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Abstract. In this paper, numerical solutions for the Rosenau-Korteweg-de Vries equation are studied by
using the subdomain method based on the sextic B-spline basis functions. Numerical results for five test
problems including the motion of single solitary wave, interaction of two and three well-separated solitary
waves of different amplitudes, evolution of solitons with Gaussian and undular bore initial conditions are
obtained. Stability and a priori error estimate of the scheme are discussed. A comparison of the values
of the obtained invariants and error norms for single solitary wave with earlier results is also made. The
results show that the present method is efficient and reliable.

1 Introduction

Interest in travelling-wave solutions for nonlinear partial differential equations (NLPDEs) has grown rapidly in recent
years because of their importance in the study of complex nonlinear phenomena arising in dynamical systems. Such
nonlinear wave phenomena appear in various fields of sciences, particularly in fluid mechanics, solid state physics,
plasma physics and nonlinear optics.

A variety of powerful methods have been developed to find analytical and numerical solutions of NLPDEs of all
kinds. Examples include the Petrov-Galerkin method [1], the collocation method [2], the subsidiary ordinary differential
equation method [3–5], Hirota’s method [6], the solitary wave ansatz method [7,8], Exp-function method [9], and many
others.

The well-known Korteweg-de Vries (KdV) equation [10]

Ut + aUUx + bUxxx = 0, (1)

where U is a real-valued function and a and b are real constants, is the generic model for the study of weakly nonlinear
long waves [11]. It arises in physical systems which involve a balance between nonlinearity and dispersion at leading-
order [12]. For example, it describes surface waves of long wavelength and small amplitude on shallow water and
internal waves in a shallow density-stratified fluid [12].

In 1988, Philip Rosenau [13] introduced the Rosenau equation of the form

Ut + κUx + cUxxxxt + d
(
U2

)
x

= 0, (2)

to describe the dynamics of dense discrete systems.
For further consideration of the nonlinear wave, Zuo [14] added the viscous term Uxxx to the Rosenau equation (2)

and proposed the so-called Rosenau-KdV equation. The author obtained some solitons and periodic wave solutions of
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model combining the original KdV equation and Rosenau equation by means of the sine-cosine and the tanh methods.
This physically interesting model reads

Ut + aUx + bUxxx + cUxxxxt + d
(
U2

)
x

= 0. (3)

Here in (3), the dependent variable U(x, t) represents the shallow water wave profile while the independent variables
x and t represent the spatial and temporal variables, respectively. The coefficient of a represents the drifting term,
the coefficient of b is the third-order dispersion and the coefficient of c represents the higher-order dispersion term.
Finally, the last term with d is the nonlinear term.

In ref. [15] the sech-ansatz method was applied to obtain explicit solitary wave solutions for the generalized
Rosenau-KdV equation with power law nonlinearity parameter. Besides, the exact topological 1-soliton solution of
the generalized Rosenau-KdV equation has been recently obtained by using the solitary wave ansatz method [16].
The singular 1-soliton solution of Rosenau-KdV equation is derived by the ansatz method. Subsequently, the soliton
perturbation theory is applied to obtain the adiabatic parameter dynamics of the water waves. Finally, the integration
of the perturbed Rosenau-KdV equation is obtained by the ansatz method as well as the semi-inverse variational
principle [17]. A conservative three-level lineer finite difference scheme (CLDS) for the numerical solution of the
initial-boundary value problem of Rosenau-KdV equation is proposed. It is shown that the finite difference scheme
is of second order convergence and unconditionally stable [18]. A mathematical model to obtain the solution of the
nonlinear wave by coupling the Rosenau-KdV equation and the Rosenau-RLW equation is suggested. A numerical tool
is applied to the model by using a three-level average implicit finite difference technique [19]. An average linear finite
difference scheme for the numerical solution of the initial boundary value problem of the generalized Rosenau-KdV
equation is presented. The existence, uniqueness, and conservation for energy of the difference solution are proved
by the discrete energy norm method [20]. The collocation finite element method (CFEM) is utilized to simulate the
motion of single solitary wave with Rosenau-KdV equation. Applying the von-Neumann stability analysis, the proposed
method is illustrated to be unconditionally stable [21].

In the present paper, we use a numerical scheme based on the sextic B-spline basis functions to solve the Rosenau-
KdV equation. The method is tested on five problems including the motion of single solitary wave, interaction of two
and three solitary waves, evolution of solitons with Gaussian and undular bore initial conditions.

The paper is organized as follows: B-Spline basis functions used to construct numerical solutions to the Rosenau-
KdV equation are described in sect. 2. The application of subdomain method to the governing wave equation is
presented in sect. 3. The stability of the scheme is proved in sect. 4. Numerical results for the motion and interaction
of solitary wave are reported in sect. 5. Evolution of a train of solitons for the present model is also studied using the
Gaussian and undular bore initial conditions. Finally, we summarize our findings in sect. 6.

2 The governing equation and sextic B-spline basis functions

In this study, we will consider the Rosenau-Korteweg-de Vries (R-KdV) equation

Ut + aUx + bUxxx + cUxxxxt + d
(
U2

)
x

= 0, (4)

with the physical boundary conditions U → 0 as x → ±∞, where a, b, c and d are positive parameters and the
subscripts x and t denote the differentiation. To implement the numerical method, solution domain is restricted
over an interval a ≤ x ≤ b. Boundary conditions will be selected from the following homogeneous boundary
conditions:

U(a, t) = 0, U(b, t) = 0,

Ux(a, t) = 0, Ux(b, t) = 0,

Uxx(a, t) = 0, Uxx(b, t) = 0, t > 0, (5)

and the initial condition

U(x, 0) = f(x), a ≤ x ≤ b. (6)
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Table 1. Sextic B-spline function and its derivatives at nodes xm.

x xm−3 xm−2 xm−1 xm xm+1 xm+2 xm+3

φm(x) 1 57 302 302 57 1 0

hφ′
m(x) −6 −150 −240 240 150 6 0

h2φ′′
m(x) 30 270 −300 −300 270 30 0

h3φ′′′
m(x) −120 −120 960 −960 120 120 0

h4φiv
m(x) 360 −1080 720 720 −1080 360 0

h5φv
m(x) −720 3600 −7200 7200 −3600 720 0

The sextic B-splines φm(x), (m = −3(1)N + 2), at the knots xm are defined over the interval [a, b] by the relation-
ships ref. [22]

φm(x) =
1
h6

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − xm−3)
6
, x ∈ [xm−3, xm−2],

(x − xm−3)
6 − 7 (x − xm−2)

6
, x ∈ [xm−2, xm−1],

(x − xm−3)
6 − 7 (x − xm−2)

6 + 21 (x − xm−1)
6
, x ∈ [xm−1, xm],

(x − xm−3)
6 − 7 (x − xm−2)

6 + 21 (x − xm−1)
6 − 35 (x − xm)6 , x ∈ [xm, xm+1],

(x − xm+4)
6 − 7 (x − xm+3)

6 + 21 (x − xm+2)
6
, x ∈ [xm+1, xm+2],

(x − xm+4)
6 − 7 (x − xm+3)

6
, x ∈ [xm+2, xm+3],

(x − xm+4)
6
, x ∈ [xm+3, xm+4],

0, otherwise.

(7)

The set of functions {φ−3(x), φ−2(x), φ−1(x), φ0(x), . . . , φN+1(x), φN+2(x)} forms a basis for approximate solution
defined over [a, b]. The approximate solution UN (x, t) to the exact solution U(x, t) is given by

UN (x, t) =
N+2∑

i=−3

φi(x)δi(t), (8)

where δi(t) are time-dependent parameters to be determined from the boundary and subdomain conditions. Each
sextic B-spline covers seven elements so that each element [xm, xm+1] is covered by seven splines. The values of φm(x)
and its derivative may be tabulated as in table 1.

Using trial function (8) and sextic B-splines (7), the values of U , U ′, U ′′, U ′′′, U iv and Uv at the knots are
determined in terms of the element parameters δm by

Um = U(xm) = δm−3 + 57δm−2 + 302δm−1 + 302δm + 57δm+1 + δm+2,

U ′
m = U ′(xm) =

6
h

(−δm−3 − 25δm−2 − 40δm−1 + 40δm + 25δm+1 + δm+2),

U ′′
m = U ′′(xm) =

30
h2

(δm−3 + 9δm−2 − 10δm−1 − 10δm + 9δm+1 + δm+2),

U ′′′
m = U ′′′(xm) =

120
h3

(−δm−3 − δm−2 + 8δm−1 − 8δm + δm+1 + δm+2),

U iv
m = U iv(xm) =

360
h4

(δm−3 − 3δm−2 + 2δm−1 + 2δm − 3δm+1 + δm+2),

Uv
m = Uv(xm) =

720
h5

(−δm−3 + 5δm−2 − 10δm−1 + 10δm − 5δm+1 + δm+2), (9)

where the symbols ′, ′′, ′′′, iv and v denote differentiation with respect to x.
A typical finite interval [xm, xm+1] is turned into the interval [0, 1] by local coordinates ξ regarding the global

coordinates
hξ = x − xm, 0 ≤ ξ ≤ 1, (10)
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so the sextic B-spline shape functions over the element [0, 1] can be defined as φe = (φm−3, φm−2, φm−1, φm, φm+1,
φm+2, φm+3),

φe =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φm−3 = 1 − 6ξ + 15ξ2 − 20ξ3 + 15ξ4 − 6ξ5 + ξ6,

φm−2 = 57 − 150ξ + 135ξ2 − 20ξ3 − 45ξ4 + 30ξ5 − 6ξ6,

φm−1 = 302 − 240ξ − 150ξ2 + 160ξ3 + 30ξ4 − 60ξ5 + 15ξ6,

φm = 302 + 240ξ − 150ξ2 − 160ξ3 + 30ξ4 + 60ξ5 − 20ξ6,

φm+1 = 57 + 150ξ + 135ξ2 + 20ξ3 − 45ξ4 − 30ξ5 + 156ξ6,

φm+2 = 1 + 6ξ + 15ξ2 + 20ξ3 + 15ξ4 + 6ξ5 − 6ξ6,

φm+3 = ξ6.

(11)

All spline functions apart from φm−3(x), φm−2(x), φm−1(x), φm(x), φm+1(x), φm+2(x), φm+3(x) are zero over the
element [0, 1]. Approximation (8) over this element can be noted down in terms of basis functions (11) as

UN (ξ, t) =
m+3∑

i=m−3

δi(t)φi(ξ), (12)

where δm−3, δm−2, δm−1, δm, δm+1, δm+2, δm+3 act as element parameters and B-splines φm−3(x), φm−2(x), φm−1(x),
φm(x), φm+1(x), φm+2(x) and φm+3(x) as element shape functions. Application of subdomain method to eq. (3) with
weight function

Wm(x) =

{
1, x ∈ [xm, xm+1],

0, otherwise,
(13)

creates the weak form ∫ xm+1

xm

1 ·
[
Ut + aUx + bUxxx + cUxxxxt + d

(
U2

)
x

]
dx = 0. (14)

3 Subdomain finite element method

Substituting the transformation (11) into weak form (14) and integrating eq. (14) term by term with some manipulation
by parts, gives

h

7
(δ̇m−3 + 120δ̇m−2 + 1191δ̇m−1 + 2416δ̇m + 1191δ̇m+1 + 120δ̇m+2 + δ̇m+3)

+ a(−δm−3 − 56δm−2 − 245δm−1 + 245δm+1 + 56δm+2 + δm+3)

+
30b

h2
(−δm−3 − 8δm−2 + 19δm−1 − 19δm+1 + 8δm+2 + δm+3)

+
120c

h3
(δ̇m−3 − 9δ̇m−1 + 16δ̇m − 9δ̇m+1 + δ̇m+3)

+ 2dZm(−δm−3 − 56δm−2 − 245δm−1 + 245δm+1 + 56δm+2 + δm+3) = 0, (15)

where the dot indicates differentiation with respect to t and

Zm = δm−3 + 57δm−2 + 302δm−1 + 302δm + 57δm+1 + δm+2. (16)

If time parameters δm and its time derivatives δ̇m in eq. (15) are discretized by the Crank-Nicolson and forward
difference approach respectively,

δm =
δn+1
m + δn

m

2
, δ̇m =

δn+1
m − δn

m

Δt
, (17)

we obtain a recurrence relationship between two time levels n and n + 1 relating two unknown parameters δn+1
i , δn

i ,
i = m − 3,m − 2, . . . ,m + 3,

αm1δ
n+1
m−3 + αm2δ

n+1
m−2 + αm3δ

n+1
m−1 + αm4δ

n+1
m + αm5δ

n+1
m+1 + αm6δ

n+1
m+2 + αm7δ

n+1
m+3

= αm7δ
n
m−3 + αm6δ

n
m−2 + αm5δ

n
m−1 + αm4δ

n
m + αm3δ

n
m+1 + αm2δ

n
m+2 + αm1δ

n
m+3, (18)
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where

αm1 = 1 − E(a + dZm) − M + K,

αm2 = 120 − 56E(a + dZm) − 8M,

αm3 = 1191 − 245E(a + dZm) + 19M − 9K,

αm4 = 2416 + 16K,

αm5 = 1191 + 245E(a + dZm) − 19M − 9K,

αm6 = 120 + 56E(a + dZm) + 8M,

αm7 = 1 + E(a + dZm) + M + K,

m = 0, 1, . . . , N − 1, (19)

and
E =

7Δt

2h
, M =

105bΔt

h3
, K =

840c

h4
. (20)

The system (18) consists of N linear equation in N + 6 unknowns (δ−3, δ−2, . . . , δN+1, δN+2). To get a solution of
this system, we need six additional constraints. These are obtained from the boundary conditions (7). These conditions
provide us with the elimination of the parameters δ−3, δ−2, δ−1, δN , δN+1 and δN+2 from the system (18) which then
becomes a matrix equation for the N unknowns d = (δ0, δ1, . . . , δN−1) of the form

Aδn+1 = Bδn. (21)

A lumped value for Zm is obtained from (Um + Um+1)/2 as

Zm =
1
2
(δn

m−3 + 58δn
m−2 + 359δm−1 + 604δn

m + 359δn
m+1 + 58δn

m+2 + δn
m+3). (22)

The resulting system can be effectively solved with a variant of the Thomas algorithm, and we need an inner
iteration δn∗ = δn + 1

2 (δn − δn−1) at each time step to cope with the nonlinear term Zm. A typical member of the
matrix system (18) can be written in terms of the nodal parameters δn

m as

γ1δ
n+1
m−3 + γ2δ

n+1
m−2 + γ3δ

n+1
m−1 + γ4δ

n+1
m + γ5δ

n+1
m+1 + γ6δ

n+1
m+2 + γ7δ

n+1
m+3

= γ7δ
n
m−3 + γ6δ

n
m−2 + γ5δ

n
m−1 + γ4δ

n
m + γ3δ

n
m+1 + γ2δ

n
m+2 + γ1δ

n
m+3, (23)

where

γ1 = α − β − λ + μ,

γ2 = 120α − 56β − 8λ,

γ3 = 1191α − 245β + 19λ − 9μ,

γ4 = 2416α + 16μ,

γ5 = 1191α + 245β − 19λ − 9μ,

γ6 = 120α + 56β + 8λ,

γ7 = α + β + λ + μ, (24)

and
α = 1, β = E(a + dZm), λ = M, μ = K, m = 0, 1, . . . , N − 1. (25)

To start the iteration relation system, eq. (17), the initial parameters must be determined by the aid of the initial
condition and six boundary conditions as follows:

UN (xm, 0) = U(xm, 0) = δ0
m−3 + 57δ0

m−2 + 302δ0
m−1 + 302δ0

m + 57δ0
m+1 + δ0

m+2,

U ′
N (a, 0) = −δ0

−3 − 25δ0
−2 − 40δ0

−1 + 40δ0
0 + 25δ0

1 + δ0
2 = 0,

U ′′
N (a, 0) = δ0

−3 + 9δ0
−2 − 10δ0

−1 − 10δ0
0 + 9δ0

1 + δ0
2 = 0,

U ′′′
N (a, 0) = −δ0

−3 − δ0
−2 + 8δ0

−1 − 8δ0
0 + δ0

1 + δ0
2 = 0,

U ′
N (b, 0) = −δ0

N−3 − 25δ0
N−2 − 40δ0

N−1 + 40δ0
N + 25δ0

N+1 + δ0
N+2 = 0,

U ′′
N (b, 0) = δ0

N−3 + 9δ0
N−2 − 10δ0

N−1 − 10δ0
N + 9δ0

N+1 + δ0
N+2 = 0,

U ′′′
N (b, 0) = −δ0

N−3 − δ0
N−2 + 8δ0

N−1 − 8δ0
N + δ0

N+1 + δ0
N+2 = 0. (26)
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Eliminating δ0
−3, δ0

−2, δ0
−1, δ0

N , δ0
N+1, δ0

N+2 from the system (18) we get a N × N matrix system of the form

Wδ0 = B, (27)

where W is

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

384 312 24
2681

9
358

568
9

1

512
9

303
2719

9
57 1

1 57 302 302 57 1

1 57
2719

9
303

512
9

1
568
9

358
2681

9
24 312 384

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (28)

δ0 = [δ0
0 , δ0

1 , . . . , δ0
N−1]

T and B = [U(x0, 0), U(x1, 0), . . . , U(xN−1, 0)]T . This matrix system can be solved effectively
by using a variant of Thomas algorithm.

4 Stability analysis

The stability analysis is based on the von Neumann theory. The growth factor ξ of the error in a typical mode of
amplitude

δn
m = ξneimkh, i =

√
−1, (29)

where k is the mode number and h the element size, is determined from a linearization of the numerical scheme. In
order to apply the stability analysis, the Rosenau-KdV equation can be linearized by assuming that the quantity U in
the nonlinear term UUx is locally constant. Substituting the Fourier mode (29) into (23) gives the following equality:

γ1ξ
n+1ei(m−3)kh + γ2ξ

n+1ei(m−2)kh + γ3ξ
n+1ei(m−1)kh + γ4ξ

n+1eimkh

+ γ5ξ
n+1ei(m+1)kh + γ6ξ

n+1ei(m+2)kh + γ7ξ
n+1ei(m+3)kh =

γ7ξ
nei(m−3)kh + γ6ξ

nei(m−2)kh + γ5ξ
nei(m−1)kh + γ4ξ

neimkh

+ γ3ξ
nei(m+1)kh + γ2ξ

nei(m+2)kh + γ1ξ
nei(m+3)kh. (30)

Now, if Euler’s formula,
eikh = cos(kh) + i sin(kh), (31)

is used in eq. (30) and this equation is simplified, we get the following growth factor:

ξ =
ω − i�

ω + i�
, (32)

in which

ω = (1208 + 8μ) + (1191 − 9μ) cos(kh) + 120 cos(2kh) + (1 + μ) cos(3kh),

� = (245β − 19λ) sin(kh) + (56β + 8λ) sin(2kh) + (β + λ) sin(3kh), (33)

where
β = E(a + dZm), λ = M, μ = K, m = 0, 1, . . . , N − 1. (34)

The modulus of |ξ| is 1, therefore the linearized scheme is unconditionally stable.



Eur. Phys. J. Plus (2016) 131: 356 Page 7 of 15

5 Numerical simulations

Numerical results of the Rosenau-KdV equation are obtained for five test problems: the motion of single solitary wave,
interaction of two and three solitary waves, evolution of solitons with Gaussian and undular bore initial conditions.
We use the error norm L2

L2 =
∥
∥U exact − UN

∥
∥

2
�

√√
√
√h

N∑

j=1

∣
∣
∣U exact

j − (UN )j

∣
∣
∣
2

, (35)

and the error norm L∞

L∞ =
∥
∥U exact − UN

∥
∥
∞ � max

j

∣
∣
∣U exact

j − (UN )j

∣
∣
∣ , j = 1, 2, . . . , N − 1, (36)

to calculate the difference between analytical and numerical solutions at some specified times. The two conserved
quantities that eq. (1) possess are given by [15]

IM =
∫ b

a

U dx � h

N∑

j=1

Un
j , IE =

∫ b

a

[U2 + c(Uxx)2]dx � h

N∑

j=1

[(Un
j )2 + c (Uxx)n

j ], (37)

which represent the momentum and energy of the shallow water waves, respectively. In the simulation of solitary wave
motion, the invariants IM and IE are monitored to check the accuracy of the numerical algorithm.

5.1 The motion of single solitary wave

The single solitary wave solution of the Rosenau-KdV eq. (1) is given by considered with the boundary conditions
U → 0 as x → ±∞

U(x, t) = A sech4 [B (x − vt)] , (38)

where

A =
210bB2

13d
, B =

1
3

[
−13ac +

√
169a2c2 + 144b2c

32bc

] 1
2

, v =
b

52cB2
. (39)

Also, a, b, c and d are arbitrary constants [17]. The initial condition is

U(x, 0) = A sech4(Bx). (40)

Firstly, to show motion of the single solitary wave numerically, parameters are chosen as a = 1, b = 1, c = 1,
d = 0.5, v = 1.18 and x ε [−70, 100] for different values of space step (h) and time step (Δt). For these parameters,
the single soliton has amplitude = 0.52632 and the run of the algorithm is carried up to time t = 40. The conserved
quantities IM and IE are tabulated in table 2 together with earlier results. It can be seen from table 2 that the
conserved quantities are nearly unchanged as the time processes. It is observed from table 2 that percentage of relative
changes of IM and IE are found to be 2.221 × 10−6% and 6.000 × 10−10% for h = Δt = 0.1; 9.171 × 10−7% and
1.400× 10−9% for h = Δt = 0.05; 3.838× 10−6% and 3.700× 10−7% for h = Δt = 0.05, respectively. The error norms
L2 and L∞ are found to be small enough and table 3 represents a comparison of the values of the obtained error
norms with earlier results. As seen from table 2 and table 3, the obtained numerical results are better than the earlier
results. The motion of the solitary wave is plotted at selected times from t = 0 to t = 40, in fig. 1. It is observed that
the soliton moves to the right at a constant speed and preserves its amplitude and shape with an increasing of time,
as expected. The disturbations of the errors at time t = 40 are illustrated for single solitary wave in fig. 2.

5.2 Interaction of two solitary waves

Secondly, the interaction of two solitary waves is considered by using the initial condition given by the linear sum of
two well-separated solitary waves having different amplitudes

U(x, 0) =
2∑

i=1

Ai sech4 [Bi (x − xi)] , (41)

where Ai = 210bB2
i

13d , Bi =
∣
∣
∣
√

b
52cvi

∣
∣
∣, i = 1, 2, vi and xi are arbitrary constants.
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Table 2. Comparison of invariants for single solitary wave with a = 1, b = 1, c = 1, d = 0.5, v = 1.18 and −70 ≤ x ≤ 100 for
different values of h and Δt.

h = Δt = 0.1 IM IE

t Present CLDS [18] CFEM [21] Present CLDS [18] CFEM [21]

0 5.4981750556 5.4977225480 5.4981750556 1.9897841614 1.9845533653 1.9897841615

10 5.4981749939 5.4977249365 5.4981750556 1.9897841614 1.9845950759 1.9897841624

20 5.4981749598 5.4977287449 5.4981750556 1.9897841614 1.9846459641 1.9897841629

30 5.4981749423 5.4977319638 5.4981750555 1.9897841614 1.9846798272 1.9897841633

40 5.4981749335 5.4977342352 5.4981750621 1.9897841614 1.9847015013 1.9897841635

h = Δt = 0.05 IM IE

t Present CLDS [18] CFEM [21] Present CLDS [18] CFEM [21]

0 5.4981692134 5.4980606845 5.4981692134 1.9897831853 1.9843901753 1.9897831853

10 5.4981691962 5.4980608372 5.4981692136 1.9897831854 1.9844010295 1.9897831855

20 5.4981691829 5.4980610805 5.4981692136 1.9897831852 1.9844143675 1.9897831855

30 5.4981691736 5.4980612870 5.4981692134 1.9897831856 1.9844232703 1.9897831854

40 5.4981691629 5.4980613985 5.4981692116 1.9897831853 1.9844289740 1.9897831852

h = Δt = 0.025 IM IE

t Present CLDS [18] CFEM [21] Present CLDS [18] CFEM [21]

0 5.4981698357 5.4981454184 5.4981698357 1.9897809061 1.9849493353 1.9897809062

10 5.4981697751 5.4981454791 5.4981698365 1.9897809063 1.9843521098 1.9897809077

20 5.4981697199 5.4981455454 5.4981698322 1.9897809028 1.9843555206 1.9897809038

30 5.4981696708 5.4981456095 5.4981698290 1.9897808998 1.9843578113 1.9897809019

40 5.4981696247 5.4981456591 5.4981698203 1.9897808987 1.9843592922 1.9897808975

Table 3. Comparison of error norms for single solitary wave with a = 1, b = 1, c = 1, d = 0.5, v = 1.18 and −70 ≤ x ≤ 100 for
different values of h and Δt.

h = Δt = 0.1 L2 × 103 L∞ × 103

t Present CLDS [18] CFEM [21] Present CLDS [18] CFEM [21]

0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

10 0.356724 1.641934 0.370348 0.141639 0.631419 0.149073

20 0.646705 3.045414 0.665684 0.244374 1.131442 0.253418

30 0.902514 4.241827 0.924741 0.326169 1.533771 0.336342

40 1.162489 5.297873 1.187411 0.411492 1.878952 0.422656

h = Δt = 0.05 L2 × 104 L∞ × 104

t Present CLDS [18] CFEM [21] Present CLDS [18] CFEM [21]

0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

10 0.854386 4.113510 0.888297 0.343706 1.582641 0.362314

20 1.779040 7.631169 1.823510 0.627075 2.835874 0.649564

30 2.810186 10.62971 2.862236 0.975412 3.843906 1.000742

40 3.783328 13.27645 3.842086 1.293116 4.709118 1.320897

h = Δt = 0.025 L2 × 104 L∞ × 105

t Present CLDS [18] CFEM [21] Present CLDS [18] CFEM [21]

0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

10 0.351702 1.028173 0.357060 1.420544 3.965867 1.421479

20 0.916735 1.905450 0.925408 3.258903 7.097948 3.264848

30 1.043479 2.650990 1.057023 4.681364 9.610332 4.742297

40 1.183139 3.306738 1.183710 4.847163 11.76011 4.846861
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Fig. 1. Motion of single solitary wave with a = 1, b = 1, c = 1, d = 0.5, v = 1.18, h = Δt = 0.025 for −70 ≤ x ≤ 100.

Fig. 2. Error with a = 1, b = 1, c = 1, d = 0.5, v = 1.18 and −70 ≤ x ≤ 100 for different values of h and Δt at t = 40.

For the simulation, the parameters are taken to be a = 1, b = 1, c = 1, d = 0.5, h = 0.1, Δt = 0.1, v1 = 0.3,
v2 = 0.5, x1 = −70 and x2 = −35 over the range −100 ≤ x ≤ 400. The experiment are run from t = 0 to t = 250 and
the calculated values of the conserved quantities IM and IE are reported in table 4. It is seen that the obtained values
of the invariants remain almost constant during the computer run. Figure 3 shows the development of the interaction
of two solitary waves. It is clear from the figure that, at t = 0 the greater soliton is at the left position of the smaller
soliton, at the begining of the run. With increasing time the greater soliton catches up the smaller one until time
t = 80, then the smaller soliton is absorbed. The overlapping process continues until t = 150, the greater soliton has
overtaken the smaller soliton and gets in the process of separation. At time t = 250, the interaction is complete and
the greater soliton has separated completely.

5.3 Interaction of three solitary waves

Thirdly, the behavior of the interaction of three solitary waves is studied for different amplitudes. So, eq. (1) is
considered with initial condition given by the linear sum of three well-separated solitary waves of different amplitudes

U(x, 0) =
3∑

i=1

Ai sech4 [Bi (x − xi)] , (42)

where Ai = 210bB2
i

13d , Bi =
∣
∣
∣
√

b
52cvi

∣
∣
∣, i = 1, 2, 3, vi and xi are arbitrary constants.
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Table 4. The conserved quantities for the interaction of two solitary waves with a = 1, b = 1, c = 1, d = 0.5, h = 0.1, Δt = 0.1,
v1 = 0.3, v2 = 0.5, x1 = −70 and x2 = −35, −100 ≤ x ≤ 400.

t IM IE

0 19.3547763167 23.4555195111

50 18.6976052814 23.4623857679

100 18.6524580290 23.4627919923

150 18.6849314916 23.4648227878

200 18.6798456059 23.4658462283

250 18.6670839625 23.4662281908

Fig. 3. Interaction of two solitary waves with a = 1, b = 1, c = 1, d = 0.5, h = 0.1, Δt = 0.1, v1 = 0.3, v2 = 0.5, x1 = −70,
x2 = −35 and −100 ≤ x ≤ 400 at selected times.

For the computational work, parameters a = 1, b = 1, c = 1, d = 0.5, h = 0.1, Δt = 0.1, v1 = 0.3, v2 = 0.5,
v3 = 0.8, x1 = −70, x2 = −40 and x3 = −15 are taken over the interval −100 ≤ x ≤ 400. Simulations are done up
to time t = 250. Table 5 displays values of the conserved quantities pending the travelling. It is seen from table 5
that the obtained values of the invariants remain almost constant during the computer run. In fig. 4, the interaction
of three solitary waves is depicted. As is seen from fig. 4, interaction started at about time t = 50, the overlapping
processes occured between time t = 50 and t = 170 and waves started to resume their original shapes after the time
t = 250.
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Table 5. The conserved quantities for the interaction of three solitary waves with a = 1, b = 1, c = 1, d = 0.5, h = 0.1,
Δt = 0.1, v1 = 0.3, v2 = 0.5, v3 = 0.8, x1 = −70, x2 = −40 and x3 = −15, −100 ≤ x ≤ 400.

t IM IE

0 26.0335670001 27.0338255158

50 25.3912010200 27.0410243545

100 25.1890637167 27.0421570504

150 25.1729836835 27.0438944266

200 25.1975503011 27.0448261554

250 25.1823024487 27.0452250712

Fig. 4. Interaction of three solitary waves with a = 1, b = 1, c = 1, d = 0.5, h = 0.1, Δt = 0.1, v1 = 0.3, v2 = 0.5, v3 = 0.8,
x1 = −70, x2 = −40, x3 = −15 and −100 ≤ x ≤ 400 at selected times.

5.4 Evolution of solitons

5.4.1 Gaussian initial condition

Evolution of a train of solitons of the Rosenau-KdV equation is studied using the Gaussian initial condition

U(x, 0) = exp
[
− (x − 40)2

]
, (43)

and boundary condition
U(−50, t) = U(250, t) = 0, t > 0, (44)
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Table 6. Invariants for Gaussian initial condition with a = 1, b = 1, d = 0.5, v = 1.18, h = 0.1, Δt = 0.1, −50 ≤ x ≤ 250 and
different values of c at 0 ≤ t ≤ 10.

c = 0.5 c = 0.1 c = 0.05

t IM IE IM IE IM IE

0 1.7724808968 3.1332182119 1.7724808968 1.6293102517 1.7724808968 1.4413217567

2 1.7724808968 3.1332186282 1.7724808968 1.6293106040 1.7724808968 1.4413219747

4 1.7724808968 3.1332190741 1.7724808968 1.6293106594 1.7724808968 1.4413219158

6 1.7724808968 3.1332193712 1.7724808968 1.6293106739 1.7724808968 1.4413218732

8 1.7724808968 3.1332196926 1.7724808968 1.6293107034 1.7724808968 1.4413218681

10 1.7724808968 31332197526 1.7724808968 1.6293107402 1.7724808968 1.4413218931

Fig. 5. Generated waves with a = 1, b = 1, d = 0.5, v = 1.18, h = 0.1, Δt = 0.1, −50 ≤ x ≤ 250 and different values of c at
t = 10.

for various values of c. In this case, the behavior of the solution depends on the values of c. Therefore, the values of
c = 0.5, c = 0.1 and c = 0.05 are chosen at 0 ≤ t ≤ 10.

In this problem, parameters are taken as a = 1, b = 1, d = 0.5, h = 0.1 and Δt = 0.1 over the interval
−50 ≤ x ≤ 250. The numerical computations are done up to t = 10. The values of the two invariants of motion for
different values of c are presented in table 6. The two invariants remain almost constant as the time increases. Also,
fig. 5 illustrates the development of the Gaussian initial condition into solitons at t = 10.
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Table 7. Invariants for undular bore initial condition with a = 1, b = 1, c = 1, d = 0.5, v = 1.18, h = 0.1, Δt = 0.1 and
−50 ≤ x ≤ 350 at 0 ≤ t ≤ 150.

t IM IE

0.0 50.0000031022 45.0046240676

25 49.9962032980 45.0046392765

50 49.9953438219 45.0046467879

75 49.9926519881 45.0046494681

100 49.9947407323 45.0046572374

125 49.9933952569 45.0046645828

150 49.9916251623 45.0046688213

Consequently, oscillating solitons are observed depending on the value of c. Thus, if the value of c is decreased then
the number of oscillating solitons increase.

5.4.2 Undular bore initial condition

Finally, evolution of a train of solitons of the Rosenau-KdV equation is worked using the undular bore initial condition

U(x, 0) =
1
2
U0

[
1 − tanh

(
|x| − x0

d

)]
, (45)

and boundary condition
U(−50, t) = U(350, t) = 0, t > 0, (46)

cause to produce a train of solitons depending upon the value c for Rosenau-KdV equation. The undular bore reflects
the elevation of the water above the equilibrium surface at time t = 0. The change in water level of magnitude eq. (1)
is centered on x = x0 and d measures the steepness of the change. The smaller the value of d the steeper is the
slope.

Parameters are taken as a = 1, b = 1, c = 1, d = 0.5, v = 1.18, h = 0.1, Δt = 0.1, U0 = 1, x0 = 25 and
d = 5. The program is run up to time t = 150. The computed two conserved quantities are listed in table 7. It is seen
from the table that the values of the invariants are conserved. Figure 6 shows that the initial perturbation evolves
into a well developed train of solitons at selected times. As the time progresses, six solitons moving to the right are
observed.

6 Conclusion

In this paper, numerical solution of the Rosenau-KdV equation has been obtained by using subdomain finite element
method based on sextic B-spline functions. The presented method has been shown to be unconditionally stable. In
addition to the motion of the single solitary wave, the interaction of two and three solitary waves having the different
amplitudes which progress in the same direction and the evolution of a train of solitons with Gaussian and undular bore
initial conditions have been studied numerically for the first time. These problems that will throw light on the future
studies have been supported with simulations visually. The obtained numerical results for single solitary wave show
that the adopted method is more accurate than the previously presented results. The study highlights the power of the
used method for the determination of numerical solutions to nonlinear evolution equations having wide applications
in physical problems modeled by the Rosenau-KdV equation.

The author, Turgut Ak, is grateful to The Scientific and Technological Research Council of Turkey for granting scholarship for
Ph.D. studies.
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Fig. 6. Developed train of solitons with a = 1, b = 1, c = 1, d = 0.5, v = 1.18, h = 0.1, Δt = 0.1 and −50 ≤ x ≤ 350 at selected
times.
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