations of models
can be developed, taking advantage of deep learning
(e.g. the LSTM [2]). The key advantage of this approach
is its robustness. Specifically, even when anomalies are
present in the training dataset, the model can capture the
“normal behavior”.

Finally, a solution was introduced by LinkedIn,
to monitor its cloud infrastructure. Based on [16],
Luminol [17] software was developed. Proposed model
segments the time series into chunks. Then, using
the frequency of similar chunks, the anomaly score is

calculated. This model is assumption-free, however, it
is a seasonal time series oriented.

Overall, a number of models and approaches can be
used in anomaly detection, in data center monitoring.
Nevertheless, in the case of unsupervised learning, there
is no “ultimate solution”, that meets all requirements of
data centers. Therefore, we have proceeded with our
investigation, seeking an anomaly detection approach
that can be applied in EMCA practice.

4. Experimental results and their analysis

Thus far it has been established that this study
deals with a relatively large dataset, with no tags
for anomalies. Furthermore, key analytic techniques,
that can be applied to the problem, have been
emphasized. Now, let’s discuss the results of the
conducted experiments.

4.1. Experimental setup

In experiments, both the Yahoo! Dataset and the
EMCA Dataset were used. The Yahoo! Dataset
has been curated and was ready to be used. The
EMCA Data had to be prepared. As seen in Table 1,
the volume of the data exceeds 500 Gbytes. Since
the data was in the json format, it was parsed and
pushed to the MongoDB [18]. Data were split into
fourteen collections, each corresponding to a single
day. Moreover, since individual analytical groups were
identifiable, for this research, a representative group
could be chosen. Selected groups had to meet the
following requirements: (1) group is well-known to the
data operator, to be able to validate the results; (2) group
should be composed of all of three types of nodes to
represent a realistic dataset; (3) group has to be large
enough to include multiple types of anomalies. After
evaluation, the largest group among potential candidates
has been selected.

Each node gathers information, like CPU and
memory usage, data I/O, network I/O, etc. Each of them
is described by multiple parameters. Hence, we ended
with more than 4000 time series in the dataset.

First, time series with degenerate distribution were
eliminated, as they do not carry information. Second,
the unification of timestamps was conducted. Services,
independently, report data every 5 minutes. Thus, data
had to be “resampled” to the “the nearest 5 minutes”.
If for the same time series, two observations were
resampled to the same timestamp, their average was
calculated. Hence, each day delivered 288 observations
(4032 unified timestamps for two weeks).

Finally, missing values were considered. All of
the time series that had no values for at least one day
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(288 consecutive timestamps) were removed. Other
missing values, were considered to be the result of three
factors. (1) Temporary (up to 10 consecutive minutes)
connection loss (e.g. loss of Internet connection). Here,
the majority of data was missing around midnight.
This was not a periodic anomaly, but an issue related
to data export. In this case, missing values were
interpolated. (2) Scheduled maintenance, or a system
reboot (according to EMCA, such events last up to
10 minutes). (3) Unscheduled maintenance, or system
reboot. For situations (2) and (3) (representing ∼ 0.1%
of data), if data were missing for more than 10 minutes,
it was replaced with 0. Finally, time series were scaled,
by subtracting mean and dividing by standard deviation.

As a result, the final EMCA Dataset consisted of
2543 time series; each containing 4032 data instances.
Note that, while over 1000 time series were dropped, the
final dataset included information from all 71 devices.

Across the project, Python 3.6.7 was used. For
data manipulation and extraction – Pandas, NumPy,
and pyMongo were used. Neural networks have been
realized using Keras wrapper for Tensorflow 2.0. For
paper from Section 3, referenced codes were used.

4.2. Exploring the complete dataset

Encouraged by results obtained by the PCA, in
smaller systems, we decided to apply it to the single
group EMCA Dataset. However, it involved confronting
some limitations. (1) Operating on “dynamic” data,
latent representation of the dataset had to be often
updated, resulting in massive data extraction, to supply
the model. Hence, the usefulness of PCA became
doubtful even for a single analytic group. (2) For
high-dimensional data, it was hard to establish a proper
number of principal components. For any fixed number
of components, some time series were reconstructed
poorly, while others were reconstructed well, causing
inconsistency in reconstruction error and, consequently,
questionable results. Note that changing the number of
components resulted in “flipped correctness”. Quality of
some badly reconstructed series improved; while those
reconstructed well, became erroneous. To investigate
this further, a group of time series (standardized to
N (0, 1) distribution), without abnormal behavior (by
our expertise) was selected. When the PCA was
applied, for some time series, the mean absolute error
(MAE) of reconstruction was of order 0.2, while
for others it reached 0.8. Such a big variance in
reconstruction should (in theory) indicate an anomaly,
which contradicted our data selection procedure. Even
so, it is possible that in the selected group of time series
there was a “hidden anomaly”, but such a scenario is

relatively unlikely. (3) Finally, PCA was designed to
work with stationary time series, while EMCA Dataset
contains drift in mean and variance, including seasonal
behavior. As a result, for the first few components (being
a linear combination of all input data), the weight of
contribution, for all input variables, was close to being
equal. Thus, components were segmented based on
some general trends, and not variability of each time
series. This behavior is proven in a lemma found in [19].
In theory, for this type of time series, even a single
combination of input time series can explain most of the
data variability. Therefore, at least for the time being,
PCA has been eliminated.

It was claimed (see, Section 3) that problems
with the PCA can be remedied by the application
of Autoencoders (AE), with mini-batch/online
learning. AE’s allow modeling nonlinear relations
in non-stationary time series. Therefore, four AE
variants were examined: AE and VAE with/without
long-short term memory (LSTM) learning. Both
encoders and decoders consisted of up to three hidden
layers, with a standard dropout mechanism, used for
regularization. Specifically, dropout was realized by
omitting randomly chosen neural units during training.
After a number of exploratory experiments, the final
(“best”) architecture consisted of 2 hidden layers with
300 and 100 nodes.

LSTM is used together with Autoencoders to catch
the temporal properties of the analyzed time series. The
use of Variational Autoencoders was supposed to lead
to an improvement, by allowing the model to learn
a compressed representation of input data and, also,
to represent it as a probability distribution. By using
Kullback-Leibler divergence [20] it should be possible
to achieve continuity and completeness of the latent
space, meaning that similar data instances, in the latent
space, should also be similar in the original space.

Based on a large number of experiments the
following conclusions were formulated. (1) AE
without LSTM often results in a high variance of
the reconstructed signal. (2) VAE without LSTM
overgeneralizes the problem, leading to results “similar”
for all of the time series. (3) Both AE and
VAE, combined with the LSTM step, yielded better
performance (by capturing the temporal behavior of the
series). Here, results obtained for the training dataset
pointed to potential anomalies. Moreover, some of
them matched anomalies detected by static thresholding
(method currently used by EMCA).

The “best overall” results were achieved by the
AE-LSTM pair. Here, the VAE-LSTM achieved similar
results, but it was almost twice as time-consuming
to train as the AE-LSTM. Nevertheless, while the
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reconstruction of the training dataset was good, pointing
to some valid anomalous behavior, performance on the
test dataset was poor, involving a high rate of false
positives. Here, an important issue has to be raised.
While a somewhat high rate of false positives may not
sound bad in a research paper, it is highly undesirable
in a real-world data center, where each anomaly-alarm
requires expert involvement and increases costs.

Finally, reconstructing data from thousands of time
series “together”, considerably decreased contributions
of “smaller anomalies”. Hence, only anomalies with the
total highest reconstruction errors were captured.

It became clear that the use of the AE/VAE+LSTM
(as well as the PCA), for datasets of the type and
size similar to the EMCA Dataset, is not likely to be
successful. Let it be stress that it is not claimed that
it is impossible. Rather, since this work is exploratory,
and one of its goals is to investigate a wide spectrum of
approaches and establish their pros and cons, attention
was turned to models operating separately on each time
series. While aware of the possible loss of ability to
detect collective anomalies, we were curious about the
multitude of potential methods (described in Section 3).

4.3. Results for separate time series

Here, let us recall that available approaches differ
in their applicability. For instance, some try to capture
the seasonality of time series, while others apply active
thresholding, to capture point anomalies. Therefore,
it became clear that it would be useful to pre-explore
their “capabilities” for a dataset that (a) is tagged, and
(b) somewhat similar to the EMCA Dataset. Hence,
attention was turned to Yahoo! Dataset (see, Section 2).
The methodological claim is that if a given method
works well for the Yahoo! Dataset, it becomes a
candidate for application to the EMCA Dataset. This
is not to state that other methods may not succeed.
Nevertheless, a stepping stone was needed, to point
in the right direction. Therefore, let’s summarize the
results obtained for the Yahoo! Dataset.

Before proceeding, let us outline the proposed
approach (Online AutoRegressive with eXogenous
variables, OARX). Based on experiences, summarized
in Sections 3 and 4.2, the decision to use a linear
autoregressive model was made. Such models tend
to achieve a low false-positive rate (see, [8]), which
is very important (in large systems, in particular), to
avoid unnecessary maintenance interventions. Model is
trained using stochastic gradient descent (SGD, [21]),
allowing stream data processing and “instantaneous”
capturing of detected anomalies. Here, instantaneous
means capability to execute 4000 “fit and predict

operations” during 1 second, on a standard PC unit 1.
These results are obtained using sequential computing,
while they can be optimized to run in parallel.

To supply the model with seasonal information
(here, daily seasonality) an exogenous (seasonal)
variable was introduced. As daily seasonality was
assumed, an array of 288 values was created (initialized
with ones) corresponding to each timestamp. During
each “training day” its values were updated, by
averaging with the actual values. Hence, for the seasonal
time series, a smoothed pattern was obtained, and for
stationary, a noisy signal.

Moreover, regularization is used to diminish
the influence of insignificant variables, and better
generalization. Take, as an example, a time series
without any seasonal pattern. In this case, regularization
should “push” weights of the seasonal term towards
zero, and focus on auto-regressive terms. Finally, for
automatic thresholding, Q-function [22] is applied. It
allows detecting situations when, instead of an anomaly,
a concept drift appears. Assuming the presence of a
seasonal variable, the space complexity of OARX is
given by O(w + p + ω), where w corresponds to the
length of the estimated seasonal pattern, p indicates the
number of autoregressive terms in the model, and ω is
the size of the window used in the Q-function value
estimation.

Based on the SoTA analysis (Section 3), five models
were tested: Spectral Residuals, Luminol, DSPOT,
Donut, and OARX. Their performance was assessed by
standard measures: F1-score, precision, and recall.

Let us note that the distribution of anomalous points
in the Yahoo! Dataset is not uniform. In fact, it
has a heavy tail, i.e. most of the existing anomalies
occur in only a few time series. Thus, the goal
was to minimize the influence of “highly anomalous”
elements. Hence, for each time series (separately), three
performance measures were computed and averaged
across the dataset. The results are presented in Table 3.
The reason that the Donut is separated from other
models, is that it requires a “warm start”. Thus, the
first 30% of data instances were used for “warm start
training”, and the remaining 70% for running Donut.

Finally, the obvious has to be stressed. Even though
Yahoo! Dataset is tagged, here it was approached as raw
data and the “anomaly tags” were used only to check the
performance of the tested approaches.

For almost all subsets from the Yahoo! Dataset,
OARX outperforms other state-of-the-art models (or
shows similar scores). Taking into account the focus of
the following work, crucial are scores obtained for the
A1 Subset, as it contains the real-world data. Results

1Intel Core i7-8750H, 32 GB RAM
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Model A1 Subset A2 Subset A3 Subset A4 Subset
F Pr. Rec. F Pr. Rec. F Pr. Rec. F Pr. Rec.

SR 0.29 0.29 0.45 0.67 0.58 0.95 0.83 0.76 0.97 0.72 0.64 0.95
Luminol 0.30 0.32 0.46 0.58 0.48 0.85 0.60 0.57 0.76 0.46 0.42 0.67
DSPOT 0.38 0.49 0.42 0.72 0.73 0.75 0.42 0.61 0.43 0.23 0.36 0.30
OARX 0.51 0.48 0.58 0.95 0.95 0.97 0.86 0.96 0.83 0.66 0.68 0.74
Donut 0.35 0.39 0.59 0.47 0.38 0.79 0.33 0.29 0.50 0.29 0.26 0.45

Table 3. Summary of averaged performance scores of models tested on Yahoo! Dataset.

show that the OARX obtains the best F1-measure. Good
precision, on the A1 Subset, has been achieved also
by the DSPOT. This is, likely, related to the fact that
it focuses primarily on point anomalies, which seem
to dominate in the A1 Subset. Similarly, in the A2
Subset, with the majority of stable time series, OARX
and DSPOT perform best. It is worth noticing that the
SR model shows the highest metric scores on the last
(A4) subset. This is because the SR is most resistant to
sudden changes in the mean, or the variance. Mediocre
overall performance has been shown by the Donut.
Noted also that the main drawback of this approach,
as well as other neural-network-based ones, is the time
complexity. Specifically, experiments showed it being
an order of magnitude slower to indicate anomalies
when compared with other solutions (e.g. for the A1
subset, Donut training took a few minutes, vs. several
seconds for the OARX ). This is important, considering
that the real-world data that will have to be confronted
is substantially larger than the Yahoo! Dataset.

Overall, gathered results indicate that, for the Yahoo!
Dataset, OARX was better than (or, at least, not worse
than) other approaches. Part of the reason for the,
overall, low scores (for all models) on the A1 Subset
might be problems with capturing contextual anomalies,
ongoing for a longer time (as only anomaly start is
indicated). However, this also indicates that, in general,
a lot more work is needed to improve anomaly detection
in actual data from data centers.

Nevertheless, since OARXis “almost the best
currently available”, it is worth trying in an actual RCA
process. To validate this decision, an additional check
was performed. By investigating the mean average
percentage error (MAPE), we received information
about its predicting performance. Across whole dataset,
error was oscillating at MAPE = 14%, for predicting
the next timestamp value, which is reasonable.

4.4. Proposed RCA approach

Let us now describe, in full, the proposed approach
to RCA, as applied to the EMCA Dataset. On the
meta-level, RCA is described in standard literature
(see [23]). However, a detailed formulation of individual
steps depends on the application area. While potential

methods that can be used for the “data center type
problems”, have been proposed, e.g. in [17] and [5],
they are not without limitations. First is dependence
on correlation, as a resource/node relation indicator.
In large systems, with thousands of time series, this
approach is very likely to indicate spurious relations
(see, also [24]). Second, it was developed for much
smaller systems and is PCA-based. Since it was
established that PCA is not likely to succeed in the
considered problem, this method was rejected. As
a result, upon reflection on the proposals found in
the literature, and on the results of our investigations
(reported above), a complete RCA method was
formulated. It consists of the following three steps:

1. Anomaly detection applied individually to each
time series.

2. Clustering of anomalies, based on time of their
occurrence.

3. Casual inferring among variables in clusters.

As the main challenge underlining the process is proper
anomaly detection, based on the above results, the
OARX was selected for the first step of the RCA.

For clustering, research presented in [25] is
acknowledged. Casual inference models, executed on
large datasets, often lead to a high false-positive rate.
To avoid this problem, clustering of time series, based
on the anomaly occurrence time is proposed. Thus,
the correlation matrix is computed, using all prediction
errors for each time series, obtained from the OARX.
As a large number of clustering algorithms exist, one
had to be selected. Since the objective is to apply
Pearson correlation coefficient, algorithms like k-means
were rejected (k-means is minimizing least-squares,
not distances). Overall, hierarchical agglomerative
clustering was used, due to its ease of application,
and the ability to produce reorderings for the similarity
matrix visualization, which can be used as a validation
step. For future work, other distance-based algorithms,
such as DBSCAN and its variants, can be experimented
with. Overall, hierarchical clustering [26] is used to
gather parameters from resources, where there is a
possibility for co-influence. By analyzing the obtained
dendrogram (in Figure 1), and multiple cluster sizes, a
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division into 35 clusters was performed. Each cluster
consisted of 8-70 variables, except for one cluster
that included all of the time series that haven’t had
any anomalies, or had singular anomalies that haven’t
affected other nodes.

Figure 1. Dendrogram for analysis of co-occurring

anomalies. Dashed line indicates pruning threshold.

At this point, time series have been clustered.
The final step of the RCA is to construct a causality
graph. However, based on [27], this task involves many
difficulties, like the hidden confounder discovery, or
handling non-stationary time series. Taking into account
all these aspects, the PCMCI [25] has been selected.
It consists of two steps: (1) Peter-Clarke algorithm for
finding potential parents of each parameter indication,
and (2) momentary conditional independence tests. As
PCMCI assumes stationarity of the time series, they are
differentiated before application (for each timestamp,
previous data instance is subtracted from the current).

It is worth stressing that anomaly detection was
performed independently for each time series. Hence,
information concerning “what is happening in other
time series” was not available. Therefore, the anomaly
indication was independent from one of the time series
to another. Nevertheless, after applying the OARX ,
interesting results have been observed.

• 10 out of 34 clusters were homogeneous (only
parameters from a single node were included).

• Despite large cluster sizes (up to 70 parameters),
most of them contain parameters from only up to
5 different nodes.

• One cluster contained a node connected to
many other nodes (a hub). Thus, node degree

distribution was similar to power-law (scale-free,
see [28]) representing real-world scenarios. This
hub (potential bottleneck) turned out to be Disk
Logical F: Current Queue Length. In other words,
a “weak point” was discovered (potential Root
Cause of anomalies) that EMCA was not aware
of, and which can affect system performance.

Selected causality graphs, in Figures 2, 3, 4,
represent relations among parameters. Note that
parameters were omitted when they did not involve
a causal relationship with other variables. In the
figures, color indicates the “origin resource”, from
which “parameters stem”. For readability, directed
arrows represent causal relations. Here, effects were
observed within up to ten minutes (two timestamps)
delay.

Figure 2. Causality graph for cluster no. 13.

Figure 2 shows that cluster no. 13 was separated
into two components. In the“left one” direction
of arrows suggests that the metric responsible for
the disk subsystem performance influences other
disk subsystems, causing performance degradation of
underlying disks. On the “right-hand side”, degradation
of services, caused by bad disk subsystem performance,
can be observed. Here, various database metrics were
degraded because of the critical state of the disk queue.

Figure 3 shows a more complex behavior. The
“influencers” are the CPU Usage and the free disk space.
During the ten minutes interval, numerous MSSQL
database metrics got degraded.

Finally, in Figure 4, “network connection failures”,
materialize and can be mapped into a problem of the
Network interface IF12. If that becomes an actual
bottleneck, a high CPU load might occur, with further
influence on the performance of the delivered processes.
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Figure 3. Causality graph for cluster no. 28.

Figure 4. Causality graph for cluster no. 3.

5. Concluding remarks

In this study, progress in developing a comprehensive
solution for RCA in data centers was reported. The
proposed approach is based on a novel anomaly
detection model, which is suited for streaming data,
accounting for different types of anomalies, and
applicable to raw data. Based on literature analysis, and
performed experiments, reconstruction models (PCA
and (V)AE) were rejected, and focus was turned into
models operating on individual time series. Based on
the state-of-the-art approaches, and an experimental
search involving multiple approaches the OARX was
proposed. Experiments showed that it outperforms
other models when applied to the Yahoo! Dataset.

After anomalies were detected, they were clustered,
based on the time of their occurrence. Afterward,
to construct causal graphs, the PCMCI was applied.
These graphs were interpreted by the EMCA experts
and found to match actual/potential problems in the data
center. Hence, the initial approach has been successfully
validated in real-world settings.

However, despite achieved results, there is a huge
room for improvement. (1) Even the best anomaly
detection methods, applied to the A1 subset of Yahoo!
Dataset (treated as raw data), should be improved. (2)
There is no simple way of applying (semi-)supervised
learning. As the OARX can spot point and contextual
anomalies, the following approach can be envisioned.
Assume that anomalies captured by the OARX , are
human-verified (reducing time-effort, due to their
expected reliability), resulting in a tagged dataset, ready
for semi-supervised learning, leading to iterative model
development. Another anchor point is the ability for
causal inference models to operate on non-stationary
time series, as currently employed differentiation might
involve bias. Finally, historical causality graphs can
be applied for future failure prediction. In upcoming
research, it is planned to explore these, and other,
avenues for developing a real-world RCA tool-set for
data centers.
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