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A B S T R A C T   

This work deals with the constitute of numerical solutions of the generalized Korteweg-de Vries 
(GKdV) equation with Petrov-Galerkin finite element approach utilising a cubic B-spline function 
as the trial function and a quadratic function as the test function. Accurateness and effectiveness 
of the submitted methods are shown by employing propagation of single solitary wave. The L2,

L∞error norms and I1, I2and I3invariants are used to validate the applicability and durability of 
our numerical algorithm. Implementing the Von-Neumann theory, it is manifested that the sug
gested method is marginally stable. Furthermore, supernonlinear traveling wave solution of the 
GKdV equation is presented using phase plots. It is seen that the GKdV equation supports 
superperiodic traveling wave solution only and it is significantly affected by velocity and 
nonlinear parameters. Also, considering a superficial periodic forcing multistability of traveling 
waves of perturbed GKdV equation is presented. It is found that the perturbed GKdV equation 
supports coexisting chaotic and various quasiperiodic features with same parametric values at 
different initial conditions.   

1. Introduction 

Searching for analytic solutions of the nonlinear evolution equations (NLEEs) have long been the main theme of constant interest in 
mathematical and physical communities. These analytical solutions can skilfully narrate a variety of physical phenomena in various 
areas of applied sciences, such as plasma dynamics, fluid dynamics, applied mathematics and thus provide more information about the 
physical aspects of problems [1]. These nonlinear physical phenomena can be sensitively described by several nonlinear evolution 
equations (NEEs). In the last few decades, appreciable progress has been build in comprehension of the integrability and 
non-integrability of nonlinear evolution equations [2]. One of the important research areas of fluid mechanics is to study the dynamics 
of shallow water waves in the frame works of different NEEs, such as equal width (EW) equation, Burgers equation, generalized 
regularized long wave (RLW) equation, modified Burgers equation, generalized EW equation, generalized Korteweg-de Vries (KdV) 
equation and so on. Korteweg and de Vries [3] defined One of the most interesting NEEs (KdV equation) as 

Ut + εUUx + μUxxx = 0, (1) 
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which describe propagation of one dimensional shallow water wave. The KdV equation, which is one of the NEEs of third order with 
dispersion term, has a variety of tremendous applications to govern nonlinear waves in anharmonic crystals [4], waves inbubble liquid 
mixtures, dust-acoustic waves in plasmas, electron-acoustic waves in space and hot plasmas including nonlinear shallow water waves 
[5]. Fundamental characteristic of the KdV equation is that velocity of the solitary wave is comparable to its width and amplitude. Also, 
another particular feature of the KdV equation is that it can produce solitons and multi-soliton, which can keep their identities and 
properties after interaction and overtaking collisions [6]. The theory of solitons is a significant field in the areas of applied physics and 
applied mathematics. Some exact traveling solutions of the KdV equation were invented [7,8] and existence and uniqueness of these 
traveling solutions were examined introducing special initial function by Gardner et al. [9]. The KdV equation was solved analytically 
as a series solution by Adomian decomposition method [10]. Also, widely, appropriateness of these traveling solutions is restricted. For 
this reason, numerical wave solutions of the KdV equation are needful for several initial and boundary conditions to pattern lots of 
physical cases. Zabusky and Kruskal [11] were first to obtain it’s numerical solutions using finite difference method. There exists 
various methods to solve the KdV equation utilizing numerical approaches, for instance finite difference method [12,13], finite 
element method [14–24], pseudospectral method [25], variational iteration method [26], the modified Bernstein polynomials [27], 
meshless method [28,29], heat balance integral method [30], consistent Riccati expansion (CRE) method [31], three different ansatze 
methods [32], complex forms for the Hirota’s method [33], tanh expansion method [34] etc. were proposed for numerical treatment of 
the KdV equation. 

Actually the KdV equation is a special status of the GKdV equation given by 

Ut + εUpUx + μUxxx = 0, (2)  

which has need for the boundary conditions ∂U
∂x → 0as |x| → 0,where ε,and μare physical parameters and the suffices xand tsymbolize 

spatial and time differentiations, respectively. Numerical solution of the Eq. (2) is achieved with boundary conditions taken from 

U(a, t) = 0, U(b, t) = 0,
Ux(a, t) = 0, Ux(b, t) = 0,

Uxx(a, t) = 0, Uxx(b, t) = 0, t > 0
(3)  

and an initial condition 

U(x, 0) = f (x), a ≤ x ≤ b. (4) 

A class of fully discrete scheme for GKdV equation in a bounded domain (0, L)has studied by Sepúlveda and Villagrán [35]. A 
collocation algorithm and Adomian decomposition method are practiced to the equation by Ak et al. [36] and Ismail et al[37]., 
respectively. 

The other specific case of the GKdV equation is the modified Korteweg-de Vries (MKdV) equation for p = 2. Recently a variety of 
numerical approaches have been upgraded for the traveling solution of the MKdV equation. The higher order GKdV equations with 
specific initial values were solved by implementing the Adomian decompositon method by Kaya [38]. Biswas et al[39].suggested 
Galerkins’ solution for the MKdV equation utilizing quadratic B-splines. Numerical treatments of the MKDV equation have been 
introduced using Galerkin and Petrov Galerkin methods by Ak et al. [40,41]. Also Karakoc [42,43] has reported numerical traveling 
solutions for the MKdV equation utilizing subdomain and collocation methods. This study intends to prove that the presented nu
merical scheme is proficient of attaining significant precision for the problems symbolized by the generalized KdV equation. 

A supernonlinear traveling wave is a nonlinear traveling wave distinguished by nontrivial topology of the phase spaces. Recently, 
supernonlinear traveling waves were reported in different physical systems, such as, waves in plasmas [44–47], optical pulses [48], 
etc. Investigating the dynamics of nonlinear evolution equation one can find out that few nonlinear systems can provide many so
lutions for a specific set of parameter values and distinct initial conditions [49–51]. This kind of nonlinear phenomenon is termed as 
multistability or existence of coexisting features. Multistability or coexisting features, as a new development area in the study of 
physical models, is on the path of its beginning. Therefore, the physical models with multistability behaviors need more studies. For the 
first time in the literature, we give these properties for the GKdV equation. 

The aim of our study is to indicate that the suggested numerical scheme is proficient of succeeding high precision for the problem 
performed by the GKdV equation. Structure of this work contains Sections 1–7. Section 1 deals with the introductory section. Petrov- 
Galerkin method is explained and applied for getting the numerical solution of the GKdV equation in Section 2. Section 3 includes 
stability analysis of the method. Section 4 comprises probing of the motion of single solitary wave with several initial and boundary 
conditions. In Section 5, we study supernonlinear traveling wave solution of the GKdV equation using phase plane analysis. In Section 
6, we present multistability of traveling wave solution of the perturbed GKdV equation utilizing external periodic forcing. Concluding 
remarks of this examination are proffered in Section 7. 

2. Construction and application of the numerical method 

The space domain [a,b]is portioned into nequal parts each of length hby the points xm,where a = x0 < x1 < … < xN = b.Prenter 
[52] defined cubic B-splines as follows 

S.B.G. Karakoc et al.                                                                                                                                                                                                  



Chinese Journal of Physics 68 (2020) 605–617

607

ϕm(x) =
1
h3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − xm− 2)
3
, x ∈ [xm− 2, xm− 1),

h3 + 3h2(x − xm− 1) + 3h(x − xm− 1)
2
− 3(x − xm− 1)

3
, x ∈ [xm− 1, xm),

h3 + 3h2(xm+1 − x) + 3h(xm+1 − x)2
− 3(xm+1 − x)3

, x ∈ [xm, xm+1),

(xm+2 − x)3
, x ∈ [xm+1, xm+2],

0 otherwise

(5)  

and the set of cubic B-splines {ϕ− 1(x),…,ϕN+1(x)}a basis over the region [a,b]. In the cubic B-spline Petrov-Galerkin method, we seek 
the approximation UN(x, t)to the solution U(x, t)in the form 

UN(x, t) =
∑N+1

j=− 1
ϕj(x)δj(t), (6)  

where δj(t)are obtained using boundary and weighted residual conditions. When we appliying the transformation hη = x − xm,

0 ≤ η ≤ 1,cubic B-spline shape functions (5) having representations over the element [xm,xm+1]are obtained as 

ϕm− 1 = (1 − η)3
,

ϕm = 1 + 3(1 − η) + 3(1 − η)2
− 3(1 − η)3

,

ϕm+1 = 1 + 3η + 3η2 − 3η3,

ϕm+2 = η3.

(7) 

Therefore approximation function (6) in terms of element parameters δm− 1, δm, δm+1, δm+2and B-spline element functions ϕm− 1,ϕm,

ϕm+1,ϕm+2is given over the region [0,1] by 

UN(η, t) =
∑m+2

j=m− 1
δjϕj. (8) 

Also Uand its space derivatives at the knots xmcan be obtained as 

Um = U(xm) = δm− 1 + 4δm + δm+1,

U
′

m = U
′

(xm) = 3( − δm− 1 + δm+1),

U′′
m = U′′(xm) = 6(δm− 1 − 2δm + δm+1).

(9) 

Now, we choose the weight function Φmas the following quadratic B-splines [52]: 

Φm(x) =
1
h2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(xm+2 − x)2
− 3(xm+1 − x)2

+ 3(xm − x)2
, x ∈ [xm− 1, xm),

(xm+2 − x)2
− 3(xm+1 − x)2

, x ∈ [xm, xm+1),

(xm+2 − x)2
, x ∈ [xm+1, xm+2),

0 otherwise.

(10) 

When we use the transformation hη = x − xmquadratic B-splines Φmare found as 

Φm− 1 = (1 − η)2
,

Φm = 1 + 2η − 2η2,

Φm+1 = η2.

(11) 

Practicing the Petrov-Galerkin method to Eq. (2), the weak form of Eq. (2) is procured as 
∫ b

a
Φ(Ut + εUpUx + μUxxx)dx = 0. (12) 

When we use the transformation hη = x − xm(0 ≤ η ≤ 1)for [xm,xm+1]in Eq. (12), we have the following integral equation: 
∫ 1

0
Φ
(

Ut + ε
(

Up

h

)

Uη + μ
(

1
h3

)

Uηηη

)

dη = 0. (13) 

If we take the integral of Eq. (13) using the Eq. (2) which yields: 
∫ 1

0
[Φ(Ut + ελUη) − βΦηUηη]dη = − βΦUηη|

1
0, (14)  

where λ = Up

h and β =
μ
h2.Substituting the expression (8) in Eq. (14) leads to 

∑m+2

j=m− 1
[ (

∫ 1

0
Φiϕjdη ]δ̇

e
j +

∑m+2

j=m− 1
[ (ελ

∫ 1

0
Φiϕ

′

jdη ) − (β
∫ 1

0
Φ

′

i ϕ
′′
j dη )+ (βϕiϕ

′′
j |

1
0 ) ]δ

e
j = 0, (15) 
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where δe = (δm− 1, δm, δm+1, δm+2)
Tdenote element parameters and dot shows differentiation to twhich is written as follows: 

[Ae]δ̇
e
+[(ελBe − β(Ce − De)]δe = 0. (16) 

The element matrices Ae
ij,Be

ij,Ce
ijand De

ijare rectangular 3× 4given by the following integrals; 

Ae
ij =

∫ 1

0
Φiϕjdη =

1
60

⎡

⎣
10 71 38 1
19 221 221 19
1 38 71 10

⎤

⎦,

Be
ij =

∫ 1

0
Φiϕ

′

jdη =
1
10

⎡

⎣
− 6 − 7 12 1
− 13 − 41 41 13
− 1 − 12 7 6

⎤

⎦,

Ce
ij =

∫ 1

0
Φ

′

i ϕ
′′

j dη =

⎡

⎣
− 4 6 0 − 2
2 − 6 6 − 2
2 0 − 6 4

⎤

⎦,

De
ij = Φiϕ′′

j |
1
0 =

⎡

⎣
− 6 12 − 6 0
− 6 18 − 18 6
0 6 − 12 6

⎤

⎦.

We derive a lumped value of λfrom (Um+Um+1
2

p) as 

λ =
1
4h

(δm− 1 + 5δm + 5δm+1 + δm+2)
p
.

Assembling contributions from all elements generate the following system 

[A]δ̇ + [(ελB − β(C − D)]δ= 0, (17)  

where δ = (δ− 1, δ0,…, δN, δN+1)
Tglobal element parameters. The A,λB,Cand Dmatrices are rectangular and their each line of mare 

A =
1
60

(1, 57, 302, 302, 57, 1, 0),

λB =
1
10

(
− λ1, − 12λ1 − 13λ2, 7λ1 − 41λ2 − 6λ3, 6λ1 + 41λ2 − 7λ3,

13λ2 + 12λ3, λ3, 0

)

C = 2(1, 1, − 8, 8, − 1, − 1, 0), D = (0, 0, 0, 0, 0, 0, 0)

where 

λ1 =
1
4h

(δm− 2 + 5δm− 1 + 5δm + δm+1)
p
, λ2 =

1
4h

(δm− 1 + 5δm + 5δm+1 + δm+2)
p
,

λ3 =
1
4h

(δm + 5δm+1 + 5δm+2 + δm+3)
p
.

Using the Crank–Nicholson formulation δm = 1
2 (δ

n + δn+1)and usual finite difference approximation δ̇m = δn+1 − δn

Δt into Eq. (17) leads 
to the following iterative relationship 

[
A+ ελB − β(C − D)

Δt
2

]
δn+1 =

[
A − ελB − β(C − D)

Δt
2

]
δn. (18) 

Practicing the boundary conditions (3) to the Eq. (18), (N+ 1)× (N+ 1)matrix system is obtained and can be solved using the 
Thomas algorithm. Consequently, a representative member of the (18) is written as 

ρ1δn+1
m− 2 + ρ2δn+1

m− 1 + ρ3δn+1
m + ρ4δn+1

m+1 + ρ5δn+1
m+2 + ρ6δn+1

m+3 =

ρ6δn
m− 2 + ρ5δn

m− 1 + ρ4δn
m + ρ3δn

m+1 + ρ2δn
m+2 + ρ1δn

m+3,
(19)  

where 

ρ1 =
1
60

−
ελΔt
20

− βΔt, ρ2 =
57
60

−
25ελΔt

20
− βΔt,

ρ3 =
302
60

−
40ελΔt

20
+ 8βΔt, ρ4 =

302
60

+
40ελΔt

20
− 8βΔt,

ρ5 =
57
60

+
25ελΔt

20
+ βΔt, ρ6 =

1
60

+
ελΔt
20

+ βΔt.

S.B.G. Karakoc et al.                                                                                                                                                                                                  



Chinese Journal of Physics 68 (2020) 605–617

609

To begin the solution procedure, we require to obtain initial parameters δ0
m.Considering Eqs. (3) and (4), values of initial parameters 

δ0
mat the initial time are found with the following relations 

UN(xm, 0) = U(xm, 0),

U
′

N(x0, 0) = U
′

(xN , 0) = 0.

So the initial parameters δ0
mcan be calculated from the following equation 

⎡

⎢
⎢
⎢
⎢
⎣

− 3 0 3
1 4 1

⋱
1 4 1
− 3 0 3

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δ0
− 1

δ0
0

⋮
δ0

N

δ0
N+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

U′

(x0, 0)
U(x0, 0)

⋮
U(xN , 0)
U ′

(xN , 0)

⎤

⎥
⎥
⎥
⎥
⎦
.

3. Stability analysis 

Von Neumann stability analysis will be performed and growth of a Fourier mode δn
j = κneijkh, (i =

̅̅̅̅̅̅̅
− 1

√
)where kdenotes mode 

number and hdenotes element size, which can be obtained using linearisation of numerical approach. Utilizing the Fourier mode in Eq. 
(19) with some arrangements, the growth factor is generated as 

κ =
X − iY
X + iY

, (20)  

where 

X = 302cos
(θ

2

)
+ 57cos

(
3θ
2

)

+ cos
(

5θ
2

)

,

Y = [(120ελ − 480β)Δt]sin
(θ

2

)
+ [(75ελ + 60β)Δt]sin

(
3θ
2

)

+

[(3ελ + 60β)Δt]sin
(

5θ
2

)

.

(21)  

and θ = kh.Since |κ|is 1, our method is neutrally stable. 

4. Numerical applications 

Now we present a number of problems to validate the applicability of the method. For this reason, we obtain numerical solution of 
Eq. (2) for p = 1,2and 3. 

L2 = ‖ Uexact − UN ‖2 ≃

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

h
∑N

J=0

⃒
⃒
⃒Uexact

j − (UN)j

⃒
⃒
⃒

2
√

,

and 

L∞ = ‖ Uexact − UN ‖∞ ≃ max
j

⃒
⃒
⃒Uexact

j − (UN)j

⃒
⃒
⃒,

error norms are used to measure the accuracy of the present algorithm and to compare our result with existing literature. Analytic 
solution of the GKdV equation is found [36,37] to be 

U(x, t) = Asech2[k(x − x0 − ct)]
1
p,

where A =

[
c(p+1)(p+2)

2ε

]

and k =
p
2

̅̅
c
μ

√
.

The GKdV equation provides many invariant polynomials which can be procured systematically as follows 

I1 =

∫ b

a
U(x, t)dx, I2 =

∫ b

a

[
U2(x, t)

]
dx, I3 =

∫ b

a

[

Up+2(x, t) −
μ(p + 1)(p + 2)

2ε (Ux(x, t))2
]

dx. (22) 

After computing solitary wave profile, we can observe values of I1,I2and I3which can be used to verify the accuracy of the proposed 
computational numerical approach. 
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4.1. Propagation of a single solitary wave 

In this part, different numerical examples will be given to illustrate the efficiency and accuracy of the method. For the GKdV 
equation, parameters used by earlier authors to obtain their results are taken as guiding princible for our calculations. 

4.2. Case 1 

For the first case, behavior of the solutions are investigated with two sets of parameters, p = 1,ε = 1,μ = 4.84× 10− 4,c = 0.3,h =
0.01,Δt = 0.005,x ∈ [0,2]and ε = 3,μ = 1,c = 0.3,h = 0.1,Δt = 0.01,x ∈ [0,80]to coincide with the previous works [4,14–19,29,36]. 
So, solitary waves have amplitude 0.9 and 0.3, respectively and our scheme is executed up to t = 1.We calculate values of the error 
norms and invariants for different time levels and compare them with earlier papers in Table 1. It is seen that our algorithm provides 
good results than most of the others. We have got change of the values of the invariants 0,0,2.8× 10− 5for μ = 4.84 × 10− 4; 2 × 10− 6,

0, 0 for μ = 1and the error norms remain less than 0.920633× 10− 3and 2.783765× 10− 3for μ = 4.84× 10− 4and 0.018 × 10− 3,0.017 
× 10− 3for μ = 1. Numerical solutions are exhibited at different time levels in Fig. 1. Distribution of errors at time t = 1are depicted in 
Fig. 2. The error deviations for different valus of μvaries from − 3× 10− 3to 4× 10− 3and − 2× 10− 5to 5× 10− 6, respectively. 

4.3. Case 2 

We introduce the numerical results for the second case p = 2,ε = 3,μ = 1,h = 0.1,Δt = 0.01,c = 0.845and c = 0.3,h = 0.1,Δt =
0.01,x ∈ [0,80].Then solitary waves have amplitudes 1.3416 and 0.7746, respectively and our scheme is executed up to t = 20and t =
1.The three invariants and the errors norms are summarized in Table 2. We have got change of the values of the invariants 0, 0 and 
2.61× 10− 3for c = 0.845; 2× 10− 6,0,4× 10− 5for c = 0.3and the error norms remain less than 1.969104× 10− 3,1.301272 × 10− 3for c 
= 0.845and 0.105× 10− 3,0.052× 10− 3for c = 0.3respectively, throughout the simulation. Fig. 3 shows the solution profiles for t = 0,
5,10,15,20and t = 0,0.1,0.2…,1, respectively. To indicate the errors between the exact and numerical results over the solution in
terval, error distributions at time t = 20and t = 1is depicted graphically in Fig. 4. 

4.4. Case 3 

We present the numerical results for the final case p = 3,ε = 3,μ = 1,h = 0.01,Δt = 0.005,c = 0.845and c = 0.3,h = 0.1,Δt =
0.01,x ∈ [0,80].These specific values provide the amplitudes 1.4122 and 1.0000, respectively and our scheme is executed up to t =
20and t = 1.All results are documented in Table 3. Referring to Table 3, we have got change of the values of the invariants 0, 0 and 
1.17× 10− 2for c = 0.845; 3× 10− 6, 0, 3.3× 10− 4for c = 0.3and the error norms remain less than 9.989772× 10− 3, 6.843777 ×
10− 3for c = 0.845and 0.238× 10− 3, 0.129× 10− 3for c = 0.3respectively, throughout the simulation. For visual representation, 

Table 1 
Comparisons of results for invariants and error norms with p = 1,ε = 1,μ = 4.84× 10− 4,c = 0.3,h = 0.01,Δt = 0.005,x ∈ [0,2]and ε = 3,μ = 1,c =
0.3,h = 0.1, t = 0.01,x ∈ [0,80], .  

Method   Time   I1   I2   I3   L2 × 103   L∞ × 103  

μ = 4.84× 10− 4Present Method   0.00  0.144598  0.086759  0.046850  0  0   

0.25  0.144598  0.086759  0.046755  0.404868  0.906618   
0.50  0.144598  0.086759  0.046625  0.545796  1.537960   
0.75  0.144598  0.086759  0.046914  0.719048  2.160523   
1.00  0.144598  0.086759  0.046878  0.920633  2.783765 

[4]          28.66   
[14] Septic Coll.  1.00  0.14460  0.086759  0.046877  22.1   
[15]  1.00  0.144592  0.086759  0.016870  22.2   
[16] P-G  1.00        0.75   
[16] Modified P-G  1.00        4.33   
[17]  1.00        18.72   
[18]  1.00        29.45   
[19]  1.00        63.72   
[29] MQ  1.00  0.144606  0.086759  0.046850  0.062  0.133 
[29] IMQ  1.00  0.144623  0.086765  0.046847  2.751  5.018 
[29] IQ  1.00  0.144598  0.086759  0.046849  1.013  2.090 
[29]TPS  1.00  0.144261  0.086762  0.046842  2.606  6.345 
[29] G  1.00  0.144601  0.086760  0.046850  0.046  0.136 
[36]  1.00  0.144599  0.086759  0.046850  0.079  0.238 
μ = 1Present Method   0.00  2.190842  0.438176  0.078871  0  0   

0.25  2.190844  0.438176  0.078871  0.013  0.020   
0.50  2.190844  0.438176  0.078871  0.015  0.019   
0.75  2.190844  0.438176  0.078871  0.016  0.018   
1.00  2.190844  0.438176  0.078871  0.018  0.017  
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behaviors of solutions at times t = 0,5,10,15,20and t = 0,0.1,…,1are depicted in Fig. 5. Distributions of specific errors at time t =
20and t = 1are graphed in Fig. 6. 

5. Supernonlinear wave 

We investigate supernonlinear traveling wave solution of Eq. (2) for the first time in literature. To explore all possible 

Fig. 1. Movement of single solitary wave (MOSSW) profile for a) p = 1,ε = 1,μ = 4.84× 10− 4,c = 0.3,h = 0.01,Δt = 0.005and b) ε = 3,μ = 1,c =
0.3, h = 0.1,Δt = 0.01. 

Fig. 2. Error distributions at t = 1for the parameters a) p = 1,ε = 1,μ = 4.84× 10− 4,c = 0.3,h = 0.01,Δt = 0.005and b) ε = 3,μ = 1,c = 0.3,h =
0.1,Δt = 0.01. 

Table 2 
Comparisons of results for invariants and error norms with p = 2,ε = 3,μ = 1,h = 0.1,Δt = 0.01, c = 0.845and c = 0.3,h = 0.1,Δt = 0.01.  

Method   Time   I1   I2   I3   L2 × 103   L∞ × 103  

c = 0.845Present Method   0  4.442865  3.676941  2.071335  0  0   
5  4.442865  3.676941  2.073762  0.916736  0.561271   
10  4.442865  3.676941  2.073904  1.260179  0.846318   
15  4.442865  3.676941  2.073934  1.628483  1.090379   
20  4.442865  3.676941  2.073953  1.969104  1.301272 

[39]  20  4.443171  3.679192  2.077161  -  8.642137 
[40]  20  4.442866  3.676941  2.073841  3.656694  2.294197 
[41]  20  4.442866  3.676941  2.073846  3.641638  2.285638 
[42]  1  4.442863  3.676933  2.071312  830.4  480.5 
[43]  1  4.442865  3.676941  2.071327  0.0184  0.0117 
c = 0.3Present Method   0.00  4.442815  2.190881  0.438173  0  0   

0.25  4.442817  2.190881  0.438179  0.047  0.030   
0.50  4.442817  2.190881  0.438191  0.073  0.043   
0.75  4.442817  2.190881  0.438202  0.092  0.049   
1.00  4.442817  2.190881  0.438213  0.105  0.052 

[42]  1.00  4.442765  2.190882  0.438173  140.1  635.5 
[43]  1.00  4.44285  2.1908  0.438146  0.107  0.200  
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supernonlinear traveling waves of Eq. (2), one can employ a frame ξ = x − vtwith speed v. Then Eq. (2)becomes 

− vUξ + εUpUξ + μUξξξ = 0. (23) 

Performing integration inequation (23), we derive 

− vU +
ε

p + 1
Up+1 + μUξξ = c, (24)  

here c denotes an integrating constant. Applying the boundary conditions U → 0, Uξ → 0,Uξξ → 0as ξ → ±∞,we have 

− vU +
ε

p + 1
Up+1 + μUξξ = 0. (25) 

Then the system (25) is written as the following dynamical system (DS): 

Fig. 3. MOSSW for a) p = 2, ε = 3, μ = 1, h = 0.1,Δt = 0.01, c = 0.845and b) c = 0.3, h = 0.1,Δt = 0.01.  

Fig. 4. Error distributions for the parameters a) p = 2,ε = 3,μ = 1,h = 0.1,Δt = 0.01,c = 0.845, t = 20and b) c = 0.3,h = 0.1,Δt = 0.01, t = 1.  

Table 3 
Values of the invariants and error norms for p = 3, ε = 3,μ = 1,h = 0.01,Δt = 0.005, c = 0.845and c = 0.3,h = 0.1,Δt = 0.01.  

Method   Time   I1   I2   I3   L2 × 103   L∞ × 103  

c = 0.845Present Method   0  4.308401  3.742115  1.505761  0  0   
5  4.308401  3.742115  1.515932  1.928209  1.346190   
10  4.308401  3.742115  1.517105  4.307469  2.973856   
15  4.308401  3.742115  1.517411  7.225562  4.847671   
20  4.308401  3.742115  1.517513  9.989772  6.843777 

c = 0.3Present Method   0.00  5.119973  3.148917  0.449836  0  0   
0.25  5.119976  3.148917  0.449938  0.132  0.091   
0.50  5.119976  3.148917  0.450038  0.185  0.112   
0.75  5.119976  3.148917  0.450111  0.216  0.119   
1.00  5.119976  3.148917  0.450171  0.238  0.129  
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Uξ = Z,
Zξ = U(A − BUp),

(26)  

where A = v
μand B = ε

μ(p+1). The system (26)is a planar Hamiltonian system [53–57] with ω0and vas physical parameters. If pis an odd 

integer, then the DS (26) has two singular points at E0(U0,0)and E1(U1,0),where U0 = 0and U1 =

(
A
B

)1/p
. If pis an even integer, then 

the DS (26) has three singular points at E0(U0,0),E1(U1,0)and E2(U2,0),where U0 = 0,U1 =

(
A
B

)1/p
and U2 = −

(
A
B

)1/p
. 

Fig. 5. MOSSW for a) p = 3, ε = 3, μ = 1, h = 0.01,Δt = 0.005, c = 0.845and b) c = 0.3, h = 0.1,Δt = 0.01.  

Fig. 6. Error distributions for the parameters a) p = 3,ε = 3,μ = 1,h = 0.01,Δt = 0.005,c = 0.845,t = 20and b) c = 0.3,h = 0.1,Δt = 0.01,t = 1.  

Fig. 7. Phase plot of the DS (26) for: (a) p = 2, ε = 3, μ = 1, v = 0.2and (b) p = 3, ε = 3, μ = 1, v = 0.1.  
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The Hamiltonian function corresponding to the DS (26) is defined as 

H(U,Z) =
Z2

2
−

A
2

U2 +
B

p + 1
U(p+1) = h. (27) 

For each point (Ui,Zi) in the UZ-plane, the equation H(U,Z) = hrepresents a trajectory which corresponds to a traveling wave of Eq. 
(2). 

In Fig. 7 (a), phase plot of the DS (26) is presented for p = 2,ε = 3,μ = 1,and v = 0.2. It contains three kinds of distinct trajectories 
which are qualitatively different, namely, two opposite homoclinic trajectories (HT1,0) at the singular point E0(0,0),two collections of 
periodic trajectories (PT1,0) surrounding the centers at the singular points E1(U1, 0)and E2(U2, 0)and a family of superperodic tra
jectories (SPT3,1). In Fig. 7(b), phase plot of the DS (26) is presented for p = 3,ε = 3,μ = 1,and v = 0.1. This phase plot contains two 
types of distinct trajectories which are qualitative different, namely, a homoclinic trajectory (HT1,0) at the singular point E0(0,0)and 
one family of periodic trajectories (PT1,0) surrounding the center at E1(U1,0). 

In Fig. 8 (a), effect of velocity (v) of traveling wave is shown on supernonlinear traveling wave of the GKdV Eq. (2). It is perceived 
that as vis enhanced, amplitude of supernonlinear traveling wave grows and its width reduces. As a result the supernonlinear traveling 
wave of the GKdV Eq. (2) becomes spiky. In Fig. 8 (b), effect of nonlinear parameter (ε) of traveling wave is shown on supernonlinear 
traveling wave of the GKdV Eq. (2). It is seen that as εincreases, amplitude and width of supernonlinear traveling wave decrease. As a 
result the supernonlinear traveling wave of the GKdV Eq. (2) diminishes. 

6. Multistability 

Recently, effect of external source term on traveling waves is reported [58]. Such nonlinear source term as a superficial forcing, is of 
various types [59,60]. We consider a superficial forcing term as f0 cos(ωξ). So, introducing superficial forcing f0 cos(ωξ) to the system 
(26), one can acquire the perturbed dynamical system (PDS) as 

Uξ = Z,
Zξ = U(A − BUp) + f0 cos(ωξ), (28)  

here f0(ω) denote strength (frequency) of the superficial forcing. 
In Fig. 9 (a), coexisting orbits of the PDS (28) are presented for same parametric values p = 2,ε = 3,μ = 1,and v = 0.2with various 

initial conditions. Chaotic orbit is presented by blue curve at an initial condition (U,Z) = (0,0.2). Three different types of quasiperiodic 
orbits are presented at three different initial conditions with curves of various colours: (U, Z) = (0, 0.8)(red curve), (U, Z) = (0,
1.2)(green curve), and (U,Z) = (0,1.8)(magenta curve). In Fig. 9 (b), corresponding time series plots of the PDS (28) are presented for 
same situations as Fig. 9 (a). This confirms the existence of multistability behavior of nonlinear waves of the GKdV Eq. (2) in 
appearance of superficial forcing. 

7. Conclusion 

In this work, Petrov-Galerkin method are presented to numerically solve the GKdV equation. The obtained numerical results proved 
that our error norms reasonably small or too close to the results in literature and the conservation properties remain almost constant 

Fig. 8. Superperiodic wave solution of Eq. (2) for: (a) p = 2,ε = 3,μ = 1,v = 0.2(brown curve), v = 0.3(red curve), and (b) p = 2,μ = 1,v = 0.2,ϵ 
= 3(brown curve), ϵ = 5(red curve). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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during the computer run. Moreover, the views of the solitary wave are alike to those of references. Numerical algorithms indicated that 
our scheme is unconditionally stable. Supernonlinear traveling wave solution of the GKdV equation has been perceived employing 
variation of Uand phase plots. It has been found that the GKdV equation supports superperiodic traveling wave solution. The obtained 
superperiodic traveling wave solution has been affected significantly by velocity and nonlinear parameters. Furthermore, considering 
external periodic forcing multistability of traveling wave solution of the perturbed GKdV equation has been presented. It has been 
discovered that the GKdV equation with superficial forcing supports coexisting chaotic and various quasiperiodic features with same 
parametric values at different initial conditions. 
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