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Abstract.  In this article, a space time numerical scheme has been proposed to 
approximate solutions of the nonlinear Rosenau-Korteweg-de Vries-Regularized Long Wave 
(Rosenau-KdV-RLW) equation which represents the dynamics of shallow water waves. The 
scheme is based on a septic B-spline finite element method for the spatial approximation 
followed by a method of lines for the temporal integration. The proposed scheme has been 
illustarated with two test problems involving single solitary and shock waves. To demonstrate 
the competency of the present numerical algorithm the error norms  2L  , L and two lowest 

invariants  MI and EI  have been calculated. Linear stability analysis of the scheme has been 
studied using von-Neumann theory. The illustrated results confirm that the method is efficient 
and preserves desired accuracy. 

Keywords: Rosenau-KdV-RLW equation, finite element method, collocation, septic B-
spline, soliton. 

 
 

1. INTRODUCTION  
 
 
The theory of shallow water waves is very important research field of theoretical, 

plasma and solid state physics, applied mathematics, fluid and water wave mechanics and 
nonlinear optics. Korteweg-de Vries (KdV), 
 
 0,t x xxxU aUU bU    (0.1)  

                                                               
and Regularized Long Wave (RLW) equations, 
 
 0,t x x xxtU U aUU bU     (0.2) 

 
are two important mathematical models to define the dynamics of shallow water waves. RLW 
equation was created by Peregrine especially to describe the behavior of the undular bore [1]. 
Many physical phenomena, for example propagation of long waves in shallow water waves, 
bubble-liquid mixtures, ion acoustic plasma waves and wave phenomena in enharmonic 
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crystals can be described by the KdV equation [2]. However KdV equation has a number of 
shortcomings. For example, it defines an unidirectional propagation of waves. Therefore, it 
can not describe the wave-wave and wave-wall interactions. Secondly, it was obtained under 
the presumption of weak anharmonicity so formation and the accomplishment of the high 
amplitude waves can not be well estimated by the KdV equation [3]. To overcome the 
shortcomings of the Eq. (1.1) , the following equation 
 

  2 0,t x xxxxt x
U U U U     (0.3) 

 
was introduced by Rosenau [4, 5]. M. A. Park proved existence and uniqueness and certainty 
of the solutions of the Rosenau equation [6]. In order to make more detail studies on nonlinear 

waves the viscous term  Uxxx   was added to Eq. (1.3).   Thus the updated mathematical model 
is 
 

  2 0t x xxx xxxxt x
U U U U U      (0.4) 

 
which is popularly known as Rosenau-KdV (R-KdV) equation. Numerical solutions of the R-
KdV equation have been acquired by various methods. Zuo used the sine-cosine and the tanh 
methods for solving the R-KdV [7]. A conservative three-level linear finite difference scheme 
for the numerical solution of the initial-boundary value problem of R-KdV equation is 
suggested by J. Hu et al. [8]. The topological soliton solution or shock wave solutions of this 
equation was examined by G. Ebadi et al. [9]. The 1-soliton solution is obtained by the ansatz 
method for solitary waves and singular solitons and the soliton perturbation theory is 
implemented in order to define the adiabatic dynamics of the perturbed soliton by Razborova 
et al. [10]. In [11, 12], authors solved the equation with subdomain finite element method 
based on the sextic B-spline basis functions and septic B-spline collocation finite element 
method, respectively. At the same time, to discover different nonlinear behaviour of the 
waves,  xxtU   has been used in Eq. (1.3)   which is 

 

  2 0.t x xxt xxxxt x
U U U U U      (0.5) 

 
This PDE is known as Rosenau-RLW (R-RLW). The numerical solutions of the R-

RLW equation have been analyzed in recent years. Pan and Zhang [13] have considered the 
initial-boundary problem of the usual R-RLW equation by finite difference scheme and 
devising a protective numerical algorithm preserving the original conservative properties for 
the equation. Pan et al. [14] have developed the numerical solutions of the R-RLW equation 
using Crank-Nicolson type finite difference method and showed the existence of numerical 
solutions by Brouwer fixed point theorem. A new conservative difference scheme is analyzed 
by Zuo et al. [15]. The boundedness and convergence of the approximate solution for the 
semidiscrete Galerkin method to the R-RLW equation have been examined by Atouani and 
Omrani [16]. Also, a Galerkin finite element method is applied to R-RLW equation using 
cubic B-spline base functions by Yagmurlu et al. [17]. A mathematical form to get the 
solution of the nonlinear wave by coupling the Rosenau-KdV and the Rosenau-RLW equation 
has suggested by Wongsaijai and Poochinapan [18]. 

The Eqs. (1.4) and (1.5)  can be combined which is popularly known as the following 
Rosenau-KdV-RLW equation with a power law nonlinearity: 
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   0,RLW KdV n
t x xxt xxx xxxxt x

U aU U U bU U         (0.6) 

 
with the boundary conditions 
 
 ( , ) ( , ) 0, ( , ) ( , ) 0, ( , ) ( , ) 0, 0,x x xx xxU a t U b t U a t U b t U a t U b t t        (0.7) 

 
and an initial condition 
 
 ( ,0) ( ), .U x f x a x b    (0.8) 
 

In equation  (1.6),   the first term represents linear evolution while the parameter of  a   
is advection or drifting term.   and    are dispersion terms. The higher order dispersion and 

the parameter of nonlinearity terms are represented by b  and   . If the parameter  KdV   and  
RLW  are taken zero, Eq. (1.6)   turns into R-RLW and R-KdV equations, respectively. 

Razborova et al. [19,20] studied the dynamics of perturbed soliton solutions to the R-KdV-
RLW equation with power law nonlinearity and computed the conservation laws of the R-
KdV-RLW equation with power law nonlinearity by the aid of multiplier approach in Lie 
symmetry analysis. Also, the equation has been solved with ansatz method and semi-inverse 
variational principle by Razborova et al. [21]. Based on the multi-symplectic Hamiltonian 
formula of the generalized Rosenau-type equation, a multi-symplectic scheme and an energy-
preserving scheme and local structure-preserving algorithms including multi-symplectic, local 
energy- and momentum-preserving schemes are introduced for the generalized Rosenau-
RLW-KdV equation by Cai et al. [22,23]. The equation is considered with power nonlinearity 
by Ak et al. [24]. The dynamics of the one-dimensional, generalized KdV-RLW-Rosenau 
equation with second and fourth order dissipative terms subject to homogeneous boundary 
conditions and initial Gaussian conditions have been examined numerically by Fernandez and 
Ramos [25]. A three level linear conservative implicit finite difference algorithm for solving 
the R-KdV-RLW equation has been presented by Wang and Dai [26]. 

In this work, we focus on improving an efficient high accurate numerical method for 
Eq. (1.6) . To the best of our knowledge a higher order piecewise polynomial scheme for the 
space approximation of Eq. (1.6) has not been proposed and implemented before. Thus we aim 
to approximate the nonlinear PDE by higher order B-splines for the spatial approximation of 
Eq. (1.6) . To be specific we have designed a septic B-spline collocation method for the R-
KdV-RLW equation followed by a method of lines for the time integration of the semi-
discrete version of Eq. (1.6) . Numerical stability plays an important role to establish a 
numerical scheme. Here we also study the numerical stability of the scheme and analyze the 
numerical accuracy of the scheme briefly. We illustrate the scheme with some test examples. 
The rest of the article is organized in the following way: 
  -A collocation finite element method for the spatial approximation followed by a method of 
lines for the temporal integration of R-KdV-RLW equation has been proposed in Section 2. 
Resulting system can be solved with a variant of the Thomas algorithm. 
- A linear stability analysis of the algorithm is examined in Section 3. 
- A convergence of full discrete scheme has been discussed shortly in Section 4. 
- In Section 5, motion of single solitary and shock waves have been analyzed with different 
initial and boundary conditions. Here we compare our results with that of some of those 
procurable in the literature. 
- We finish with a short discussion and conclusion in Section 6.  
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2. COLLOCATION METHOD WITH SEPTIC B-SPLINES 
 
 

We firstly choose the solution area of the problem limited over an region  bxa  . 
After this, we divided space region ],[ ba  into equally sized finite elements of length h  at the 

points mx  like that bxxxa N  ...10  and .N
abh   The septic B-spline functions  )(xm    

)3,2,...,2,3(  NNm   at the nodes mx  which form a basis for functions, described on 

the solution region [ , ]a b  by Prenter [27] 
 

 

7
4 4 3

7 7
4 3 3 2

7 7 7
4 3 2 2 1

7 7 7 7
4 3 2 1 1

7 7 7 7
7 4 3 2 1

( ) [ , ]

( ) 8( ) [ , ]

( ) 8( ) 28( ) [ , ]

( ) 8( ) 28( ) 56( ) [ , ]
1

( ) ( ) 8( ) 28( ) 56( )

m m m

m m m m

m m m m m

m m m m m m

m m m m m

x x x x

x x x x x x

x x x x x x x x

x x x x x x x x x x

x x x x x x x x x
h



  

   

    

    

   


  
    
      

        1
7 7 7

4 3 2 1 2
7 7

4 3 2 3
7

4 3 4

[ , ]

( ) 8( ) 28( ) [ , ]

( ) 8( ) [ , ]

( ) [ , ]

0 .

m m

m m m m m

m m m m

m m m

x x

x x x x x x x x

x x x x x x

x x x x

otherwise



    

   

  








     
   
 


            (2.1)  

  
   

 
Approximate solution ),( txU N   is stated in terms of the septic B-splines as  

   

                                                                
3

3

( , ) ( ) ( )
N

N m m
m

U x t x t 




                                       (2.2)  

  
where )(tm  are time dependent coefficients. Each septic B-spline covers eight elements, so 

each element ],[ 1mm xx  is covered by eight B-splines. A spesific finite interval ],[ 1mm xx  is 

planned to the region ]1,0[  by a local coordinate transformation identified by mxxh   ,  

10    . Hence septic B-splines (2.1)  in terms of   over ]1,0[  are given as follows: 
 

              

2 3 4 5 6 7
3

2 3 5 6 7
2

2 3 4 5 6 7
1

4 6 7

2 3 4 5
1

1 7 21 35 35 21 7 ,

120 392 504 280 84 42 7 ,
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2416 1680 560 140 35 ,
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m

m

m

m

m
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    
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






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3

7
4

05 35 ,

120 392 504 280 84 42 21 ,

1 7 21 35 35 21 7 ,

.

m

m

m

 
      
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 








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

                  (2.3)  
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For our scheme, the finite elements are defined with the region ].,[ 1mm xx  Using Eq. 

(2.1)  and Eq. (2.2) , the nodal values of 
mmmm UUUU ,,,  and iv

mU  are given in terms of the 

element parameters m  by  

 

    2

3

3 2 1 1 2 3

7
3 2 1 1 2 3

42
3 2 1 1 2 3

210
3 2 1

( , ) 120 1191 2416 1191 120 ,

( 56 245 245 56 ),

( 24 15 80 15 24 ),

( 8 19 19

N m m m m m m m m m

m m m m m m mh

m m m m m m m mh

m m m mh

U x t U

U

U

U

      
     
      

   

     


     


     


  

       
      
      

    

4

1 2 3

840
3 1 1 3

8 ),

( 9 16 9 )

m m m

iv
m m m m m mh

U

 

    
  

   

 

    

        (2.4)   

and the variation of U  over the element 1[ ,  ]m mx x   is shown by  

 

                                                              
3

3

.
N

m m
m

U  




                                                            (2.5)  

  
Substituting the approximate solution (2.2)  and putting the nodal values of (2.5)   and 

its derivatives given by (2.4)  into Eq. (1.6)  yields the following set of ordinary differential 
equations of the form 
 

                             
2

3

3 2 1 1 2 3

7
3 2 1 1 2 3

42
3 2 1 1 2 3

210
3 2 1 1 2

120 1191 2416 1191 120

( 56 245 245 56 )

( 24 15 80 15 24 )

( 8 19 19 8

m m m m m m m

m m m m m mh

m m m m m m mh

m m m m m mh

      
     
      

     

     

     

     

     

     
      
      

      

      

      

4

3

840
3 1 1 3

7
3 2 1 1 2 3

)

( 9 16 9 )

( 56 245 245 56 ) 0,

m m m m mh

m m m m m m mhp Z

    

     
   

     

    

       

    

          (2.6)  

  
 

where  .)120119124161191120 1
321123


  p

mmmmmmmmm UZ   

If time parameters i  and its time derivatives i  in Eq. (2.6)  are decoupled by the 

Crank-Nicolson form 
 

                                                     
1

,
2

n n
i i

i

 
 

                                                                  (2.7)  

  
 

and routine finite difference approach 
 

                                                
1n n

i i
i t

 
 




                                                                         (2.8)  

  
 

we derive a repetition connection between two time levels n  and 1n  depending two 
unknown parameters ,1n

i
n
i   for 3, 2,..., 2, 3i m m m m       
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1 1 1 1 1 1 1
1 3 2 2 3 1 4 5 1 6 2 7 3

7 3 6 2 5 1 4 3 1 2 2 1 3 ,

n n n n n n n
m m m m m m m

n n n n n n n
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             
             

      
     

     

     
                                   (2.9)  

  
 

where   

                     

1

2

3

4

5

6

7

7
2

[1 (1 ) ],

[120 56 (1 ) 24 8 ],

[1191 245 (1 ) 15 19 9 ],

[2416 80 16 ],

[1191 245 (1 ) 15 19 9 ],

[120 56 (1 ) 24 8 ],

[1 (1 ) ],

0,1, , , ,

m

m

m

m
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m
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E pZ M K
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E pZ M K
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






     
    
     
  
     
    
     
   2 3 4

105 84042 , , .
h h h

M K t T   

                (2.10)   

 
The system (2.9)  involves )1( N  linear equations containing )7( N  unknown 

coefficients T
NNN ),,,,,,( 321123    . So, we need six additional restraints to get 

only a solution for the system. These restraints are got from the Eqs. (1.7)   and can be used to 

remove  123 ,,    and 321 ,,  NNN   from the systems (2.9)   which occures a matrix 

equation contains 1N   unknowns T
N

nd ),,,( 10     of the form  

 
                                                         .R Sn 1 nd d                                                               (2.11)  
  

The R  and S  are )1()1(  NN  matrices. A number of inner iterations  

)( 1
2
1   nnnn   are implemented to the terms at each time step to overcome the non-

linearity occasioned by mZ . Before the beginning of the solution procedure, initial parameters  
0d  are established by using the initial condition and following derivatives at the boundaries;  

  

.0)0,()(,0)0,()(

,0)0,()(,0)0,()(

,0)0,()(,0)0,()(

,...,2,1,0);0,()0,(







bUaU

bUaU

bUaU

NmxUxU

xxxNxxxN

xxNxxN

xNxN

mN

 
  

Therefore we get the following matrix equation for the initial values of  d0 ;     
 

,0 WVd   
 
where   
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T
NNNd ),,,...,,,( 12210

0     and  .))0,(),0,(),...,0,(),0,(( 110
T

NN xUxUxUxUW     

 
 

3. STABILITY ANALYSIS  
 
 

To observe the stability analysis of the presented scheme, it is suitable to use Fourier 
method based on Von-Neumann theory. Presuming that the quantity pU  in the nonlinear term  
UpUx  is locally constant. Replacing the Fourier mode mhinn

m e   , )1( i   into the form 

of  (2.9)   we obtain,  
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 where   is mode number, h  is the element size, h     
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If we simplify the Eq.(3.1), 
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is obtained where  
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According to the Fourier stability analysis, for the given scheme to be stable, the 

condition 1||    must be satisfied. Using a symbolic programming software or using simple 

calculations, since 2222 )( baba   it becomes evident that the modulus of ||   is 1. 
Therefore our scheme is unconditionally stable. 
 
 
4. CONVERGENCE OF THE FULL DISCRETE SCHEME 
 
 

In this study, we approximate the non-linear PDE using special splines for spatial 
approximations with collocation approach and a one step scheme for time integration. A 
mater of fact is that the efficiency of a computational algorithm depends on its accuracy and 
numerical stability. Finite element analysis and approximation is firmly attached in a very 
elegant framework that enables accurate a priori and a posteriori estimates of convergence 
rates as well as discretization errors. A large portion of the theory relies on a knowledge of 
functional analysis which is well developed and discussed in numerous books and articles. 
Here we study the relevant concepts and key results without proof and cite sources of a more 
complete treatment. To be specific, we aim for a short discussion about the accuracy of the 
above mentioned space time scheme without a formal proof. One may consult 
[12,28,29,30,31] and the references therein for a detailed and settled theories. It is to note that 
we use some constants  0iC   here which not necessarily the same in all the cases. 

Usually global polynomial interpolations are used to integrate the solutions of 
differential equations for simple computational domain and when unknown curves are 
considered to be smooth enough. However, most engineering and physical problems are 
considered when the solutions are not sufficiently smooth to support global polynomial 
approximation and the computational domain is complicated. For these types of cases finite 
element approximations play an important role and work very well to represent the solutions 
of the modelled problem. Polynomial basis functions are smooth which is one of the very 
important properties in approximation theory. It helps to analyze solutions approximated 
using the basis functions. Let we have 1r  data values. Then there is exactly one polynomial 
of degree at most r  passing through the data points and the error in the interpolating 
polynomial is proportional to a power of the distance between the data points [29-31]. As 
stated above we use spetic B-splines along with a collocation approach for the spatial 
approximation. It is well known that collocation scheme gives super-convergence at 
collocation points and it does not need an extra inner product to assess as of the Galerkin 
inner product approach [32]. So this approach is simpler and efficient to calculate solutions. 
Let )(kH  be the space of k  times differentiable functions and  .

r
  be the standard  

)(kH   norm. Let hv  be an approximation to a function  )()(  kHxv  in    . Here 
0

.  

stands for  )(2 L   norm. Let h  be the distance between the grids and  ii  , where  

],[ 1 iii xx  , hxx ii 1  . We notice [30, 31, 33, 34] that  
1

1
( ) ( ) 1 ,r

h r
v x v x Ch v where r k


     



Solitons and shock waves …                                                                               Seydi Battal Gazi Karakoc et al. 

ISSN: 1844 – 9581                                                                                                                                                 Physics Section 

1081

 
and hv  represents interpolation by piecewise-polynomials of degree r  (considering  

i i     ). This error is conserved by the Galerkin finite element approximation as well 

[12,31]. It is easily seen [12, 29, 34] that if hw  is a proper B-splines identified by a 

polynomial of degree less or equal k  then  
 

1

1
( ) ( ) 1 ,m

h m
w x w x Ch w where m r


   

 
 

for any )( rHw  . For our work we take septic B-splines for space integration. Thus from 

the above examination one sees that we get a  )( 8hO   accuracy for the spatial approximation 

in )(2 L  norm [12]. For time we choose a forward difference form which is accurate of  

)( tO   in ])0([2 TL   norm for some 0T  [31]. So for the space time discretization the error 
bound is of the form  

8
1 2( , ) ( , ) ,hu x t u x t Ch C t     

 
for a suitable 01 C   and  02 C . 
 
 
 5. NUMERICAL RESULTS AND DISCUSSION 
 
 

In this part, in order to verify the correction of our numerical algorithm, we consider 
some experiments involving: the motion of single solitary and shock waves. For these two 
problems, to see how accurate the numerical algorithm forecasts the position and amplitude of 
the solution as the simulation proceeds, we use the  following error norms:  

 

  ,
2

0
22 jN
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j
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J
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exact UUhUUL  


 

and  
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j

j
N

exact UUUUL 
  

 
There are two conserved quantities for the R-KdV-RLW equation with power law 

nonlinearity. These are given by  
 

                                                
2 2 2

( , ) ,

[ ( , ) ( , ) ( , )]

M

E x xx

I U x t dx

I U x t U x t bU x t dx







 

  
                         (5.1)  

  
which correspond to the momentum and energy of the shallow water waves, respectively [21]. 
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5.1. SOLITARY WAVES  
 
 

Firstly, Eq. (1.6)  is considered with the boundary conditions 0U  as x   and 
the initial condition 

 
)].([sec)0,( 0

1/4 xxBhAxU n    

 
The exact solution of this problem is found as 

 
)]([sec),( 0

1/4 xvtxBhAtxU n    

 
where A  is amplitude of the solitary wave 
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v  is velocity of the soliton 
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and 0x  represents the initial center of single solitary wave. The values of the parameters  

1a , ,1 ,1 1b , ,2/1 3n  are taken over the interval ]100,40[  to coincide 
with that of previous papers [18, 26]. Calculations are performed to time  30t   to get error 
norms and two conserved quantities. The obtained datas for different values of  h   and  t   
has been given in Table (5.1.1). Table (5.1.1) shows that invariants are almost constant as 
time increases. It is noticeably observed from this table that invariants MI  and EI  change 

from their initial value by less than 5101   for different values of h  . Also, we have found 

out error norms 2L  and L  are obtained sufficiently small during the computer run. Therefore 
we can say our method is sensibly conservative. We compare the values of the error norms 
derived by our method with methods derived by [18, 26] in Table (5.1.2). This table clearly 
shows that the error norms obtained by our method are less than the others. Simulations of 
exact solutions of  ),( txU   at  0t   and numerical solutions at  30,10t   with 25.0 th   
and 5.0  are demonsrated in Figure (5.1.1). We observed from the Figure (5.1.1), the patterns 
of the numerical solutions are in good agreement with the exact solutions. Also, this figure 
shows that single soliton travels to the right at a constant speed and conserves its amplitude 
and shape with increasing time unsurprisingly. Error values between analytical and numerical 
solutions for 25.0 th  and 5.0  are shown in Figure (5.1.2), respectively. As it is seen, the 
maximum errors occur around the central position of the solitary wave. 
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Table 5.1.1. The invariants and the error norms for single solitary wave for 
1a , ,1 ,1 1b , ,2/1  3n  over the interval [-40, 100]. 

0.25h t    
MI  EI  2L  L  

t     
0  21.6792588 43.7172029 0 0 

10  21.6683535 43.6837260 9.586739E-02 3.788153E-02 

20  21.6575653 43.6506230 1.789812E-01 6.803490E-02 

30  21.6468150 43.6176305 2.669906E-01 1.001786E-01 

0.125h t        
t     
0  21.6792588 43.7172029 0 0 

10  21.6778511 43.7128691 2.376454E-02 9.470963E-03 

20  21.6764468 43.7085460 4.357827E-02 1.674689E-02 

30  21.6750448 43.7042252 6.392907E-02 2.424693E-02 

0.0625h t        
t     
0  21.6792588 43.7172029 0 0 

10  21.6790815 43.7166564 5.895794E-03 2.360596E-03 

20  21.6789042 43.7161102 1.069907E-02 4.134279E-03 

30  21.6787273 43.7155640 1.553975E-02 5.925496E-03 

0.03125h t        
t     
0  21.6792588 43.7172029 0 0 

10  21.6792366  43.7171345 1.466514E-03  5.885398E-04 

20  21.6792144  43.7170660 2.646387E-03  1.025324E-03 

30  21.6791923  43.7169976 3.823146E-03  1.462069E-03 

 
Figure 5.1.1 Motion of single solitary wave for 1a  ,  ,1    ,1    1b  ,  ,2/1    3n ,  (a) 

h =∆t =0. 25, (b) h =∆t =0. 5 over the interval [-40, 100] at specified times. 
 
Table 5.1.2. Comparison of error norms wave for  1a , ,1    ,1  1b , ,2/1  3n  over 

the interval [-40, 100] at t=30. 
 

2L  L  

 Present [18] [26] Present [18] [26] 
0.25h t    2.66E- 01 5.56E-01 1.86E-00 1.00E-01 2.14E-01 6.99E- 01 

0.125h t    6.39E- 02 1.34E- 01 5.18E-01 2.42E-02 5.19E- 02 1.97E- 01 

0.0625h t    1.55E- 02 3.34E- 02 1.33E-01 5.92E-03 1.28E 02 5.06E- 02 

0.03125h t    3.82E - 03 - 3.35E-02 1.46E-03 - 1.27E- 02 
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Figure 5.1.2 Errors for 1a  ,  ,1    ,1    1b  ,  ,2/1    3n ,  (a) h =∆t =0. 25, (b) h =∆t 

=0. 5 at t=40. 
 
 
5.2. SHOCK WAVES  
 

In this section, different numerical experiments will be given to illustrate the 
efficiency and accuracy of the method. For the numerical simulations of the shock wave for 
which exact solutions have been given before, two sets of parameters are used and discussed. 
We have found the analytical solution of the problem [21] 
 

)],([tanh),( 0
1/4 xvtxBAtxU n    

 
so the initial condition for this problem is taken as  
 

4 / 1
0( ,0) tanh [ ( )]nU x A B x x   

 
where A  is amplitude, B   is width and v  is velocity of the soliton. 
 
Case 1. For the first numerical calculation, we have considered the problem with parameters  

1a , ,04.0  ,025.0  1b , ,2/1  3n   through the interval  ].250,200[   For 
this case,  
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Amplitude and velocity of solitary waves are found as 00184.0 , ,00000.1v   

respectively. The experiment is run from 0t   to  40t   and values of the error norms are 
given in Table (5.2.1). Table (5.2.1) indicates that error norms 2L  and L  are sufficiently 
small during the computer run. Therefore, we clearly say that our numerical method is 
sensibly conservative. For visual representation, the simulations of single soliton for the 
values  1.0 th , 2.0  at times 30,20,10,0t  and 40  are illustrated at diverse time levels 
in Figure (5.2.1). It is understood from this figure that the numerical scheme performs the 
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motion of propagation of a single solitary wave, which moves to the right at nearly unchanged 
speed and conserves its amplitude and shape with increasing time. Error distributions with the 
values of 1.0 th , 2.0  at time 40t  are depicted graphically in Figure (5.2.2), 
respectively. As it is seen, the maximum errors happen around the central position of the 
solitary wave.  

 
Table 5.2.1. The error norms for shock solitary wave for  1a , 0.04,     0.025,   1b , 

,2/1  3n  over the interval [-200, 250]. 

 0.1h t    0.2h t    

t 2L  L  2L  L  

0  0 0 0 0 
10  7.61502E-04 3.21635E-04 8.97653E-04 3.77313E-04 
20  1.64258E-03 5.21024E-04 1.89156E-03 5.92167E-04 
30  2.56864E-03 6.77248E-04 2.90744E-03 7.53014E-04 
40 3.52276E-03 8.10797E-04 3.93320E-03 8.87275E-04 

 

 
Figure 5.2.1. Shock wave with amplitude 0.00184A  , 1.00000v  , 1,a  0.04    0.025  , 

1b  ,  ,5  3n ,  (a) h =∆t =0. 1, (b) h =∆t =0. 2 over the interval [-200, 250] at specified times. 

 
Figure 5.2.2. Errors for shock wave with amplitude 0.00184A  , 1.00000v  , 1,a  0.04    

0.025  , 1b  ,  ,5  3n ,  (a) h =∆t =0. 1, (b) h =∆t =0. 2 over the interval [-200, 250] at t=40. 
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Case 2. For the second numerical calculation, we have used the parameter  5n   with values 
of  05.0 th   and  1.0   through the interval  ].100,100[   For this case,  
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Amplitude and velocity of solitary waves are found as 02641.0 , ,12500.0v   

respectively. The run of the algorithm is carried up to time  40t   to obtain error norms at 
various times. The obtained results are tabulated in Table (5.2.2). It is noticeably seen from 
the table that the error norms 2L   and L   are obtained enough small during the computer run. 
The behaviours of solutions for values 1.0 th , 05.0   at times  30,20,10,0t   and  40   
have been shown in Figure (5.2.3). From this figure, we can see that the solitary wave moves 
to the right at constant velocity and remains its shape and amplitude. The error graph at  

40t   is given in Figure (5.2.4). It is observed that the maximum errors are about the tip of 
the solitary waves and between 4105   and - 3105.3  . 
 
Table 5.2.2. The error norms for shock solitary wave for  0.125a  , 0.5,     0.04,   20b  , 

25,   5n   over the interval [-100; 100]. 

 0.1h t    0.05h t    
t 

2L  L  2L  L  

0  0 0 0 0 

10  2.15972E-03 8.34524E-04 2.19797E-03 8.50263E-04 

20  4.32163E-03 1.63917E-03 4.39753E-03 1.67045E-03 

30  6.50620E-03 2.41090E-03 6.61959E-03 2.45838E-03 
40 8.73147E-03 3.19204E-03 8.88257E-03 3.24193E-03 

 

 
Figure 5.2.3. Shock wave with amplitude 0.02641A  , 0.12500v  , 0.125,a  0.5    0.04  , 

1b  ,  25,   5n  ,  (a) h =∆t =0. 1, (b) h =∆t =0. 05 over the interval [-100, 100] at specified times. 
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Figure 5.2.4. Errors for shock wave with amplitude  0.02641A  , 0.12500v  , 0.125,a  0.5    

0.04  , 1b  ,  25,   5n  ,  (a) h =∆t =0. 1, (b) h =∆t =0. 05 over the interval [-100, 100] at t=40. 

 
 
6. CONCLUSION  
 
 

In this study, a septic B-spline collocation method has been proposed and successfully 
applied to the R-KdV-RLW equation to examine the motion of a single solitary and shock 
waves whose analytical solutions are known. To investigate the efficiency and accuracy of the 
numerical solutions of the test problems, we have computed the error norms 2L   and L  and 

conserved quantities MI  and .EI  The illustrative numerical results indicate that the error 
norms are satisfactorily small and the conservation laws are marginally constant. It is well 
observed that the proposed scheme is more accurate than the other earlier schemes found in 
the literature. We have also analyzed the numerical stability of the scheme. It is established 
that the linearized numerical scheme is unconditionally stable. Therefore, we conclude that 
the proposed numerical scheme is useful and efficient to obtain the numerical solutions of 
other important nonlinear problems in various fields. 
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