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A B S T R A C T   

The nonequilibrium magnetic properties (phase transition temperatures, phase diagrams, hysteresis loop areas 
and correlations) are investigated in the kinetic mixed spin (1/2, 1) Ising nanowire system under the time 
varying magnetic field. The Glauber-type stochastic dynamics are employed to construct the set of mean field 
dynamic equations. The time variation of the core/shell magnetizations and the thermal behavior of the dynamic 
core/shell magnetizations are examined, extensively. The dynamic core/shell magnetizations, hysteresis loop 
areas and correlations are studied as a function of temperature in order to characterize the nature (continuous or 
discontinuous) of the phase transitions as well as to find the dynamic phase transition temperatures. The dynamic 
phase diagrams are presented in the magnetic field amplitude and temperature plane. The dynamic phase dia-
grams exhibit paramagnetic (p), ferrimagnetic (i), nonmagnetic (nm) phases, three mixed regions, (i þ nm), (i þ
p) and (nm þ p). The dynamic phase diagrams contain a dynamic tricritical point and reentrant phenomena, 
which strongly depend on interaction parameters.   

1. Introduction 

With the development of new nanotechnologies, magnetic nano-
structured materials, such as nanowires [1], nanotubes [2], nanofilms 
[3], nanorods [4], and nanoparticles [5] have attracted growing interest 
for both experimental and theoretical researchers over the last decades 
because of their fascinating mechanical, electrochemical, optical, pie-
zoelectrical properties [6–8] and technological applications from a wide 
range of disciplines, including biomedical applications, nonlinear optics, 
magnetic recording media, environmental remediation, information 
data storage, sensors, bio-separation, catalysis, magnetic particle im-
aging, biotechnology, nanofluids and propagation losses [9–13]. In 
particular, magnetic nanowires exhibit diversified amount of different 
magnetic properties such as extra single ion anisotropy contributions, 
superparamagnetism, high saturation field, high field irreversibility as 
compared with those in respective bulk materials and greatly affected by 
the particle size [14]. These phenomena originate from the surface ef-
fects and finite size that influence the magnetic behavior of individual 
nanowires [15]. 

Much effort has been dedicated to provide a better understanding of 
the magnetic behavior of nanowires analytically [16], experimentally 
[17], and in computer simulations [18]. Magnetic nanowires have also 
fabricated by using a diverse range of fabrication techniques, such as 

ultrashort laser ablation [19], trioctylamine solution method [20], 
electrodeposition using anodized aluminum oxide templates [21] and 
direct-current electrodeposition [22]. Theoretically, the Ising model 
with core/shell structure has been accepted and applied successfully to 
explain many characteristic phenomena in magnetic nanomaterials such 
as magnetic nanoparticles, nanotubes and nanowires [23–30]. More-
over, the equilibrium thermal and magnetic behavior of various types of 
magnetic nanowires have been studied by use of the several statistical 
physics methods, including mean-field approximation (MFA) [31], 
effective field theory (EFT) with correlations [32], Green function 
formalism [33], Bethe Peierls approximation [34], Monte Carlo simu-
lation (MCS) [35], and Bethe lattice approximation [36]. More recently, 
Boughrara et al. [37] have investigated the phase diagrams and mag-
netic behaviors of the mixed spin (1/2, 1) Ising nanowire and they have 
obtained the phase diagrams of the system which include very rich 
critical behaviors, i.e., the first-, second-order phase transitions and a 
compensation point depending on the values of interaction parameters. 
Boughrara et al. [38] have also applied MCS to examine the phase dia-
grams (critical and compensation temperatures) of a mixed spin (1/2, 1) 
Ising nanowire with a negative core–shell interaction and a surface 
dilution. The phase diagrams of this system exhibit the first-, 
second-order phase transitions, tricritical point and critical end point. 
Albayrak [39] has studied the core–shell structured square mixed spin 
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(1/2, 1) Ising nanowire on the Bethe lattice by using the exact recursion 
relations. The obtained phase diagrams show both the first-, 
second-order phase transitions and tricritical points for the appropriate 
values of interaction parameters. 

Although the equilibrium behavior of nano-structure systems has 
been extensively investigated and is well understood, the mechanism 
behind the statistical properties of non-equilibrium systems has not yet 
been explored and is less developed intensively. The reason of this is that 
the magnetically interacting systems under the influence of sinusoidally 
time dependent oscillating magnetic field display some significant be-
haviors: dynamic phase transitions, dynamic phase diagrams, dynamic 
hysteresis loop areas and correlations. In particular, the kinetic Ising 
model was proposed as a simplified model for the analysis of a great 
variety of interacting systems such as chemical reactions, domain 
growth, contact process, catalysis and transport phenomena. The dy-
namic phase transition was first introduced in the kinetic spin-1/2 Ising 
model in the presence of a time-dependent oscillating field by using the 
MFT based on Glauber dynamics [41]. Then a great deal of studies 
concerning the dynamic phase transitions of various types of magnetic 
systems have been studied by a different of techniques such as MFT 
[42–45], MCS [46,47], EFT [48,49], real space renormalization group 
technique [50] and using recursion relations on the Bethe lattice [51]. 
Not only is it an exciting system from a merely theoretical point of view, 
but also the kinetic Ising model can be carried out to describe experi-
mental evidence in highly anisotropic (Ising-like) and ultra thin Co/Cu 
(001) ferromagnetic films [52], a [Co/Pt]3 magnetic multilayer system 
with strong perpendicular anisotropy [53], amorphous YBaCuO films 
[54], nanocomposites [55]. We should also mentioning that the dy-
namic behaviors of the single spin Ising nanostructured system have 
investigated by using the various methods [56,57]. We should also 
mention that various type of cylindrical Ising nanowire systems in an 
oscillating magnetic field have been investigated by using the MFT 
based on Glauber type stochastic dynamics [58–61]. Therefore, the 
method used in this study is a reliable and feasible to understand the 
nonequilibrium magnetic behavior of different magnetic systems. 

As far as we know, the non-equilibrium magnetic behaviors of the 
mixed spin (1/2, 1) Ising nanowire have not yet been investigated. The 
dynamic investigations on the magnetic nanosystem constitute an 
important role in the real magnetic material science, since the surface 
effects, crystal field and sinusoidally oscillating magnetic field may 
induce some important microscopic influences on the material. There-
fore, we believe that the investigation of the effects of crystal field, ex-
change interactions and magnetic field on the nonequilibrium magnetic 
behavior of the Ising nanostructured system and its derivations still need 
particular attention. Hence, in this work based on MFA with the Glauber 
dynamics, we intend to investigate the nonequilibrium properties of a 
mixed spin (1/2, 1) Ising nanowire with core-shell structure in the 
presence of a time-dependent magnetic field. In this way, the dynamic 
core/shell magnetizations, hysteresis loop areas and correlations are 
studied as a function of temperature in order to characterize the nature 
(continuous or discontinuous) of the phase transitions as well as to find 
the dynamic phase transition temperatures. As a result, the dynamic 
phase diagrams of the system are presented in the magnetic field 
amplitude and temperature plane. 

The outline of the remaining part of this paper is as follows. In 
Section 2, the model is briefly described and formulation is given. Sec-
tion 3 is devoted to the numerical results and discussions. Finally, the 
paper ends with summary and conclusions in Section 4. 

2. Model and formulations 

The MFA method with the Glauber type stochastic dynamics is 
applied to investigate the nonequilibrium magnetic behavior of the 
complex spin systems, such as the ferrimagnetic mixed spin (1/2, 1) 
Ising nanowire. The model of our interest consists of four sublattices A, 
B, C and D, which arranged alternatively. The first two sublattices A and 

B are occupied by spins σ assumed to take the values � 1/2, while the 
last two sublattices C and D are occupied by the spins S which takes the 
values � 1, 0. The schematic representation of our model with core-shell 
structure is depicted in Fig. 1. The sites of the core are occupied by σ 
spins, while those of shell are occupied by S spins. Each spin is connected 
to the nearest-neighbor spins with the exchange interaction parameters. 

The Hamiltonian of the mixed spin (1/2, 1) Ising nanowire with a 
crystal-field interaction (D) in the presence of a time dependent oscil-
lating external magnetic field is given by 

H¼ � JC

X

〈ij〉
σiσj � JS

X

〈mn〉
SmSn � JInt

X

〈kl〉
σkSl � D 

X

〈m〉
S2

m

þ hðtÞ

 
X

i
σiþ

X

m
Sm

!

; (1)  

where JC and JS are the exchange interaction parameters between the 
two nearest-neighbor magnetic particles at the core and shell, respec-
tively, and JInt is the interaction parameters between the two nearest- 
neighbor magnetic particles at the shell and core. The summations 
over all pairs of neighboring spins at the core, shell and between core 
and shell are denoted by the indexes <ij>, <mn> and <kl>, respec-
tively. The surface exchange interaction is often defined as JS ¼ JCð1 þ
ΔSÞ. ΔS is used to clarify the effects of surface and core interactions on 
the physical properties in the system. We also define a coupling 
parameter r as r ¼ jint

Jc 
h(t) is an oscillating magnetic field and is given by 

hðtÞ ¼ h0sinðwtÞ; (2)  

where h0 and w ¼ 2πν are the amplitude and the angular frequency of the 
oscillating field, respectively. The system is in contact with an 
isothermal heat bath at absolute temperature TA. 

The Glauber-type stochastic dynamics is applied to achieve the set of 
the mean-field dynamic equations. Thus, the system evolves at a rate of 
1/τ transitions per unit time according to a Glauber-type stochastic 
process. The MFA with Glauber-type stochastic dynamics are known to 
be effective in many physical relevant situations as mentioned in the 
introduction. The mathematical justifications of such approximations 
rely generally on specific considerations which depend too much on the 
model and on the initial states of the system which are required to be 
well-prepared. This kind of mean-field dynamic study, in spite of its 
simplicity and limitations such as the correlations of spin fluctuations 
have not been considered, is an adequate starting point from which easy 
to determine the complete dynamic phase diagrams. Since the deriva-
tion of the dynamic MF equations was explained exhaustively for spin-1/ 
2 system [40] and different spin systems [42–45], in here, we shall only 
give a brief summary. The spins are assumed to interact not only with 
the neighbors and oscillating external magnetic field but also with heat 
bath, based on the Glauber-type stochastic dynamics. Let us define the 
Pc1ðσ1; σ2; :::; σN; tÞ, Pc2ðσ1; σ2; :::; σN; tÞ, Ps1ðS1; S2; :::; SN; tÞ and 
Ps2ðS1; S2; :::; SN; tÞ as the probabilities per unit time that the center 
core c1, the core c2, and the shells s1, s2, respectively. Then the master 
equation for the first σ-spins, which located at the center of the nano-
wire, can be written as 

d
dt

Pc1ðσ1; σ2; :::; σN; tÞ ¼ �
X

i
Wið� σiÞ Pc1ðσ1; σ2; :::; σi; :::σN; tÞ

þ
X

i
WiðσiÞ Pc1ðσ1; σ2; :::; � σi; :::σN; tÞ:

(3)  

where WiðσiÞ is the probability per unit time that the ith σ spin changes 
from σi to – σi (while the spins on other sublattice momentarily fixed). 
Each spin σ can flip with the probability per unit time given by the 
Boltzman factor; moreover, it is easy to prove that the averages satisfy 
the equations: 
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Ω
d
dξ

mc1 ¼ � mc1 þ
1
2

tanh
hβ
2
ð2 JC mC1 þ 6 JC mC2þ h0 sinðξÞÞ

i
(4) 

We can also obtain the other mean-field dynamical equations for the 
other spins on the mixed spin Ising nanowire system by using the similar 
calculations as follows; 

Ω
d
dξ

mc2 ¼ � mc2

þ
1
2

tanh
hβ
2
ð JC mc1 þ 4 JC mc2 þ JInt ms1 þ 2 JInt ms2þ h0 sinðξÞÞ

i
(5)  

Ω
d
dξ

ms1 ¼ � ms1

þ
2 sinh½βðJInt mc2 þ 2 JS ms1 þ 2 JS ms2 þ h0 sinðξÞÞ�

2 cosh½βðJInt mc2 þ 2 JS ms1 þ 2 JS ms2 þ h0 sinðξÞÞ� þ expð � βDÞ
;

(6)  

Ω
d
dξ

ms2 ¼ � ms2

þ
2 sinh½βð2 JInt mc2 þ 2 JS ms1 þ 2 JS ms2 þ h0 sinðξÞÞ�

2 cosh½βð2 JInt mc2 þ 2 JS ms1 þ 2 JS ms2 þ h0 sinðξÞÞ� þ expð � βDÞ
;

(7)  

where mc1 ¼ 〈σi〉, mc2 ¼ 〈σj〉ms1 ¼ 〈Sm〉, ms2 ¼ 〈Sn〉, ξ ¼ w t, and Ω ¼
τ w ¼ 2π. Thus, the set of the mean-field dynamical equations for the 
average magnetizations are obtained, namely Eqs. (4)–(7). These 
equations are solved numerically by using the Adams Moulten predicter 
corrector method with Simpson integration. In the general case, the 
solutions of the equations depend on the initial conditions of the core 
and shell magnetizations. 

The dynamic order parameters or dynamic magnetizations as the 
time-averaged magnetization over a period of the oscillating magnetic 
field are given as 

Mα¼
w
2π

I

mαðtÞ dt ; (8)  

where α ¼ c1,c2, s1, s2 which correspond to the dynamic magnetizations 
on the system. On the other hand, the hysteresis loop areas are defined 
by Acharyya [62] as 

Aα ¼ �

I

mαðtÞ dh ¼ � h0w
I

mαðtÞcosðwtÞdt; (9)  

which correspond to the energy loss due to the hysteresis. The dynamic 
correlations are calculated as 

Cα ¼
w
2π

I

mαðtÞ hðtÞdt¼
wh0

2π

I

mαðtÞsinðwtÞdt: (10) 

We should also mention that in the numerical calculations, the 
hysteresis loop areas Aα and the dynamic correlations Cα are also mea-
sure in units JC. In the next section, we will give the numerical results of 
these equations. 

3. Numerical results and discussions 

3.1. Time variations of the average order parameters 

In this section, first we study the time variations of the average 
magnetizations to find the phases in the system. In order to investigate 
the behaviors of time variations of the average magnetizations, we have 
to study the stationary solutions of the set of coupled dynamical mean- 
field equations, given in Eqs. (4)–(7), when the parameters JC, JS, JInt, T 
and h are varied. The stationary solutions of these equations will be a 
periodic function of ξ with period 2π; that is, mc1ðξ þ 2πÞ ¼ mc1ðξÞ, 
mc2ðξ þ 2πÞ ¼ mc2ðξÞ, ms1ðξþ2πÞ ¼ ms1ðξÞ and ms2ðξ þ 2πÞ ¼ ms2ðξÞ. 
Moreover, they can be one of three types according to whether they have 
or do not have the properties 

mc1ðξþ πÞ¼ � mc1ðξÞ; (11a)  

mc2ðξþ πÞ¼ � mc2ðξÞ; (11b)  

ms1ðξþ πÞ¼ � ms1ðξÞ; (11c)  

ms2ðξþ πÞ ¼ � ms2ðξÞ; (11d) 

The first type of solution satisfies Eq. (11) is called a symmetric so-
lution which corresponds to a paramagnetic (p) solution. In this solu-
tion, the magnetizations are equal to each other 
ðmc1ðξÞ¼ mc2ðξÞ¼ ms1ðξÞ¼ ms2ðξÞÞ and they oscillate around zero and 
are delayed with respect to the external magnetic field. The second type 
of solution, which does not satisfy Eq. (11), is called a nonsymmetric 
solution that corresponds to a ferrimagnetic (i) solution. In this solution, 
the mc1ðξÞ and mc2ðξÞ are equal to each other ðmc1ðξÞ ¼ mc2ðξÞ ¼ �0:5Þ, 
and they do not follow the external magnetic field any more, and instead 
of oscillating around zero, they oscillate around nonzero values, namely 
�0.5; but the ms1ðξÞ and ms2ðξÞ are equal to each other and oscillate 

Fig. 1. Schematic representation of a nano-hegzagonal structure. The grey and blue circles indicate magnetic atoms at the surface shell and core, respectively. (a) 
cross-section, (b) three-dimensional. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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around �1.0 ðms1ðξÞ ¼ ms2ðξÞ ¼ �1:0Þ; hence, the system has the 
ferrimagnetic (i) phase. The third type of solution, which does not satisfy 
Eq. (11a) and Eq. (11a), and satisfy Eq. (11c) and Eq. (11d); this solution 
corresponds to a nonmagnetic (nm) solution; because the 
ðmc1ðξÞ¼ mc2ðξÞ¼�0:5Þ and ðms1ðξÞ ¼ ms2ðξÞ ¼ 0:0Þ. These facts are 
seen explicitly by solving Eqs. (4)–(7) using the Adams-Moulton pre-
dictor-corrector method for a given set of parameters and initial values, 
and obtained results are presented in Fig. 2. From Fig. 2, one can see 

following six different solutions or phases, namely the p, i and nm 
fundamental solutions, and three coexistence state or solutions, namely 
the i þ nm in which i and nm solutions coexist; the i þ p in which i and p 
solutions coexist; the nm þ p in which nm and p solutions coexist, have 
been found. In Fig. 2(a) only the symmetric solution is always obtained, 
in this case ðmc1ðξÞ¼ mc2ðξÞ¼ ms1ðξÞ¼ ms2ðξÞÞ oscillate around zero 
value ðmc1ðξÞ ¼ mc2ðξÞ ¼ ms1ðξÞ ¼ ms2ðξÞ ¼ 0:0Þ. Hence, we have 
paramagnetic (p) solution. On the other hand, in Fig. 2 (b) only the 

Fig. 2. Time variations of the average magnetizations for the mixed spin (1/2, 1) Ising nanowire system at ΔS ¼ 0.0, r ¼ 1.0. a) Exhibiting a paramagnetic (p) phase: 
D ¼ � 4.0, h ¼ 3.0 and T ¼ 1.5. b) Exhibiting a ferrimagnetic (i) phase: D ¼ 1.0, h ¼ 2.0 and T ¼ 2.25. c) Exhibiting a nonmagnetic (nm) phase: D ¼ � 3.3, h ¼ 1.0 and 
T ¼ 1.25. d) Exhibiting a coexistence region (i þ nm): D ¼ � 3.2, h ¼ 0.5 and T ¼ 0.30. e) Exhibiting a coexistence region (i þ p): D ¼ � 2.5, h ¼ 2.0 and T ¼ 0.10. f) 
Exhibiting a coexistence region (nm þ p): D ¼ � 5.0, h ¼ 2.0 and T ¼ 0.15. 
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nonsymmetric solution is found; therefore, we have the i solution. In 
Fig. 2(b), mc1ðξÞ and mc2ðξÞ oscillate around �0.5 and ms1ðξÞ and ms2ðξÞ
oscillate around �1; hence we have the ferrimagnetic (i) phase ðmc1ðξÞ ¼
mc2ðξÞ ¼ �0:5; ms1ðξÞ ¼ ms2ðξÞ ¼ �1:0Þ. In Fig. 2(c), the system 

represents both the symmetric and nonsymmetric solutions; hence we 
have the nm phase. In Fig. 2(c), mc1ðξÞ and mc2ðξÞ oscillate around �0.5, 
and ms1ðξÞ and ms2ðξÞ oscillate around zero, this solution corresponds to 
the nonmagnetic (nm) phase ðmc1ðξÞ ¼ mc2ðξÞ ¼ �0:5; ms1ðξÞ ¼
ms2ðξÞ ¼ 0:0Þ. In Fig. 2(d), mc1ðξÞ and mc2ðξÞ oscillate around either 
�0.5 and ms1ðξÞ and ms2ðξÞ oscillate around either �1, that corresponds 
to the i phase; or mc1ðξÞ and mc2ðξÞ oscillate around either �0.5 and 
ms1ðξÞ and ms2ðξÞ oscillate around zero, that corresponds to the nm 
phase; depend on the initial values of the system parameters; hence we 
have the coexistence solution (i þ nm), as explained above. In Fig. 2(e), 
mc1ðξÞ and mc2ðξÞ oscillate around either �0.5 and ms1ðξÞ and ms2ðξÞ
oscillate around either �1, that corresponds to the i phase, or they 
oscillate around zero which corresponds to the p phase depend on the 
initial values of the system parameters; hence we have the coexistence 

solution (i þ p), as explained above. In Fig. 2(f), mc1ðξÞ and mc2ðξÞ
oscillate around either �0.5; ms1ðξÞ and ms2ðξÞ oscillate around zero, 
that corresponds to the nm phase, or oscillate around zero value which 
corresponds to the p phase which also depend on the initial values of the 
system parameters; hence we have the coexistence solution (nm þ p). 
Fig. 2(a–c) does not depend on the initial values, but the other solutions 
depend on the initial values. 

3.2. Thermal behavior of the dynamic magnetizations, hysteresis loop 
areas and correlations 

In this section, we investigate the behavior of the dynamic magne-
tizations (Mα), hysteresis loop areas (Aα) and correlations (Cα) as a 
function of the temperature on the mixed spin (1/2, 1) Ising nanowire 
system for several values of interaction parameters and crystal field 
interaction in the presence of the external magnetic field. In order to 
investigate the thermal behavior of the Mα, Aα and Cα, we solve Eqs. (8)- 
(10) by combining the numerical methods of Adams-Moulton predictor 

Fig. 3. (Colour Online) Thermal variations of the dynamic magnetizations for the various values of D and h. TC/JC and Tt/JC are the second- and first-order phase 
transition temperatures, respectively. a) Exhibiting a second-order phase transition from the ferrimagnetic (i) phase to the paramagnetic (p) phase for D ¼ � 2.5 and 
h ¼ 0.5; TC/JC ¼ 2.685 is found. b) Exhibiting a second-order phase transition from the nonmagnetic (nm) phase to the paramagnetic (p) phase for D ¼ � 3.3 and h ¼
1.6; TC/JC ¼ 1.455 is found. c) Exhibiting a second-order phase transition from the nonmagnetic (nm) phase to the paramagnetic (p) phase for D ¼ � 3.3 and h ¼ 1.6; 
TC/JC ¼ 1.455 is found. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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corrector method with the Romberg integration. This study leads us to 
characterize the nature (continuous or discontinuous) of DPTs, to check 
the stability of each dynamical phase, as well as to obtain the DPT 
points. A few explanatory and interesting results are plotted in Figs. 3 
and 4 to illustrate the calculation of the DPT points. Fig. 3(a) illustrates 
the thermal variation of the Mα, Aα and Cα for ΔS ¼ 0.0, r ¼ 1.0, D ¼ 1.0 
and h ¼ 2.75. In this figure, the dynamic magnetizations are Mc1 ¼M c2 
¼ 0.5 and Ms1 ¼ Ms2 ¼ 1.0 at zero temperature, and they go to zero 
continuously as the temperature increases; therefore, a second-order 
phase transition occurs at TC/JC ¼ 2.685 and the DPT is from the 
ferrimagnetic (i) phase to the paramagnetic (p) phase. We have checked 
the stability of DPT points between the phases of the system by inves-
tigating the Aα and Cα. The Aα and Cα become a maximum and a mini-
mum (negative) at the second-order phase transition temperature TC/JC, 
respectively. This has also been tested by our calculations, because we 
have found exactly the same critical temperature (TC/JC) for these cal-
culations. Fig. 3(b) is plotted for ΔS ¼ 0.0, r ¼ 1.0, D ¼ � 3.3 and h ¼ 1.6. 
In Fig. 3(b), Mc1 ¼ M c1 ¼ 0.5 and Ms1 ¼ Ms2 ¼ 0.0 at the zero tem-
perature and the core magnetizations go to zero continuously as the 
temperature increases; therefore, a second-order phase transition occurs 
at TC/JC ¼ 1.455 and the DPT is from the nonmagnetic (nm) phase to the 
paramagnetic (p) phase. While the Ac1, Ac2 and Cc1, Cc2 for the core 
represent the similar behavior to the one seen in Fig. 3(a), the As1, As2 
and Cs1, Cs2 for the shell show an increasing behavior from zero to 
positive values. Fig. 3(c) is represented for ΔS ¼ 0.0, r ¼ 1.0, D ¼ 1.0 and 
h ¼ 3.75. In Fig. 3(c), Mc1 ¼M c1 ¼ 0.5 and Ms1 ¼Ms2 ¼ 1.0 at the zero 
temperature and the magnetizations go to zero discontinuously as the 
temperature increases; hence, the system undergoes a first-order phase 
transition from the i phase to the p phase at Tt/JC ¼ 1.025. Therefore, Tt/ 
JC is the first-order phase transition temperature where the discontinuity 
or jump occurs. We also checked this dynamic discontinuous transition 
by investigating the thermal behavior of the dynamic hysteresis loop 
areas Aα and dynamic correlations Cα. From the figure, one can see that if 
the temperature increases from zero, the Aα and Cα increase and 
decrease from zero to a certain positive non zero values, and Aα and Cα 
suddenly jump to the higher positive and lower negative values, 
respectively; hence, the first order phase transition occur at Tt/JC ¼

1.025, which is exactly the first-order phase transition that is found by 

investigation of the thermal behavior of the Mα, Aα and Cα. 
The temperature dependence of Mα, Aα and Cα are plotted in order to 

see the phase transition from the mixed i þ p phase to the i phase and 
then the p phase for ΔS ¼ 0.0, r ¼ 1.0, D ¼ � 2.5 and h ¼ 0.5 and various 
initial values, seen in Fig. 4. The behavior of Fig. 4(a) is similar to Fig. 3 
(a); hence the system undergoes a second-order phase transition from 
the i phase to the p phase at TC/JC ¼ 2.025. In Fig. 4(b), the system 
undergoes two successive phae transitions. The first one is a first-order, 
because the discontinuous occurs for Mα, Aα and Cα at Tt/JC ¼ 0.65. 
Transition is from the nm phase to the i phase. The second one is a 
second-order from the i phase to the p phase at TC/JC ¼ 2.025. There-
fore, the coexistence region i.e., the mixed phase exists in the system. If 
one compares Fig. 4(a) and (b) with Fig. 5(c), the system exhibits the 
mixed i þ nm phase until Tt/JC ¼ 0.65, the i phase between at Tt/JC ¼

0.65 and at TC/JC ¼ 2.025, the p phase after TC/JC ¼ 2.025. By inves-
tigating the Aα and Cα, the stability of DPT between the phases in the 
system have been checked; because the same critical temperature for 
these calculations have exactly been found. Two successive phase 
transitions were also experimentally observed in DyVO4 [63,64] and in 
TbB4 at TN1 ¼ 24 K and TN2 ¼ 44 K in the magnetic susceptibility 
measurements [65]. Moreover, two successive transitions have also 
been theoretically found on the magnetic properties of the various Ising 
systems, using the different method [42–45,49,66]. 

3.3. The dynamic phase diagrams 

We can now present the dynamic phase diagrams of the system, since 
we have characterized the nature of DPTs and obtained the DPT points 
in subsection 3.2. The calculated phase diagrams in the (T/JC, h/JC) 
plane are presented in Fig. 5 for ΔS ¼ 0.0, r ¼ 1.0 and various values of 
crystal field (D). In these phase diagrams the solid and dashed lines 
represent the dynamic second- and first-order phase transition lines, 
respectively, and the dynamic tricritical point is denoted by a filled 
circle. As seen in Fig. 5, seven different types of phase diagram topol-
ogies have been observed.  

(i) Fig. 5(a) is performed for D ¼ 1.0, and in the phase diagram, at 
high temperature (T) and high external magnetic field (h), the 

Fig. 4. (Colour Online) Thermal variations of the dynamic magnetizations for the various values of D ¼ � 2.5 and h ¼ 0.5. TC/JC and Tt/JC are the second- and first- 
order phase transition temperatures, respectively. a) Exhibiting a dynamic second-order phase transition from the i phase to the p phase for D ¼ � 2.5 and h ¼ 0.5 and 
the initial values of Mc1 ¼ Mc2 ¼ 0.5, Ms1 ¼ Ms2 ¼ 1.0; 2.025 is found TC/JC. b) Exhibiting two successive phase transition at two different phase transition 
temperatures for D ¼ � 2.5 and h ¼ 0.5 and the initial values of Mc1 ¼ Mc2 ¼ Ms1 ¼ Ms2 ¼ 0.0; 0.65 and 2.025 are found as Tt/JC and TC/JC, respectively. . (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

B. Deviren                                                                                                                                                                                                                                        



Physica E: Low-dimensional Systems and Nanostructures 120 (2020) 114052

7

Fig. 5. The phase diagrams in the (T/JC, h/JC) plane for ΔS ¼ 0.0, r ¼ 1.0 and various values of the crystal field. Dashed and solid lines represent the first- and 
second-order phase transition temperature, respectively. The tricritical point are indicated with filled circle. a) D ¼ 1.0, b) D ¼ � 1.7, c) D ¼ � 2.5, d) D ¼ � 3.2. e) D 
¼ � 3.3, f) D ¼ � 4.0, g) D ¼ � 5.0. 
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solutions are paramagnetic (p); and at low values of T and h, are 
ferrimagnetic (i) phase. The dynamic phase boundary between 
these regions, i→p, is the second-order phase transition lines. At 
low T, there is a range of values of h in which the i and p phases or 
regions coexist, called the coexistence or mixed region, namely 
the i þ p. The i þ p phase is separated from the i and p phases by 
the first-order phase transition lines. The system also exhibits 
only one dynamic tricritical point where both of the first-order 
phase transition lines merge and signal the change from the 
first-to the second-order phase transition. Finally, we should also 
mention that the similar type of phase diagram has also obtained 
for D � � 1:115, and is qualitatively similar to the kinetic spin-1/ 
2 [40], spin-1 [67], spin-3/2 [43,44], mixed spin systems [42,68] 
and as well as different lattice models [46–49].  

(ii) For � 1:115 > D � � 1:785 we have performed the second type of 
phase diagram, seen in Fig. 5(b) at D ¼ � 1:70. The phase dia-
gram is similar to Fig. 5(a) but only differs from Fig. 5(a) in which 
low values of h and T, new mixed or coexistence region, namely i 
þ nm, exist in the system. The phase boundary between the i and 
i þ nm phases is the first-order line.  

(iii) For � 1:785 > D � � 3:199 we have obtained the third type of 
phase diagram, seen in Fig. 5(c) at D ¼ � 2:50. In this case, one 
more mixed or coexistence region, namely i þ p phase, occurs in 
the system at low values of T and middle values of the h.  

(iv) Fig. 5(d) is illustrated for D ¼ � 3:20, in this case the i þ p phase 
has grown slowly and has reached the boundary of the second- 
order phase transition. Moreover, the i phase has become small 
and the second order phase transition line has dwindled.  

(v) The phase diagram is constructed for D ¼ � 3:30, seen in Fig. 5 
(e). This phase diagram is one of the more interesting phase di-
agrams in which some sort of reentrant phenomenon appears at 
high values of h. Moreover, the phase transitions line, separated 
the i þ p phase from the p phase, is obtained in the system. The 
phase diagrams present three dynamic tricritical points. The nm 
phase is also settled instead of the i phase at the low value of the 
h.  

(vi) Fig. 5(f) is represented for D ¼ � 4:0. This phase diagram is 
similar to Fig. 5(e), except that the p phase has penetrated the 
ordered phases at the middle value of the h; hence the system 
exhibits three dynamic tricritical points.  

(vii) For D ¼ � 5:0, the phase diagrams is presented in Fig. 5(g). 
While this phase diagram has the same pahse topology as the 
diagram in Fig. 5(f), it differs from Fig. 5(f) in which the i þ nm 
phase disappears. A similar phase diagram is found to the one 
seen in works [43,44]. 

4. Summary and conclusion 

In conclusion, a detailed MF investigation based on the Glauber-type 
stochastic dynamics has been carried out to determine the dynamical 
aspects (phase transitions, phase diagrams, hysteresis loop areas and 
correlations) of the kinetic mixed spin (1/2, 1) Ising nanowire system 
under a time varying (sinusoidal) magnetic field. The Glauber-type 
stochastic dynamics are employed to construct the set of mean field 
dynamic equations. The time variation of the core/shell magnetizations 
and the thermal behavior of the dynamic core/shell magnetizations are 
investigated in detail. The dynamic core/shell magnetizations, hyster-
esis loop areas and correlations are studied as a function of temperature 
in order to characterize the nature (continuous or discontinuous) of the 
phase transitions as well as to find the dynamic phase transition tem-
peratures. The dynamic phase diagrams are presented in the (T/JC, h/JC) 
plane. The foremost observations reported in the present study can be 
briefly summarized as follows: 

➢ The dynamic correlation shows shallow (negative) dip near the dy-
namic phase transition temparature. The dynamic phase transition 

temperatures have been identified as the minimum-correlation 
point. The hysteretic losses become maximum above the dynamic 
phase transition temperature. Similar magnetic behavior was ob-
tained diverse types of magnetic systems [49,62,69,70]. 

➢ It was observed that the dynamic phase diagrams exhibit para-
magnetic (p), ferrimagnetic (i), nonmagnetic (nm) phases, three 
mixed regions, (i þ nm), (i þ p) and (nm þ p).  

➢ The dynamic phase diagrams contain dynamic tricritical points and 
reentrant phenomena, which strongly depend on interaction pa-
rameters. In spin systems, the reentrant behavior can be identified as 
follows. The entropy is the crucial factor at high temperatures. The 
system is in the disordered phase due to the applied field. When the 
temperature is increased lower values, the energy and entropy are 
both important than entropy, and the system enters the ordered 
phase. As the temperature decreases lower values, the energy is 
important, not the entropy and the system reenter the p phase again 
[71]. It is also mentioning that the reentrant phenomena was 
observed in the dynamic substructure formation in ribonucleopro-
tein droplets [72], in some weakly frustrated ferromagnets, i.e. i.e. 
LaSr2Mn2O7, the bulk bicrystals of the oxide superconductor 
BaPb1-xBixO3 and EuxSr1-xS and amorphous-Fe1-xMnx [73–75]. The 
obtained results are in good agreement with some experimental and 
theoretical results. 

As a final conclusion, much more work like this research is required 
to understand the experimental and theoretical findings concerning the 
non-equilibrium thermal and magnetic properties of the nanoparticle 
system in different geometries thoroughly. 
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