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Abstract: Predicting the secondary structure from protein sequence plays a crucial role in estimating
the 3D structure, which has applications in drug design and in understanding the function of proteins.
As new genes and proteins are discovered, the large size of the protein databases and datasets that
can be used for training prediction models grows considerably. A two-stage hybrid classifier, which
employs dynamic Bayesian networks and a support vector machine (SVM) has been shown to provide
state-of-the-art prediction accuracy for protein secondary structure prediction. However, SVM is
not efficient for large datasets due to the quadratic optimization involved in model training. In this
paper, two techniques are implemented on CB513 benchmark for reducing the number of samples
in the train set of the SVM. The first method randomly selects a fraction of data samples from the
train set using a stratified selection strategy. This approach can remove approximately 50% of the
data samples from the train set and reduce the model training time by 73.38% on average without
decreasing the prediction accuracy significantly. The second method clusters the data samples by
a hierarchical clustering algorithm and replaces the train set samples with nearest neighbors of the
cluster centers in order to improve the training time. To cluster the feature vectors, the hierarchical
clustering method is implemented, for which the number of clusters and the number of nearest
neighbors are optimized as hyper-parameters by computing the prediction accuracy on validation
sets. It is found that clustering can reduce the size of the train set by 26% without reducing the
prediction accuracy. Among the clustering techniques Ward’s method provided the best accuracy on
test data.

Keywords: protein secondary structure prediction; support vector machine; bayesian network;
stratified sampling; hierarchical clustering

1. Introduction

The four different levels of protein structure are known as primary, secondary, tertiary and
quaternary structure. The primary structure consists of amino acids that are linked by peptide bonds
that make up the protein. The secondary structure is the local conformation of amino acids through
hydrogen bonding interactions into regular structures. The three common types of secondary structures
are the a-helices, B-sheets and coils (or loops). Secondary structure elements and motifs come together
to form tertiary structure. The tertiary structure is the global three-dimensional structure of an amino
acid chain or a domain within a protein. Finally quaternary structure refers to multiple chains uniting
together via chemical bonds that operate as a single functional unit [1,2].
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There are millions of amino acid sequences in protein databases and it is essential to annotate
them according to their structural and functional roles [3]. For instance, predicting the one-dimensional
properties of proteins such as secondary structure and solvent accessibility plays a crucial role in
predicting the 3D structure and understanding the function of proteins [4,5]. Several classification
methods have been proposed in the literature for this purpose such as neural networks [6,7],
support vector machines [8], dynamic Bayesian networks [9] and hybrid methods that combine
different classifiers [9,10]. To date, most of the research efforts in this field have concentrated on
developing advanced prediction methods. In the mean time, as new genes and proteins are discovered,
the size of the protein databases and datasets that can be used for training prediction models grows
considerably. Therefore efficient algorithms and/or data reduction strategies should be developed
that can circumvent the computational cost caused by big data conditions while incorporating the
useful information into prediction models. Though there are methods developed for reducing the
number of features (i.e., dimensions) of the classifiers by employing feature selection or dimension
reduction techniques [11], to the best of our knowledge, there is no work in the literature for reducing
the number of train set samples using techniques such as sampling and clustering for predicting
one-dimensional structural properties of proteins. Recently, a new database called UniClust has been
introduced that is derived by clustering millions of proteins [12]. This database is introduced as the
sequence database of the HHblits method [13], which aligns a query protein against the amino acid
sequences in the database. There are also other databases introduced earlier such as SCOP [14] and
PFAM [15] that organize proteins hierarchically into multiple levels (e.g., family, superfamily, fold,
class, domain or clan). Among those SCOP assigns proteins to families based on multiple criteria
and using clustering. However none of these databases and clustering approaches are employed
directly to reduce the size of the train set of a machine learning classifier for predicting structural
properties of proteins.

In this paper, the DSPRED method is employed to predict the secondary structure of proteins,
which is a two-stage hybrid classifier that combines dynamic Bayesian networks and a support vector
machine (SVM). SVMs are known to be effective for combining heterogenous input features as in
DSPRED which employs PSSM features as well as features in the form of probability distributions
(see Section 3.4). It has been shown in Aydin et al. that replacing SVM with other standard classifiers
did not improve the accuracy of DSPRED [16]. One drawback of the SVM is high computational
complexity in model training, which can be prohibitive for large datasets [17]. To address this problem,
different approaches have been proposed in the literature such as stratified sampling [18], random
selection [19], clustering analysis [19], de-clustering [20] and Learning Vector Quantization (LVQ)
neural network [21]. In the present study, random stratified sampling and clustering techniques are
employed in order to reduce the number of data samples used for training the SVM classifier of the
DSPRED method. Note that no matter which classifier is used, reducing the dataset size by reducing
the number of data samples will improve the speed of making predictions, which is useful considering
the fact that the protein data in public databases is growing rapidly. As an alternative to sample
reduction, dimension reduction techniques such as feature selection can also be employed to reduce
the training time of the SVM. This is explored in Aydin et al. [11] and Xie et al. [22] and deserves
a separate analysis. It should be noted that in Aydin et al. [11] reducing the dimensions by feature
selection did not improve the accuracy of prediction. Therefore in this work, we reduce the number
of samples not only to reduce the model training time of the SVM but also to explore whether the
prediction accuracy will improve.

2. Related Studies

In this section, we give a brief review of the literature that employs SVMs for secondary structure
prediction and studies that propose methods for reducing the training time of the SVM through sample
reduction. Lin et al. proposed a multi-SVM ensemble to improve the performance of secondary
structure prediction. Their method contains two layers: the first layer consists of an ensemble of five
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classifiers and the second layer is built by three SVMs. The multi-SVM ensemble employs bagging
to resample the training dataset through bootstrap sampling and achieves improved performance
on secondary structure prediction when a seven fold cross-validation is performed on the RS126
dataset [23]. Hua et al. proposed a new method of protein secondary structure prediction which is
based on the support vector machine (SVM). Their method achieves a three-state per-residue accuracy
(Q3) of 73.5% by seven fold cross validation on the CB513 dataset [24]. Although there are many
other publications that employ SVMs for protein secondary structure prediction, none of these include
sample reduction for reducing the training time of the SVM. Therefore we continue with methods that
improve the model training time of SVM in other problems. Jun employed stratified sampling to select
a subset of examples from training set [18]. In this work, the author selected 10% of the samples from
each class, which reduces the size of the training set by 10-fold. Then an SVM classifier is trained using
the reduced dataset. The method is applied to four datasets from UCI Machine Learning repository.
Though the prediction accuracy of the models trained by 10% stratified sampling is maintained for
the adult and iris datasets, it reduced considerably as compared to using all the samples for letter
image recognition and protein location sites datasets. In another work, Hens and Tiwari reduced the
number of features by F-score and stratified sampling for credit scoring problem and obtained similar
accuracy as the other state-of-the-art methods while reducing the computational time significantly [25].
In addition to sampling strategies, there are also methods that employ clustering to reduce the sample
size of the training sets. Awad et al. [19] employed a hierarchical clustering approach to improve
the training time of an SVM particularly for large datasets. They proposed three techniques named
TCT-SVM, TCTD-SVM and OTC-SVM, which are shown to work efficiently for model training. Among
those TCT-SVM performed better than the others in terms of accuracy but it had a higher model
training time [19]. Yu et al. have proposed a new method called CB-SVM (Clustering-Based SVM) that
integrates a scalable clustering method for large datasets while generating high classification accuracy.
The authors claim that the CB-SVM algorithm can reduce the total number of data points effectively
for training an SVM [20].

3. Materials and Methods
3.1. Dataset

To further validate our method, we applied it to the non-homologous CB513 dataset constructed
by Reference [26], which contains 513 protein chains and 84,119 amino acids. This dataset is one of the
standard benchmarks in protein secondary structure prediction to assess the accuracy of algorithms [27].
It contains protein sequences and structure label assignments obtained using the DSSP program [28]
starting from the structure information in Protein Data Bank (PDB) [29]. The DSSP convention is used
to map 8-state representation of secondary structure labels into 3-state by applying the following
conversion rule: H, G, ItoH; E, BtoE;S, T, to L.

3.2. Problem Definition

Starting from an amino acid sequence, in secondary structure prediction problem, the goal is to
assign a structural class label from a 3-letter alphabet (H: Helix, E: Strand, L: Loop) to each amino acid
of the protein (Figure 1).

MSNTTWGLOQRDITPRLGARLVQEGNQLHYLA
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Figure 1. Definition of protein secondary structure prediction problem.
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3.3. Feature Extraction for Protein Secondary Structure Prediction

The input features of our prediction methods include sequence profiles in the form of
position-specific scoring matrices (PSSMs) [30] derived by PSI-BLAST [31], HHMAKE PSSMs as
well as structural profile matrices. Each target protein in the CB513 benchmark is aligned with the
proteins of the NCBI's NR database [32] using the PSI-BLAST method [31] to compute a position
specific scoring matrix (PSSM). In the next step, the proteins that are similar to target are aligned
jointly by a multiple alignment algorithm and a PSSM is computed by normalizing the frequency
of occurrence counts of amino acids [31]. Similarly, HHMAKE PSSMs are computed by aligning
the target proteins against the NR20 database (a reduced version of the NR) using the HHblits
(https:/ /toolkit.tuebingen.mpg.de/tools/hhblits) method and converting the HMM-profile model’s
match state distributions to a frequency table. In the next step, the HMM-profile of the target is aligned
against the HMM-profiles in the PDB70 [33] database using the second step of the HHblits method.
To generate structural profiles, the HMM-profile of the target is aligned against the HMM-profiles in
the PDB70 [33] database using the second step of the HHblits method.

The size of the PSI-BLAST and HHMAKE PSSMs are N by 20 and the size of the structural profile
matrix is N by 3, where N is the number of amino acids in the target protein. Each row of PSI-BLAST
and HHMAKE PSSM contains the propensity of observing one of the 20 amino acids at a particular
amino acid of the target. On the other hand, each row of structural profile matrix and the three
distributions in Section 3.4 contains the probability of observing the three secondary structure labels at
a particular amino acid of the target. An example structural profile matrix is shown in Figure 2. In the
present study, only distant templates are used to construct structural profiles matrices by removing
templates for which the percentage of sequence identity score with respect to target is greater than
20%. Once the profile matrices are obtained they are scaled by sigmoidal transformation to transform
the features to the range [0, 1], which are sent as input to DSPRED method for classification. Details
of feature extraction can be found in Aydin et al. [9] and the thesis work of Gormez [34]. Details of
weighted frequency computation for deriving structural profile matrices can be found in Reference [35].

H E L
0.07 0.03 0.90
0.09 0.11 0.80
0.60 0.10 0.30
0.70 0.10 0.20
0.80 0.15 0.05
0.20 0.70 0.10
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Figure 2. A structural profile matrix for protein secondary structure prediction.
3.4. DSPRED Method

To predict the secondary structure class of each amino acid, the DSPRED method is used, which
employs separate dynamic Bayesian network (DBN) classifiers for PSI-BLAST and HHMAKE PSSMs.
Each DBN model produces a marginal a posteriori distribution (called Distribution 1 and 2) of class
labels given the input features. These distributions are combined with structural profile matrices
through model averaging to obtain Distribution 3 [11]. In this work, the one-sided amino acid window
of DBN classifiers is set to L4 = 5 and the one-sided secondary structure history window is set to
Ls = 4. In the next step, PSI-BLAST PSSM, HHMAKE PSSM, Distributions 1, 2 and 3 are used as
input features of the SVM classifier. To predict the secondary structure class, a symmetric window of
size 11 is taken around each amino acid and features in this window are concatenated to obtain a total
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of 539 features (PSI-BLAST PSSM: 20 x 11 = 220 features, HHMAKE PSSM: 20 x 11 = 220 features,
Distributions 1-3: 3 x 3 x 11 = 99 features). The steps of the DSPRED method are shown in Figure 3.
Note that in the present work the second structural profile matrix is not employed (i.e., wy is set to 0).
Details of DSPRED can be found in Aydin et al. [9,11] and the thesis work of Gormez [34].
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Figure 3. The steps of the DSPRED method.

3.5. Training a Support Vector Machine with Large Datasets

Support vector machine is a powerful method for classification and regression problems [36,37].
It has been applied successfully to many real-world problems, including signal processing, image
processing and bioinformatics due to its high accuracy, ability to work in high dimensions and process
non-vectorial data and flexibility in modelling diverse sources of data [38]. The SVM maps the input
space into a high dimensional feature space and then constructs an optimal hyperplane in the new
space [36]. Although SVM performs well in complex prediction tasks it solves a quadratic optimization
problem during model training, which could be disadvantageous for large datasets [17]. For instance,
it would take years to train an SVM on a dataset of one million records and with many features [20,39].
Based on the improvements in data collection, storage and processing technologies the size of the
databases is growing at a rapid rate in many disciplines including bioinformatics [40]. Therefore
efficient methods should be developed for speeding the training phase of the SVM.

In the following sections, the methods implemented in this work for training the SVM classifier of
DSPRED method are explained in more detail.

3.5.1. Sample Reduction by Stratified Random Sampling

In stratified random sampling, a fixed percentage of train set samples (i.e., amino acids) are
randomly selected from each class type. This approach preserves the ratio of class types in the reduced
train set. In this paper, the percentage parameter is increased from 10% to 100% with increments of
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10%. For instance if this parameter is set to 10% then the resulting train set contains approximately 10%
of the amino acids in the original train set and if it is set to 100% then it contains all the data samples.
After applying stratified random sampling, the SVM model is trained using the reduced train sets and
the prediction accuracy is computed on the test sets (see Section 4.1).

3.5.2. Sample Reduction by Hierarchical Clustering

The second method clusters the data samples by a hierarchical clustering algorithm and replaces
the train set samples with nearest neighbors of the cluster centers. First, the PSSM feature vectors
of the amino acids in train set are clustered using hierarchical clustering algorithm. The number of
clusters is denoted as N.. In the next step, k nearest neighbors of each cluster center are selected as the
data samples for train set of the SVM classifier. Figure 4 summarizes the steps of sample reduction
by clustering procedure. The hyper-parameters N, and k are optimized by computing the prediction
accuracy on validation sets as explained in the next section. Different methods are employed for
hierarchical clustering and among those the Ward’s method provided the best results [41]. The Ward’s
method applies a minimum variance criterion that minimizes the total within cluster variance. At each
step, it finds the pair of clusters that leads to minimum increase in total within-cluster variance after
merging. This increase is a weighted square distance between cluster centers. The initial cluster
distances are defined to be the squared Euclidean distances between points [41,42].

According to the scipy’s documents, for the Ward’s method, an algorithm called nearest-neighbors
chain is implemented which has time complexity O(n?). For other methods a naive algorithm is
implemented with O(n®) time complexity. All algorithms use O(n?) memory [43,44].

Feature vectors
(n rows)

v

Hierarchical clustering (M- clusters) <4

Optimization T

Mearest neighbors selection of each

Parameter tuning for N:

< Parameter tuning for k
cluster center (k nearest neighbors)

v

Optimization
i ¢ "y
SVM Training and Testing
L A

Figure 4. Sample reduction by hierarchical clustering.
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3.6. Cross-Validation and Hyper-Parameter Optimization for Clustering

The accuracy of data reduction strategies is evaluated in a cross-validation setting. For this
purpose, proteins in CB513 are randomly assigned to seven folds and the train/test splits are formed
accordingly. This results in a total of seven train test set pairs. For instance, in the first train set there are
a total of 73,622 amino acid samples 34.70% (25,544) of which belong to helix, 22.26% (16,387) to beta
strand and 43.04% (31,691) to loop. Based on this assignment, there remains a total of 10.497 amino
acids for the first test set. In train and test sets, each amino acid is represented by a total of 539 features.

The number of clusters and number of nearest neighbours, which are hyper-parameters of the
“sample reduction by hierarchical clustering” approach are optimized by performing a grid search.
The first hyper-parameter of N, represents the number of clusters. To optimize this parameter, values
ranging from 500 to 1500 are considered. The second hyper-parameter k is the number of nearest
neighbors, which is also optimized by choosing values from 1 to 19. For this purpose, approximately
10% of the proteins from each train set are randomly selected and a total of seven validation sets are
formed. Note that the validation sets are used as secondary test sets to optimize the hyper-parameters.
The reason for selecting 10% of the train set is to allow as many samples as possible in the train set so
that the prediction accuracy is not affected. In selecting validation sets stratified random selection is
not performed because the there is not a large imbalance between different class types. Once validation
sets are formed, the remaining samples are used to train the SVM models and prediction accuracies
are computed on validation sets for different values of the hyper-parameters. Then the parameters
with the best validation set accuracy are selected for each iteration of the cross-validation experiment.
Once the optimum hyper-parameters are found (a total of seven optimum parameter pairs), the SVM
is trained on the original train sets and predictions are computed on test sets.

3.7. System Architecture and Hyper-Parameters of the SVM

The SVM with RBF kernel, which provides satisfactory results for protein secondary structure
prediction is implemened using the libSVM software (version 3.21). The hyper-parameters of the SVM
are selected as a = 0.00781 and C = 1.0, which have been optimized previously by Aydin et al. [9].
The methods are implemented on a Centos Enterprise Linux 7.3 OS, with an 8 x 2 CPU (CPU/GPU),
Intel(R) Xeon(R) E5-2690 processor, 2.90 GHz CPU and 256GB RAM as well as on Ubuntu 16.04.2 LTS
(Xenial Xerus) OS, with an Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz and 64GB RAM.

4. Results

4.1. Sample Reduction by Stratified Random Selection

Stratified random selection is performed for each train set of the 7-fold cross-validation experiment.
For this purpose, a fixed percentage of amino acid samples are selected randomly from the train set
using stratified sampling and the SVM model is trained on this reduced set. In the next step, predictions
are computed on the test sets. Figures 5 and 6 show the secondary structure prediction accuracy of
the SVM classifier as well as model training times, respectively for all folds of the cross-validation.
According to these results, it is possible to remove approximately 50% of data samples from the
train sets of CB513 without decreasing the prediction accuracy significantly. Note that the obtained
accuracy values are comparable to the state-of-the-art accuracy on CB513 benchmark [11]. Furthermore,
the model training time of the SVM is decreased by 73.38% when the training set is reduced by 50% to
contain approximately 36,000 amino acid samples only.

Table 1 summarizes the overall prediction accuracies of the stratified random selection method
using the various training samples and k-fold (k = 7) cross-validation. In this table, D represents the
sampled dataset as a percentage, S represents the randomly and uniquely selected rows, Acc, denotes
the overall accuracy in percentages (i.e., Q3) on validation sets and Time; is the training time in hours,
minutes and seconds, Time, is the prediction time in minutes and seconds.
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Table 1. Overall prediction accuracies of the stratified random selection method using the various training samples and k-fold (k = 7) cross-validation.

8of13

CV-Fold 1 CV-Fold 2 CV-Fold 3 CV-Fold 4
b S Accy Time; Timey S Accp Time; Time, S Accp Timey Time, S Accp Time; Time,
10 7362  81.0803 00:02:55  00:46 7246 80.9144 00:02:19  00:46 7188  81.6860 00:02:20  00:48 7207  81.2044 00:04:03 01:15
20 14,724 813566 00:10:32  01:22 14,492 815577 00:08:26 01:20 14,375 81.7677 00:08:57 01:28 14,413 819924 00:14:00 02:04
30 22,087 812708 00:24:26  02:31 21,738 81.5406 00:33:08 03:08 21,563 822905 00:19:09 01:55 21,619 822495 00:30:18  02:52
40 29,449 81.6614 00:45:17 03:17 28,984 81.6092 00:56:39 03:37 28,751 825192 00:33:35 02:25 28,825 823076 00:59:44  04:49
50 36,811 81.7853 01:20:09 03:24 36,231 82.2868 01:29:45 04:04 35939 82.7969 01:03:47 03:32 36,032 823988 01:37:28  05:09
60 44,173 81.7567 01:51:31  04:07 43,477 822525 02:06:47 04:48 43,126 82.8459 01:34:15 04:04 43,238 824320 02:21:37  05:05
70 51,353 81.8329 02:33:51  04:00 50,723 82.1925 02:47:47 0514 50,314 829848 02:07:46  04:52 50,444 825647 03:03:54 05:32
80 58,898 81.7948 02:41:.01 04:26 57,969 823812 03:30:18 05:41 57,502 83.0665 02:52:.04 05:36 57,872 82.6642 03:51:.04 06:05
90 66,260 819091 03:34:47 04:50 65,215 823812 04:20:.07 06:11 64,689 83.1727 03:12:45 05:33 64,857 82.6228 04:39:29 06:34
100 73,622 81.8043 04:16:21 04:59 72,461 823555 04:35:17 06:44 71,877 83.0502 06:16:19 09:59 72,063 825813 06:24:23  08:42
CV-Fold 5 CV-Fold 6 CV-Fold 7
b S Accy Time; Time, S Accy Time; Time, S Accy Time; Time,
10 7228  80.9697 00:03:41  01:09 7154  82.0372 00:02:33  00:51 7087  83.2541 00:03:16  01:08
20 14,456 81.1133 00:12:58 01:56 14,309 82.2281 00:09:09 01:33 14,173 83.5182 00:10:53  01:47
30 21,684 814173 00:02:58 02:38 21,463 82.2281 00:20:14  02:08 21,260 84.0012 00:20:23  02:20
40 28,912 81.6876 00:48:29 03:16 28,618 82.3394 00:57:00 04:15 28,347 84.2729 00:35:28  02:53
50 36,140 81.7130 01:17:51 04:00 35,772 82.4666 01:28:50 04:30 35,435 84.2955 00:56:28  03:16
60 43,368 81.8988 01:55:50 04:34 42925 82.5143 02:05:09 04:43 42,521 84.5295 01:42:06 04:42
70 50,596 82.0002 02:33:00 05:08 50,081 825700 02:42:56 05:01 49,608 84.4842 (02:16:27 05:14
80 57,824 82.0340 02:47:52 05:19 57,234 82.6495 03:19:41 05:16 56,695 84.6502 02:53:34  05:39
90 65,052 819326 03:29:32 05:19 64,390 82.6813 03:59:41 05:37 63,781 84.6502 03:31:57 06:36
100 72,280 81.9917 04:11:39 05:44 71,543 82.6574 04:40:00 0548 70,868 84.6879 04:18:13 07:17




Appl. Sci. 2019, 9, 4429 90f13

@ cv1 A cv2 cv.3 X cv4 ®cv5 Kk cvb6 @ cv7

84
@
a
2
2
= 83
o
>
Q
4
=3
Q
Q
< 8
o

81

10000 20000 30000 40000 50000 60000 70000

Number of Training Data Samples

Figure 5. Q3 accuracy for stratified random selection procedure. A seven-fold cross-validation
experiment is performed on CB513 benchmark.
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Figure 6. Model training times for stratified random selection procedure. A seven-fold cross-validation
experiment is performed on CB513 benchmark.

4.2. Sample Reduction by Hierarchical Clustering

A 7-fold cross-validation on CB513 is also performed for sample reduction by hierarchical
clustering method. In each iteration, the samples in the train set are clustered by a hierarchical
clustering algorithm and the train samples are replaced with nearest neighbors of the cluster centers.
We first optimized the number of clusters and the number of nearest neighbors from each cluster center.
Table 2 summarizes the experimental results obtained by Ward’s hierarchical clustering method. In this
table, N, represents the number of clusters, k represents the number of nearest neighbors from each
cluster center, Nj, is the number of train set samples, Acc, denotes the overall accuracy in percentages
(i.e., Q3) on validation sets and Acc; is the overall accuracy on test sets. An N, value of “all” represents
the setting in which all the samples are used for model training (i.e., each sample is assigned to a
different cluster). The optimum number of clusters for each fold is 1500 except for the third and fourth
folds. Typically, 17 closest samples are selected from each cluster based on the distance from cluster
center. At the first fold, 13 closest samples were selected as the optimum number of nearest neighbors.
Test set prediction accuracy is obtained as almost identical both on reduced and the whole datasets for
each fold of the cross-validation experiment, which is comparable to the state-of-the-art [11]. Data in
the training set are preprocessed before inputting to the SVM in order to improve the training time.
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As a result of these experiments clustering approach can reduce the train set size by 26% without
reducing the prediction accuracy significantly.

Table 2. Results for sample reduction by Ward'’s hierarchical clustering. A seven-fold cross-validation
experiment is performed on CB513 benchmark.

CV-Fold k N N Accy (%) Acct(%)

1 13 1500 48,928  83.5473 81.9567
1 all 65903  83.8700 81.7186
2 17 1500 55,458  81.3475 82.1839
2 all 65,212  81.1100 82.1839
3 17 1100 47,607  84.0580 82.9848
3 all 64,833  83.8733 83.0583
4 17 1400 54,249  83.3821 82.6808
4 all 65901  83.3983 82.5315
5 17 1500 55,628  84.1406 81.8397
5 all 65,048  84.2652 82.0593
6 17 1500 54,810  81.9583 82.4427
6 all 63428 82.1063 82.6733
7 17 1500 54,330  83.0679 84.8011
7 all 62,517  83.0439 84.7257

In addition to prediction accuracy, it is of interest to analyze the running time of the sample
reduction by hierarchical clustering method and the running time of the SVM classifier with and
without clustering applied. For this purpose the following experiment is performed on the first fold of
the seven-fold cross-validation experiment. The number of clusters N, is set to 1000 and the number
of nearest neighbors k to 13, which resulted in 36,622 training examples for the SVM. The running
times are obtained for each step as follows. Hierarchical clustering: 14.51 s, finding the k = 13 nearest
neighbors of cluster centers: 59.25 s, training of SVM using 36,622 samples: 6 h, 16 min and 43 s.
The total running time of the sample reduction by hierarchical clustering approach is obtained as 6 h,
17 min and 56 s. When the SVM is trained using all of the samples in the first fold’s training set it took
14 h, 10 min and 22 s. Based on these results, it can be stated that the running time of sample reduction
by hierarchical clustering followed by SVM training is typically lower than training the SVM using the
full training set.

4.3. Average Accuracies

Table 3 summarizes the average and standard deviation of the accuracies obtained from the 7 folds
of cross-validation experiment on CB513. In this table the first two rows include the results obtained
for the sample reduction strategies and the last row represents the case where all samples are used
to train the SVM classifier. Having low standard deviation values demonstrates that the accuracy
evaluations are robust and models are trained with sufficiently large samples. To assess whether the
difference between the accuracy values of sample reduction methods and the method that uses all
samples is statistically significant, a two-tailed Z-test is performed with a confidence value of 95%.
Based on this test, the accuracy difference between sample reduction by stratified random selection and
the method that uses all samples is not found to be statistically significant with a Z-score of —0.0217
and a p-value of 0.98404. On the other hand, the accuracy difference between sample reduction by
clustering and the method that uses all samples is statistically significant with a Z-score of —4.8713 and
a p-value < 1 x107°. Based on these results, it can be concluded that sample reduction by stratified
random sampling is more effective than sample reduction by hierarchical clustering approach for
protein secondary structure prediction.
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Table 3. Average and standard deviation of test accuracies obtained for the 7-folds of cross-validation
experiment on CB513.

Method Acce (%) std(Accy)
Sample reduction by random selection 82.728 0.947
Sample reduction by hierarchical clustering 81.825 1.285
No sample reduction 82.732 0.958

5. Conclusions

In this paper, we proposed two data reduction strategies for improving the model training time
of a support vector machine classifier. The proposed solutions can reduce the dataset size by 26-50%
up to approximately 36,000 amino acid samples. The accuracy evaluations are performed by doing
cross-validation experiments on CB513 benchmark. For larger datasets, it can still be sufficient to
keep approximately 36,000 samples in train set to get satisfactory prediction accuracy, which may
correspond to removing even higher percentage of data samples from the train set. This will be
investigated further as a future work. Additionally, de-clustering strategies can be implemented and
the clusters can be expanded mainly around the decision boundaries. This will provide a finer grained
expansion of clusters on regions where the classifier has the most confusion. As a third direction,
a smaller train set can be formed for each test example using the cluster centers as guides.
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