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Abstract  

Algorithms are becoming increasingly prominent. More and more aspects of our everyday lives are 

being mediated, produced and directed by digital artefacts and connected systems which in turn are 

powered by algorithms. In this paper, we engage with algorithms and their performative aspects during 

development, implementation, and performances in the world. Based on theorizing, we develop an 

algorithmic perspective of performativity which centres on how algorithms evolve from initially being 

shaped to becoming those who shapes. Our proposed research opportunities address pressing 

conditions where the presented framework can prove beneficial as a conceptual device. 

Keywords: Algorithms, Performativity, Machine Learning, Artificial Intelligence, Deep Learning. 

1 Introduction 

“The hope is that, in not too many years, human brains and computing 

machines will be coupled together very tightly, and that the resulting 

partnership will think as no human brain has ever thought and process 

data in a way not approached by the information-handling machines 

we know today.” 

        ‘Man-Computer Symbiosis’ – J.C.R. Licklider (1960)  

Increasingly our everyday lives are mediated and directed by digital artefacts and interconnected 

systems which in turn are powered by algorithms (Baskerville et al., 2020; Ågerfalk, 2020). Thus, in 

just a few years, the ‘algorithm’ has made a journey from having mainly occurred as an obscure, 

technical term in mathematical and computer science discourses, to now also being perceived as a 

cultural object embraced by social scientists, media scholars and journalists alike. Some authors claim 

we are entering an era of widespread algorithmic governance, where algorithms will have an increasing 

role in the exercise of power in society (Beer, 2017; Diakopoulos, 2014; Kitchin, 2017). While others 

point at and discuss the shaping nature of algorithms, where they automate, augment, sort, govern, and 

in different ways control our daily practices (Gillespie, 2012; Matzner, 2016; Trielli and Diakopoulos, 

2019). Yet others inquire into algorithms’ said obscurity, and inscrutability and investigate how these 

characteristics make it problematic to understand exactly what is at stake (de Laat, 2018; Introna, 2016; 

Ziewitz, 2016). Recent research within Information Systems (Baskerville et al. 2020; Ågerfalk, 2020; 

Lyytinen et al., 2020) recognize this diffusion of algorithms rendering a new breed of sociotechnical 

systems “where machines that learn join human learning and create original systemic capabilities” 

(Lyytinen et al., 2020, p. 1). Thus, these systems appear as hybrids, amalgams, where its members 

complementary and enhancing capacities contribute to the overall functioning of the system, and thus 

performs at a higher level than would they have done separately. Hence, these systems are 

acknowledged to contain members of different cognitive architectures, those of humans and computers 

(Lawrence, 2017). The operationalization of such systems takes these dissimilarities into account and 

leverage on them. At the core of this development, we find machine learning algorithms and more 

specifically deep neural nets. One example of such a system is Uber, where drivers are managed by 

machine learning algorithms: algorithms which handles everything from the actual matching of riders 



Algorithms and their work 

Twelfth Scandinavian Conference on Information Systems (SCIS2021), Orkanger, Norway.                      2 

 

and drivers to the calculation of the price, the execution of the monetary transaction, with the subsequent 

assessment of the driver and rider through their respective app.  

In this conceptual paper we complement research on how machines and humans may coexist in 

evermore complex systems (see Lyytinen et al., 2020; Lee, 2020). With a primary focus on machine 

learning algorithms, our aim is to explore how algorithms increasingly mediate our lives and thereby 

appear as vivid actors in a digital society. We specifically turn to the development and implementation 

of algorithms – thus, how they come into existence and later operate. Hence, we see a specific need to 

contemplate and discuss what the latest advances in technology have unleashed in terms of qualities of 

compute, and what these advances empowers. The recent breakthroughs in large-scale operations (e.g., 

cloud platforms), the accelerated powers of computing, and the possibility to collect and store vast 

amounts of data, enables capabilities of different kinds (Smith and Browne, 2019). Hence, since an 

underlying architecture does not dictate how different types of ‘intelligent’ behaviour emerges, but 

merely specifies what is possible to operationalize or not, there is a need in understanding how these 

architectural conditions enables different characteristics of compute: One where algorithms is produced 

by humans operating in the realm of logic, and one where algorithms are derived by computers that 

learns, operating in the realm of probability (Cantwell Smith, 2019). This shift must be recognized and 

made comprehensible in order to be able to evaluate and assess algorithms performances in the world, 

under which circumstances and conditions they excel and when they might fail. While intuitions have 

been built with respect to algorithms developed in the former paradigm (e.g. algorithmic and 

computational thinking), same intuitions applied with regards to machine learning algorithms can be 

illusory and hence deceptive.  Thus, there is a pressing need, we argue, to be able to reason and discuss 

on an abstract, systems level how algorithmic assemblages operates and performs. In our attempt to 

realize this, we find the concept of performativity (e.g. Barad, 2003; Butler, 1993; Pennycook, 2004) 

as an important prerequisite for being able to shed light on and theorize how algorithms – during 

development – are shaped but when put to operate in the world, becomes the ones that shapes. 

Accordingly, it is necessary to pay attention to practices involved in developing and designing 

algorithms – along with an appreciation of the mechanics by which they operate – to be able to say 

something about issues such as autonomy, decision-making, and prediction. Hence, to be able to 

“understand what assemblages of people and machines should assigned what kind of tasks, we need to 

understand [...] what kind of work require what kind of capacity” (Cantwell Smith, 2019, p. xiii). We 

therefore propose a framework which acknowledges algorithms not as objective artefacts, but as 

creations which develops and operate through time. Given these prerequisites, the question that guide 

this paper is: How can we understand algorithms performances in the world? 

In what follows, we first position the paper within related research on algorithms. We then present the 

reader to a conceptual framework of algorithmic performativity. The subsequent section discusses the 

framework in relation to three aspects of algorithms: agency, reliability, and complexity. The last 

section concludes the paper. 

2 Theoretical Background 

Traditionally, an algorithm is described as a mathematical, computational method: “[A] series of steps 

undertaken in order to solve a particular problem or accomplish a defined outcome” (Diakopoulos, 

2014, p. 3). Hence, the algorithm appears as an abstraction, free of the material constraints which is 

embodied in its implementation. Accordingly, and due to the chosen method of implementation, an 

algorithm can be materialized in different ways (Dourish, 2016). Thus, an algorithm is a model of what 

a machine can do, when said model is translated into executable computer code. Furthermore, the nature 

of this execution can differ, dependent on the type of computer architecture, e.g., storage, memory, 

processor etcetera (Dourish, 2016; Lee, 2017). But as the algorithm has gained increased value in 

various discursive systems – e.g., security (Amoore and Raley, 2017); law (Chesney and Citron, 2018); 

social movements (Milan, 2015); ethics (Sandvig et al. 2016); politics (Wooley and Howard, 2016) – it 

has at the same time lost much of its general explanatory power as being a logical, step-by-step formula. 

Hence, the ‘algorithm’ has become a notion with many faces and thus “emerges in a complex interplay 

of social practices, material properties, discourses, mathematical abstractions, and code” (Matzner, 

2019, p. 4). Moreover, the notion of algorithm – its semantics and connotations – tends to shift as we 
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move along its lifespan (Seaver, 2017; 2019). When describing and discussing algorithms in the early 

development phases, one tends to talk about them as abstract mathematical, computational models 

(Rieder, 2017) while in the later stages they are rather perceived as complex, sociotechnical systems of 

which the actual algorithm only constitutes a smaller part (Dourish, 2016; Gillespie, 2012). Therefore, 

depending on context, the notion of algorithm may assume an artefact or a set of artefacts from the early 

developed creations in mathematics and computer code, to the later implemented and materialized 

instances within infrastructures and wider sociotechnical systems making their imprints in the world. 

Thus, the algorithm as a concept has become both elusive and extensive in discourse (Mittelstadt et al., 

2016). In this paper, we make use of this somewhat faded conceptualization when referring to the 

algorithm sometimes as an individual instance (e.g., machine learning algorithm), and sometimes a 

placeholder for a wider, computational system (e.g., ‘the Google algorithm’, ‘the Facebook algorithm’). 

Hence, we do not delineate algorithms in relation to scale but instead to functionality. Thus, we are 

interested in how different computational theories, approaches and methods give rise to different types 

of algorithms; algorithms of various qualities and kinds, operating in accordance with different 

epistemic and ontological conditions. And it is these conditions, we argue, that must be exposed, 

understood, and discussed in order to be able to make informed and sound decisions regarding 

algorithms – i.e., where to use them, how much autonomy we can allow them, and finally to what extent 

we can actually trust them. Consequently, in this paper, algorithms are delineated into two, broader 

categories: those of logic and learning. 

2.1 From Logic to Learning 

In the logic paradigm, an algorithm is a step-by-step function which controls and prescribes what and 

what not to do under given circumstances (Goffey, 2008). An algorithm is designed and based on 

previous gathered knowledge, in a sense: ‘what we know we can program’. Thus, “every step of the 

procedure is explicitly specified by its human designers and written down in a general-purpose 

programming language such as Python or C++” (Kearns and Roth, 2019, p. 6). Hence, the algorithm 

arises as an orchestrator that parses and acts upon digital representations (data structures) of the 'world' 

manifested in code. The ontological worldview of this paradigm is symbolic, discrete and conceptually 

well-defined (Cantwell Smith, 2019). Hidden in this notion of ‘algorithm’ is the conception of an 

artefact being developed and crafted by man and therefore comprehensible and understandable 

(Dourish, 2016): Although it is a computer which performs actions through execution of code, humans 

have prescribed the states of action during design. Thus, when confronted with problems due to the 

actions of algorithms, we sense a programmer lurking in the background. A programmer who clearly 

could not envision the specific situation per se, or did a miscalculation, or made a misconception; hence, 

we attribute the issue at hand – or the ‘bug’ – to the shortcoming of human developers and is counting 

on them to solve the situation at hand through deliverance of a patch or version update of the software. 

An update which requires the developers to refactor, restructure, and/or redesign existing code (Barr, 

2018). In this sense the algorithm ambiguously appears as a deterministic yet uncertain entity with a 

consistent behaviour.  

Today, the notion of algorithm has mainly come to refer to artificial intelligence and machine learning, 

which in this paper is termed the learning paradigm. In the learning paradigm, the notion of algorithm 

is perceived in a quite different way. As an example, algorithms could be shaped to fit a domain-specific 

purpose through a so-called supervised learning process1 (Ford, 2018) calibrated by massive amounts 

of labelled but unstructured data (Burrell, 2016). Instead of being deterministic these types of algorithms 

are probabilistic (Domingos, 2012). During a learning process the algorithms are trained to infer a 

specific outcome from a specific income – is it a dog or not? This means that these algorithms are not 

designed and conceptualized by humans in a comprehensible step-by-step manner as in the logic 

paradigm; instead, these types of algorithms are shaped and moulded through being exposed to a 

massive flow of training data. E.g., if a learning algorithm is to be used in image recognition scenario, 

the final computer code will not operate in accordance with how humans would delineate images; 

instead, the algorithm will 'understand' the image as a series of pixels that, when they occur in the right 

 
1 Thus, we acknowledge that there exist various types of learning mechanisms, e.g. supervised-, semi-supervised, 

unsupervised-, and reinforcement learning (see section 4.1). 
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order, equals the sought-after image. The human concept of dog - 'sharp teeth', 'barking', 'have fur' - is 

non heard of in the realm of learning. Here, the algorithmic logic operates in accordance with pattern 

recognition of pixels and thereby a certain probability that it is a 'dog'. In comparison with the logic 

paradigm, an important ontological difference is here to be noted. An ontological difference which is 

key to understand how these types of algorithms ‘make sense’ of the world: “The classical assumption 

of a discrete, object-based ‘formal’ ontology is not a prerequisite for machine learning […] On the 

contrary, the success of ML systems, particularly on perception tasks, suggest a different picture: that 

the world is a plenum of unbelievable richness” (Cantwell Smith, 2019, p. 66). Hence, we as humans 

can be deceived in believing that these types of algorithms recognize a ‘dog’, when in fact they only 

confirm a representational pattern of pixels (cf. Smith, 2020). Accordingly, a learning algorithm predict 

and categorize based on probability, but are not able to reason and judge based on knowledge (Cantwell 

Smith, 2019; Dourish, 2016). Thus, these approaches are largely empirical to their nature, and thus not 

guided by theory (cf. 'competence without comprehension'; Dennett, 2017). 

2.2 Algorithms and their implementations 

Algorithms reach or impact do not solely rely on their mathematical and logical characteristics. What 

an algorithm can achieve is always relative to the computer systems which embodies them. As Dourish 

(2017, p. 213) observes: “The same algorithm, implemented on different computers or supported by 

different technical infrastructures, has quite different capacities. Mathematically, what it can achieve is 

the same, but practically, a new architecture or implementation of an algorithm can bring new 

possibilities into view and new achievements into the realm of the possible.”  

One example of the importance of how the effects of algorithms have developed with regards to how 

they have been implemented is the success of deep learning (Clarke, 2019). Deep learning mimics the 

architecture of the brain. It is based on the so-called philosophy of connectionism where – in analogy 

with the neurons in the brain – a single feature of a machine learning model is not considered intelligent, 

while a large population of said features, acting together, can exhibit intelligent behaviour (Goodfellow 

et al., 2016). The model that forms the basis of the algorithm, designed to illustrate fundamental 

properties of an intelligent system, was created in the late 1950s when Rosenblatt (1958) put forward 

the theory of the perceptron where he explained: “In an environment of random stimuli, a system 

consisting of randomly connected units [...] can learn to associate specific responses to specific stimuli” 

(p. 405). Although Rosenblatt envisioned the possibilities of the perceptron, the model failed to deliver 

due to the problem of scaling. The model was too shallow to be able to produce interesting results. It 

would take until the 2010s before neural networks would seriously return to the scene (Ford, 2018). 

First in speech recognition (Mohamed et al., 2009) and then in computer vision (Krizhevsky et al., 

2012). As the computer power significantly increased over the years, the model could now scale to a 

level where the inherent benefits of the architecture revealed themselves. Hence, the functionality and 

reach of an algorithm is not only hidden in its logical formula, or in the code that implements it, but 

also in the hardware of its specific instantiation. Our perception, experience and even the actual outcome 

of an algorithm can vary as its manifestation evolves due to changes in the underlying technological 

infrastructure (Dourish, 2016; Tan and Le, 2019). Accordingly, “[a]lgorithms cannot be divorced from 

the conditions under which they are developed and deployed” (Kitchin, 2017, p. 10). 

2.3 Algorithms and data 

Most of the algorithms in the learning paradigm of today falls under the sub-paradigm of supervised 

learning. Supervised learning entails providing a machine thoroughly labelled training input data to feed 

a learning algorithm (Ford, 2018). Hence, this paradigm presupposes two things: (1) Massive amounts 

of training data, and (2) that the data is correctly annotated so that the algorithm is be able to differentiate 

between objects in the training set (Goodfellow et. al 2016). These two things, and how corporations 

and firms get hold on them, has bearings on humans and the social fabric at large. For example, in the 

world of social media, when people are posting, liking, commenting they are in fact feeding the 

platforms labelled data on behaviour and preferences. From this data, platforms and data brokers can 

build profiles of users. Thus, digital traces are used as pieces to build an online persona which in-turn 

can be used to target, for example, advertisement (Martzner, 2016). But it is not primarily content that 
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is key, but metadata. Data about data is ever more important in trying to envisage online personas – 

their relationships to others, what they like/dislike, where they are located, messages sent, webpages 

visited etcetera. Thus, a reciprocal relationship between users and platforms emerges: Through actions, 

transactions, and overall participations users feed digital platforms and their algorithms with data. Data 

which in-turn is algorithmically employed to further analyse, categorize and predict (Mitchell, 2019). 

In this perspective, users of platforms engage in algorithmic work by on the one hand producing training 

data, but also more or less helping in annotating and labelling it (Ekbia and Nardi, 2017). 

2.4 Towards a performativity perspective 

Originally, performativity refers to actions performed through language, i.e. utterances that produce 

what they name. Hence, language is not only used to describe and represent the world, but also to do 

things in the world (Austin, 1962; Searle, 1969). Performativity has since been introduced in language-

, discourse-, gender- and entrepreneurship research (Barad, 2003; Butler, 1993; Garud et al. 2018; 

Pennycook, 2004), and more recently in relation to computing (Mackenzie, 2005; Matzner, 2016). 

Performatives was applied in the IS-field in the late eighties, and nineties, when social and 

communicative aspects of IT became more stressed. In this process speech act theory came to play an 

important role (Auramäki et al.,1988; Ljungberg and Holm, 1996; Winograd and Flores, 1986), and is 

now taken up again in the digital first discourse (Baskerville et al., 2020). Thus, the notion has evolved 

into a broader view of discursive performativity and applied to other discursively mediated practices. 

Butler describes performativity as the “reiterative power of discourse [which] produce the phenomena 

that it regulates and constraints” (Butler, 1993, p. xii). Hence, performativity “can be understood as the 

way in which we perform acts of identity as an ongoing series of social and cultural performances rather 

than as the expression of a prior identity” (Pennycook, 2004, p. 8).  The key thing to understand is that 

'the performative' not only constitutes identity, but also constitutes what it is purported to be, and thus 

appears as a circular, self-producing activity. Over time, these repeated acts bring forward a material 

'sediment' - a taken-for-granted knowledge - which gives the appearance of an underlying, and objective 

’reality’. Performativity then, is not only linked to the formation and representation of a subject but 

also, and more, to the production and becoming of the same (Barad, 2003; Pennycook, 2004). “Thus 

we need to shift from a logic of causality (which assumes pre-existing beings as the source/origins of 

action) to performativity (which treats becoming as a radical ontological openness)” (Introna, 2013, p. 

336; italics in original). Hence, performativity can be understood as a way to explain and understand 

how the world is being made and reconfigured through material-discursive practices (Barad, 2003). 

Accordingly, technical performance and digital materiality is always existing within a discursive system 

(Bazerman, 1998; 1999; Dourish, 2017; Lee, 2017; Mackenzie, 2005). This extended view of 

performatives, a kind of discursive performativity, is especially suited for applying on the diffusion of 

machine learning algorithms. Algorithms which lurk in the background and determines the flow of 

information – dynamically filtering content, deciding what to show and what to suppress – acting as 

invisible yet powerful gatekeepers and watchdogs (Beer, 2017). Algorithms which shape different 

domains of everyday life through their performances: i.e. finding friends, or lovers, matching taxi trips, 

arrange hotel bookings, cater food deliveries, monitoring suspects etcetera. 

3 Algorithmic Performativity 

In this paper, we propose a performativity perspective2 on algorithms where “[p]erformativity implies 

that digital technologies operate with some level of autonomy” (Seidel et al., 2020, p.127). Thus, a 

perspective which rests on the assumption of software (e.g. computer code) being a technology of 

simulation; hence, a malleable technology which bears the capacity to be shaped, and the ability to 

subsequently shape, in various ways (Galloway, 2006). In order to link the concept of algorithm to the 

notion of performativity more strongly, we suggest an amalgam of three aspects as a vehicle for thought: 

 
2 Although we focus on learning algorithms, we find it suitable to contrast with algorithms created in the logical 

paradigm. Thus, in our conceptual framework, we compare how performativity plays out differently depending 

on design process adopted. Hence, the very point of the paper is to demonstrate which mechanisms give learning 

algorithms their performative properties, and this is most easily done by juxtaposing them with how traditional 

algorithms have been developed and shaped. 
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(1) algorithms exists as material instances of compiled, executable computer code which resides on hard 

drives or other type of physical mediums; this perspective highlights the important notion that “code 

exists first and foremost as commands issued to a machine” (Galloway, 2006, p. 326); (2) algorithms 

execute and operates within a 'linguistic', symbolic realm, where they continuously “renders objects, 

events and relations into communicable signs” (Mackenzie and Vurdubakis, 2011, p. 4); (3) algorithms 

perform and thereby influence the very same reality in which they are embedded (Beer, 2017; Kitchin, 

2017; Milan, 2015). The amalgam puts forward a performativity perspective where algorithms appear 

as ‘machines’ operating through ‘language’ and ‘symbols’, making imprints in the world. 

We suggest algorithmic performativity unfolding during two phases (see Table 1). First, algorithms get 

shaped and tailored during design and development; this phase unfolds differently depending on the 

paradigm, hence our decision to handle them as separate cases (symbolic and learning, see Table 1). 

Secondly, the algorithm is implemented and put into action and thereby becomes a performative 

instance of code, running on specific pieces of hardware, and thus influences and make imprints in the 

domain it is set to operate within. By adopting a performative perspective, the algorithm is perceived 

not as a static, but as a malleable yet formative creation: “The use of phrases ‘the Google algorithm’ 

and ‘the Facebook algorithm’ should not fool us into thinking that our objects are, deterministic black 

boxes […]” (Seaver, 2019, p. 419). 

  

Phase Domain Description Performative aspects 

One – 

Logic 
Development 

Designed by humans; 

algorithms modelled based on 

knowledge; algorithms created 

as workflows. 

Performativity pivots around the 

designers and developer’s contribution in 

strengthening or weakening stereotypes, 

cultures and discourses through code. 

One - 

Learning 
Development 

Algorithms are shaped 

(‘designed’) by data during 

training; built on probabilistic 

foundations. 

Open to learning about the world through 

patterns in data; vulnerable to 

insufficient, distorted, or false data will 

shape them into skewed models; data is 

hereby becoming performative 

Two 
Deployed; 

‘Put in use’  

Algorithms embody certain 

worldviews (by design) and 

seeks to organize the 'world' 

accordingly; when put into 

work, the shaped algorithm is 

becoming the one that shapes. 

Algorithms performs in and influence the 

very same reality in which they are 

embedded; performativity can play out 

differently depending on context, types 

of data and algorithmic design. 

 

Table 1: Conceptual Framework 

3.1 Phase One: Shaping algorithms 

In the logic paradigm the algorithms are designed and developed by humans. How an algorithm will be 

modelled is based on the knowledge of the specific problem at hand and any pre-given data structure 

that are about to be approached and acted upon. In other words, the data which is to be operated upon 

is well-known to the designer in the sense of predefined categories, semantic comprehension and 

structure. Algorithms are created as workflows and runs, step-by-step, calculating decisions based on 

input data (e.g. If…Then…Else) (Kitchin, 2017) and sometimes executing specific commands at given 

points in time. If a logical rule is missing, or the program misbehaves, it is likely that humans has not 

been able to foresee a specific situation. This hiccup will either result in a misleading result, a runtime 

error, or a crash in the program; either way the error occurred will be treated as a 'bug' and probably be 

attributed “the human factor”. Hence, in this paradigm, designers and programmers envision models 

based on problems in the wild, to develop algorithms which handles and solves said problem. Here, the 

developer/designer works and “operates within the context of a wider system (or discourse) that 

significantly shapes the designer's contribution” (Kallinikos, 2002, p. 289). The intelligence of the 

algorithm is thereafter translated into computer code. A translation which can prove problematic and in 
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need of “a great deal of expertise, judgement, choice and constraints” (Kitchin, 2017, p. 10) In this 

paradigm, performativity therefore pivots around the designers and developers and their contribution in 

strengthening or weakening stereotypes, cultures and discourses through their choices and practices 

iteratively inscribed in code during development (Lee, 2017; Mackenzie, 2005). The discursive systems 

(Bazerman, 1998) that the designer resides and operates within will be reflected in their approaches to 

problem-solving; on how they define situations as problems; on how they reason about what can be 

considered a good outcome or not; on the way they present or hide data; on how they incentivize use 

etcetera (Barr, 2018). Over reiterations of tests and evaluations, the algorithm is moulded to primarily 

fit the requirements which describes how it is intended to work; but also, and more subtle, to operate in 

accordance with the 'algorithm' as the developer (residing in a specific discursive system) imagines, and 

continuously reimagines it. 

In the learning paradigm, the wanted outcome of the algorithm is in a way dictated by humans, while 

the inner workings of the algorithm are shaped by data during training (LeCun et al., 2015; Lee, 2018). 

Here, the primary focus in reaching success is to gain access to huge amounts of data and massive 

computing power. Data for training, and computing power for the needed depth of the algorithms. 

Through their ability to learn patterns – and further being able to generalize these learnings onto future 

data feeds – these algorithms are shaped into pattern recognition machines (Smith, 2020; Domingos, 

2012; Goodfellow et al., 2016): “This data-driven process is how we get algorithms for more human-

like tasks, such as face recognition, language translation, and lots of other prediction problems” (Kearns 

and Roth, 2019, p, 6). Three recent technological advancements have made the diffusion of the learning 

paradigm possible. First, computing power has progressed to a level where the massive numbers of 

calculation needed for these types of models to scale, is met. Second, the big cloud platforms of today 

make large amounts of these powers accessible to developers and firms without the need for them to 

make capital investments in massive amount of hardware otherwise needed. Third, the explosion of 

digital data has made possible to build vastly larger datasets, in order to train these machine learning 

systems (Smith and Browne, 2019). Thus, in this paradigm, data is both an outcome as well as a 

'designer' of the algorithm as such. During training, the algorithm compares a given output with a 

wanted one. If the result is not correct, the system changes itself (learns) by adjusting its internal 

parameters (called weights) to better suit the wanted result. This process is supervised by an algorithm 

(backpropagation) (LeCun et al., 2015).  Over time, this training process results in a model that is ready 

to take on and classify new, unlabelled data which it has never encountered before (Burrell, 2016). 

Hence, data is becoming performative since the training sessions needed for tuning the algorithms, and 

make them learn, could be seen as “repeated acts within a highly rigid regulatory frame that congeal 

over time to produce the appearance of substance” (Pennycook, 2004, p.16). Herewith the algorithms, 

to some extent, is exposed to the same type of performativity that we as humans are in discourses of 

our everyday life; they will process, and thus be shaped by, the data that is given to them (cf. Clarke, 

2019): “The abductive logics of many of these families of algorithms contrast with deductive reasoning 

[present in the logic paradigm] so that they are closer to experimental processes of learning and 

verifying through the available data” (Amoore and Raley, 2017, p. 6). Consequently, these types of 

algorithms are open to learning about the world through patterns in data (Lawrence, 2017; Smith, 2020). 

Accordingly, they are also vulnerable to the fact that insufficient, distorted, or false data will shape them 

into skewed models of the reality they are set to manifest (Clarke, 2019). Thus, the process of generating 

a machine learning model depends on two things: An objective function (e.g., what to optimize for, a 

goal), and a massive data set to train on. The objective function becomes the thing that the algorithm, 

during training, is trying to excel at. And the end product of this shaping process is manifested in a 

model adapted to do its job in a specific domain. A domain which is intrinsically defined in relation to 

the data on which the algorithm has been trained. Although the model might appear as effective and 

potent, it can nevertheless – when put into work – be perceived as flawed and problematic for example 

in relation to fairness. Hence, the algorithm can, with regards to its objective function, have been trained 

to optimize in ways which later turns out to compromise certain culturally accepted norms and 

assumptions: “In the era of data and machine learning, society will have to accept, and make decisions 

about, trade-offs between how fair models are and how accurate they are” (Kearns and Roth, 2019, p. 

72). 
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3.2 Phase Two: Algorithms which shapes 

Thus, a fundamental theoretical implication of adopting a performative approach is that algorithms and 

their representations are not just descriptions of something that exists on the 'outside' of reality but are 

constituent parts of it. Put another way, algorithms do not simply represent, they perform and thereby 

influence the very same reality in which they are embedded (Beer, 2017; Kitchin, 2017; Milan, 2015). 

They act as curators on social media platforms; they recognize faces and act on other types of biometric 

inputs; they buy and sell stocks; they fly planes and (maybe) soon drive cars. Hereby, algorithms are 

not just 'recipes' who prescribes and set boundaries of what can and cannot be done. Through their 

performances they also contribute to shape society in accordance with how they operate. Performativity 

is thereby related to the algorithms and their workings in the world. How they affect people and 

discourses through decisions, recommendations and categorizations. Thus, algorithms do not only 

process and provide information, but they also construct information by sorting and classifying in 

accordance with specific worldviews (Mackenzie, 2005). Put differently, algorithms embody and 

describes how specific constellations understands and thereby seeks to organize their 'world': “[T]he 

myriad of ‘clicks’ that regulate our daily lives, are all inspired by algorithmic models. The logic of 

numeric functions enters the practical world, often unseen, and firmly takes root in everyday life and 

our consciousness” (Totaro and Ninno, 2014, p. 30). 

Thus, algorithmic performativity in this phase depends on the design of the algorithms and how they 

are implemented. When put into work, the shaped algorithm is now becoming the one that shapes. To 

visualize, we give two hypothetical examples of how data, processed by implemented algorithms, 

materializes as performances in the world. Imagine two different types of datasets: one non-man made 

(weather) and one man-made (twitter). Consider the weather dataset as input to an algorithm which 

predicts weather based on previous weather. The output of that algorithm will not change the actual 

weather per se, but the result will colour how meteorologists and media talk about and report the coming 

weather, and thereby how people prepare themselves for the same. On the other hand, consider twitter 

data as input: Here the twitter algorithm(s) massage the flows of data on the platform, and presents what 

is trending depending on the algorithms predefined ways of categorizing and presenting data. These 

trends, in turn, can steer what people talk about and start to interest themselves with, and by that 

strengthening phenomenon in discourse. These examples highlight how performativity can play out 

differently depending on context, types of data and algorithmic design. Hence, the first example will 

inform us about potential conditions coming ahead, while the other has the potential to form us - our 

thoughts and worldviews - by presenting certain types of information, while hiding others. 

Consequently, due to the capacity to learn, act and react in narrow domains, algorithms (and primarily 

deep learning algorithms) have the possibility to execute in decision making by extracting patterns 

through vast amounts of data (Domingos, 2012; Goodfellow et al., 2016). E.g., as gatekeepers and 

watchdogs of social media platforms, algorithms curate and steer the flow of information – highlight 

some parts, while hiding others (Gillespie, 2012). “The so-called ‘user behaviour’ changes as new 

practices emerge, as different platforms become more or less popular, and perhaps above all, as 

predictive models act as part of platforms in the world” (Mackenzie, 2015, p. 442). In this, algorithms 

appear as cocreators of the ‘world’. Not only do they orchestrate much of the information flow 

happening on social media platforms and others alike, but they also do invite for some types of creation 

and use, while precluding others (Kallinikos et al., 2013). Through automated chains of algorithms – 

e.g., Google search; Facebook newsfeed; Uber app – we are thus formed to attain certain practices. 

4 Discussion 

In public discourse “[a]lgorithms per se are supposed to be strictly rational concerns, marrying the 

certainties of mathematics with the objectivity of technology” (Seaver, 2019, p. 412). Seaver himself 

disputes and argues against this statement in his essay “Knowing Algorithms”, and our previous 

discussion on algorithmic performativity sympathizes extremely well with this questioning on the 

perceived nature of algorithms. As the conceptual framework explained, algorithms are not objective 

creations. They do carry traces – norms, opinions, values – of their creators, let it be developers or the 

data that shapes them. Furthermore, the behaviour and efficiency of an algorithm may differ depending 
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on the implementation along with the quality of data and force and scale of underlying infrastructures 

and related systems. Adding to the fact that algorithms are becoming increasingly sophisticated, potent 

and entangled they now – through 'intelligent' IoT artefacts – also makes performances in physical 

reality. Thus, if we perceive algorithms – and their representations in code – as temporal manifestations 

and not fixed creations we acknowledge them as vibrant and vivid actants doing their work in the world. 

By recognize them as co-creators and mediators of the 'world', we can appreciate and understand their 

wider implications: How they during development become performatively shaped, but when 

implemented and put into work performatively shapes.  

Algorithms are beginning to affect us in the physical domain as well as the digital, and in ways we 

hardly can comprehend. Undoubtedly, machine learning algorithms contribute to novel avenues of 

innovation both in business as in society at large. However, there is a grinding concern that this force 

of compute could be misdirected (unintentionally) or misused (intentionally) and thus strike back in 

unpredictable ways (e.g. Mitchell, 2019; Clarke, 2019; Cantwell Smith, 2019; Zittrain, 2019). Hence, 

issues surfacing with regards to these families of algorithms are as much political and societal, as they 

are technical. Thus, discussions on topics such as autonomy, reliability and vulnerability are becoming 

increasingly important (see Schneier, 2018; Mitchell, 2019; Smith and Browne, 2019). Discussions 

where policy makers in society, organizations, and perhaps above all the large digital platform 

companies, needs to find a way forward. A way which does not hinder and stifles further innovation 

but protects citizens and the society at large against threats and attacks (Brundage et al., 2018). E.g., 

can we, on a global level, agree upon algorithmic ethics and apply regulations when it comes to AI 

algorithms (Smith and Browne, 2019; Sandvig et al., 2016)? If so, in which of the phases will 

regulations be needed/required? Is it during the first phase to impede specific designs and/or models? 

Or is it in the second phase, regulating how connections between implemented algorithms and wider 

sociotechnical systems can be made? 

In what follows we engage in discussions on three aspects of algorithms we find increasingly pressing 

and where the framework of algorithmic performativity can be of help: Agency, reliability, and 

complexity. 

4.1 Agency 

'Agency' carries a wide variety of connotations: “It may encompass actions and the freedom to choose 

those actions; intentionality, will and power; causality, consequences, and outcomes (which may be 

intended or unintended); and decision making” (Rose and Truex, 2000, p. 372). In relation to 

algorithms, the notion of 'agency' has become somewhat ambiguous and problematic. We argue that the 

inherent capabilities of digital technology to change, shape and transform has contributed to the 

situation (e.g. Zittrain, 2008; Yoo et al., 2010; Henfridsson et al., 2018). Given that digital technology 

is in constant flux (Kallinikos et al., 2013) not only makes the landscape of the technological hard to 

predict, but more treacherously, continuous technological shifts can contribute to discursive rigidity 

through a “presumed ‘constancy’ of technology over time” (Faraj and Azad, 2012, p. 244). Hence, 

dominant discourses tend to hold established concepts hostage. We imagine that the notion of ‘agency’ 

in relation to algorithms somewhat suffers from such a phenomenon, as ‘artificial intelligence’ has 

evolved from being understood primarily as expert logic system of sorts, to now being equated with 

learning algorithms. This shift in conceptualization is partly a pure technological shift, moving from 

logical, deductively produced algorithms to inductive, data-driven, learning based approaches. But also, 

and maybe more subtle, a semantic shift on what AI really is, can do, and could come to be; a shift 

which divides the research community where now strong, yet shared opinions exist on the matter (cf. 

Ford, 2018; Brockman, 2020).  

However, given recent breakthroughs, we stand at a brink where algorithms can – through 

reinforcement learning (Ford, 2018) – learn, tabula-rasa, without any previous domain specific 

knowledge or data, and achieve superhuman capacity in specific domains just within hours (Silver et 

al., 2018). Also, algorithms are starting to excel in unsupervised learning (Ford, 2018) and perform “a 

surprising amount of task without the need of explicit supervision” (Radford et al., 2019, p. 10). Such 

breakthroughs speak of digital artifacts, driven by algorithms, independently drawing inferences, taking 

actions, making decisions and thus operate with a much greater degree of autonomy than ever before 
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(cf. Andersen et al., 2016; Ågerfalk, 2020). Thus, as the discourse on artificial intelligence progresses, 

'agency' in relation to ‘algorithm’, tends to become a disputed concept as it tries to encompass machine 

learning (deep learning) algorithms, their perceived intelligent capacities, and further operations in the 

world. In this sense, it becomes a deceptive conceptualization since it suggests digital technology acting 

as a form of sentient being. Supposedly, this chimera stems from a perception that certain types of 

digital technology seem to handle situations and problems on their own, in an increasingly adaptable 

fashion. Hence, although digital technology is developed and designed for specific purposes, it like no 

other technology remains malleable and adaptable even after putting in use (Henfridsson et al., 2018). 

Consequently, digital technology can be designed and developed in accordance with an initial idea, but 

be further integrated, combined, and modified in various other ways (Zittrain, 2008; Yoo et al., 2012). 

Hereby, the open-ended nature of digital artefacts, with a subsequent obscure trajectory of future use, 

makes them somewhat dubious to understand (Kallinikos et al., 2013; Ekbia, 2009). The characteristic 

of unpredictability in becoming can make them appear as actants who operate autonomously, and even 

more so with regards to artefacts operating in the learning paradigm. Hence, in narrow domains, these 

artefacts – driven by machine learning algorithms – gain a kind of independent, adaptable behaviour. 

But behaviour says little about inner workings: “The algorithms we develop don't have a sentient nature, 

if we were to characterise them according to the dual process model of cognition, they are data-driven, 

input-output. They see then do” (Lawrence, 2017, p. 8). Hence, to judge only by behaviour is to treat 

the phenomenon at hand as a black box. Here, we align with Rose and Truex (2000) and their notion of 

‘perceived autonomy’; that ‘autonomy’ is a function which depends on how an observer approach a 

phenomenon as an object of study. On the contrary, machine learning algorithms and their performance 

in the world can emerge as a limiting factor on human agency, and the perceived autonomy of people 

in society (Lawrence, 2017). Through sorting and categorizing algorithms can, for example, herd people 

into various digital spaces based on personal as well as aggregated information. Hence, as people get 

increasingly “known” by algorithmic systems, they become ever more shepherded by them: “As a result 

of emergent artefact autonomy, humanity is in the process of delegating not to humans, but to human 

inventions. This gives rise to uncertainties whose nature is distinctly different from prior and well-

trodden paths of human and organisational practice” (Clarke, 2019, p. 427).  

Hence, the notion of ‘agency’ is value-laden and may open for controversies and discussions regarding 

for example whether (and then when) algorithms will reach human capacity in generalization or not 

(see Bostrom, 2014; Brockman, 2020; Ford, 2018). Although these discussions are important in 

preparing for a possible future technological breakthrough, we must at the same time focus on areas 

where today's technology make impressions and affects organisations and societies in tangible ways. 

Thus, since machine learning algorithms already do perform and hence must be understood as actors in 

the world, we need ways to build intuitions on how they operate and make their performances 

comprehensible without the risk of being caught in the crossfire of philosophical discussions. Here, the 

notion of performativity can prove to be of good help in trying to theorize and explain autonomous 

algorithmic behaviour: Is it during design and development?  Or does it simply emerge through the 

algorithm’s performances in the world as a member of increasingly complex sociotechnical systems? 

Or maybe as an amalgam of the two? 

4.2 Reliability 

Can we trust in machine learning algorithms and their performances? Or maybe a bit more appropriate: 

What are these networks really learning? If we are about to rely on these artefacts it is of utmost 

important that we can build intuitions on how they operate. The very fact that learning algorithms have 

become so powerful and potent with many almost unimaginable results, can contribute to us 

anthropomorphising their functions. It is often said that these algorithms work in similar ways as the 

brain, but perhaps this analogy is sometimes more problematic than we suspect and thus creates 

unrealistic expectations? It may lead us to believe that machine learning algorithms operate according 

to a human ontology of how we categorize the ‘world’ and subsequently build increasingly abstract 

concepts. Hence, we may attribute to them qualities such as judgment and common sense (Cantwell 

Smith, 2019). But the analogy with the brain is to be interpreted as a sign of similarity between 

architectures rather than functions. That is, the neural network in its structure is inspired by how the 

brain is structured. How then these different architectures contribute to functions such as learning have 
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proven to differ markedly (Lawrence, 2017; Zittrain, 2019). As previously pointed out in the framework 

of how learning algorithms are shaped, this 'intelligence' seems to operate in accordance too different 

premises than human intelligence (at least for now) (Lawrence, 2017). That is, learning algorithms find 

patterns in amounts of data, but what these patterns really have to do with the inferred result (i.e., 

humanly defined objects and concepts) is hard to reveal. And in this lack, a question arises: “[A]re we 

fooling ourselves when we think that these networks have actually learned the concepts we are trying 

to teach them?” (Mitchell, 2019, p. 135). Thus, it may be in this gap of knowledge that that the battle 

for our trust and reliance in these systems are fought. Hence, the crucial question of how these artifacts 

should be employed and used may not primarily be found in the technical functionality per se but rather 

in our deficient understanding of how they actually work. 

Jonathan Zittrain puts forward the notion of an ‘intellectual debt’ as a way of describing this gap. In 

analogy with the more rooted term 'technical debt', he sees that we build up an intellectual debt when 

we do not really know how these systems operate: “This approach to discovery – answers first, 

explanations later – accrues what I call intellectual debt” (Zittrain, 2019, para. 3). This debt can be 

exemplified in the so-called “long tail” phenomenon (Mitchell, 2019). A phenomenon which highlights 

the extensive scope of potential unexpected situations a learning system could face. Hence, if an AI 

system is trained to act within a well-defined domain (e.g., Chess), an algorithm can virtually learn to 

categorize and/or predict most potential scenarios with high probability. But if a system instead is to be 

trained to operate in a more unpredictable and open domain (e.g., autonomous car), data can be acquired 

which represents most conceivable scenarios, but there are nevertheless situations (edge cases) which 

are difficult to predict, and therefore to train for – hence, a long tail of unexpected occurrences. 

Consequently, machine learning algorithms are constrained to the context of which they ‘know’, thus 

“they will fail when placed in unfamiliar circumstance” (Lawrence, 2017, p. 8). This ‘intellectual debt’ 

can also be understood in the light of the so-often discussed notion of ‘bias’. Given that these algorithms 

learn from what they observe during training, two perspective seem to be important in relation to data: 

(1) Collected data that are insufficient in relation to categories that will be dealt with may render a 

biased system. But also, data that inherently bear marks of inequalities in society will be reflected during 

training. (2) A more subtle phenomenon concerns the intuition on how these systems operates: As 

previously discussed, we may be led to believe that machines learn what we want them to learn in terms 

of objects or concepts. But if there are irrelevant (for humans) patterns in the data there is a risk that 

these patterns are correlated with what we want the machine to learn, and that the trained models 

therefore categorize in a completely different ways than we think they do (Smith, 2020; Mitchell, 2019). 

Thus, the first perspective concerns machine learning algorithms and their performances in society in 

relation to norms, expectations, socially constructed frameworks and to what extent individuals 

managed by these systems are treated in equal manners or not (cf. Kearns and Roth, 2019). Hence, this 

perspective foreground how algorithms performatively contributes rendering a social 'reality' where 

ethical questions of privacy, fairness and interpretability are in focus. The latter perspective concerns 

machine learning algorithms on a more philosophical level and concerns what these systems actually 

do perceive, and thus their potential brittleness in relation to what they actually 'understand': I.e., can 

we be sure that the patterns discovered relates to objects and concepts in a human ontology? (cf. 

Cantwell Smith, 2019) Hence, this perspective foreground how algorithms performatively contributes 

rendering a social 'reality' built on knowledge gained through data-driven, pattern-seeking, inductive 

empirical processes unguided by theory (Clarke, 2019; Zittrain, 2019).  

4.3 Complexity 

Algorithms does not perform in isolation. Rather, they are part of wider webs consisting of other 

algorithms, operating in relation to various infrastructures such as databases, storage servers, and 

information systems (Ågerfalk, 2020). These resources have traditionally been capabilities and systems 

residing within the digital boarders of a firm (i.e. on-premises data centre). But given the emergence of 

cloud platforms (e.g. AWS, Microsoft Azure, Google Cloud), an increasing number of organizations 

outsource their infrastructures, as well as relying on specific services delivered from these platforms 

(e.g. machine learning capabilities). These new types of entanglements between organizations and 

platforms are of certain interest when discussing aspects such as accountability, transparency, and 

explainability (Smith and Browne, 2019).  If we return to the earlier discussed paradigms (logic, 



Algorithms and their work 

Twelfth Scandinavian Conference on Information Systems (SCIS2021), Orkanger, Norway.                      12 

 

learning) and phases (shaped, shapes) outlined in the framework above an interesting discussion on a 

system and it parts emerge. Hence, a developer could make use of a specific, pre-trained, AI-capability 

(say, face-recognition) delivered from one of the above-mentioned cloud platforms. The developer then 

design, develops and construct an algorithm for the specific task at hand, and outsources (through API 

calls) the task of recognising faces to the platform. Hereby, the algorithm comes to rely on a pre-trained 

machine learning model deployed by said cloud platform. The notion of using API: s delivered by others 

is not a new phenomenon; the possibility of using public API:s and hereby creating mashups of all sorts 

has been household since the inception of Web 2.0 (O’Reilly, 2017). Rather, the interesting part with 

this scenario is that these types of machine learning algorithms comes with characteristics and 

possibilities of great powers.  

Thus, these machine learning APIs are to be perceived as gateways into realms of compute to which an 

ordinary developer often lacks access. Hence, the interface between developer and platform act as a 

bridge between two computing domains – one controlled by the developer, and the other controlled by 

the platform firm. The rising power of cloud platforms then becomes obvious, as they present capacities 

of using machine learning and artificial intelligence capabilities to a wide audience (Clarke, 2019). 

Consequently, the cloud platforms become increasingly entangled into solutions and systems where 

they are the supplier of the ‘intelligent’ parts of said systems. Hence, cloud platform services become 

powerful layers of abstractions which obscures the underlying fabric of machine learning (i.e., training, 

modelling, deploying). Abstractions that allow developers to use these powers of compute without 

having any previous knowledge of machine learning. Then, when it comes to questions like 

interpretability and transparency the developer cannot really explain the pre-learned model – which is 

hidden behind the curtain of the cloud service – but must trust the platform. While the developer makes 

use of a pre-trained machine learning model, and utilizes its power, they cannot really account for how 

the specific model was trained – e.g., how much data, or of which type, that were used during training. 

Consequently, opacity not only emerges because a machine learning model cannot be explained but 

also, and perhaps more, due to systems becoming ever more interconnected and thus increasingly 

complex (cf. Schneier, 2018). Increased complexity in relation to how IT infrastructures evolves is not 

a new phenomenon (e.g. Sommerville et al., 2012). But while system complexity previously emanated 

from increased relationships between systems, and where we have been able to rest in an intuition that 

the individual components are understandable, we now encounter situations where parts of the 

infrastructure in themselves are incomprehensible. Hence, the overall opacity increases as a function of 

the complexity of the system itself – its individual components and the relationships between them: 

“Taken in isolation, oracular answers can generate consistently helpful results. But these systems won't 

stay in isolation. As AI systems gather and ingest world's data, they'll produce data of their own - much 

of which will be taken up by still other AI systems” (Zittrain, 2019, para. 11). 

5 Conclusion 

This paper set out to theorize on algorithms and their performances in the world, with a primary focus 

on algorithms operating within (what we term) the learning paradigm. Thus, at the centre of attention 

is the dual nature of algorithms as they are shaped during design but becomes the ones who shapes 

when put into work. Through a conceptual framework of algorithmic performativity – divided into two 

phases: (1) 'Shaping algorithms', and (2) 'Algorithms which shapes' – we account for the dynamics by 

which algorithms are performatively produced and reproduced as they continuously become involved 

in performances in the 'world'. By applying the framework on aspects of algorithms, we contribute 

through discussions on how notions such as 'agency', 'reliability' and 'complexity' can be understood 

and further problematized using a performativity lens. The conceptual framework thus spurs further 

theorizing by highlighting the temporal, relational and re-shaping aspects of algorithms.  
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