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ABSTRACT
In this article, we consider a generalized equal width wave (GEW) equation
which is a significant nonlinear wave equation as it can be used to
model many problems occurring in applied sciences. Here we study a
Petrov–Galerkin method for the model problem, in which element shape
functions are quadratic andweight functions are linear B-splines. We inves-
tigate the existence and uniqueness of solutions of the weak form of the
equation. Then, we establish the theoretical bound of the error in the
semi-discrete spatial scheme as well as of a full discrete scheme at t = tn.
Furthermore, a powerful Fourier analysis has been applied to show that the
proposed scheme is unconditionally stable. Finally, propagation of solitary
waves and evolution of solitons are analyzed to demonstrate the efficiency
and applicability of the proposed scheme. The three invariants (I1, I2 and I3)
of motion have been commented to verify the conservation features of the
proposed algorithms. Our proposed numerical schemehas been compared
with other published schemes and demonstrated to be valid, effective and
it outperforms the others.
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1. Introduction

Nonlinear partial differential equations are extensively used to explain complex phenomena in differ-
ent fields of science, such as plasma physics, fluid mechanics, hydrodynamics, applied mathematics,
solid state physics and optical fibers. One of the important issues to nonlinear partial differential equa-
tions is to seek exact solutions. Because of the complexity of nonlinear differential equations, exact
solutions of these equations are commonly not derivable. Owing to the fact that only limited classes
of these equations are solved by analytical means, numerical solutions of these nonlinear partial dif-
ferential equations are very functional to examine physical phenomena. The regularized long wave
(RLW) equation,

Ut + Ux + εUUx − μUxxt = 0, (1)

is a symbolization figure of nonlinear long wave and can definemany important physical phenomena
with weak nonlinearity and dispersion waves, including nonlinear transverse waves in shallow water,
ion-acoustic and magneto-hydrodynamic waves in plasma, elastic media, optical fibers, acoustic-
gravity waves in compressible fluids, pressure waves in liquid–gas bubbles and phonon packets in
nonlinear crystals [1]. The RLW equation was first suggested to describe the behavior of the undular
bore by Peregrine [2, 3], who constructed the first numerical method of the equation using a finite
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difference method. The RLW equation is an alternative description of nonlinear dispersive waves to
the more usual

Ut + εUUx + μUxxx = 0, (2)

Korteweg–de Vries (KdV) equation [4]. This equation was first generated by Korteweg and de Vries
to symbolize the action of one-dimensional shallow water solitary waves [5]. The equation has found
numerous applications in the physical sciences and engineering field such as fluid and quantum
mechanics, plasma physics, nonlinear optics, waves in enharmonic crystals, bubble liquid mixtures,
ion-acoustic wave and magneto-hydrodynamic waves in a warm plasma as well as shallow water
waves. The equal width (EW) wave equation

Ut + εUUx − μUxxt = 0, (3)

which is less well recognized and was introduced by Morrison et al. [6], is a description alternative
to the more common KdV and RLW equations. This equation is named EW equation, because the
solutions for solitary waves with a perpetual form and speed, for a given value of the parameter μ,
are waves with an EW or wavelength for all wave amplitudes [7]. The solutions of this equation are
sorts of solitary waves called as solitons whose figures are not changed after the collision. Generalized
equal width (GEW) equation, procured for long waves propagating in the positive x direction, takes
the form

Ut + εUpUx − μUxxt = 0, (4)

where p is a positive integer, ε and μ are positive parameters, t is time, x is the space coordinate and
U(x, t) is the wave amplitude. Physical boundary conditions require U → 0 as |x| → ∞. For this
work, boundary and initial conditions are chosen

U(a, t) = 0, U(b, t) = 0,

U(x, 0) = f (x), a ≤ x ≤ b. (5)

where f (x) is a localized disturbance inside the considered interval and will be designated later. In
the fluid problems as known, the quantityU is associated with the vertical displacement of the water
surface, but in the plasma applications, U is the negative of the electrostatic potential. That is why,
the solitary wave solution of Equation (4) helps us to find out a lot of physical phenomena with weak
nonlinearity and dispersion waves such as nonlinear transverse waves in shallow water, ion-acoustic
andmagnetohydrodynamic waves in plasma and phonon packets in nonlinear crystals [8]. The GEW
equation which we tackle here is based on the EW equation and relevant to both the generalized RLW
equation [9, 10] and the generalized Korteweg–de Vries equation [11]. These general equations are
nonlinear wave equations with (p + 1)th nonlinearity and have solitary wave solutions, which are
pulse-like. The investigation of the GEW equation ensures the possibility of investigating the cre-
ation of secondary solitary waves and/or radiation to get insight into the corresponding processes of
particle physics [12, 13]. This equation hasmany implementations in physical situations, for example,
unidirectional waves propagating in a water channel, longwaves in near-shore zones andmany others
[14]. If p= 1 is taken in Equation (4), the EW equation [15–20] is obtained and if p= 2 is taken in
Equation (4), the obtained equation is named as the modified EW wave equation [21–27]. In recent
years, various numerical methods have been improved for the solution of the GEW equation. Hamdi
et al. [7] generated exact solitary wave solutions of the GEW equation. Evans and Raslan [28] investi-
gated the GEW equation by using the collocation method based on quadratic B-splines to obtain the
numerical solutions of the single solitary wave, interaction of solitary waves and birth of solitons. The
GEW equation was solved numerically by a B-spline collocation method by Raslan [29]. The homo-
geneous balance method was used to construct exact traveling wave solutions of the GEW equation
by Taghizadeh et al. [30]. The equation is solved numerically by a meshless method based on a global
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collocation with standard types of radial basis functions by Panahipour [14]. A quintic B-spline collo-
cation method with two different linearization techniques and a lumped Galerkin method based on
B-spline functions were employed to obtain the numerical solutions of the GEWequation by Karakoc
and Zeybek [8, 31] respectively. Roshan [32] applied the Petrov–Galerkin method using the linear
hat function and quadratic B-spline functions as test and trial functions, respectively, for the GEW
equation.

In this study, we have constructed a lumped Petrov–Galerkinmethod for the GEW equation using
the quadratic B-spline function as the element shape function and the linear B-spline function as the
weight function. Context of this work has been planned as follows:

• A semi-discrete Galerkin finite element scheme of the equation along with the error bounds are
demonstrated in Section 2.

• A full discrete Galerkin finite element scheme has been studied in Section 3.
• Section 4 is concerned with the construction and implementation of the Petrov–Galerkin finite

element method to the GEW equation.
• Section 5 contains a linear stability analysis of the scheme.
• Section 6 includes analysis of themotion of a single solitary wave, interaction of two solitary waves

and evolution of solitons with different initial and boundary conditions.
• Finally, we conclude the study with some remarks on this study.

2. Variational formulation and its analysis

Higher order nonlinear initial boundary value problem (4) can be written as

ut − μ�ut = ∇F(u), (6)

where F(u) = (1/(p + 1))up+1, subject to the initial condition

u(x, 0) = f1(x), a ≤ x ≤ b, (7)

and the boundary conditions

u(a, t) = 0, u(b, t) = 0. (8)

To define the weak form of the solutions of (6) and to investigate the existence and uniqueness of the
solutions of the weak form, we define the following spaces. HereHk(�), k ≥ 0 (integer) is considered
as an usual normed space of real-valued functions on� and

Hk
0(�) =

{
v ∈ Hk(�) : Div = 0 on ∂�, i = 0, 1, . . . , k − 1

}
where D = ∂/∂x. We denote the norm on Hk(�) by ‖ · ‖k which is the well-known usual Hk

norm, and when k= 0, ‖ · ‖0 = ‖ · ‖ represents L2 norm and (·, ·) represents the standard L2 inner
product [33, 34].

Multiplying (6) by ξ ∈ H1
0(�) and then integrating over�, we have

(ut , ξ)− μ(�ut , ξ) = (∇F(u), ξ).
Applying Green’s theorem for integrals on the above continuous inner products we aim to find
u(·, t) ∈ H1

0(�) so that

(ut , ξ)+ μ (∇ut ,∇ξ) = − (F(u),∇ξ) , ∀ ξ ∈ H1
0(�), (9)

with u(0) = u0. Here we state the uniqueness theorem without a proof which can be well established
following [33, 34].
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Theorem 2.1: If u satisfies (9) then

‖u(t)‖1 = ‖u0‖1, t ∈ (0, T], and ‖u‖L∞(L∞(�)) ≤ C‖u0‖1
hold if u0 ∈ H1

0(�), and C is a positive constant.

Theorem 2.2: Assume that u0 ∈ H1
0(�) and T> 0. Then there exists one and only one u ∈ H1

0(�)
satisfying (9) for any T> 0 such that

u ∈ L∞(0,T,H1
0(�)) with (u(x, 0), ξ) = (u0, ξ), ξ ∈ H1

0(�).

2.1. Semi-discrete Galerkin scheme

For any 0 < h < 1, let Sh of H1
0(�) be a finite-dimensional subspace such that for u ∈ H1

0(�) ∩
H3(�), ∃ a constant C independent of h [33–35] such that

inf
ξ∈Sh

‖u − ξ‖ ≤ Ch3‖u‖3. (10)

Here it is our motto to look for solutions of a semi-discrete finite element formulation of (6) uh :
[0, T] → Sh such that

(uht , ξ)+ (∇uht ,∇ξ) = − (F(uh),∇ξ) , ∀ ξ ∈ Sh, (11)

where uh(0) = u0,h ∈ Sh approximates u0. We start here first by stating a priori bound of the solution
of (11) below before establishing the original convergence result.

Theorem 2.3: Let uh ∈ Sh be a solution of (11). Then uh ∈ Sh satisfies

‖uh‖21 = ‖u0,h‖21, t ∈ (0, T],

and

‖uh‖L∞(L∞(�)) ≤ C‖u0,h‖1
holds where C is a positive constant.

Proof: The proof is trivial; it follows from [36]. �

Our next goal is to establish the theoretical estimate of the error in semi-discrete scheme (11)
of (9). To that end here we start by considering the following bilinear form:

A(u, v) = (∇u,∇v), ∀ u, v ∈ H1
0(�),

which satisfies the boundedness property

|A(u, v)| ≤ M‖u‖1‖v‖1, ∀ u, v ∈ H1
0(�) (12)

and coercivity property (on�)

A(u, u) ≥ α‖u‖1, ∀ u ∈ H1
0(�), for some α ∈ R. (13)

Let ũ be an auxiliary projection of u [33–35], thenA satisfies

A(u − ũ, ξ) = 0, ξ ∈ Sh. (14)

Now the rate of convergence (accuracy) in such a spatial approximation (11) of (9) is given by the
following theorem.
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Theorem 2.4: Let uh ∈ Sh be a solution of (11) and u ∈ H1
0(�) be that of (9), then the following

inequality holds

‖u − uh‖ ≤ Ch3,

where C> 0 if ‖u(0)− u0,h‖ ≤ Ch3 holds.

Proof: Letting E = u − uh = ψ + θ , where ψ = u − ũ and θ = ũ − uh, we write

α‖u − ũ‖21 ≤ A(u − ũ, u − ũ)

= A(u − ũ, u − ξ), ξ ∈ Sh.

From (12), (14) and [34], it follows that

‖u − ũ‖1 ≤ inf
ξ∈Sh

‖u − ξ‖1, (15)

and thus (10) and (15) confirm the following inequalities

‖ψ‖1 ≤ Ch2‖u‖3, and so ‖ψ‖ ≤ Ch3‖u‖3.

Now applying ∂/∂t on (14) and having some simplifications yield [34]

‖ψt‖ ≤ Ch3‖ut‖3.

Also we subtract (11) from (9) to obtain

(θt , ξ)+ (∇θt ,∇ξ) = (ψt , ξ)− (F(u)− F(uh),∇ξ). (16)

Now we substitute ξ = θ in (16), and then apply Cauchy–Schwarz inequality to obtain

1
2
d
dt

‖θ‖21 ≤ ‖ψt‖‖θ‖ + ‖F(u)− F(uh)‖‖∇θ‖.

Here

‖F(u)− F(uh)‖ ≤ C(‖ψ‖ + ‖θ‖),
comes from Lipschitz conditions of F and boundedness of u and uh. Thus

d
dt

‖θ‖21 ≤ C
(‖ψt‖2 + ‖ψ‖2 + ‖θ‖2 + ‖∇θ‖2) .

So

‖θ‖21 ≤ ‖θ(0)‖21 + C
∫ t

0

(‖ψt‖2 + ‖ψ‖2 + ‖θ‖2 + ‖∇θ‖2) dt.
Hence Gronwall’s lemma, bounds of ψ and ψt confirm

‖θ‖1 ≤ C(u)h3,

if θ(0) = 0; this completes the proof [34, 35]. �
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3. Full discrete scheme

Here we aim to find solution of semi-discrete problem (11) over [0,T], T> 0. Let N be a positive full
number and�t = T/N so that tn = n�t, n = 0, 1, 2, 3, . . . , N. Here we consider

φn = φ(tn), φn−1/2 = φn + φn−1

2
& ∂tφ

n = φn − φn−1

�t
.

Using the above notations, we present a time discretized finite element Galerkin scheme by

(
∂tUn, ξ

)+ (∇∂tUn,∇ξ) = − (F(Un−1/2),∇ξ) , ξ ∈ Sh, (17)

where U0 = u0,h.

Theorem 3.1: If Un satisfies (17) then

‖UJ‖1 = ‖U0‖1 forall 1 ≤ J ≤ N,

and there exists a positive constant C such that

‖UJ‖∞ ≤ C‖U0‖1 forall 1 ≤ J ≤ N.

Proof: Substituting ξ = Un−1/2 in (17) it is easy to see that

∂t
(‖Un‖2 + ‖∇Un‖2) = − (F(Un−1/2),∇Un−1/2) = 0. (18)

Thus, the proof of the first part of the theorem follows from a sum from n= 1 to J and that of the
second part follows from the Sovolev embedding theorem [34]. �

Now we focus on establishing the theoretical upper bound of the error in such a full discrete
approximation (18) at t = tn.

Theorem 3.2: Let h and�t be sufficiently small, then

‖uj − Uj‖∞ ≤ C(u,T)(h3 +�t2) for 1 ≤ j ≤ N and uh0 = ũ(0)

where C is independent of h and�t.
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Proof: Let

En = un − Un = ψn + θn

where ψn = un − ũn, θn = ũn − Un, un = u(tn), and ũn = ũ(tn). From (9) and (17) along with
auxiliary projection defined in the previous section, the following equality holds

(∂tθ
n, ξ)+ (∇∂tθn,∇ξ) = (∂tψ

n, ξ)+ (τn, ξ)+ (∇τn,∇ξ)+ (F(un−1/2)− F(Un−1/2),∇ξ) ,
(19)

where τn = un−1/2 − ∂tun. Now substituting ξ by θn−1/2 in (19) yields

1
2∂t‖θn‖21 = C

(
‖∂tψn‖2 + ‖τn‖21 + ‖θn−1/2‖21 + ∥∥F(un−1/2)− F(Un−1/2∥∥2) . (20)

Now

‖τn‖2 ≤ C�t3
∫ tn

tn−1

‖uttt(s)‖2ds, (21)

and from the boundedness of ‖Un‖∞ and ‖un‖∞ it yields

∥∥F(un−1/2)− F(Un−1/2∥∥ = C
(‖θn−1/2 + ‖ψn−1/2‖‖) (22)

since F is a Lipschitz function. Thus from (20), (21) and (22) it follows that

∂t‖θn‖21 ≤ C‖θn−1/2‖21 + C
(

‖∂tψn‖2 + ‖ψn‖2 + ‖ψn−1‖2 +�t3
∫ tn

tn−1

‖uttt(s)‖2ds
)
. (23)

So (23) can be simplified as

(1 − C�t)‖θn‖21 ≤ (1 + C�t)‖θn−1/2‖21

+ C�t
(

‖∂tψn‖2 + ‖ψn‖2 + ‖ψn−1‖2 +�t3
∫ tn

tn−1

‖uttt(s)‖2 ds
)
.

Choosing�t > 0 so that 1 − C�t ≥ 0 and summing over n = 1, (1), J, and from the bounds of ‖ψn‖
and ‖∂tψn‖ yields

‖θn‖1 ≤ C(u,T)(h3 +�t2),

and the rest follows from the triangular inequality and Sobolev embedding theorem [34, 35]. �

4. Construction and implementation of themethod

We take into account a uniformly spatially distributed set of knots a = x0 < x1 < · · · < xN = b
over the solution interval a ≤ x ≤ b and h = xm+1 − xm, m = 0, 1, 2, . . . ,N. For this partition, we
shall need the following quadratic B-splines φm(x) at the points xm, m = 0, 1, 2, . . . ,N. Prenter [37]
identified the following quadratic B-spline functions φm(x), (m = −1(1) N), at the points xm which
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generate a basis over the interval [a, b] by

φm(x) = 1
h2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(xm+2 − x)2 − 3(xm+1 − x)2 + 3(xm − x)2, x ∈ [xm−1, xm),
(xm+2 − x)2 − 3(xm+1 − x)2, x ∈ [xm, xm+1),
(xm+2 − x)2, x ∈ [xm+1, xm+2),
0 otherwise.

(24)

We search the approximation UN(x, t) to the solution U(x, t), which use these splines as the trial
functions

UN(x, t) =
N∑

j=−1
φj(x)δj(t), (25)

in which unknown parameters δj(t) will be computed by using the boundary and weighted residual
conditions. In each element, using hη = x − xm (0 ≤ η ≤ 1) local coordinate transformation for the
finite element [xm, xm+1], quadratic B-spline shape functions (24) in terms of η over the interval [0, 1]
can be reformulated as

φm−1 = (1 − η)2,

φm = 1 + 2η − 2η2,

φm+1 = η2. (26)

All quadratic B-splines, except φm−1(x),φm(x) and φm+1(x), are zero over the interval [xm, xm+1].
Therefore, approximation function (25) over this element can be given in terms of basis functions (26)
as

UN(η, t) =
m+1∑

j=m−1
δjφj. (27)

Using quadratic B-splines (26) and approximation function (27), the nodal values Um and U ′
m at the

knot are found in terms of element parameters δm as follows:

Um = U(xm) = δm−1 + δm,

U ′
m = U ′(xm) = 2(δm − δm−1). (28)

Here weight functions Lm are used as linear B-splines. The linear B-splines Lm at the knots xm are
identified as [37]

Lm(x) = 1
h

⎧⎪⎨
⎪⎩
(xm+1 − x)− 2(xm − x), x ∈ [xm−1, xm),
(xm+1 − x), x ∈ [xm, xm+1),
0 otherwise.

(29)

A characteristic finite interval [xm, xm+1] is turned into the interval [0, 1] by local coordinates η con-
cerned with the global coordinates using hη = x − xm (0 ≤ η ≤ 1). So linear B-splines Lm are given
as

LmS = 1 − η

Lm+1 = η. (30)
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Using the Petrov–Galerkin method to Equation (4), we obtain the weak form of Equation (4) as∫ b

a
L(Ut + εUpUx − μUxxt) dx = 0. (31)

Applying the change of variable x → η into Equation (31) gives rise to∫ 1

0
L
(
Ut + ε

h
ÛpUη − μ

h2
Uηηt

)
dη = 0, (32)

where Û is got to be constant over an element to make the integral easier. Integrating Equation (32)
by parts and using Equation (4) leads to∫ 1

0
[L(Ut + λUη)+ βLηUηt] dη = βLUηt|10, (33)

where λ = εÛp/h and β = μ/h2. Choosing the weight functions Lm with linear B-spline shape
functions given by (30) and replacing approximation (27) into Equation (33) over the element [0, 1]
produces

m+1∑
j=m−1

[(∫ 1

0
Liφj + βL′

iφ
′
j

)
dη − βLiφ′

j

∣∣∣∣
1

0

]
δ̇ej +

m+1∑
j=m−1

(
λ

∫ 1

0
Liφ′

j dη
)
δej = 0, (34)

which can be obtained in matrix form as

[Ae + β(Be − Ce)]δ̇e + λDeδe = 0. (35)

In the above equations and overall the article, the dot denotes differentiation according to t and
δe = (δm−1, δm, δm+1, δm+2)

T are the element parameters.Ae
ij,B

e
ij,C

e
ij andD

e
ij are the 2 × 3 rectangular

element matrices represented by

Ae
ij =

∫ 1

0
Liφj dη = 1

12

[
3 8 1
1 8 3

]
,

Beij =
∫ 1

0
L′
iφ

′
j dη = 1

2

[
1 0 −1

−1 0 1

]
,

Ce
ij = Liφ′

j |10 =
[
2 −2 0
0 −2 2

]
,

De
ij =

∫ 1

0
Liφ′

jdη = 1
3

[−2 1 1
−1 −1 2

]

where i takes m,m+1 and j takes m−1,m,m+1 for the typical element [xm, xm+1]. A lumped value
for U is attained from (Um + Um+1/2)p as

λ = ε

2ph
(δm−1 + 2δm + δm+1)

p.

Formally aggregating together contributions from all elements leads to the matrix equation

[A + β(B − C)]δ̇ + λDδ = 0, (36)

where global element parameters are δ = (δ−1, δ0, . . . , δN , δN+1)
T and the A, B,C and λD matrices

are derived from the corresponding element matrices Ae
ij,B

e
ij,C

e
ij and De

ij. Row m of each matrix has
the following form:

A = 1
12 (1, 11, 11, 1, 0) , B = 1

3 (−1, 1, 1,−1, 0),
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C = (0, 0, 0, 0, 0),

λD = 1
3 (−λ1,−λ1 − 2λ2, 2λ1 + λ2, λ2, 0) ,

where

λ1 = ε

2ph
(δm−1 + 2δm + δm+1)

p , λ2 = ε

2ph
(δm + 2δm+1 + δm+2)

p .

Implementing the Crank–Nicholson approach δ = 1
2 (δ

n + δn+1) and the forward finite difference
δ̇ = δn+1 − δn/�t in Equation (35), we get the following matrix system:[

A + β(B − C)+ λ�t
2

D
]
δn+1 =

[
A + β(B − C)− λ�t

2
D
]
δn, (37)

where �t is the time step. Implementing the boundary conditions (5) to system (37), we make the
matrix equation square. This system is efficaciously solved with a variant of the Thomas algorithm
but in the solution process, two or three inner iterations δn∗ = δn + 1

2 (δ
n − δn−1) are also performed

at each time step to cope with the nonlinearity. As a result, a typical member of matrix system (37)
may be written in terms of the nodal parameters δn and δn+1 as

γ1δ
n+1
m−1 + γ2δ

n+1
m + γ3δ

n+1
m+1 + γ4δ

n+1
m+2 = γ4δ

n
m−1 + γ3δ

n
m + γ2δ

n
m+1 + γ1δ

n
m+2 (38)

where

γ1 = 1
12

− β

3
− λ�t

6
, γ2 = 11

12
+ β

3
− 3λ�t

6
,

γ3 = 11
12

+ β

3
+ 3λ�t

6
, γ4 = 1

12
− β

3
+ λ�t

6
.

To start the iteration for computing the unknown parameters, the initial unknown vector δ0 is cal-
culated by using Equations (5). Therefore, using the relations at the knots UN(xm, 0) = U(xm, 0),
m = 0, 1, 2, . . . ,N and U

′
N(x0, 0) = U ′

(xN , 0) = 0 related with a variant of the Thomas algorithm,
the initial vector δ0 is easily obtained from the following matrix form:⎡

⎢⎢⎢⎢⎢⎣

1 1
1 1

. . .
1 1

−2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

δ0−1
δ00
...

δ0N−1
δ0N

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

U(x0, 0)
U(x1, 0)

...
U(xN , 0)
hU ′

(xN , 0)

⎤
⎥⎥⎥⎥⎥⎦ .

5. Stability analysis

In this section, to show the stability analysis of the numerical method, we have used the Fourier
method based on Von-Neumann theory and presume that the quantity Up in the nonlinear term
UpUx of Equation (4) is locally constant. Substituting the Fourier mode δnj = gneijkh, where k is the
mode number and h is the element size, into scheme (38)

g = a − ib
a + ib

, (39)

is obtained and where

a = (11 + 4β) cos
(
θ

2

)
h + (1 − 4β) cos

(
3θ
2

)
h,
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b = 2λ�t
[
3 sin

(
θ

2

)
h + sin

(
3θ
2

)
h
]
. (40)

|g| is found 1 so our linearized scheme is unconditionally stable.

6. Computational results and discussions

The objective of this section is to investigate the deduced algorithm using different test problems rel-
evant to the dispersion of single solitary waves, interaction of two solitary waves and the evolution of
solitons. For the test problems, we have calculated the numerical solution of the GEW equation for
p= 2,3 and 4 using the homogenous boundary conditions and different initial conditions. The L2,

L2 = ∥∥Uexact − UN
∥∥
2 �

√√√√h
N∑
J=0

∣∣∣Uexact
j − (UN)j

∣∣∣2,
and L∞,

L∞ = ∥∥Uexact − UN
∥∥∞ � max

j

∣∣∣Uexact
j − (UN)j

∣∣∣ ,
error norms are considered to measure the efficiency and accuracy of the present algorithm and to
compare our results with both exact values, Equation (41), as well as other results in the literature
whenever available. The exact solution of the GEW equation is taken [28, 31] to be

U(x, t) = p

√
c(p + 1)(p + 2)

2ε
sec h2[

p
2√μ(x − ct − x0)] (41)

which corresponds to a solitary wave of amplitude p
√
c(p + 1)(p + 2)/2ε, the speed of the wave trav-

eling in the positive direction of the x-axis is c, width p/2√μ and x0 is arbitrary constant. With the
homogenous boundary conditions, solutions of the GEW equation possess three invariants of the
motion introduced by

I1 =
∫ b

a
U(x, t) dx, I2 =

∫ b

a
[U2(x, t)+ μU2

x (x, t)] dx, I3 =
∫ b

a
Up+2(x, t) dx (42)

related to mass, momentum and energy, respectively.

6.1. Propagation of single solitary waves

For the numerical study in this case, we firstly select p= 2, c= 0.5, h= 0.1, �t = 0.2, μ = 1, ε = 3
and x0 = 30 through the interval [0, 80] to match up with that of the previous papers [8, 31, 32].
These parameters represent the motion of a single solitary wave with amplitude 1.0 and the program
is performed for time t = 20 over the solution interval. The analytical values of conservation quan-
tities are I1 = 3.1415927, I2 = 2.6666667 and I3 = 1.3333333. Values of the three invariants as well
as L2- and L∞-error norms from our method have been found and noted in Table 1. Referring to
Table 1, the error norms L2 and L∞ remain less than 1.286582 × 10−2, 8.31346 × 10−3, and they are
still small when the time is increased up to t= 20. The invariants I1, I2, I3 change from their initial
values by less than 9.8 × 10−6, 3.2 × 10−5 and 1.3 × 10−5, respectively, throughout the simulation.
Also, this table confirms that the changes of the invariants are in agreement with their exact values. So
we conclude that our method is sensibly conservative. Comparisons with our results with the exact
solution as well as the calculated values in [8, 31, 32] have beenmade and showed in Table 2 at t= 20.
This table clearly shows that the error norms got by our method are marginally less than the others.
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Table 1. Invariants and errors for single solitary wave with p = 2, c = 0.5, h = 0.1,
ε = 3,�t = 0.2,μ = 1, x ∈ [0, 80].

Time I1 I2 I3 L2 L∞
0 3.1415863 2.6682242 1.3333283 0.00000000 0.00000000
5 3.1415916 2.6682311 1.3333406 0.00395289 0.00294851
10 3.1415934 2.6682352 1.3333413 0.00704492 0.00473785
15 3.1415948 2.6682434 1.3333413 0.00995547 0.00651735
20 3.1415961 2.6682568 1.3333413 0.01286582 0.00831346

Table 2. Comparisons of results for single solitarywavewith p = 2, c = 0.5, h = 0.1, ε = 3,�t = 0.2,μ = 1, x ∈ [0, 80]
at t = 20.

Method I1 I2 I3 L2 L∞
Analytic 3.1415961 2.6666667 1.3333333 0.00000000 0.00000000
Our Method 3.1415916 2.6682568 1.3333413 0.01286582 0.00831346
Cubic Galerkin [8] 3.1589605 2.6902580 1.3570299 0.03803037 0.02629007
Quintic Collocation First Scheme [31] 3.1250343 2.6445829 1.3113394 0.05132106 0.03416753
Quintic Collocation Second Scheme [31] 3.1416722 2.6669051 1.3335718 0.01675092 0.01026391
Petrov–Galerkin [32] 3.14159 2.66673 1.33341 0.0123326 0.0086082

The numerical solutions at different time levels are depicted in Figure 1. This figure shows that single
soliton travels to the right at a constant speed and conserves its amplitude and shape with increas-
ing time unsurprisingly. Initially, the amplitude of the solitary wave is 1.00000 and its top position is
pinpionted at x= 30. At t = 20, its amplitude is noted as 0.999416 with center x= 40. Thereby the
absolute difference in amplitudes over the time interval [0, 20] is observed as 5.84 × 10−4. The quan-
tile of error at discrete times are depicted in Figure 2. The error aberration varies from −8 × 10−2 to
1 × 10−2 and the maximum errors happen around the central position of the solitary wave.

For our second experiment, we take the parameters p = 3, c = 0.3, h = 0.1,�t = 0.2, ε = 3,μ =
1, x0 = 30with interval [0, 80] to coincidewith that of the previous papers [8, 31, 32]. Thus the solitary
wave has amplitude 1.0, and the computations are carried out for times up to t = 20. The values of
the error norms L2, L∞ and conservation quantities I1, I2,I3 are found and tabulated in Table 3.
According to Table 3, the error norms L2 and L∞ remain less than 4.48357 × 10−3, 3.37609 × 10−3,
and they are still small when the time is increased up to t= 20 and the invariants I1, I2,I3 change from
their initial values by less than 1.78 × 10−5, 2.52 × 10−5, 3.55 × 10−5, respectively. Therefore, we

Figure 1. Motion of single solitarywave for p= 2, c= 0.5, h= 0.1,�t = 0.2, ε = 3,μ = 1, over the interval [0, 80] at t = 0, 10, 20.
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Figure 2. Error graph for p = 2, c = 0.5, h = 0.1, ε = 3,�t = 0.2,μ = 1, x ∈ [0, 80] at t = 20.

Table 3. Invariants and errors for single solitary wave with p = 3, c = 0.3, h = 0.1,
�t = 0.2, ε = 3,μ = 1, x ∈ [0, 80].

Time I1 I2 I3 L2 L∞
0 2.8043580 2.4664883 0.9855618 0.00000000 0.00000000
5 2.8043723 2.4665080 0.9855942 0.00183258 0.00177948
10 2.8043747 2.4665108 0.9855973 0.00291958 0.00233283
15 2.8043753 2.4665119 0.9855973 0.00372417 0.00285444
20 2.8043758 2.4665135 0.9855973 0.00448357 0.00337609

Table 4. Comparisons of results for single solitary wave with p = 3, c = 0.3, h = 0.1, �t = 0.2, ε = 3, μ = 1, x ∈
[0, 80] at t = 20.

Method I1 I2 I3 L2 L∞
Our Method 2.8043758 2.4665135 0. 0.00448357 0.00337609
Cubic Galerkin[8] 2.8187398 2.4852249 1.0070200 0.01655637 0.01370453
Quintic Collocation First Scheme[31] 2.8043570 2.4639086 0.9855602 0.00801470 0.00538237
Quintic Collocation Second Scheme[31] 2.8042943 2.4637495 0.9854011 0.00708553 0.00480470
Petrov–Galerkin[32] 2.80436 2.46389 0.98556 0.00484271 0.00370926

can say our method is satisfactorily conservative. In Table 4, the performance of our new method
is compared with other methods [8, 31, 32] at t= 20. It is observed that errors of the method [8,
31, 32] are considerably larger than those obtained with the present scheme. The motion of solitary
wave using our scheme is graphed at time t= 0,10,20 in Figure 3. As seen, single solitons move to the
right at a constant speed and preserve its amplitude and shape with increasing time as anticipated.
The amplitude is 1.00000 at t= 0 and located at x= 30, while it is 0.999522 at t= 20 and located
at x= 36. Therefore, the absolute difference in amplitudes over the time interval [0, 20] are found
as 4.78 × 10−4. The aberration of error at discrete times is shown in Figure 4. The error deviation
varies from−3 × 10−3 to 4 × 10−3, and themaximum errors arise around the central position of the
solitary wave.

For our final treatment, we put the parameters p = 4, c = 0.2, h = 0.1,�t = 0.2, ε = 3,μ = 1, x0
= 30 over the interval [0, 80] tomake possible comparisonswith those of the earlier papers [8, 31, 32].
So the solitary wave has amplitude 1.0 and the simulations are executed to time t= 20 to invent the
error norms L2 and L∞ and the numerical invariants I1, I2 and I3. For these values of the parameters,
the conservation properties and the L2-error as well as the L∞-error norms have been listed in Table 5
for several values of the time level t. It can be referred from Table 5, the error norms L2 and L∞
remain less than 1.96046 × 10−3, 1.33416 × 10−3, and they are still small when the time is increased
up to t= 20 and the invariants I1, I2, I3 change from their initial values by less than 4.07 × 10−5,
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Figure 3. Motion of single solitary wave for p = 3, c = 0.3, h = 0.1,�t = 0.2, ε = 3,μ = 1, x ∈ [0, 80] at t = 0, 10, 20.

Figure 4. Error graph for p = 3, c = 0.3, h = 0.1,�t = 0.2, ε = 3,μ = 1, x ∈ [0, 80] at t = 20.

Table 5. Invariants and errors for single solitary wave with p = 4, c = 0.2, h = 0.1,
�t = 0.2, ε = 3,μ = 1, x ∈ [0, 80].

Time I1 I2 I3 L2 L∞
0 2.6220516 2.3598323 0.7853952 0.00000000 0.00000000
5 2.6220846 2.3598808 0.7854675 0.00125061 0.00141788
10 2.6220915 2.3598891 0.7854783 0.00178634 0.00147002
15 2.6220920 2.3598898 0.7854785 0.00193428 0.00139936
20 2.6220923 2.3598903 0.7854785 0.00196046 0.00133416

5.80 × 10−5 and 6.32 × 10−5, respectively, throughout the simulation.Hencewe can say ourmethod
is sensibly conservative. The comparison between the results obtained by the current method with
those in the other papers [8, 31, 32] is also documented in Table 6. It is noticeably seen from the
table that errors of the current method are radically less than those obtained with the earlier methods
[8, 31, 32]. For visual representation, the simulations of single soliton for values p = 4, c = 0.2, h =
0.1,�t = 0.2 at times t= 0,10 and 20 are illustrated in Figure 5. It is understood from this figure that
the numerical scheme performs the motion of propagation of a single solitary wave, which moves to
the right at nearly unchanged speed and conserves its amplitude and shape with increasing time. The
amplitude is 1.00000 at t= 0 and located at x= 30, while it is 0.999475 at t= 20 and located at x= 34.
The absolute difference in amplitudes at times t= 0 and t= 10 is 5.25 × 10−4 so that there is a little
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Table 6. Comparisons of results for single solitary wave with p = 4, c = 0.2, h = 0.1,�t = 0.2, ε = 3, μ = 1, x ∈
[0, 100] at t = 20.

Method I1 I2 I3 L2 L∞
Our Method 2.6220923 2.3598903 0.7854785 0.00196046 0.00133416
Cubic Galerkin [8] 2.6327833 2.3730032 0.8023383 0.00890617 0.00821991
Quintic Collocation First Scheme [31] 2.6220508 2.3561901 0.7853939 0.00421697 0.00297952
Quintic Collocation First Scheme [31] 2.6219284 2.3559327 0.7851364 0.00339086 0.00247031
Petrov–Galerkin [32] 2.62206 2.35615 0.78534 0.00230499 0.00188285

Figure 5. Motion of single solitary wave for p = 4, c = 0.2, h = 0.1,�t = 0.2, ε = 3,μ = 1, x ∈ [0, 80] at t = 0, 10, 20.

Figure 6. Error graph for p = 4, c = 0.2, h = 0.1,�t = 0.2, ε = 3,μ = 1 at t = 20.

change between amplitudes. Error distributions at time t= 20 are shown graphically in Figure 6. As
it is seen, the maximum errors are between −1.5 × 10−3 to 1.5 × 10−3 and occur around the central
position of the solitary wave.

6.2. Interaction of two solitary waves

Our second test problem pertains to the interaction of two solitary wave solutions of the GEW
equation having different amplitudes and traveling in the same direction. We tackle the GEW
equationwith initial conditions given by the linear sumof twowell-separated solitarywaves of various
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amplitudes as follows:

U(x, 0) =
2∑

j=1

p

√
cj(p + 1)(p + 2)

2ε
sec h2

[
p

2√μ(x − xj)
]
, (43)

Table 7. Invariants for interaction of two solitary waves with p = 3.

t 0 30 60 90 100

I1 Our method 4.20653 4.20657 4.20622 4.20502 4.20517
[8] 4.20653 4.20653 4.20616 4.20490 4.20503
[31] first 4.20653 4.20653 4.20653 4.20653 4.20653
[31] second 4.20653 4.20653 4.20653 4.20653 4.20653
[32] 4.20655 4.20655 4.20655 4.20655 4.20655

I2 Our method 3.08311 3.08318 3.08309 3.08220 3.08251
[8] 3.07987 3.07991 3.07947 3.07777 3.07797
[31] first 3.07988 3.07988 3.07988 3.07988 3.07988
[31] second 3.07988 3.07988 3.07988 3.07988 3.07988
[32] 3.97977 3.07980 3.07987 3.07974 3.07972

I3 Our method 1.01636 1.01644 1.01664 1.01632 1.01634
[8] 1.01636 1.01638 1.01654 1.01616 1.01616
[31] first 1.01636 1.01636 1.01636 1.01636 1.01636
[31] second 1.01636 1.01636 1.01636 1.01636 1.01636
[32] 1.01634 1.01634 1.01634 1.01633 1.01634

(a) (b)

(c) (d)

Figure 7. Interaction of two solitary waves at p = 3; (a) t = 0, (b) t = 50, (c) t = 70, (d) t = 100.
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where cj and xj, j = 1, 2, are arbitrary constants. For the computational work, two sets of parameters
are considered by taking different values of p, ci and the same values of h= 0.1, �t = 0.025, ε = 3,
μ = 1 over the interval 0 ≤ x ≤ 80.We firstly take p = 3, c1 = 0.3, c2 = 0.0375. So the amplitudes of
the two solitary waves are in the ratio 2 : 1. Calculations are done up to t = 100. The three invariants
in this case are tabulated in Table 7. It is clear that the quantities are satisfactorily constant and very
close to the methods in [8, 31, 32] during the computer run. Figure 7 illustrates the behavior of the

Table 8. Invariants for interaction of two solitary waves with p = 4.

t 0 30 60 90 120

I1 Our method 3.93307 3.93311 3.93393 3.93229 3.93037
[8] 3.93307 3.93309 3.93388 3.93222 3.93026
[31] first 3.93307 3.93307 3.93307 3.93307 3.93307
[31] second 3.93307 3.93307 3.93307 3.93307 3.93307
[32] 3.93309 3.93309 3.93309 3.93309 3.93308

I2 Our method 2.94979 2.94985 2.95122 2.94939 2.94801
[8] 2.94521 2.94527 2.94703 2.94436 2.94212
[31] first 2.94524 2.94524 2.94524 2.94524 2.94524
[31] second 2.94524 2.94523 2.94523 2.94523 2.94523
[32] 2.94512 2.94510 2.94505 2.94520 2.94511

I3 Our method 0.79766 0.79775 0.79952 0.79824 0.79811
[8] 0.79766 0.79770 0.79942 0.79812 0.79794
[31] first 0.79766 0.79766 0.79766 0.79766 0.79766
[31] second 0.79766 0.79766 0.79766 0.79766 0.79766
[32] 0.79761 0.79761 0.79762 0.79761 0.79761

(a) (b)

(c) (d)

Figure 8. Interaction of two solitary waves at p = 4; (a) t = 0, (b) t = 60, (c) t = 80, (d) st = 120.
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interaction of two positive solitary waves. At t= 100, the magnitude of the smaller wave is 0.510619
on reaching position x= 31.8, and of the larger wave 0.999364 having the position x= 46.7, so that
the difference in amplitudes is 0.010619 for the smaller wave and 0.000636 for the larger wave. For the
second case, we have studied the interaction of two solitary waves with the parameters p = 4, c1 =
0.2, c2 = 1/80. So the amplitudes of the two solitary waves are in the ratio 2:1. For this case, the
experiment is run until time t= 120. The three invariants in this case are recorded in Table 8. The
results in this table indicate that the numerical values of the invariants are in good agreement with
those of the methods in [8, 31, 32] during the computer run. Figure 8 shows the development of the
solitary wave interaction.

6.3. Evolution of solitons

Finally, another attracting initial value problem for the GEW equation is the evolution of the solitons
that is used as the Gaussian initial condition in solitary waves given by

U(x, 0) = exp(−x2). (44)

Since the behavior of the solution depends on values of μ, we choose different values of μ = 0.1
andμ = 0.05 for p= 2,3,4. The numerical computations are done up to t= 12. Calculated numerical
invariants at different values of t are documented in Table 9. From this table, we can easily see that as
the value of μ increases, the variations of the invariants become smaller and it is seen that calculated
invariant values are satisfactorily constant. The development of the evolution of solitons is presented

Table 9. Maxwellian initial condition for different values ofμ.

p= 2 p= 3 p= 4

μ t I1 I2 I3 I1 I2 I3 I1 I2 I3

0 1.7724537 1.3792767 0.8862269 1.7724537 1.3792767 0.7926655 1.7724537 1.3792767 0.7236013
0.1 4 1.7724537 1.5760586 0.8862269 1.7724537 1.6168691 0.7926655 1.7724537 1.6360543 0.7236013

8 1.7724537 1.5838481 0.8862269 1.7724537 1.6245008 0.7926655 1.7724537 1.6481131 0.7236013
12 1.7724537 1.5920722 0.8862269 1.7724537 1.6325922 0.7926655 1.7724537 1.6531844 0.7236013

[31] 12 1.7724 1.3786 0.8862 1.7724 1.3786 0.7928 1.7725 1.3786 0.7243
[32] 12 1.7724 1.3785 0.8861 1.7724 1.3787 0.7926 1.7734 1.3836 0.7224

0 1.7724537 1.3162954 0.8862269 1.7724537 1.3162954 0.7926655 1.7724537 1.3162954 0.7236013
4 1.7724537 1.5406812 0.8862269 1.7724537 1.5766908 0.7926655 1.7724537 1.6243519 0.7236013

0.05 8 1.7724537 1.6342604 0.8862269 1.7724537 1.6367952 0.7926655 1.7724537 1.6554614 0.7236013
12 1.7724537 1.6835979 0.8862269 1.7724537 1.6372439 0.7926655 1.7724537 1.7079133 0.7236013

[31] 12 1.7724 1.3159 0.8864 1.7725 1.3160 0.7940 1.7735 1.3188 0.7345
[32] 12 1.7724 1.3160 0.8861 1.7724 1.3156 0.7922 1.7724 1.3177 0.7245

(a) (b)

Figure 9. Maxwellian initial condition p = 2, (a)μ = 0.1, (b)μ = 0.05 at t = 12.
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(a) (b)

Figure 10. Maxwellian initial condition p = 3, (a)μ = 0.1, (b)μ = 0.05 at t = 12.

(a) (b)

Figure 11. Maxwellian initial condition p = 4, (a)μ = 0.1, (b)μ = 0.05 at t = 12.

in Figures 9–11. It is clearly seen in these figures that when the value of μ decreases, the number of
the stable solitary wave increases.

7. Concluding remarks

• Solitarywave solutions of theGEWequation by using the Petrov–Galerkinmethod based on linear
B-spline weight functions and quadratic B-spline trial functions have been successfully obtained.

• Existence and uniqueness of solutions of the weak form of the given problem as well as the proof
of convergence have been proposed.

• Solutions of a semi-discrete finite element formulation of the equation and the theoretical bound
of the error in the semi-discrete scheme are demonstrated.

• The theoretical upper bound of the error in such a full discrete approximation at t = tn has been
proved.

• Our numerical algorithm has been tested by implementing three test problems involving a single
solitary wave in which analytic solution is known and expanded it to investigate the interaction of
two solitary waves and evolution of solitons where the analytic solutions are generally unknown
during the interaction.

• The proffered method has been shown to be unconditionally stable.
• For single soliton the L2- and L∞-error norms and for the three test problems the invariant quan-

tities I1, I2 and I3 have been computed. From the obtained results, it is obviously clear that the
error norms are sufficiently small and the invariants are marginally constant in all computer run.
We can also see that our algorithm for the GEW equation is more accurate than the other earlier
algorithms in the literature.
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• Our method is an effective and a productive method to study behaviors of the dispersive shallow
water waves.

Disclosure statement
No potential conflict of interest was reported by the authors.

References
[1] Li Q, Mei L. Local momentum-preserving algorithms for the GRLW equation. Appl Math Comput.

2018;330:77–92.
[2] Peregrine DH. Calculations of the development of an undular bore. J Fluid Mech. 1996;25:321–330.
[3] Peregrine DH. Long waves on a beach. J Fluid Mech. 1967;27:815–827.
[4] Benjamin TB, Bona JL, Mahony JJ. Model equations for waves in nonlinear dispersive systems. Philos Trans R Soc

London. 1972;227:47–78.
[5] Raslan KR, EL-Danaf TS, Ali KK. New numerical treatment for solving the KDV equation. J Abstr ComputMath.

2017;2(1):1–12.
[6] Morrison PJ, Meiss JD, Carey JR. Scattering of RLW solitary waves. Physica. 1981;11D:324–336.
[7] Hamdi S, Enright WH, Schiesser WE, et al. Exact solutions of the generalized equal width wave equation.

Proceedings of the International Conference on Computational Science and Its Applications 2003;2668:725–734.
[8] Karakoc SBG, Zeybek H. A cubic B-spline Galerkin approach for the numerical simulation of the GEW equation.

Stat Optim Inf Comput. 2016;4:30–41.
[9] Kaya D. A numerical simulation of solitary-wave solutions of the generalized regularized long wave equation.

Appl Math Comput. 2004;149:833–841.
[10] Kaya D, El-Sayed SM. An application of the decomposition method for the generalized KdV and RLW equations.

Chaos Solitons Fractals. 2003;17:869–877.
[11] Gardner LRT, Gardner GA, Geyikli T. The boundary forced MKdV equation. J Comput Phys. 1994;11:5–12.
[12] Dodd RK, Eilbeck JC, Gibbon JD, et al. Solitons and nonlinear wave equations. New York (NY): Academic Press;

1982.
[13] Lewis JC, Tjon JA. Resonant production of solitons in the RLW equation. Phys Lett A. 1979;73:275–279.
[14] Panahipour H. Numerical simulation of GEW equation using RBF collocation method. Commun Numer Anal.

2012;2012:28 pages, doi:10.5899/2012/cna-00059
[15] Gardner LRT,GardnerGA. Solitarywaves of the equalwidthwave equation. J Comput Phys. 1991;101(1):218–223.
[16] Gardner LRT, Gardner GA, Ayoup FA, et al. Simulations of the EWundular bore. CommunNumerMethods Eng.

1997;13:583–592.
[17] Zaki SI. A least-squares finite element scheme for the EW equation. Comput Methods Appl Mech Eng.

2000;189(2):587–594.
[18] EsenA.Anumerical solution of the equalwidthwave equation by a lumpedGalerkinmethod.ApplMathComput.

2005;168(1):270–282.
[19] Saka B. A finite element method for equal width equation. Appl Math Comput. 2006;175(1):730–747.
[20] Dag I, Saka B. A cubic B-spline collocationmethod for the EW equation. Math Comput Appl. 2004;9(3):381–392.
[21] Karakoc SBGK, Geyikli T. Numerical solution of the modified equal width wave equation. Int J Differ Equations.

2012;2012:1–15.
[22] Geyikli T, Karakoc SBG. Petrov-Galerkin method with cubic B-splines for solving the MEW equation. Bull Belg

Math Soc Simon Stevin. 2012;19:215–227.
[23] Geyikli T, Karakoc SBG. Septic B-spline collocation method for the numerical solution of the modified equal

width wave equation. Appl Math. 2011;2:739–749.
[24] Geyikli T, Karakoc SBG. Subdomain finite element method with quartic B-splines for the modified equal width

wave equation. Comput Math Math Phys. 2015;55(3):410–421.
[25] Karakoc SBG. Numerical solutions of the modified equal width wave equation with finite elements method [PhD

thesis]. Malatya: Inonu University; 2011.
[26] Esen A. A lumped Galerkin method for the numerical solution of the modified equal-width wave equation using

quadratic B-splines. Int J Comput Math. 2006;83(5–6):449–459.
[27] Saka B. Algorithms for numerical solution of the modified equal width wave equation using collocation method.

Math Comput Model. 2007;45(9–10):1096–1117.
[28] Evans DJ, Raslan KR. Solitary waves for the generalized equal width (GEW) equation. Int J Comput Math.

2005;82(4):445–455.
[29] Raslan KR. Collocationmethod using cubic B-spline for the generalised equal width equation. Int J Simul Process

Modelling. 2006;2:37–44.

http://doi.org/10.5899/2012/cna-00059


734 S. K. BHOWMIK AND S. B. G. KARAKOC

[30] Taghizadeh N, Mirzazadeh M, Akbari M, et al. Exact solutions for generalized equal width equation. Math Sci
Lett. 2013;2:99–106.

[31] Zeybek H, Karakoc SBG. Application of the collocation method with B-splines to the GEW equation. Electron
Trans Numer Anal. 2017;46:71–88.

[32] Roshan T. A Petrov–Galerkin method for solving the generalized regularized equal width (GEW) equation. J
Comput Appl Math. 2011;235:1641–1652

[33] Atouani N, Omrani K. Galerkin finite element method for the Rosenau-RLW equation. Comput Math Appl.
2013;66(3):289–303

[34] Thomee V. Galerkin finite element methods for parabolic problems. 2nd ed; Berlin: Springer; 2006. ISSN: 0179-
3632. (Springer Series in Computational Mathematics.)

[35] Ciarlet PG. The finite elementmethod for elliptic problems. Paris: Society for Industrial andAppliedMathematics;
2002.

[36] Karakoc SBG, Bhowmik SK. Galerkin finite element solution for Benjamin-Bona-Mahony-Burgers equation with
cubic B-splines. Comput Math Appl. 2019;77(7):1917–1932.

[37] Prenter PM. Splines and variational methods. New York (NY): John Wiley & Sons; 1975.


	1. Introduction
	2. Variational formulation and its analysis
	2.1. Semi-discrete Galerkin scheme

	3. Full discrete scheme
	4. Construction and implementation of the method
	5. Stability analysis
	6. Computational results and discussions
	6.1. Propagation of single solitary waves
	6.2. Interaction of two solitary waves
	6.3. Evolution of solitons

	7. Concluding remarks
	Disclosure statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


