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In this article, a mathematical model representing solution of the nonlinear generalized 
equal width (GEW) equation has been considered. Here we aim to investigate solutions 
of GEW equation using a numerical scheme by using sextic B-spline Subdomain finite 
element method. At first Galerkin finite element method is proposed and a priori bound 
has been established. Then a semi-discrete and a Crank-Nicolson Galerkin finite element 
approximation have been studied respectively. In addition to that a powerful Fourier series 
analysis has been performed and indicated that our method is unconditionally stable. 
Finally, proficiency and practicality of the method have been demonstrated by illustrating it 
on two important problems of the GEW equation including propagation of single solitons 
and collision of double solitary waves. The performance of the numerical algorithm has 
been demonstrated for the motion of single soliton by computing L∞ and L2 norms and 
for the other problem computing three invariant quantities I1, I2 and I3. The presented 
numerical algorithm has been compared with other established schemes and it is observed 
that the presented scheme is shown to be effectual and valid.

© 2021 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear evolution equations (NLEEs) are a specific class of partial differential equations that have been investigated by 
many scientists for long to understand better about various real life problems. Especially, traveling wave solutions of such 
problems play a very important role in the study of PDE models arising from various natural phenomena, mathematical–
physical sciences and engineering fields. For example, the wave phenomena appeared in fluid dynamics, solid state physics, 
optical fibers, nuclear physics, quantum mechanics, plasma physics, acoustic-gravity waves in compressible fluids, biology, 
nonlinear optics, chemical kinematics, chemical physics, etc [13]. Most known models of such real life phenomenon involv-
ing traveling waves are for instance the nonlinear Korteweg-de Vries (KdV) equation, regularized long wave (RLW) equation 
and equal width (EW) equation and so on. A wide range of such equations has been analyzed and several important com-
putational algorithms have been proposed and developed to examine these types of models.

In this study, we aim to work on such an important nonlinear wave equation, the generalized equal width equation, of 
the form

Ut + εU p Ux − μUxxt = 0, (1)
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where U (x, t) is the wave amplitude of the water surface or a alike physical cardinality, p ∈Z+ , ε > 0 and μ > 0 are param-
eters. Physical boundary conditions have need for U → 0 as |x| → ∞. Here the following reasonable physically meaningful 
restrictions have been imposed for (1)

U (a, t) = 0, U (b, t) = 0,

Ux(a, t) = 0, Ux(b, t) = 0,

Uxx(a, t) = 0, Uxx(b, t) = 0, t > 0,

(2)

U (x,0) = f (x), a ≤ x ≤ b. (3)

It is to note that U represents the negative of electrostatic potential in plasma treatments. So the solitary wave solution 
of (1) serves to better perceive the various physical phenomena with weak nonlinearity. It also includes dispersion waves for 
instance nonlinear transverse waves in shallow water, ion-acoustic and magneto-hydrodynamic waves in plasma and phonon 
packets in nonlinear crystals [26]. The PDE we study here is based on the EW equation and depends on both the generalized 
regularized long wave (GRLW) equation [28,29] and the generalized Korteweg-de Vries (GKdV) equation [16]. Studying GEW 
equation rigorously one may have the capability of analyzing the invention of secondary solitary waves and/or radiation to 
obtain insight into the corresponding procedures of particle physics [10,30]. The equation has many applications in physics 
and engineering [32]. For example, Eq. (1) represents the EW equation for p = 1 which is an important model representing 
non-linear dispersive waves since it defines a large number of important physical phenomena [9,11,15,17,37,41]. Whereas, 
p = 2 in (1) corresponds to the modified equal width (MEW) equation [5,7,12,18,19,21,25].

There are limited number of articles on the GEW equation available. Hamdi et al. [20] derived exact solitary wave 
solutions of the GEW equation. Whereas Evans and Raslan [14] studied the GEW equation by using the collocation method 
with quadratic B-spline at the midpoints. Also in another study, Raslan [34] studied GEW equation using cubic B-spline 
collocation scheme. Taghizadeh et al. [39] applied an extended homogeneous balance method to generate traveling wave 
solutions of the GEW equation. The GEW equation had been solved numerically by a meshless scheme based on a standard 
types of radial basis functions (RBFs) in [32] and a global collocation. Karakoc and Zeybek [26,42] implemented the lumped 
Galerkin cubic B-splines and a quintic B-spline collocation method with two types of linearization techniques. Petrov–
Galerkin method for the problem targeted in this study is developed using a linear hat function as the test function and a 
quadratic B-spline as the trial function by Roshan [36].

To the best of our knowledge Subdomain finite element approach based on sextic B-splines to the GEW equation has not 
been applied before. Thus, in this article, we aim to develop a Subdomain finite element algorithm for the GEW equation 
using sextic B-splines. The rest of the article is arranged as follows:

- In Section 2, we discuss a Galerkin finite element scheme, semi-discrete Galerkin and Crank Nicolson Galerkin schemes 
for (1).

- Stability of the proposed scheme for (1) has been well studied in Section 3.
- Section 4 contains numerical experiments of traveling single solitary wave and interaction of two solitary waves with 

different types of initial and boundary conditions.
- We finish this study with some comments and conclusions in Section 5.

2. Galerkin finite element method

Similar to [6,23] we recall the initial boundary value problem (1) as

ut − μuxxt = Fx(u), (4)

where F(u) = − ε
p+1 up+1, depends on the initial and boundary conditions

u(x,0) = f1(x), a ≤ x ≤ b, (5)

u(a, t) = 0, u(b, t) = 0, t > 0. (6)

Here we discuss some basic properties of solutions of (4) and review some basic theoretical bounds from [6]. We start here 
by discussing weak form of the solutions of (4) to that end. Denote � = (a, b), let Hk(�), k ≥ 0 be a normed space over �
and

Hk
0(�) =

{
v ∈ Hk(�) : Di v = 0 on ∂�, i = 0, 1, · · · , k − 1

}
(7)

where D = ∂
∂x . Here ‖ · ‖k is considered as Hk(�) norm. The norm L∞ is denoted by ‖ · ‖∞ and ‖ · ‖0 = ‖ · ‖ symbolizes L2

norm with (·, ·) symbolizes L2 inner product. Taking L2-inner product of (4) by ξ in H1
0(�), and an application of simple 

calculus yields

(ut, ξ) + μ(Dut, Dξ) = (DF(u), ξ).
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Our purpose here is to obtain u(·, t) ∈ H1
0(�) so that

(ut, ξ) + μ(Dut, Dξ) = (DF(u), ξ) , ∀ ξ ∈ H1
0(�), (8)

with u(0) = u0. The existence and uniqueness of solutions of the weak form (8) has been well studied in [6,23,40].

Lemma 1. If u is a weak solution of the inner product integrals (8) then

‖u(t)‖∞ ≤ C‖u0‖1, where C is a constant. (9)

Proof. Substituting ξ = u in (8) yields

1

2

( d

dt
‖u‖2 + μ

d

dt
‖Du‖2

)
=

∫
�

uDF(u)dx. (10)

Noting that

uDF(u) = D[uF(u)] − Dψ(u), for u ∈ H1
0(�),

where ψ ′(u) =F(u). Also∫
�

uDF(u)dx =
∫
�

D[uF(u)]dx = 0, (11)

as u = 0 on the boundary of the spatial domain � and ψ(0) = 0. It follows from (10) and (11) that

d

dt
‖u‖2 + μ

d

dt
‖Du‖2 = 0, (12)

integrating (12) with respect to t , we obtain

‖u(t)‖2 + μ‖Du(t)‖2 = ‖u(0)‖2 + μ‖Du(0)‖2.

By assumption μ is a positive constant, we have

‖u(t)‖2
1 ≤ C‖u0‖2

1.

Thus applying Sobolev imbedding theorem one gets

‖u(t)‖∞ ≤ C‖u0‖1.

The proof is completed. �
2.1. Semidiscrete Galerkin approximations

Suppose u(t) ∈ H1
0(�) ∩ Hr+1(�), r ≥ 1 for all t ∈ [0, T ], h = b−a

J be the spatial step size and xi = ih, 0 ≤ i ≤ J , J is a 
given positive integer, be a regular mesh over [a, b]. Here Sh is considered to be a finite dimensional subspace of H1

0(�)

such that [8,40]

inf
ξ∈Sh

{‖v − ξ‖ + h‖D(v − ξ)‖} ≤ Chk+1‖v‖k+1, (13)

for all k ∈Z+ with 1 ≤ k ≤ r and v ∈ Hk+1(�) where C is a positive constant independent of h. For example

Sh =
{

vh ∈ C0(�), vh/[xi ,xi+1] ∈ Pk, 0 ≤ i ≤ J − 1, vh(a) = vh(b) = 0
}

,

where Pk denotes the set of polynomials of degree ≤ k [1].
Replacing u in (8) by uh : [0, T ] → Sh and integrating one gets

(uht, ξ) + μ(Duht, Dξ) = − (F(uh), Dξ) , ∀ ξ ∈ Sh, (14)

where uh(0) = u0h ∈ Sh is an appropriate approximation to u0. Then we have the following a priori bound which follows 
from Lemma 1.
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Lemma 2. If uh is a solution of (14) then

‖uh(t)‖∞ ≤ C‖u0h‖1, (15)

holds for some constant C > 0.

Next, we aim to estimate the error in the semi-discrete scheme (14). From now one the solution u(x, t) of (1)–(3) and 
u0 are sufficiently smooth. To facilitate the analysis an auxiliary projection Ph : H1

0(�) → Sh has been defined as follows:

for v ∈ H1
0(�), (D(Ph v − v), Dχ) = 0, ∀χ ∈ Sh. (16)

Then (cf., for example, [3,4,6,8,24,40]) Ph satisfies the approximation properties:

Lemma 3. If u(x, t) ∈ C1(0, T , Hk+1(�)) is the solution of (1)–(3) with 1 ≤ k ≤ r, then

‖u(t) − Phu(t)‖1 + ‖ut(t) − Phut(t)‖1 ≤ Chk, (17)

where C is a constant independent of h.

For the proof of the statement, see [40] Lemma 1 page 6.
Now using the elliptic projection Phu, we split the error e = uh − u as

e = uh − u = (uh − Phu) + (Phu − u) = θ + ρ.

Then the following bound for e holds.

Theorem 1. Let uh be the solution of (14) and u be the solution of (1)–(3), u be sufficiently smooth, and the initial data satisfies 
Phu0 = u0h. Then there exists a constant C independent of h such that

‖u − uh‖∞ ≤ Chk.

Proof. Recall the error uh − u = θ + ρ , which has two parts. The estimates of the second part ρ are known from Lemma 3, 
and thus to find the bound for ‖uh − u‖∞ , it is sufficient to estimate bound for θ . To that end subtracting (8) from (14) and 
using auxiliary projection, we obtain the following relation in θ

(θt, ξ) + μ(Dθt , Dξ) = (F(u) −F(uh), Dξ) + μ(D(ut − Phut), Dξ) + (ut − Phut, ξ) .

Now replacing ξ by θ in the above relation it yields

(θt, θ) + μ(Dθt, Dθ) = (F(u) −F(uh), Dθ) + μ(D(ut − Phut), Dθ) + (ut − Phut, θ)

≤ ‖F(u) −F(uh)‖‖Dθ‖ + μ‖Dρt‖‖Dθ‖ + ‖ρt‖‖θ‖.
Applying Lipschitz condition on F and then (17) it follows that

‖F(u) −F(uh)‖ ≤ C(‖ρ‖ + ‖θ‖).
Therefore,

d

dt
‖θ‖2

1 ≤ C(‖θ‖2
1 + ‖ρ‖2

1 + ‖ρt‖2
1).

Integrating with respect to time from 0 to t , we obtain

‖θ(t)‖2
1 ≤ ‖θ(0)‖2

1 + C

t∫
0

(
‖ρ(s)‖2

1 + ‖ρt(s)‖2
1

)
dt, applying Gronwall’s inequality,

since by assumption we assumed that Phu0 = u0h i.e. θ(0) = Phu0 − u0h = 0. It follows from Lemma 3 that

‖θ(t)‖1 ≤ Chk.

An application of Sobolev imbedding Theorem yields

‖θ(t)‖∞ ≤ Chk.

Using Lemma 3 along with triangle inequality, we complete the rest of the proof. �
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2.2. Crank Nicolson Galerkin scheme (CNGS)

Here we focus on to analyze a fully discrete scheme for the GEW equation. For spatial integration we use standard 
Galerkin method and for the time integration the Crank–Nicolson scheme has been used. In fact we motivate ourselves to 
get solution of the semi-discrete problem (14) in [0, T ], T > 0. Let N be a positive full number and 
t = T

N in order that 
tn = n
t , n = 0, 1, · · · , N . Now we take into consideration that [43]

φn = φ(tn), φn−1/2 = φn + φn−1

2
, ∂tφ

n = φn − φn−1


t
.

We write a time discretized Galerkin algorithm using above notations with(
∂t Un, ξ

) + μ
(

D∂t Un, Dξ
) = −

(
F(Un−1/2), Dξ

)
, ∀ξ ∈ Sh, (18)

with U 0 = u0h , where u0h ∈ Sh is an appropriate approximation of u0. To derive accuracy results for the CNGS (18), the 
following a priori bound is useful.

Lemma 4. Let Un be the solution of (18), then ∃ a constant C that does not dependent of h and k such that ‖Un‖∞ ≤ C‖U 0‖1 holds.

Proof. Substituting ξ = Un−1/2 in (18), one obtains

1

2
∂t‖Un‖2 + μ

1

2
∂t‖DUn‖2 = −

(
F(Un−1/2), DUn−1/2

)
= 0.

So

‖Un‖2 + μ‖DUn‖2 = ‖Un−1‖2 + μ‖DUn−1‖2 = · · · = ‖U 0‖2 + μ‖DU 0‖2.

Therefore,

‖Un‖2
1 ≤ C‖U 0‖2

1,

where C is a constant. From the Sobolev imbedding theorem

‖Un‖2∞ ≤ C‖Un‖2
1 ≤ C‖U 0‖2

1,

we obtain the desired estimate. �
It is our motto now to estimate the error in CNGS, thus, we use the error decomposition with un = u(tn)

Un − un = (Un − Phun) + (Phun − un) = θn + ρn.

Theorem 2. Let Un be the solution of (18) and u be that of (1)–(3). There exists a constant C independent of h and 
t such that

‖Un − un‖∞ ≤ C(hk + (
t)2),

where h, 
t sufficiently small, if Phu0 = u0h holds and u is considered to be sufficiently smooth.

Proof. As of the semi-discrete case the estimate of ρn follows from Lemma 3, thus estimation for θn is only required now 
to proof the result. Using the (8), (16) and (18) we have the following relation for θn

(∂tθ
n, ξ) + μ(D∂tθ

n, Dξ) = (
F(un−1/2) −F(Un−1/2), Dξ

) − (∂tρ
n, ξ)

+(wn, ξ) + μ(D wn, Dξ) − μ(D∂tρ
n, Dξ),

(19)

where wn = ut(tn−1/2) − ∂t un . Using Taylor’s formula, we have

‖wn‖1 ≤ C(
t)3

tn∫
tn−1

‖uttt(s)‖2
1ds. (20)

Now applying Lipschitz condition on F and the limitedness of ‖Un‖∞ and ‖un‖∞ , it is easy to see that

‖F(un−1/2) −F(Un−1/2)‖ ≤ C(‖ρn−1/2‖ + ‖θn−1/2‖). (21)

Choosing ξ = θn−1/2 in (19) and using (20) and (21), we obtain
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‖∂tθ
n‖2

1 ≤ C
[
‖θn−1/2‖1‖Dθn−1/2‖ + ‖ρn−1/2‖1‖Dθn−1/2‖ + ‖∂tρ

n‖‖θn−1/2‖
+‖D∂tρ

n‖‖Dθn−1/2‖ + ‖wn‖‖θn−1/2‖ + ‖D wn‖‖Dθn−1/2‖
]
.

(22)

This implies that

‖∂tθ
n‖2

1 ≤ C
(
‖θn‖2

1 + ‖θn−1‖2
1

)
+ C Rn,

where

Rn = ‖ρn‖2
1 + ‖ρn−1‖2

1 + ‖∂tρ
n‖2

1 + ‖wn‖2
1.

Therefore,

(1 − C
t)‖θn‖2
1 ≤ (1 + C
t)‖θn−1‖2

1 + C
t Rn.

Choosing 
t sufficiently small so that (1 − C
t) > 0, we obtain

‖θn‖2
1 ≤

(1 + C
t

1 − C
t

)
‖θn−1‖2

1 +
( C
t

1 − C
t

)
Rn.

After repeated application, we obtain

‖θn‖2
1 ≤

(1 + C
t

1 − C
t

)n‖θ0‖2
1 + C
t

n∑
j=1

(1 + C
t

1 − C
t

)n− j
R j ≤ C‖θ0‖2

1 + C
t
n∑

j=1

R j.

From Lemma 3, we have

‖θn‖1 ≤ C(hk + (
t)2).

An application of the Sobolev Imbedding theorem yields

‖θn‖∞ ≤ C(hk + (
t)2).

Using the triangle inequality with estimates of ρn , we complete the rest of the proof. �
3. Sextic B-splines and analysis of the Subdomain method

In this part of our study, we aim to approximate the nonlinear GEW Eq. (4)–(5) using following over-specified boundary 
conditions

u(a, t) = 0, u(b, t) = 0,
∂u
∂x (a, t) = 0, ∂u

∂x (b, t) = 0,

∂2u
∂x2 (a, t) = 0, ∂2u

∂x2 (b, t) = 0, t > 0.

(23)

To approximate solutions over the interval [a, b] partition a = x0 < x1 < ... < xN = b of the space sub-interval is consid-
ered distributed uniformly with step size h = b−a

N , m = 0, 1, 2, · · · , N . Here φm(x) are sextic B-splines at the knot points xm . 
We follow Prenter [33] to define sextic B-splines φm(x), (m = −3, −2, −1, ..., N, N + 1, N + 2) at the points xm

φm(x) = 1
h6

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − xm−3)
6, x ∈ [xm−3, xm−2],

(x − xm−3)
6 − 7(x − xm−2)

6, x ∈ [xm−2, xm−1],
(x − xm−3)

6 − 7(x − xm−2)
6 + 21(x − xm−1)

6, x ∈ [xm−1, xm],
(x − xm−3)

6 − 7(x − xm−2)
6 + 21(x − xm−1)

6 − 35(x − xm)6, x ∈ [xm, xm+1],
(x − xm+4)

6 − 7(x − xm+3)
6 + 21(x − xm+2)

6, x ∈ [xm+1, xm+2],
(x − xm+4)

6 − 7(x − xm+3)
6, x ∈ [xm+2, xm+3],

(x − xm+4)
6, x ∈ [xm+3, xm+4],

0 , otherwise.

(24)

Using the basis functions defined above, U N (x, t) is defined by

U N(x, t) =
N+2∑

φ j(x)δ j(t), (25)

j=−3
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where the parameters δ j(t) are employed using boundary and weighted residual conditions. Um , U ′
m , U ′′

m and U ′′′
m at the 

knots xm can be calculated from (25) and sextic B-splines (24) in the following form

Um = U (xm) = δm−3 + 57δm−2 + 302δm−1 + 302δm + 57δm+1 + δm+2,

U ′
m = U ′(xm) = 6

h (−δm−3 − 25δm−2 − 40δm−1 + 40δm + 25δm+1 + δm+2),

U ′′
m = U ′′(xm) = 30

h2 (δm−3 + 9δm−2 − 10δm−1 − 10δm + 9δm+1 + δm+2),

U ′′′
m = U ′′′(xm) = 120

h3 (−δm−3 − δm−2 + 8δm−1 − 8δm + δm+1 + δm+2).

(26)

Using the equality

hη = x − xm, 0 ≤ η ≤ 1, (27)

the finite interval [xm, xm+1] is transformed into more easily practicable interval [0, 1]. In this case, the sextic B-splines 
(24) in variable η over [0, 1] can be written as [22]:

φe =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φm−3 = 1 − 6η + 15η2 − 20η3 + 15η4 − 6η5 + η6,

φm−2 = 57 − 150η + 135η2 − 20η3 − 45η4 + 30η5 − 6η6,

φm−1 = 302 − 240η − 150η2 + 160η3 + 30η4 − 60η5 + 15η6,

φm = 302 + 240η − 150η2 − 160η3 + 30η4 + 60η5 − 20η6,

φm+1 = 57 + 150η + 135η2 + 20η3 − 45η4 − 30η5 + 156η6,

φm+2 = 1 + 6η + 15η2 + 20η3 + 15η4 + 6η5 − 6η6,

φm+3 = η6.

(28)

Sextic B-splines apart from φm−3(x), φm−2(x), φm−1(x), φm(x), φm+1(x), φm+2(x) and φm+3(x) are zero over the domain 
[0, 1]. Therefore approximation (25) over the element parameters δm−3, δm−2, δm−1, δm, δm+1, δm+2, δm+3 is written as

U N(η, t) =
m+3∑

j=m−3

δ j(t)φ j(η) (29)

where φm−3(x), φm−2(x), φm−1(x), φm(x), φm+1(x), φm+2(x) and φm+3(x) act as element shape functions [2].
Finite element methods belong to the class of weighted residual methods [31]. It is a scheme to approximate solutions 

of various types of most classes of differential equations. By the way, subdomain method is one of the standard methods. 
In the subdomain method, one divides a physical domain into a number of non-overlapping subdomains [38]. Number of 
subdomain n is considered same as the number of unknown coefficients in the approximating function. For example, for 
one-dimensional problems,

Wm(x) =
{

1, x ∈ [xm, xm+1],
0, otherwise,

m = 1,2, · · · ,n . (30)

In weighted residual method, one may write

b∫
a

Wm R(x)dx =
xm+1∫
xm

R(x)dx = 0. (31)

This property guarantees that the average of the residual over all the sub-domains [xm, xm+1] is forced to be zero [38]. 
Applying subdomain finite element method (SFEM) to (1) with weight function (30), it is easy to obtain the integral form 
of (1) as

xm+1∫
xm

1 · (Ut + εU p Ux − μUxxt)dx = 0. (32)

Implementing the transformation (27) in (32) and integrating (32) term by term and using some manipulation by parts, 
brings along [37]

h

7
(δ̇m−3 + 120δ̇m−2 + 1191δ̇m−1 + 2416δ̇m + 1191δ̇m+1 + 120δ̇m+1 + δ̇m+3) (33)

+Zm(−δm−3 − 56δm−2 − 245δm−1 + 245δm+1 + 56δm+2 + δm+3)

−4μ
(−δ̇m−3 − 25δ̇m−2 − 40δ̇m−1 + 40δ̇m + 25δ̇m+1 + δ̇m+2) = 0,
h
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where δ̇ = dδ
dt and

Zm = ε(δm−3 + 57δm−2 + 302δm−1 + 302δm + 57δm+1 + δm+2)
p . (34)

Changing δ̇ by δ̇ = δn+1−δn


t and the parameter δ by δ = 1
2 (δn + δn+1), the system (33) turns into the

ωm1δ
n+1
m−3 + ωm2δ

n+1
m−2 + ωm3δ

n+1
m−1 + ωm4δ

n+1
m + ωm5δ

n+1
m+1 + ωm6δ

n+1
m+2 + ωm7δ

n+1
m+3 (35)

= ωm7δ
n+1
m−3 + ωm6δ

n+1
m−2 + ωm5δ

n+1
m−1 + ωm4δ

n+1
m + ωm3δ

n+1
m+1 + ωm2δ

n+1
m+2 + ωm1δ

n+1
m+3

where

ωm1 = 1 − E Zm − M, ωm2 = 120 − 56E Zm − 24M,

ωm3 = 1191 − 245E Zm − 15M, ωm4 = 2416 + 80M,

ωm5 = 1191 + 245E Zm − 15M, ωm6 = 120 + 56E Zm − 24M,

ωm7 = 1 + E Zm − M, E = 7
t
2h , M = 42μ

h2 , m = 0,1, · · · , N − 1.

(36)

Here (35) is a system of N linear equations with (N + 6) unknown parameters (δ−3, δ−2, ..., δN+1, δN+2). Six additional 
limitations are required to find δi ’s uniquely. Imposing BCs (2) to the system (35), we may remove δ−3, δ−2, δ−1, δN , δN+1

and δN+2 from the system (35) which then becomes a system with N unknowns

Mdn+1 = Ndn

where

d = (δ0, δ1, ..., δN−1).

A lumped form of Zm is computed as 
(

Um+Um+1
2

)p
and

Zm = ε

2p
(δm−3 + 58δm−2 + 359δm−1 + 604δm + 359δm+1 + 58δm+2 + δm+3)

p . (37)

The resulting system can be solved by using a modified form of Thomas algorithm [35] and in this procedure an inner 
iteration is also employed at each time step to reduce the non-linearity. Consequently, we derive the following two levels n
and n + 1 relationship relating δn+1

m and δn
m:

�1δ
n+1
m−3 + �2δ

n+1
m−2 + �3δ

n+1
m−1 + �4δ

n+1
m + �5δ

n+1
m+1 + �6δ

n+1
m+2 + �7δ

n+1
m+3 (38)

= �7δ
n
m−3 + �6δ

n
m−2 + �5δ

n
m−1 + �4δ

n
m + �3δ

n
m+1 + �2δ

n
m+2 + �1δ

n
m+3

where

�1 = α − β − λ, �2 = 120α − 56β − 24λ, �3 = 1191α − 245β − 15λ,

�4 = 2416α + 80β, �5 = 1191α + 245β − 15λ, �6 = 120α + 56β − 24λ,

�7 = α + β − λ

and

α = 1, β = E Zm, λ = M, m = 0,1, ..., N − 1. (39)

In order to solve the system (38), one necessarily need to evaluate the initial values δ0 by using U (x, 0) = f (x) and

U N(xm,0) = U (xm,0), U
′
N(a,0) = U

′
N(b,0) = 0,

U
′′
N(a,0) = U

′′
N(b,0) = 0, U

′′′
N (a,0) = U

′′′
N (b,0) = 0,

and a simplification yields a following N × N system for δ0
m:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

384 312 24
2681

9 358 568
9 1

512
9 303 2719

9 57 1

1 57 302 302 57 1

1 57 2719
9 303 512

9

1 568
9 358 2681

9
24 312 384

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ0
0

δ0
1

δ0
2
.

.

δ0
N−3

δ0
N−2

δ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

U (x0,0)

U (x1,0)

U (x2,0)

.

U (xN−3,0)

U (xN−2,0)

U (xN−1,0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

N−1
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3.1. Stability analysis

Here we motivate ourself to study stability of the scheme briefly. To that end, it is suitable to use the Fourier method 
based on the Von-Neumann theory where the growth factor of Fourier mode is defined as

δn
j = gnei jkh (40)

where k = mode number and h = element size and i = √−1. It is to note that Fourier method can not be applied to 
the nonlinearity U p Ux . And thus we linearize by presuming U p a local constant such as Zm [27]. If the equality (40) is 
substituted into (38) and use of some simplifications yields

g = A − iB

A + iB
, (41)

where

A = 1208 + 40λ + (1191 − 15λ) cos(kh) + (120 − 24λ) cos(2kh) + (1 − λ) cos(3kh),

B = 245β sin(kh) + 56β sin(2kh) + β sin(3kh).
(42)

Here it is evident that |g| = 1, and thus by the von Neumann necessary criterion it guarantees that the linearized scheme 
is neutrally stable.

4. Computational experiments

In this section we illustrate numerical scheme described in previous sections by calculating propagation of single solitary 
waves and the interaction of solitons for the GEW equation. For this purpose we consider homogenous boundary conditions 
only. We measure error in such an approximation by

L2 = ∥∥U exact − U N
∥∥

2 �

√√√√√h
N∑

j=0

∣∣∣U exact
j − (U N) j

∣∣∣2
,

and

L∞ = ∥∥U exact − U N
∥∥∞ � max

j

∣∣∣U exact
j − (U N) j

∣∣∣ .
The exact solution of GRLW IBVP is given by [32,42]

U(x, t) = p

√
c(p + 1)(p + 2)

2ε
sec h2[ p

2
√

μ
(x − ct − x0)]

and that has a solitary wave of amplitude p
√

c(p+1)(p+2)
2ε , wave speed c, width p

2
√

μ
and it is initially centered at x0. The 

conservation properties of the GEW equation mean conservation of mass, momentum and energy. These there properties 
are guaranteed by computing following three invariants [14,26,34]

I1 =
∞∫

−∞
U (x, t)dx, I2 =

∞∫
−∞

[U 2(x, t) + μU 2
x (x, t)]dx, I3 =

∞∫
−∞

U p+2(x, t)dx. (43)

After computing solitary wave motion, we observe I1, I2 and I3 values to verify the accuracy of the proposed computational 
numerical algorithm.

4.1. Dispersion of a single solitary wave

In order to exemplify the validity of our numerical algorithm, we conceive the first case of a single soliton solution for 
the parameters p = 2, h = 0.1, c = 0.5, 
t = 0.2, ε = 3, μ = 1, x0 = 30 over the region [0, 80] to compare with that of 
earlier works [26,36,42]. These parameters generate the amplitude 1.0 and the simulations are performed to time t = 20. 
Note that I1 = 3.1415927, I2 = 2.6666667 and I3 = 1.3333333 are considered as exact values of the invariants [26,36,42]. 
We report the values of the error norms and invariants for different time levels in Table 1. The table predicates that the 
three conserved quantities remain nearly stable as the time progress and the changes of the quantities are also in good 
agreement with their analytic values. A comparison with analytic solution as well as the approximated values in [26,36,42]
has been done and presented in Table 2 for t = 20. It is observed that although our error norms are greater than that given 
in [36], our error norms are less than or almost same with [26,42]. Fig. 1 illustrates the approximate solutions at different 
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Table 1
Numerical values of invariants and error norms for p = 2.

Time I1 I2 I3 L2 L∞
0 3.1415863 2.6666616 1.3333283 0.00000000 0.00000000
5 3.1415875 2.6666629 1.3333292 0.00518887 0.00334528
10 3.1415875 2.6666627 1.3333290 0.01020620 0.00638295
15 3.1415873 2.6666624 1.3333287 0.01517519 0.00942302
20 3.1415870 2.6666621 1.3333284 0.02014034 0.01246335

Table 2
Comparison of invariants and error norms for p = 2, at t = 20.

Method I1 I2 I3 L2 L∞
Analytic 3.1415961 2.6666667 1.3333333 0.00000000 0.00000000
Our Method 3.1415870 2.6666621 1.3333284 0.02014034 0.01246335
Cubic Galerkin [26] 3.1589605 2.6902580 1.3570299 0.03803037 0.02629007
Quintic Collocation First Scheme [42] 3.1250343 2.6445829 1.3113394 0.05132106 0.03416753
Quintic Collocation Second Scheme [42] 3.1416722 2.6669051 1.3335718 0.01675092 0.01026391
Petrov-Galerkin [36] 3.14159 2.66673 1.33341 0.0123326 0.0086082

Fig. 1. Single solitary wave profiles at t = 0, 10, 20 for p = 2. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Fig. 2. Error graph corresponding to the parameters of Table 1 at t = 20.

t values. One may notice from illustrations that the studied scheme performs the motion of propagation of a solitary wave 
preserves amplitude and shape [27]. To demonstrate the approximation errors we plot computational error at time t = 20
in Fig. 2.

Then we start to illustrate the scheme considering p = 3, h = 0.1, c = 0.3, 
t = 0.2, μ = 1, ε = 3, x0 = 30 over the 
spatial domain [0, 80]. For these set of parameters the amplitude u = 1.0 at time t = 20. Invariant quantities and error 
norms are illustrated in Table 3. It is to notice from Table 3 that the computational errors for the proposed scheme are 
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Table 3
Numerical values of invariants and error norms for p = 3.

Time I1 I2 I3 L2 L∞
0 2.8043580 2.4639101 0.9855618 0.00000000 0.00000000
5 2.8043574 2.4639093 0.9855610 0.00373796 0.00248800
10 2.8043572 2.4639089 0.9855606 0.00749284 0.00498955
15 2.8043569 2.4639086 0.9855603 0.01126141 0.00749175
20 2.8043567 2.4639082 0.9855599 0.01503316 0.00999356

Table 4
Comparison of invariants and error norms for p = 3, at t = 20.

Method I1 I2 I3 L2 L∞
Our Method 2.8043567 2.4639082 0.9855599 0.01503316 0.00999356
Cubic Galerkin [26] 2.8187398 2.4852249 1.0070200 0.01655637 0.01370453
Quintic Collocation First Scheme [42] 2.8043570 2.4639086 0.9855602 0.00801470 0.00538237
Quintic Collocation Second Scheme [42] 2.8042943 2.4637495 0.9854011 0.00708553 0.00480470
Petrov-Galerkin [36] 2.80436 2.46389 0.98556 0.00484271 0.00370926

Fig. 3. Single solitary wave profiles at t = 0,10,20 for p = 3.

Fig. 4. Error graph corresponding to the parameters of Table 3 at t = 20.

adequately small and our invariance tests confirm them almost to be constants as time increases. In Table 4 we compare 
the invariants and error norms computed by the present method with those of [26,36,42] at t = 20. It is observed that 
outcomes presented by us here are better than that of [26] and are compatible at the same with the others. Fig. 3 shows 
the motion of solitary wave at t = 0, t = 10, t = 20. It is observed from the graphics that the solutions generated by the 
presented method preserve the properties (amplitude and shape). Numerical error distribution is depicted at time t = 20 in 
Fig. 4. The error deviates from −10−2 to 10−2 and the maximum of it occurs around the central position of solitary wave.
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Table 5
Numerical values of invariants and error norms for p = 4.

Time I1 I2 I3 L2 L∞
0 2.6220516 2.3561915 0.7853952 0.00000000 0.00000000
5 2.6220468 2.3561845 0.7853880 0.00352271 0.00250308
10 2.6220458 2.3561835 0.7853870 0.00707776 0.00502744
15 2.6220458 2.3561835 0.7853870 0.01066843 0.00755428
20 2.6220458 2.3561835 0.7853869 0.01427724 0.00908006

Table 6
Comparison of invariants and error norms for p = 4, at t = 20.

Method I1 I2 I3 L2 L∞
Our Method 2.6220458 2.3561835 0.7853869 0.01427724 0.00908006
Cubic Galerkin [26] 2.6327833 2.3730032 0.8023383 0.00890617 0.00821991
Quintic Collocation First Scheme [42] 2.6220508 2.3561901 0.7853939 0.00421697 0.00297952
Quintic Collocation First Scheme [42] 2.6219284 2.3559327 0.7851364 0.00339086 0.00247031
Petrov-Galerkin [36] 2.62206 2.35615 0.78534 0.00230499 0.00188285

Fig. 5. Single solitary wave profiles at t = 0,10,20 for p = 4.

As a final illustration we set p = 4, h = 0.1, c = 0.2, 
t = 0.2, μ = 1, ε = 3, x0 = 30 and x ∈ [0, 80] to compare with that 
of [26,36,42]. These set of parameters generate the amplitude u = 1.0 at time t = 20. The computed results are presented in 
Table 5. The table shows that values of the error norms are sufficiently small and invariants quantities are computationally 
constant as t > 0 progresses. Hence method presented here is acceptably conservative. The comparison between the results 
obtained by us with those of [26,36,42] is also exhibited in Table 6. It is noticed from the Table 6 that although error norm 
L2 is higher but our error norm L∞ is comparable to others. The behaviors of solutions for c = 0.2, h = 0.1, p = 4, 
t = 0.2
at times t = 0, t = 10 and t = 20 are shown in Fig. 5. One may observe that the solitary wave moves to the right at a 
constant velocity and remains its shape and amplitude. Error at time t = 20 has been presented in Fig. 6. It is evident that 
the maximum errors lie between −10−2 to 10−2 and max errors remain around the central position of the solitary wave.

4.2. Interaction of two solitary waves

Now we move onto studying two solitary waves this test problem. Here we focus on to study interaction of two solitary 
waves considering

U (x,0) =
2∑

j=1

p

√
c j(p + 1)(p + 2)

2ε
sech2[ p

2
√

μ
(x − x j)], (44)

where c1, c2, x1, and x2 are arbitrary constants. U (x, 0) defined by (44) guarantees two solitary waves at the same direction 
and have different amplitudes. In our numerical experiment, we choose three sets of parameters by varying p, ci and keep 
h = 0.1, ε = 3, 
t = 0.025, μ = 1 same and consider 0 ≤ x ≤ 80.

Fixing c1 = 0.5, c2 = 0.125 and p = 2 we illustrate I1, I2 and I3 at t = 0 to t = 60 in Table 7. It is clear that the computed 
values of I1, I2 and I3 are nearly constant during all the computations and compatible with those in [26,36,42]. A graphical 
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Fig. 6. Error graph corresponding to the parameters of Table 5 at t = 20.

Table 7
Numerical values of invariants for collision of two solitary waves with p = 2.

t 0 20 40 60

Our Method 4.20653 4.20654 4.20654 4.20654
I1 [26] 4.20653 4.20653 4.20616 4.20490

[42] First 4.20653 4.20653 4.20653 4.20653
[42] Second 4.20653 4.20653 4.20653 4.20653
[36] 4.20655 4.20655 4.20655 4.20655
Our Method 3.07989 3.07989 3.07990 3.07990

I2 [26] 3.07987 3.07991 3.07947 3.07777
[42] First 3.07988 3.07988 3.07988 3.07988
[42] Second 3.07988 3.07988 3.07988 3.07988
[36] 3.07977 3.07980 3.07987 3.07974
Our Method 1.01636 1.01637 1.01637 1.01638

I3 [26] 1.01636 1.01638 1.01654 1.01616
[42] First 1.01636 1.01636 1.01636 1.01636
[42] Second 1.01636 1.01636 1.01636 1.01636
[36] 1.01634 1.01634 1.01634 1.01633

Table 8
Numerical values of invariants for collision of two solitary waves with p = 3.

t 0 30 60 90 100

Our Method 4.20653 4.20650 4.20614 4.20486 4.20498
I1 [26] 4.20653 4.20653 4.20616 4.20490 4.20503

[42] First 4.20653 4.20653 4.20653 4.20653 4.20653
[42] Second 4.20653 4.20653 4.20653 4.20653 4.20653
[36] 4.20655 4.20655 4.20655 4.20655 4.20655
Our Method 3.07988 3.07985 3.07961 3.07872 3.07881

I2 [26] 3.07987 3.07991 3.07947 3.07777 3.07797
[42] First 3.07988 3.07988 3.07988 3.07988 3.07988
[42] Second 3.07988 3.07988 3.07988 3.07988 3.07988
[36] 3.97977 3.07980 3.07987 3.07974 3.07972
Our Method 1.01636 1.01632 1.01646 1.01619 1.01619

I3 [26] 1.01636 1.01638 1.01654 1.01616 1.01616
[42] First 1.01636 1.01636 1.01636 1.01636 1.01636
[42] Second 1.01636 1.01636 1.01636 1.01636 1.01636
[36] 1.01634 1.01634 1.01634 1.01633 1.01634

representation of two solitary wave formation has been confirmed in Fig. 7 and Fig. 8. For the second experiment, we select 
parameters c1 = 0.3, c2 = 0.0375 and p = 3 and the computations are continued till t = 100 to compare I1, I2 and I3
which have been demonstrated in Table 8. It is noticed from this tabular data that the quantities are once again marginally 
constant and compatible with [26,36,42]. We also demonstrate the time evolution of solutions in Fig. 9. It confirms the 
preservations of solitary waves.

For the last case, to allow the interaction of two solitary waves we have selected the parameters c1 = 0.2, c2 = 1/80, 
p = 4 and t ∈ (0, 120]. The computer generated outcomes have been presented in Table 9. The results agree with that from 
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Fig. 7. Collision of two solitary waves at p = 2; (a) t = 0, (b) t = 20, (c) t = 40, (d) t = 60.

Fig. 8. Collision of two solitary waves at p = 2, a three dimensional illustration of the same.

[26,36,42]. We illustrate the dynamical changes of solutions over varying t in Fig. 10 which guarantees the efficiency of the 
scheme presented here.

5. Conclusion

This study is based on sextic B-spline functions, a Subdomain approach has been well studied and implemented con-
sidering GEW equations with some fixed choices initial and boundary conditions. Firstly the proposed method has been 
presented and a priori bound is analyzed. Then a semi-discrete scheme and a full discrete (Crank-Nicolson scheme) scheme 
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Fig. 9. Collision of two solitary waves at p = 3.

Table 9
Numerical values of invariants for collision of two solitary waves with p = 4.

t 0 30 60 90 120

Our Method 3.93307 3.93303 3.93379 3.93216 3.93018
I1 [26] 3.93307 3.93309 3.93388 3.93222 3.93026

[42] First 3.93307 3.93307 3.93307 3.93307 3.93307
[42] Second 3.93307 3.93307 3.93307 3.93307 3.93307
[36] 3.93309 3.93309 3.93309 3.93309 3.93308
Our Method 2.94979 2.94518 2.94618 2.94461 2.94323

I2 [26] 2.94524 2.94527 2.94703 2.94436 2.94212
[42] First 2.94524 2.94524 2.94524 2.94524 2.94524
[42] Second 2.94524 2.94523 2.94523 2.94523 2.94523
[36] 2.94512 2.94510 2.94505 2.94520 2.94511
Our Method 0.79766 0.79761 0.79871 0.79803 0.79788

I3 [26] 0.79766 0.79770 0.79942 0.79812 0.79794
[42] First 0.79766 0.79766 0.79766 0.79766 0.79766
[42] Second 0.79766 0.79766 0.79766 0.79766 0.79766
[36] 0.797614 0.797612 0.797622 0.797612 0.797611

Fig. 10. Collision of two solitary waves at p = 4.

are analyzed respectively. For the Crank-Nicolson Galerkin finite element scheme, the spatial discretization is based on the 
standard Galerkin method, and the Crank-Nicolson scheme is used for the temporal integration. We use a linearization to 
analyze stability. In our study we confirm that our linearized numerical scheme is unconditionally stable. Also we have 
implemented the algorithm through single solitary wave and two solitary waves. Accuracy of the scheme has been tested in 
both the L2 and L∞ error norms and by computing I1, I2 and I3. The exemplified outcomes confirm that our error norms 
are good enough as required and they outperform most contemporary numerical calculations or they are compatible with 
the best result in existing literature. Thus it guarantees that our comprehensive algorithm is efficient and powerful and it 
works well for dynamic PDEs.
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