
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 6, December 2018, pp 609–618.
Published online in International Academic Press (www.IAPress.org)

A Quartic Subdomain Finite Element Method for the Modified KdV
Equation
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Abstract In this article, we have obtained numerical solutions of the modified Korteweg-de Vries (MKdV) equation by
a numerical technique attributed on subdomain finite element method using quartic B-splines. The proposed numerical
algorithm is controlled by applying three test problems including single solitary wave, interaction of two and three solitary
waves. To inspect the performance of the newly applied method, the error norms, L2 and L∞, as well as the four lowest
invariants, I1, I2, I3 and I4 have been computed. Linear stability analysis of the algorithm is also examined.

Keywords Modified Korteweg-de Vries equation, finite element method, subdomain, quartic B-spline, soliton.

AMS 2010 subject classifications 65N30, 65D07, 74S05,74J35, 76B25

DOI: 10.19139/soic.v6i4.485

1. Introduction

The modified Korteweg de-Vries (MKdV) equation which will be studied in this article is related to the following
Korteweg de-Vries (KdV) equation

Ut + εUUx + µUxxx = 0. (1)

The terms UUx and Uxxx in the Eq.(1) represent the nonlinear convection and dispersion, respectively. KdV
equation is one of the main mathematical model for describing the theory of water waves in shallow channels.
Some important physical phenomena for example propagation of long waves in shallow water waves, bubble-
liquid mixtures, ion acoustic plasma waves and wave phenomena in enharmonic crystals can be described by
the KdV equation which was first suggested by Korteweg and de Vries [1]. The exact solutions of the equation
obtained by [2, 3]. At first, Zabusky and Kruskal solved the KdV equation numerically using the finite difference
method [4]. Gardner et al. [5] showed the existence and uniqueness of solutions of the KdV equation. Many
researches have used various numerical methods including finite difference method [6, 7], finite element method
[8-18], pseudospectral method [3] and heat balance integral method [19] to solve the equation. MKdV equation is
a special case of the generalized Korteweg de-Vries (GKdV) equation having the form

Ut + ε(Up)x + µUxxx = 0, (2)

where p is a positive integer. In this study, we will consider the MKdV equation, a special form of (2) with the
choice p = 2, ε = 3 and µ = 1,
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Ut + 3U2Ux + Uxxx = 0, (3)

with the homogeneous boundary conditions

U(a, t) = 0, U(b, t) = 0,
Ux(a, t) = 0, Ux(b, t) = 0, t > 0

(4)

and an initial condition

U(x, 0) = f(x) a ≤ x ≤ b (5)

where t is time, x is the space coordinate and f(x) is a detected function. MKdV equation have a limited number
of numerical studies in the literature. Kaya [20], used the Adomian decomposition method to obtain the higher
order modified Korteweg de-Vries equation with initial condition. MKdV equation have been solved by using
Galerkins’ method with quadratic B-spline finite elements by Biswas et al. [21]. Raslan and Baghdady [22, 23],
showed the accuracy and stability of the difference solution of the MKdV equation and they obtained the numerical
aspects of the dynamics of shallow water waves along lakes’ shores and beaches modeled by the MKdV equation.
A new variety of (3 + 1)-dimensional MKdV equation and multiple soliton solutions for each new equation were
established by Wazwaz [24, 25]. A lumped Galerkin and Petrov Galerkin methods were applied to the MKdV
equation by Ak et al. [26, 27].

In the present study, we have developed Subdomain finite element method for the MKdV equation using
quartic B-spline functions. Motion of a single solitary wave, interaction of two and three solitary waves are
examined to show the performance and efficiency of the suggested method. We show that the suggested method is
unconditionally stable applying the von-Neumann stability analysis.

2. Quartic B-splines

Quartic B-splines ϕm(x), (m = −2,−1, ..., N,N + 1) at the knots xm are designated over the interval [a, b] by
Prenter [28]

ϕm(x) = 1
h4



(x− xm−2)
4
, [xm−2, xm−1]

(x− xm−2)
4 − 5 (x− xm−1)

4
, [xm−1, xm]

(x− xm−2)
4 − 5 (x− xm−1)

4
+ 10 (x− xm)

4
, [xm, xm+1]

(xm+3 − x)
4 − 5 (xm+2 − x)

4
, [xm+1, xm+2]

(xm+3 − x)
4
, [xm+2, xm+3]

0 elsewhere.

(6)

Each quartic B-spline covers five elements, thus each element [xm, xm+1] is covered by five B-splines. A
typical finite interval [xm, xm+1] is mapped to the interval [0, 1] by a local coordinate transformation defined by
hξ = x− xm, 0 ≤ ξ ≤ 1. So quartic B-splines (6) in terms of ξ over [0, 1] can be given as follows:

ϕm−2 = 1− 4ξ + 6ξ2 − 4ξ3 + ξ4,
ϕm−1 = 11− 12ξ − 6ξ2 + 12ξ3 − ξ4,
ϕm = 11 + 12ξ − 6ξ2 − 12ξ3 + ξ4,
ϕm+1 = 1 + 4ξ + 6ξ2 + 4ξ3 − ξ4,
ϕm+2 = ξ4.

(7)
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For the problem, the finite elements are identified with the interval [xm, xm+1]. Using Eq.(6) and Eq.(7), the
nodal values of Um, U ′

m, U ′′
m and U ′′′

m are given in terms of the element parameters δm by

UN (xm, t) = Um = δm−2 + 11δm−1 + 11δm + δm+1,
U ′
m = 4

h (−δm−2 − 3δm−1 + 3δm + δm+1),
U ′′
m = 12

h2 (δm−2 − δm−1 − δm + δm+1),
U ′′′
m = 24

h3 (−δm−2 + 2δm−1 − 2δm+1 + δm+2)

(8)

and the variation of U over the element [xm, xm+1] is given by

U =

m+2∑
j=m−2

ϕj(ξ)δj(t). (9)

3. Subdomain Method For The MKdV Equation

For the numerical algorithm, solution area of the problem is limited over an interval a ≤ x ≤ b. Let the partition of
the space interval [a, b] into equally sized finite elements of length h at the points xm like that a = x0 < x1 < ... <
xN = b and h = b−a

N . The set of quartic B-spline functions {ϕ−2(x), ϕ−1(x), . . . , ϕN (x), ϕN+1(x)} form a basis
over the solution region [a, b]. The numerical solution UN (x, t) is expressed in terms of the quartic B-splines as

UN (x, t) =

N+1∑
m=−2

ϕm(x)δm(t) (10)

where δm(t) are time dependent parameters and will be defined from the both boundary and weighted residual
conditions. Applying the numerical approach to Eq.(3) with the weight function

Wm(x) =

{
1, xϵ[xm, xm+1]
0, otherwise

}
(11)

we get the following equation ∫ xm+1

xm

1.(Ut + 3U2Ux + Uxxx)dx = 0. (12)

When we use the hξ = x− xm transformation into the weak form of Eq.(12) and integrating it term by term
with some regulation by parts, guides to

h
5

(
δ̇m−2 + 26δ̇m−1 + 66δ̇m + 26δ̇m+1 + δ̇m+2

)
+ Zm(−δm−2 − 10δm−1 + 10δm+1 + δm+2)+

µ 12
h2 (−δm−2 + 2δm−1 − 2δm+1 + δm+2) = 0,

(13)

where the dot denotes differentiation with respect to t and

Zm = Um = 3 (δm−2 + 11δm−1 + 11δm + δm+1)
2
. (14)

If time parameters δi and its time derivatives δ̇i in Eq.(13) are discretized by the Crank-Nicolson formula and usual
forward difference approach respectively,

δi =
δn+1
i + δni

2
, δ̇i =

δn+1
i − δni

∆t
(15)

we derive a repetition relationship between two time levels n and n+ 1 relating two unknown parameters δn+1
i , δni

for i = m− 2, ...,m+ 2
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γ1δ
n+1
m−2 + γ2δ

n+1
m−1 + γ3δ

n+1
m + γ4δ

n+1
m+1 + γ5δ

n+1
m+2 = γ5δ

n
m−2 + γ4δ

n
m−1 + γ3δ

n
m + γ2δ

n
m+1 + γ1δ

n
m+2 (16)

where
γ1 = [1− EZm −M ], γ2 = [26− 10EZm + 2M ], γ3 = [66],
γ4 = [26 + 10EZm − 2M ], γ5 = [1 + EZm +M ], m = 0, 1, . . . , N − 1,
E = 5

2hε∆t, M = 30
h3µ∆t.

(17)

The system (16) involves of N linear equations containing (N + 4) unknown coefficients
(δ−2, δ−1, . . . , δN , δN+1)

T . We need four additional restraints to obtain a unique solution for this system.
These are obtained from the boundary conditions (4) and can be used to remove δ−2, δ−1, δN and δN+1 from the
systems (16) which occures a matrix equation for the N unknowns dn = (δ0, δ1, . . . , δN−1)

T of the form

Tdn+1 = V dn. (18)

This matrix equation have been solved by using a variant of the Thomas algorithm. However, two or three inner
iterations are implemented to the term δn∗ = δn + 1

2 (δ
n − δn−1) at each time step to overcome the non-linearity

caused by Zm. Before the solution process begins iteratively, the initial vector d0 must be established by using the
initial condition and following derivatives at the boundaries;

(UN )x(a, 0) = 0, (UN )x(b, 0) = 0,

(UN )xx(a, 0) = 0, (UN )xx(b, 0) = 0.

So we have the following matrix form for the initial vector d0;

V d0 = w,

where V =


18 6
11.5 11.5 1
1 11 11 1

1 11 11 1
2 14 8


d0 = (δ0, δ1, δ2, ..., δN−2, δN−1, δN )T and w = (U(x0, 0), U(x1, 0), ..., U(xN−1, 0), U(xN , 0))T .

4. Stability Analysis

To investigate the stability analysis of the suggested algorithm, it is properly use Von-Neumann theory based on
Fourier analysis. Supposing the quantity U2 in the nonlinear term U2Ux is locally constant. Substituting the Fourier
mode δnm = ξneiσmh,(i =

√
−1) into the form of (16) we attain,

ξn+1(η1e
i(m−2)θ + η2e

i(m−1)θ + η3e
imθ + η4e

i(m+1)θ + η5e
i(m+2)θ) (19)

= ξn(η5e
i(m−2)θ + η4e

i(m−1)θ + η3e
imθ + η2e

i(m+1)θ + η1e
i(m+2)θ)

where σ is mode number, h is the element size, θ = σh

η1 = 1− EZm −M, η2 = 26− 10EZm + 2M, η3 = 66,
η4 = 26 + 10EZm − 2M, η5 = 1 + EZm +M, m = 0, 1, . . . , N, E = 5

2hε∆t, M = 30
h3 µ∆t.

If we simplify the Eq. (19),
ξ =

A+ iB

A− iB

is obtained where
A = (52) cos(θ) + 2 cos(2θ) + 66
B = (20EZm − 4M) sin(θ) + (2EZm + 2M) sin(2θ).

(20)
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According to the Fourier stability analysis, for the given scheme to be stable, the condition |ξ| < 1 must be satisfied.
Using a symbolic programming software or using simple calculations, since a2 + b2 = a2 + (−b)2 it becomes
evident that the modulus of |ξ| is 1. Therefore the linearized scheme is unconditionally stable.

5. Numerical Results and Discussion

In this part, to realise the correction of our algorithm, some numerical exercises have been calculated: the motion
of single solitary wave whose analytical solution is known and extended the scheme to the study of two and three
solitary waves, whose analytical solutions are unknown during the interaction. The initial boundary value problem
(3)− (5) possesses following conservative quantities[29, 30];

I1 =
∫∞
−∞ U(x, t)dx,

I2 =
∫∞
−∞ U2(x, t)dx,

I3 =
∫∞
−∞[U4(x, t)− 6µ

ε U2
x(x, t)]dx,

I4 =
∫∞
−∞[U6(x, t)− 30µ

ε U2(x, t)U2
x(x, t) +

18µ2

ε2 U2
xx(x, t)]dx.

(21)

To calculate the difference between exact and numerical solutions at some specified times, L2 and L∞ error norms

L2 =
∥∥Uexact − UN

∥∥
2
≃

√√√√h

N∑
J=0

∣∣Uexact
j − (UN )j

∣∣2, L∞ =
∥∥Uexact − UN

∥∥
∞ ≃ max

j

∣∣Uexact
j − (UN )j

∣∣
have been used.

5.1. The motion of single solitary wave

For this problem, Eq.(3) is evaluated with the boundary conditions U → 0 as x → ±∞ and the initial condition

U(x, 0) = A sech[k(x− x0)] (22)

where A =
√

6c
ε , k =

√
c
µ and A is amplitude, k is the width of the single solitary wave. The exact solution of the

MKdV equation is given as

U(x, t) = A sech[k(x− ct− x0)] (23)

where c and x0 are arbitrary constants. For this problem, the exact values of the invariants can be given as [21]

I1 = π

√
6µ

ε
,I2 =

12
√
µc

ε
, I3 = −64c2

ε2

√
µ

c
, I4 =

216c2µ

5ε3

√
c

µ
. (24)

For this test problem, we have taken the parameters ε = 3, µ = 1, h = 0.1, ∆t = 0.01, c = 0.845 and 0.3 through
the interval 0 ≤ x ≤ 80, so the solitary waves have amplitudes 1.3 and 0.7746, respectively. The numerical
algorithms are actuated to t = 1 to get the error norms L2, L∞ and conserved quantities I1, I2, I3 and I4. Invariants
and error norms provided by the suggested method are given in Table (1) and Table (2). From these tables, it is
obviously seen that the computed values of invariants are in good agreement with their analytical values. Solitary
wave profiles are demonstrated at different time levels in Fig.(1) in which the soliton moves toward the right having
nearly unchanged properties for example speed and amplitude.

5.2. Interaction of two solitary waves

As a second problem, we have studied the behavior of the interaction of two solitary waves having different
amplitudes and travelling in the same direction. Initial condition of two well-seperated solitary waves of different
amplitudes has the following form:
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614 A QUARTIC SUBDOMAIN FINITE ELEMENT METHOD

Table 1. Invariants and error norms for single solitary wave with ε = 3, µ = 1, c = 0.845, h = 0.1 and ∆t = 0.01, 0 ≤ x ≤
80.

t I1 I2 I3 I4 L2 L∞
0.1 4.442863 3.676938 2.071325 1.050110 8.589E-02 5.041E-02
0.2 4.442864 3.676939 2.071323 1.050109 1.716E-01 1.006E-01
0.3 4.442865 3.676939 2.071323 1.050108 2.569E-01 1.506E-01
0.4 4.442866 3.676938 2.071322 1.050107 3.418E-01 2.001E-01
0.5 4.442863 3.676937 2.071322 1.050107 4.259E-01 2.490E-01
0.6 4.442861 3.676937 2.071319 1.050105 5.091E-01 2.971E-01
0.7 4.442861 3.676935 2.071318 1.050104 5.913E-01 3.446E-01
0.8 4.442862 3.676934 2.071316 1.050102 6.724E-01 3.907E-01
0.9 4.442863 3.676932 2.071314 1.050101 7.521E-01 4.363E-01
1.0 4.442863 3.676933 2.071312 1.050100 8.304E-01 4.805E-01

Table 2. Invariants and error norms for single solitary wave with ε = 3, µ = 1, c = 0.3, h = 0.1 and ∆t = 0.01, 0 ≤ x ≤ 80.

t I1 I2 I3 I4 L2 L∞
0.1 4.442792 2.190881 0.4381725 0.078951 1.403E-02 6.361E-03
0.2 4.442779 2.190881 0.4381727 0.078970 2.807E-02 1.272E-02
0.3 4.442776 2.190881 0.4381729 0.078994 4.210E-02 1.907E-02
0.4 4.442777 2.190880 0.4381731 0.079025 5.613E-02 2.543E-02
0.5 4.442771 2.190882 0.4381731 0.079066 7.906E-02 7.016E-02
0.6 4.442772 2.190881 0.4381735 0.079120 8.418E-02 3.814E-02
0.7 4.442766 2.190881 0.4381731 0.079190 9.819E-02 4.448E-02
0.8 4.442769 2.190880 0.4381730 0.079281 1.121E-01 5.082E-02
0.9 4.442766 2.190881 0.4381731 0.079399 1.261E-01 5.714E-02
1.0 4.442765 2.190882 0.4381731 0.079551 1.401E-01 6.345E-02
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Figure 1. Single solitary wave with ε = 3, µ = 1, c = 0.845, h = 0.1, ∆t = 0.01 and 0 ≤ x ≤ 80 at t = 0, 5 and 10.

U(x, 0) =

2∑
j=1

Aj sech [cj (x− xj)] (25)

(j = 1, 2) cj and xj are arbitrary constants. We have chosen the parameters ε = 3, µ = 1, h = 0.1, ∆t = 0.01,
c1 = 2, c2 = 1, x1 = 15 and x2 = 25 over the interval 0 ≤ x ≤ 80. The run of the algorithm is carried up to time
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t = 5 to obtain the values of the invariants. The obtained results are tabulated in Table (3). Table (3) shows that
invariants are nearly constant as the time progresses. The calculated quantities I1, I2, I3 and I4 change by less
than 2.16× 10−3, 6.1× 10−3, 4.95× 10−2 and 2.49× 10−2, respectively. Therefore, we can say our method is
marginally conservative. The interaction of two solitary wave is depicted at different time levels in Figure (2).

Table 3. Invariants for the interaction of two solitary waves with ε = 3, µ = 1, h = 0.1, ∆t = 0.01, c1 = 2, c2 = 1, x1 = 15
and x2 = 25, 0 ≤ x ≤ 80.

t I1 I2 I3 I4
0 8.885730 9.659342 10.219180 10.668990
1 8.885097 9.657387 10.211370 10.653420
2 8.884507 9.655479 10.203760 10.638260
3 8.883841 9.653700 10.196620 10.624040
4 8.883119 9.652200 10.190490 10.611900
5 8.882933 9.651279 10.186450 10.603890

0 20 40 60 80

0.0

0.5

1.0

1.5

2.0

U
(x

,t)

x
0 20 40 60 80

0.0

0.5

1.0

1.5

2.0
U
(x

,t)

x

0 20 40 60 80

0.0

0.5

1.0

1.5

2.0

U
(x

,t)

x

Figure 2. Interaction of two solitary waves with ε = 3, µ = 1, h = 0.1, ∆t = 0.01, c1 = 2, c2 = 1, x1 = 15, x2 = 25 and
0 ≤ x ≤ 80 at t = 0, 2 and 5.

5.3. Interaction of three solitary waves

As a last problem, we have considered the behavior of the interaction of three solitary waves having different
amplitudes and traveling in the same direction. We examined the interaction of three solitary waves by using the
initial condition
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U(x, 0) =

3∑
j=1

Aj sech [cj (x− xj)] (26)

together with boundary conditions U → 0 as x → ±∞. We have conceived the problem with parameters ε = 3,
µ = 1, h = 0.1, ∆t = 0.01, c1 = 2, c2 = 1, c3 = 0.5, x1 = 15, x2 = 25 and x3 = 35 over the interval 0 ≤ x ≤ 80.
The experiment is run from t = 0 to t = 5 and values of the quantities are listed in Table (4). Table (4) indicates that
invariants are nearly constant as the time increases. The behavior of the interaction of three solitary waves denotes
at different times in Figure (3).

Table 4. Invariants for the interaction of three solitary waves with ε = 3, µ = 1, h = 0.1, ∆t = 0.01, c1 = 2, c2 = 1, c3 = 0.5,
x1 = 15, x2 = 25 and x3 = 35, 0 ≤ x ≤ 80.

t I1 I2 I3 I4
0 13.328670 12.519940 11.228390 11.019630
1 13.328050 12.518010 11.220640 11.004170
2 13.327570 12.516120 11.213060 10.989010
3 13.326950 12.514400 11.206050 10.975050
4 13.325990 12.513020 11.200220 10.963460
5 13.326010 12.512290 11.196690 10.956380
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Figure 3. Interaction of three solitary waves with ε = 3, µ = 1, h = 0.1, ∆t = 0.01, c1 = 2, c2 = 1, c3 = 0.5, x1 = 15,
x2 = 25, x3 = 35 and 0 ≤ x ≤ 80 at t = 0, 2 and 5.
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6. Conclusion

In this article, we have applied a quartic B-spline subdomain finite element method to the MKdV equation. Three
different test problems have been solved. To demonstrate the efficiency of numerical scheme, the error norms L2,
L∞ and conserved quantities I1, I2, I3 and I4 have been calculated for the test problems. According to the tables in
the paper, one can has easily seen that our error norms are enough small and the obtained invariants are acceptable
in good agreement with their exact values. Our numerical scheme is also unconditionally stable. So, we can say our
numerical algorithm is a reliable method for getting the numerical solutions of the physically important non-linear
partial differential equations.
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