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Abstract
In this article, numerical solutions of the modified Korteweg-de Vries (MKdV) equation have been obtained by
a numerical technique attributed on collocation method using quintic B-spline finite elements. The suggested
numerical scheme is controlled by applying three test problems involving single solitary wave, interaction of
two and three solitary waves. To check the performance of the newly applied method, the error norms, L2 and
L∞, as well as the three lowest invariants, I1, I2 and I3, have been calculated. The acquired numerical results
are compared with some of those available in the literature. Linear stability analysis of the algorithm is also
examined.
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1. Introduction
This article is concerned with the following non-linear

modified Korteweg de-Vries (MKdV) equation

Ut + εU2Ux +µUxxx = 0, (1.1)

with the homogeneous boundary conditions

U(a, t) = 0, U(b, t) = 0,
Ux(a, t) = 0, Ux(b, t) = 0, t > 0 (1.2)

and an initial condition

U(x,0) = f (x) a≤ x≤ b (1.3)

where t is time, x is the space coordinate, ε and µ are positive
parameters and f (x) is a detected function. A main mathemat-
ical model for describing the theory of water waves in shallow
channels is the following Korteweg de-Vries (KdV) equation:

Ut + εUUx +µUxxx = 0. (1.4)

The terms UUx and Uxxx in the Eq.(1.4) represent the non-
linear convection and dispersion, respectively. Many phys-
ical phenomena for example propagation of long waves in
shallow water waves, bubble-liquid mixtures, ion acoustic
plasma waves and wave phenomena in enharmonic crystals
can be described by the KdV equation which was first intro-
duced by Korteweg and de Vries [1]. The exact solutions
of the equation obtained by [2, 3]. KdV equation was first
solved numerically by Zabusky and Kruskal using finite dif-
ference method [4]. Gardner et al. [5] showed the existence
and uniqueness of solutions of the KdV equation. Many re-
searches have used various numerical methods including finite
difference method [6, 7], finite element method [8, 15], pseu-
dospectral method [3] and heat balance integral method [16]
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to solve the equation. MKdV equation have a limited number
of numerical studies in the literature. Kaya [17], was used the
Adomian decomposition method to obtain the higher order
modified Korteweg de-Vries equation with initial condition.
MKdV equation have been solve by using Galerkins’ method
with quadratic B-spline finite elements by Biswas et al. [18].
Raslan and Baghdady [19, 20], showed the accuracy and sta-
bility of the difference solution of the MKdV equation and
they obtained the numerical aspects of the dynamics of shal-
low water waves along lakes’ shores and beaches modeled by
the MKdV equation. A new variety of (3 + 1)-dimensional
modified Korteweg–de Vries (mKdV) equations and multiple
soliton solutions for each new equation were established by
Wazwaz [21, 22]. A lumped Galerkin and Petrov Galerkin
methods were applied to the MKdV equation by Ak et al.
[23, 24].

In this paper, we have numerically solve the MKdV equa-
tion using collocation method with quintic B-spline finite ele-
ments. We have studied the motion of a single solitary wave,
interaction of two and three solitary waves to show the perfor-
mance and efficiency of the suggested method. We showed
the proposed method is unconditionally stable applying the
von-Neumann stability analysis.

2. Quintic B-spline Collocation Method
For our numerical computations, solution area of the prob-

lem is limited over an interval a ≤ x ≤ b. Let the partition
of the space interval [a,b] into equally sized finite elements
of length h at the points xm like that a = x0 < x1 < ... <
xN = b and h = b−a

N . The set of quintic B-spline functions
{φ−2(x),φ−1(x), . . . ,φN+1(x),φN+2(x)} form a basis over the
solution region [a,b]. The numerical solution UN(x, t) is ex-
pressed in terms of the quintic B-splines as

UN(x, t) =
N+2

∑
m=−2

φm(x)δm(t) (2.1)

where δm(t) are time dependent parameters and will be de-
fined from the boundary and collocation conditions. Quintic
B-splines φm(x), (m = −2,−1, ...,N +1,N +2) at the knots
xm are designated over the interval [a,b] by Prenter [25]

φm(x) = 1
h5



a5, [xm−3,xm−2]
a5−6b5, [xm−2,xm−1]
a5−6b5 +15c5, [xm−1,xm]
a5−6b5 +15c5−20d5, [xm,xm+1]
a5−6b5 +15c5−20d5

+15e5, [xm+1,xm+2]
a5−6b5 +15c5−20d5

+15e5−6 f 5, [xm+2,xm+3]
0, elsewhere

(2.2)

where a = (x− xm−3) , b = (x− xm−2) , c = (x− xm−1) , d =
(x− xm) , e = (x− xm+1) , f = (x− xm+2) . Each quintic B-

spline covers six elements, thus each element [xm,xm+1] is
covered by six splines. A typical finite interval [xm,xm+1] is
mapped to the interval [0,1] by a local coordinate transforma-
tion defined by hξ = x− xm, 0≤ ξ ≤ 1. So quintic B-splines
(2.2) in terms of ξ over [0,1] can be given as follows:

φm−2 = 1−5ξ +10ξ 2−10ξ 3 +5ξ 4−ξ 5,
φm−1 = 26−50ξ +20ξ 2 +20ξ 3−204ξ 4 +5ξ 5,
φm = 66−60ξ 2 +30ξ 4−10ξ 5,
φm+1 = 26+50ξ +20ξ 2−20ξ 3−20ξ 4 +5ξ 5,
φm+2 = 1+5ξ +10ξ 2 +10ξ 3 +5ξ 4−5ξ 5,
φm+3 = ξ 5.

(2.3)

For the problem, the finite elements are identified with the
interval [xm,xm+1]. Using Eq.(2.2) and Eq.(2.1), the nodal
values of Um,U ′m,U

′′
m,U

′′′
m and U iv

m are given in terms of the
element parameters δm by

UN(xm, t) =Um = δm−2 +26δm−1 +66δm+
26δm+1 +δm+2,

U ′m = 5
h (−δm−2−10δm−1 +10δm+1 +δm+2),

U ′′m = 20
h2 (δm−2 +2δm−1−6δm +2δm+1 +δm+2),

U ′′′m = 60
h3 (−δm−2 +2δm−1−2δm+1 +δm+2),

U iv
m = 120

h4 (δm−2−4δm−1 +6δm−4δm+1 +δm+2)

(2.4)

and the variation of U over the element [xm,xm+1] is given by

U =
N+2

∑
m=−2

φmδm. (2.5)

When we define the collocation points with the knots and
use Eqs.(2.4) to utilise Um , its space derivatives and substitute
into Eq. (1.1), this brings to a set of ordinary differential
equations of the form

(
δ̇m−2 +26δ̇m−1 +66δ̇m +26δ̇m+1 + δ̇m+2

)
+

ε
5
h Zm(−δm−2−10δm−1 +10δm+1 +δm+2)+

µ
60
h3 (−δm−2 +2δm−1−2δm+1 +δm+2) = 0,

(2.6)

where
Zm = (δm−2 +26δm−1 +66δm +26δm+1 +δm+2)

p .

If time parameters δi and its time derivatives δ̇i in Eq.(2.6)
are discretized by the Crank-Nicolson formula

δi =
δ

n+1
i +δ n

i
2

, (2.7)

and usual finite difference aproximation

δ̇i =
δ

n+1
i −δ n

i
∆t

(2.8)

we derive a repetition relationship between two time levels
n and n+ 1 relating two unknown parameters δ

n+1
i , δ n

i for
i = m−2, ...,m+2
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γ1δ
n+1
m−2 + γ2δ

n+1
m−1 + γ3δ

n+1
m + γ4δ

n+1
m+1 + γ5δ

n+1
m+2 (2.9)

= γ5δ
n
m−2 + γ4δ

n
m−1 + γ3δ

n
m + γ2δ

n
m+1 + γ1δ

n
m+2

where

γ1 = [1−EZm−M],
γ2 = [26−10EZm +2M],
γ3 = [66],
γ4 = [26+10EZm−2M],
γ5 = [1+EZm +M],

m = 0,1, . . . ,N,E = 5
2h ε∆t,M = 30

h3 µ∆t.

(2.10)

The system (2.9) involves of (N+1) linear equations con-
taining (N+5) unknown coefficients (δ−2,δ−1, . . . ,δN+1,δN+2)

T .
We need four additional restraints to obtain a unique solu-
tion for this system. These are obtained from the boundary
conditions (1.2) and can be used to remove δ−2,δ−1 and
δN+1,δN+2, from the systems (2.9) which occures a matrix
equation for the N+1 unknowns dn = (δ0,δ1, . . . ,δN)

T of the
form

Adn+1 = Bdn. (2.11)

The matrices A and B are (N + 1)× (N + 1) penta-diagonal
matrices and this matrix equation have been solved by using
the penta-diagonal algorithm. However, two or three inner iter-
ations are implemented to the term δ n∗ = δ n + 1

2 (δ
n−δ n−1)

at each time step to overcome the non-linearity caused by
Zm. Before the solution process begins iteratively, the initial
vector d0 must be established by using the initial condition
and following derivatives at the boundaries;

UN(x,0) = U(xm,0); m = 0,1,2, ...,N

(UN)x(a,0) = 0, (UN)x(b,0) = 0.

So we have the following matrix form for the initial vector
d0;

V d0 = w,

where

V =



54 60 6
25.25 67.50 26.25 1

1 26 66 26 1
1 26 66 26 1

. . .
1 26 66 26 1

1 26.25 67.50 25.25
6 60 54


d0 = (δ0,δ1,δ2, ...,δN−2,δN−1,δN)

T and
w = (U(x0,0),U(x1,0), ...,U(xN−1,0),U(xN ,0))T .

3. Stability Analysis

In order to examine the stability analysis of the suggested
scheme, it is properly to use Von-Neumann theory. Presuming
that the quantity U2 in the nonlinear term U2Ux is locally
constant. Substituting the Fourier mode δ n

m = ξ neiσmh,(i =

√
−1) into the form of (2.9) we attain,

ξ
n+1(η1ei(m−2)θ +η2ei(m−1)θ +η3eimθ +

η4ei(m+1)θ +η5ei(m+2)θ ) (3.1)

= ξ
n(η5ei(m−2)θ +η4ei(m−1)θ +

η3eimθ +η2ei(m+1)θ +

η1ei(m+2)θ )

where σ is mode number, h is the element size, θ = σh

η1 = 1−β1−β2,
η2 = 26−10β1 +2β2,
η3 = 66,
η4 = 26+10β1−2β2,
η5 = 1+β1 +β2,

m = 0,1, . . . ,N, β1 =
5

2h ε∆t, β2 =
30
h3 µ∆t.

If we simplify the Eq. (3.1),

ξ =
A+ iB
A− iB

is obtained where

A = (52)cos(θ)+(2)cos(2θ)+66
B = 4(5EZm−M)sin(θ)+2(EZm +M)sin(2θ).

(3.2)

According to the Fourier stability analysis, for the given
scheme to be stable, the condition |ξ |< 1 must be satisfied.
Using a symbolic programming software or using simple cal-
culations, since a2 +b2 = a2 +(−b)2 it becomes evident that
the modulus of |ξ | is 1. Therefore the linearized scheme is
unconditionally stable.

4. Numerical Results and Discussion
In this part, to confirm the correction of our scheme, some

numerical experiments were calculated: the motion of sin-
gle solitary wave whose analytical solution is known and
extended the scheme to the study of two and three solitary
waves, whose analytical solution is unknown during the in-
teraction. The initial boundary value problem (1.1)− (1.3)
possesses following conservative quantities;

I1 =
∫

∞

−∞
U(x, t)dx,

I2 =
∫

∞

−∞
U2(x, t)dx,

I3 =
∫

∞

−∞
[U4(x, t)− 6µ

ε
U2

x (x, t)]dx
(4.1)

which correspond to the mass, momentum and energy of the
shallow water waves, respectively[26? ]. To calculate the
difference between analytical and numerical solutions at some
specified times, the error norm L2

L2 =
∥∥Uexact −UN

∥∥
2 '

√
h

N

∑
J=0

∣∣∣Uexact
j − (UN) j

∣∣∣2,
and the error norm L∞

L∞ =
∥∥Uexact −UN

∥∥
∞
'max

j

∣∣∣Uexact
j − (UN) j

∣∣∣
have been used.
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4.1 The motion of single solitary wave
For this problem, Eq.(1.1) is analyzed with the boundary

conditions U → 0 as x→±∞ and the initial condition

U(x,0) = Asech[k(x− x0)] (4.2)

where A =
√

6c
ε
, k =

√
c
µ

and A is amplitude, k is the width

of the single solitary wave. The exact solution of the MKdV
equation can be written as

U(x, t) = Asech[k(x− ct− x0)] (4.3)

where ε , µ , c, and x0 are arbitrary constants. For this problem,
the analytical values of the invariants can be given as [18]

I1 = π

√
6µ

ε
,I2 =

12
√

µc
ε

, I3 =−
64c2

ε2

√
µ

c
. (4.4)

For the computational study, we have chosen the parameters
ε = 3, µ = 1, h = 0.1, c = 0.845 and ∆t = 0.01 through the
interval 0≤ x≤ 80, so the solitary wave has amplitude A =
1.3. The numerical simulations are run to time t = 20 to find
error norms L2, L∞ and conserved quantities I1, I2 and I3.
Comparisons of the values of the invariants and error norms
provided by the suggested method with those obtained some
earlier methods are given in Table (1). From this table, it is
obviously seen that the error norms obtained by our method
are found much better than the others and the computed values
of invariants are in good agreement with their analytical values.
Solitary wave profiles are demonstrated at different time levels
in Fig.(1) in which the soliton moves to the right at a nearly
unchanged speed and amplitude as time increases, as expected.

Table 1. A Comparison of invariants and error norms for
single solitary wave with ε = 3, µ = 1, c = 0.845, h = 0.1
and ∆t = 0.01, 0≤ x≤ 80.

t 1 10 20
I1 Present 4.44286 4.44282 4.44278

[18] 4.44300 4.44414 4.44317
[23] 4.44286 4.44286 4.44286
[24] 4.44286 4.44286 4.44286

I2 Present 3.67693 3.67686 3.67678
[18] 3.67706 3.67809 3.67919
[23] 3.67694 3.67694 3.67694
[24] 3.67694 3.67694 3.67694

I3 Present 2.07131 2.07119 2.07106
[18] 2.07357 2.07530 2.07716
[23] 2.07279 2.07369 2.07384
[24] 2.07279 2.07369 2.07384

L2 Present 2.03E-04 3.24E-04 3.98E-04
[18] - - -
[23] 6.27E-04 2.13E-03 3.65E-03
[24] 6.28E-04 2.13E-03 3.64E-03

L∞ Present 1.43E-05 2.00E-04 6.79E-04
[18] 1.20E-03 5.94E-03 8.64E-03
[23] 3.62E-04 1.40E-03 2.29E-03
[24] 3.63E-04 1.39E-03 2.28E-03

0 2 0 4 0 6 0 8 0
- 0 . 2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

U(
x,t

)

x

t = 0 t = 1 0 t = 2 0

Figure 1. Single solitary wave with ε = 3, µ = 1, c = 0.845,
h = 0.1, ∆t = 0.01 and 0≤ x≤ 80 at t = 0,5,10,15,and 20.

4.2 Interaction of two solitary waves
As a second problem, we have discussed the behavior of

the interaction of two solitary waves having different ampli-
tudes and travelling in the same direction. Initial condition of
two well-seperated solitary waves of different amplitudes has
the following form:

U(x,0) =
2

∑
j=1

A j sech [c j (x− x j)] (4.5)

( j = 1,2) c j and x j are arbitrary constants. To ensure an
interaction of two solitary waves we have taken the parameters
ε = 3, µ = 1, h = 0.1, ∆t = 0.01, c1 = 2, c2 = 1, x1 = 15
and x2 = 25 over the interval 0 ≤ x ≤ 80 to congruent with
those used by earlier studies [18, 23, 24]. The run of the
algorithm is carried up to time t = 20 to obtain the values of
the invariants. The obtained results are tabulated in Table (2).
Table (2) shows that invariants are nearly constant as the time
progresses. Therefore, we can say our method is marginally
conservative. The interaction of two solitary waves is depicted
at different time levels in Figure (2). It is understood from this
figure that at t = 0 the wave with larger amplitude which has
2.0 amplitude, is located at the left of the smaller soliton which
has 1.414216 amplitude initially. Since the taller wave moves
faster than the shorter one, it catches up and collides with the
shorter one at t = 6 and then moves away from the shorter
one as time increases. When the interaction finishes at time
t = 16, two solitons preserve their originally characteristics
like the beginning location. At t = 20, the amplitude of larger
wave is 2.0 at the point x = 57.5 whereas the amplitude of the
smaller one is 1.413808 at the point x = 41.5. It is found that
the absolute difference in amplitude is 4.08× 10−4 for the
smaller wave and 0.0 for the larger wave for this algorithm.
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Table 2. A Comparison of invariants for the interaction of
two solitary waves with ε = 3, µ = 1, h = 0.1, ∆t = 0.01,
c1 = 2, c2 = 1, x1 = 15 and x2 = 25, 0≤ x≤ 80.

t 1 10 20
I1 Present 8.88575 8.88585 8.88577

[18] 8.88601 8.88974 8.88488
[23] 8.88573 8.88573 8.88573
[24] 8.88573 8.88573 8.88573

I2 Present 9.65934 9.65934 9.65934
[18] 9.65952 9.66254 9.66122
[23] 9.65934 9.65934 9.65934
[24] 9.65934 9.65934 9.65934

I3 Present 10.21921 10.21915 10.21920
[18] 10.23987 10.24679 10.24203
[23] 10.27082 10.95427 10.33832
[24] 10.27090 10.95439 10.33841

0 20 40 60 80

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

U
(x

,t)

x

0 20 40 60 80
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 20 40 60 80
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

U
(x

,t)

x

0 20 40 60 80

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80

0.0

0.5

1.0

1.5

2.0

Figure 2. Interaction of two solitary waves with ε = 3,
µ = 1, h = 0.1, ∆t = 0.01, c1 = 2, c2 = 1, x1 = 15, x2 = 25
and 0≤ x≤ 80 at t = 0,6,7,8,16 and 20.
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4.3 Interaction of three solitary waves
As a final problem, we have considered the behavior of

the interaction of three solitary waves having different ampli-
tudes and traveling in the same direction. For our purpose,
interaction of three solitary waves is examined by using the
initial condition

U(x,0) =
3

∑
j=1

A j sech [c j (x− x j)] (4.6)

together with boundary conditions U → 0 as x→±∞. This
initial condition indicates three solitary waves, one with am-
plitude A1 placed initially at x = x1, second with amplitude
A2 placed initially at x = x2 and the last one with amplitude
A3 placed initially at x = x3. We have considered the problem
with parameters ε = 3, µ = 1, h = 0.1, ∆t = 0.01, c1 = 2,
c2 = 1, c3 = 0.5, x1 = 15, x2 = 25 and x3 = 35 over the inter-
val 0≤ x≤ 80 to congruent with those used by earlier studies
[18, 23, 24]. The experiment is run from t = 0 to t = 20 and
values of the invariant quantities are listed in Table (3). Table
(3) indicates that invariants are nearly constant as the time
increases. As one can also see straightforwardly from the
table that the values of the invariants are in good agreement
with References [18, 23, 24]. The behavior of the interaction
of three solitary waves denote at different times in Figure (3).

Table 3. A Comparison of invariants for the interaction of
three solitary waves with ε = 3, µ = 1, h = 0.1, ∆t = 0.01,
c1 = 2, c2 = 1, c3 = 0.5, x1 = 15, x2 = 25 and x3 = 35,
0≤ x≤ 80.

t 1 10 20
I1 Present 13.32868 13.32915 13.32883

[18] 13.32906 13.33878 13.33206
[23] 13.32867 13.32867 13.32867
[24] 13.32867 13.32867 13.32867

I2 Present 12.51994 12.51995 12.51993
[18] 12.52028 12.54086 12.52490
[23] 12.51994 12.51994 12.51994
[24] 12.51994 12.51994 12.51994

I3 Present 11.22843 11.22802 11.22842
[18] 11.24979 11.28804 11.25673
[23] 11.32117 12.41534 11.49914
[24] 11.32126 12.47629 11.49923
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Figure 3. Interaction of three solitary waves with ε = 3,
µ = 1, h = 0.1, ∆t = 0.01, c1 = 2, c2 = 1, c3 = 0.5, x1 = 15,
x2 = 25, x3 = 35 and 0≤ x≤ 80 at t = 0,6,7,8,16 and 20.
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5. Conclusion
In this paper, we have successfully carried out a quintic

B-spline collocation method to the MKdV equation. Three
different test problems have been solved. To demonstrate the
efficiency of numerical scheme, the error norms L2, L∞ and
conserved quantities I1, I2 and I3 have been calculated for the
test problems. According to the tables in the paper, one can
has easily seen that our error norms are enough small and they
are better than References [18, 23, 24]. Also, the obtained
invariants are acceptable in good agreement with the earlier
works [18, 23, 24]. Also, our numerical algorithm is uncon-
ditionally stable. So, we can say our numerical algorithm is
a reliable method for getting the numerical solutions of the
physically important non-linear partial differential equations.
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