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Globally, there is growing interest to integrate cricket-based ingredients (flour) into food

products to combat food and nutrition insecurity. However, there is lack of information

on in-depth nutrient profile of the two cricket species (Scapsipedus icipe and Gryllus

bimaculatus), which are the most widely consumed in Africa. Here we determined the

nutrient composition of two cricket species and compared them with published records

of key animal and plant sources. Our results revealed that the crude protein contents of

S. icipe and G. bimaculatus were similar (56.8 and 56.9%, respectively) and comparable

to those of animal protein sources. Both cricket species had balanced amino acid profiles

that are superior to that of animal and plant sources, except for histidine and cysteine. The

protein digestibility of S. icipe and G. bimaculatus ranged between 80 and 88%, which is

comparable to that of common plant foods but slightly lower than that of animal proteins.

The iron, Zinc, and potassium contents were considerably higher in both cricket species

compared to that of plant and animal sources. The calcium contents of both crickets

(S. icipe and G. bimaculatus) was superior to that of plant and animal origin except for

kidney beans and eggs, respectively. Riboflavin, thiamine, and folic acid concentrations of

S. icipe and G. bimaculatus were superior to that of the conventional sources. Vitamin A

levels were significantly higher in S. icipe compared toG. bimaculatus. This implies that S.

icipe and G. bimaculatus can adequately contribute to our daily required nutrient intake.

Thus, integrating cricket flours into ready-to-eat food products would address some of

the most pressing nutritional deficiency challenges that many developing countries have

to grapple with, particularly high risk to serious health problems such as anemia, poor

pregnancy outcomes, hypertension, increased risk of morbidity and mortality, stunted

growth and impaired physical and cognitive development. We conclude that edible

crickets present unique opportunities for improving food and nutritional insecurity status

of both resource-poor and Western populations.
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INTRODUCTION

The world’s population is expected to reach 9.2 billion in 2050,
with most increases occurring in less developed regions (1, 2).
Therefore, the worldwide demand for food and meat is likely
to increase by 50 and 85%, respectively (3). The vast majority
of the hungry people−827 million—live in developing regions
and Africa remains the region with the highest prevalence of
undernourishment with sub-Saharan Africa (SSA) accounting
for a prevalence of 24.8% (4). Among the undernourished
populations, over 2 billion people are affected by micronutrient
deficiencies globally (5). In terms of global public health
significance, iron, zinc, and vitamins are the most important
micronutrients (6, 7), which play key roles in preventing
malnutrition and early stunting (7). The deficiency of these
nutrients is prevalent in areas where there is high cereal and
low animal products consumption (8), especially resource-poor
areas where the situation is exacerbated by infectious diseases
(5). Besides the traditional nutrient deficiency diseases, there
is a rising prevalence of non-communicable diseases in both
developing and developed countries. Thus, deficiencies of these
important nutrients have negative effects on many physiological
systems and health, leading to high economic burden for many
countries with increasing risk of morbidity and impaired physical
and cognitive development (9) as well as poor pregnancy
outcome (10, 11).

In SSA, the situation is projected to worsen over the next
decades unless drastic measures are taken to reverse food
insecurity (5). Efforts to tackle this problem have largely

focused on enhancing crop and livestock productivity, which
are becoming unsustainable due to dwindling arable land, and

water scarcity caused by climate change. Livestock and crop

production has been blamed for its significant contribution
to negative environmental impact, particularly responsible for
huge greenhouse gas emissions (high ecological blueprints),
which could possibly contribute to global warming and severe
environmental degradation (7).

Thus, there is an urgent need for alternative nutrient
sources, and edible insects are promising and potential choice
(12). Globally, over 2,000 insect species are consumed by
approximately 2 billion people as delicacy with well-documented
evidence that they can significantly provide the amount of
daily nutrient requirements for human nutrition, especially for
children and women of reproductive age (8), thus a potential
solution to malnutrition and growing food insecurity globally
(13, 14). This explains why Food and Agriculture Organization
of the United Nations (FAO) and other stakeholders have
embarked on the promotion of edible insects for food (15,
16). Globally, insects from the order Orthoptera such as
crickets are one of the most widely farmed and nutrient-
rich edible insect group, generating income for women and
youths, who represents more than 60% of all the medium-
or large-scale enterprises (12). In many cases the nutrient
profile of these cricket species is comparable to conventional
livestock meat and crops in terms of quality and quantity
(17). It has been postulated that crickets generally contain
high-quality nutrients, which are easily digestible and more

bio-available than those available from plant and animal food
sources (18).

Thus, cricket consumption could be immediate solutions
to many of the nutrient deficiency issues and can be
both inexpensive and effective option. According to several
researchers, multisectoral approaches that are tailored to the
sustainable utilization of local materials such as insects and
that consider the specific conditions of the people would be
easily favored by policy makers in view of their sustainability.
This explains why the FAO and WHO have recommended
dietary diversification, food fortification and supplementation
to simultaneously control infections and prevention of other
nutritional deficiencies (19). So far, little attention has been paid
to crickets as source of essential nutrients in human diets. This
study seeks to provide a comprehensive dietary benefits of the
newly described cricket Scapsipedus icipe Hugel & Tanga (20)
and the two-spotted cricket Gryllus bimaculatus De Geer (21)
in Africa, which are most widely consumed in terms of their
richness in minerals, protein, fat, amino acids, and vitamins.
Next, we discussed bioavailability of amino acids, vitamins, and
minerals in relation to Recommended Dietary Allowance (RDA)
published for animal and plant-based sources and outline future
directions for research.

MATERIALS AND METHODS

Sample Collection and Preparation
Adult crickets were obtained from subsistence and commercial
farms in Western part of Kenya. Samples of each species were
collected separately in 1 kg Ziplock bags, frozen alive at −20◦C
in a Hisense chest freezer (model number: 1159Q61, China) and
transported frozen in cooler boxes lined with ice packs to the
International Centre of Insect Physiology and Ecology (icipe)
laboratories for analysis. The raw cricket samples were thawed
and blended into a paste using a domestic blender (Signature SG-
201, China). The insect paste was subjected to various chemical
analysis as described below.

Proximate Analysis
Proximate components were determined using Association of
Official Analytical Chemists (22) methods. The moisture content
was determined by oven drying method at 135◦C for 2 h (Method
No. 930.15) (22). Ash content was determined by ignition of
samples at 550◦C in a muffle furnace until the weight remained
constant (Method No. 930.05) (22). The crude fat content was
determined by diethyl ether extraction in a fat extraction unit
(SER 148/6; Velp Scientific, Usmate, Italy) following the Randall
technique (Method No. 2003.05) (22). The crude protein content
of the cricket powder was determined following the Kjeldahl
method and the values multiplied by a conversion factor of 6.25
(MethodNo. 2001.11) (22). Crude fiber was determined by loss of
ignition on weight of residue after hydrolysis with acid and alkali
solutions (Method number 978.10) (23).

Determination of Amino Acid Composition
The amino acid composition was determined as previously
described by Cheseto et al. (24). The cricket powder (100mg)
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was transferred into a 5mL micro-reaction vial into which 2mL
of 6N HCl was added and closed after careful introduction of
nitrogen gas. The sample was hydrolyzed for 24 h at 110◦C. After
the hydrolysis, the mixtures were evaporated to dryness under
vacuum. The hydrolysates were reconstituted in 1mL 0.01%
formic acid/acetonitrile (95: 5), vortexed for 30 s, sonicated for
30min, and then centrifuged at 14,000 rpm and the supernatant
analyzed by LC-MS. The same procedure was performed to
determine basic amino acid by substituting 6N HCl with
6N NaOH.

The chromatographic separation was achieved on an Agilent
system 1100 series (MA, USA) using ZORBAX SB-C18, 4.6 ×

250mm, 3.5µm column, operated at 40◦C. Mobile phases used
were made up water (A) and 0.01% formic acid in acetonitrile
(B). The following gradient was used: 0–8min, 10% B; 8–14min,
10–100% B; 14–19min, 100% B; 19–21min, 100-10% B; 21–
25min, 10% B. The flow rate was held constant at 0.5ml min−1

and the injection volume was 3 µL. The LC was interfaced
to a quadruple mass spectrometer. The mass spectrometer was
operated on ESI-positive mode at a mass range of m/z 50–600 at
70 eV cone voltage.

Serial dilutions of the authentic standard containing 18 amino
acids (1–105µg/µl, Sigma–Aldrich, St. Louis,MO,USA) was also
similarly analyzed by LC-MS to generate linear calibration curves
(peak area vs. concentration) used for external quantification.
Amino acid analysis was repeated three times using different
batch of samples.

Determination of in-vitro Protein
Digestibility
Protein digestibility in the insect samples was analyzed by the
method described by Mertz et al. (25). Initial protein content
of the samples was determined using micro-Kjeldahl nitrogen
determination method. This was followed by pepsin digestion,
where 0.2 g of the sample was weighed into 50mL centrifuge
tubes. Then 20mL buffered pepsin was added and mixed.
Similarly, a blank was prepared but without a sample. The
tubes were placed in a water bath at 37◦C for 2 h with gentle
shaking after every 20min. The tubes were then centrifuged at
6,000 rpm for 15min at 4-degree celcius. The supernatant was
discarded, and 10mL of buffer solution added, then shaking and
centrifugation was done again. The supernatant was discarded,
and the residue filtered using a Whatman filter paper No. 4.
The filter paper was rolled and inserted into a Kjeldahl flask
and dried for 15min in the oven at 100 degrees celcius. Ten
(10) mL of Concentrated sulphuric acid, 1 g potassium sulfate
and 1mL of 10% copper sulfate solution were added to the
Kjeldahl flask containing the dried filter paper and sample. Then
digestion, distillation and titration were done according to the
micro-Kjeldahl nitrogen determination.

Protein digestibility (%)= (A - B)/A
Where A = % protein content in the sample before

pepsin digestion
B= % protein in the sample after pepsin digestion.

Determination of Mineral Composition
The cricket powder was ashed and digested in 6N HCl and
the content of the various minerals (Iron, Zinc, Calcium,

magnesium, sodium, potassium, manganese, copper and
cobalt) determined using atomic absorption spectrometry
(AAS) (Shimadzu, AA-6300, Tokyo, Japan) according
to AOAC methods (23).

Determination of Vitamin Content
The vitamin content of cricket samples was determined for
selected fat-soluble (A, E, pro D) and water-soluble (B1, B2, B3,
B6, B9) vitamins. We adopted Cheseto et al. (26) and Jermacz
et al. (27) methods for the analysis of fat-soluble vitamins, briefly,
each cricket sample (300mg), was transferred into a 10mL glass
vial containing a mixture of hexane, methanol and distilled
deionized water (2:1:2, 5mL), vortexed for 30 s, sonicated for
30min and centrifuged at 14,000 rpm for 5min. The supernatant
was dried over anhydrous Na2SO4, evaporated to dryness under
a gentle stream of N2(g) before derivatizing any residual fatty
acids to fatty acid methyl esters to limit the matrix interference
following the protocol described elsewhere (28), analyzed (1.0
µL) by GC-MS on a 7890A gas chromatograph linked to
a 5,975C mass selective detector (Agilent Technologies Inc.,
Santa Clara, CA, USA). The GC was fitted with a (5%-phenyl)-
methylpolysiloxane (HP5MS) low bleed capillary column (30m
× 0.25mm i.d., 0.25µm; J&W, Folsom, CA, USA). Helium at
a flow rate of 1.25mL min−1 served as the carrier gas. The
oven temperature was programmed from 35◦C to 285◦C, with
the initial temperature maintained for 5min, with a rise at
10◦C min−1 to 280◦C, and then held at this temperature for
20.4min. The mass selective detector was maintained at ion
source temperature of 230◦C and a quadrupole temperature of
180◦C. Electron impact (EI) mass spectra were obtained at the
acceleration energy of 70 eV. Fragment ions were analyzed over
40–550 m/z mass range in the full scan mode. The filament delay
time was set at 3.3min. Serial dilutions of the authentic standard
α-tocopherol (≥ 95.5% purity) (0.1–100 ng/µL, Sigma- Aldrich,
St. Louis, MO) was analyzed by GC-MS in full scan mode to
generate a linear calibration curves (peak area vs. concentration)
which gave coefficient of determinations R2 = 0.9999. The
regression equation was used for the external quantification of
the different selected fat- soluble vitamins (Retinol, γ-tocopherol,
α-tocopherol, and Pro vitamin D).

These compounds were identified by comparison of mass
spectral data and retention times with those of authentic
standards and reference spectra published by library–MS
databases: National Institute of Standards and Technology
(NIST) 05, 08, and 11. The samples were analyzed in
triplicate, with each replicate collected from a different batch of
respective samples.

Determination of water–soluble vitamins was carried out
according to previously described method (28, 29). Briefly,
100mg of each cricket sample was transferred in to a 50mL
falcon tube containing 25mL distilled deionized waster (25mL),
vortexed for 20 s, sonicated for 15min and the mixture
filtered through 0.2µm filters into Ultra Performance Liquid
Chromatography (UPLC) vials and analyzed by Shimadzu
UPLC-DAD. The chromatographic analysis was performed on
(LC-30AC with Nexera column oven CTO-30A, Shimadzu,
Tokyo, Japan) fitted with a Phenomenex C18 Column Synergi
100mm ×3.00mm, 2.6µm polar (Phenomenex, Torrance, CA,
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FIGURE 1 | Comparative analysis of percentage crude protein and fat content [on dry matter basis—DM] of crickets (Scapsipedus icipe and Gryllus bimaculatus), and

selected plants and animal sources. Data for plant and animal sources was extracted from FAO/GoK (31).

USA) at 30◦C. The mobile phase consisted of two phases, A:
25mM phosphate buffer. B: 7:3 v/v Acetonitrile-Mobile phase
A. Total run time was 12min with a flow rate of 0.4 mL/min.
Stock solutions of 1.0 mg/ml were prepared by dissolving the
individual water-soluble vitamin standards in distilled water
except for Vitamin B2 in (5mM potassium hydroxide) and
Vitamin B9 in (20mM potassium hydrogen carbonate). Serial
dilutions of the stock solution (2–15µg/mL) for the 5-water-
soluble vitamins were also analyzed by UPLC-DAD giving R2 of
0.996 or greater. These regression equations were used for the
external quantification of the different water-soluble vitamins.
All determinations were carried out in triplicates from different
batch of respective samples.

Data Analysis
Data were checked for normality using the Shapiro-Wilk
test. To determine the differences in nutritional value of the
two cricket species, unpaired t-test was used for normally
distributed data with equal variances while Welch’s t-test was
used to analyse data that did not fulfill the two assumptions.
All the statistical analyses were conducted using R software
version 3.6.0 (30).

RESULTS AND DISCUSSION

Proximate Composition Scapsipedus icipe

and Gryllus bimaculatus
The proximate composition (on dry matter basis-DM) of S. icipe
and G. bimaculatus are presented in Figure 1. The crude protein
(CP) content of S. icipe and G. bimaculatus was comparable to
that reported previously for field cricket (32, 33). However, the
CP values in the present is relative lower compared to reported
for Acheta domesticus Linnaeus (73.63%) (34). The variation
can be attributed to inter-species differences as well as the type
of substrates fed to cricket during rearing (35). The crude fat
recorded for Gryllus bimaculatus was significantly (P = 0.0005)
higher compared to that S. icipe. These results are consistent to
that reported for A. domesticus (32.6 %) (36) but contrary to
that documented in other study for the same species (18.55–
22.80%) (37). Based on the crude fat content, it implies that
the consumption of about 200 g of crickets would potentially
contribute the daily requirement of energy from fat for human
nutrition, which ranges between 10 and 30% (38).

The values of crude ash reported in this study (Table 1)
were comparable to that reported for A. domesticus (3.57%)
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(39). This aligns with results reported for adult cricket under
rearing conditions (3.57–5.10% crude ash) in the United States
of America (USA) (37). The crude fiber content of S. icipe
and Gryllus bimaculatus are comparable to the values (5.95
and 8.7%) reported by Finke (40) and Moreki et al. (32)
for crickets, respectively. Previous studies have demonstrated
that the amount of crude fiber in an insect is a direct
reflection of the chitin on the basis of the chemical structure
(39, 40). In literature it is reported people of the African
origin have high activity of chitinase enzyme, thus this opens

new opportunities for the promotion and commercialization
of edible insects chitin (41). Recently, chitin and chitosan
have attracted considerable attention due to their biological
activities (antifungal, antibacterial, antitumor, immunoadjuvant,
antithrombogenic, anti-cholesteremic agent) and bio-adhesivity
(42). Thus, chitin is widely used as absorption promoters
and hydrating agents, as well as for film production and
wound healing (43). The immunity-enhancing effects, promotion
of beneficial bacterial growth and inhibition of pathogenic
microorganisms have been reported, thus demonstrating clear

TABLE 1 | Crude ash, crude fiber, crude protein, crude fat, and energy levels of Scapsipedus icipe and Gryllus bimaculatus on dry matter basis (mean ± SE).

Cricket species Crude ash Crude fiber Crude protein Crude fat Energy (Kcal/10 0g)

Percentage (%)

Scapsipedus icipe 5.25 ± 0.02a 5.71 ± 1.39b 50.19 ± 2.06a 35.70 ± 2.57b 512.66 ±1.72b

Gryllus bimaculatus 5.41± 0.06a 8.39 ± 2.28a 58.19 ± 3.67a 46.04 ± 2.90a 529.18 ± 3.17a

t-test value −0.36 2.72 1.89 2.67 4.54

df 27.9 14 22.0 27.6 3.1

P-value 0.718 0.017 0.071 0.013 0.019

Means with different superscript letters in each column are significantly different at p < 0.05.

FIGURE 2 | Comparative analyses of in vitro protein digestibility of crickets (Scapsipedus icipe and Gryllus bimaculatus), plants and animal food sources. Data for

plant and animal sources was extracted from FAO/WHO/UNU (56).
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health benefits after consumption (44–48). The application of
chitin/chitosan for extension of shelf life of various foods from
agriculture, poultry, and seafood origin by inhibiting microbial
growth have been documented (49).

The protein and fat content of the cricket species studied was
comparable to that of common animal foods and higher than
most plant sources (Figure 1). These results imply that 100 g of
either cricket species consumed per day would provide at least
twice as much protein as any of the common plant sources.
Studies carried out in South Korea found that protein and fat
content of five insect species including G. bimaculatus surpassed
that of conventional livestock sources (50), which is slightly
different from the current results. Therefore, consumption of
S. icipe and G. bimaculatus could provide the much-needed fat
and protein in communities where access to traditional animal
sources are limited (51).

In general, edible insects in the order Orthoptera have
been reported to contain significantly higher amounts of
crude proteins compared to other insects (37, 52). However,
quantifying bioavailable insect protein has been of great concern

given that crude protein analysis using Kjeldahl method
often includes nitrogen embedded in the exoskeleton of these
insects which largely comprises the polysaccharide chitin, a
phenomenon that tends to overestimate digestible protein of
edible insects (52–54). In vitro protein digestibility has been
shown as a reliable predictor of protein bioavailability in vivo
based on Protein Efficiency Ratio (PER) and Net Protein Ratio
(NPR) (29, 55). In this study, there was significant difference
in digestibility of protein from both species were observed to
be different (Figure 2). The values for S. icipe (87.8%) and
Gryllus bimaculatus (79.5%) are within the range reported for
other insects (76–96%) by Kourimská and Adámková (57).
Other studies have also reported significantly higher protein
digestibility values for the cricket species Gryllus assimilis
(Fabricius) (73%) when compared to that of grasshopper, moth
caterpillar and termite. The protein digestibility corrected for
amino acid score of the newly described cricket species in Kenya
(S. icipe) with 87.77%, is similar to that of egg (97%) and
beef (98%) (58). Insect protein digestibility has been considered
higher than most plant proteins in previous studies (59).

FIGURE 3 | Comparison of selected essential amino acids content of crickets (Scapsipedus icipe and Gryllus bimaculatus), animal and plant-based sources. Amino

acid data for plant and animal sources was extracted from FAO/GoK (31), while that of the recommended nutrient intake (RNI) was obtained from FAO/WHO/UNU (56).
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Amino Acid Composition
Both S. icipe and Gryllus bimaculatus were found to have seven
essential amino acids as shown in Figure 3. Five of these essential
amino acids content varied significantly between S. icipe and
G. bimaculatus. Non-essential amino acids detected S. icipe and
G. bimaculatus are presented in Table 2. Leucine was the most
abundant amino acid in S. icipe and Gryllus bimaculatus. The
highest amount of glutamine, glutamic acid, proline, valine,
methionine, leucine, and phenylalanine were recorded for G.
bimaculatus. Histidine and lysine levels were more abundant in
S. icipe than in Gryllus bimaculatus. No significant difference was
observed for arginine (P = 0.0584), lysine (P = 0.2742), tyrosine
(P= 0.7285), and isoleucine (P= 0.9412) between S. icipe and G.
bimaculatus. The high levels of isoleucine and leucine recorded
for icipe and G. bimaculatus are similar to that reported for other
edible insects (60). The methionine content in S. icipe and G.
bimaculatus were comparable to that reported for eggs, which
is well-known as an excellent source of methionine. Methionine
and lysine are themost limiting amino acid in legume and legume
products such as bean, peas, lentils, chickpeas, and soybean as
well as cereals, which is in line to that reported in other studies
(61). Methionine is a classical sulfur amino acid, a limiting amino
acid in plant proteins of legume origin and aids availability of
cysteine which is a metabolic product of methionine catabolism.
The values of methionine, leucine and phenylalanine recorded
for Gryllus bimaculatus are similar to that reported for A.
domesticus by Ramos-Elorduy et al. (33). Similarly, methionine
and phenylalanine of the field cricket Gryllus testaceus Walker
are comparable to the results observed in the present study,
although, histidine, lysine, glutamic acid, proline, valine, tyrosine
were higher except for much lower values for isoleucine and
leucine (62). According to a report by FAO/WHO, daily amino
acid requirements for human nutrition ranged between 0.010 and
0.039 mg/g (63), thus lower than the value reported for S. icipe
and G. bimaculatus (31, 56, 64). This implies that both cricket
species could be an excellent alternative and sustainable source
of alternative amino acids than current animal and plant-based
sources. Lysine deficient diets are common in African countries,
where maize is a staple food, thus supplementing these diets with
edible cricket protein would be a sustainable step toward dietary
diversification (50) and ensuring nutritional security. However,
the protein quality of the edible insects can further be improved
with the removal of chitin which binds some amino acids (37).

Histidine is an indispensable amino acid whose dietary
deficiency has been shown to cause deleterious effects
on hemoglobin concentrations in humans (65, 66), thus
consumption of these cricket species could be a quick fix
to such health complications. Amino acids such as Leucine,
isoleucine, and valine, which are branched chain amino acids
(BCAA) were recorded notably in higher amounts in both
crickets than in the animal and plant-based sources. Several
studies have documented the potential role of the BCAA in
brain function and maintenance of muscle mass during weight
loss (67–69). Other studies have cited leucine and histidine
as essential in growth of children suggesting that both cricket
species can be applied to supplemental diets to back up their
protein requirements (70, 71). Leucine has a wide range of

TABLE 2 | Amino acid profile (µg/100mg) of Scapsipedus icipe and Gryllus

bimaculatus on dry matter basis (mean ± SE).

Amino acid Cricket species P-value t-test value df

Scapsipedus

icipe

Gryllus

bimaculatus

Histidine 10.80 ± 0.87a 4.83 ± 6.24b 0.016 −2.93 9.37

Arginine 13.59 ± 1.06b 14.0 ± 1.96a 0.038 2.25 18

Lysine 18.21 ± 3.85a 15.64 ± 6.74a 0.442 −0.79 14.5

Glutamine Absent 1.75 ± 3.73 – – –

Glutamic acid 9.58 ± 0.31b 11.34 ± 0.55a <0.001 9.17 13.4

Proline 19.21 ± 6.10b 30.47 ± 6.29a 0.001 3.85 17.9

Valine 29.14 ±7.84b 41.38 ± 8.15a 0.007 3.02 17.8

Methionine 16.12 ± 3.87b 20.67 ± 3.62a 0.034 2.28 18.0

Tyrosine 23.78 ± 5.81a 24.49 ± 2.97a 0.755 −0.32 14.0

Isoleusine 43.41 ±10.57a 43.86 ± 17.44a 0.738 −0.34 14.0

Leucine 66.24 ± 12.53a 78.56 ± 10.85a 0.080 1.86 18.0

Hydroxyproline 8.83 ± 0.51b 9.37 ± 0.17a 0.025 2.60 11.0

Phenylalanine 25.37 ± 8.00b 32.75 ± 3.26a 0.036 2.37 11.4

Means with different superscript letters in each column are significantly different at

p < 0.05.

metabolic and regulatory influences in the body and has been
shown to have a potential role in the treatment of obesity and
metabolic syndrome due to its influence on insulin secretion
and sensitivity as well as dietary macronutrient disposal (72, 73).
Therefore, leucine can play a potential role in the prevention
of type II diabetes (71, 73). Further, leucine has been shown to
play a critical role in the reversal of adverse influences of high
fat diet thus facilitating healthy weight maintenance in humans
(72, 74, 75). Both cricket species in the present study were
observed to have at least twice the amount of the recommended
lysine and methionine for children at different age groups as
well as adolescents (65). Lysine and arginine are important
factors in the release of growth hormone in young children
(76). High quality rich foods have been linked to reduced risk of
stunting in young children aged 2–13 years (77, 78) and hence
incorporating cricket-based protein in diets of young children
and complementary or supplementary food products targeted at
this most vulnerable segment of the resource poor communities
in developing countries would contribute to easy access of
diversified and well-balanced diets.

Mineral Composition
The importance of edible insects as a source of minerals has
been documented in several studies (37, 79, 80). Based on
the current study, the iron content of the two edible crickets
ranged between 10.70 and 12.33 mg/100 g, which is similar to
that reported for A. domesticus (11.23 mg/100 g) (81). Thus,
the consumption of 100 g of S. icipe or G. bimaculatus will
contribute to at least 54 and 100% of the recommended dietary
allowance (RDA) of iron for women of reproductive age and
children below 5 years of age, respectively (Table 3). Globally,
iron deficiency is the commonest nutritional disorder affecting
both children and women of reproductive age (82). For example,
the anemia prevalence statistics for developing countries show
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TABLE 3 | Mineral composition of edible cricket species (Scapsipedus icipe and Gryllus bimaculatus) in milligrams/100 grams on dry matter basis (mean ± SE).

Cricket species Calcium Potassium Magnesium Sodium Iron Zinc Manganese Copper Cobalt

(mg/100g)

Scapsipedus icipe 66.07 ± 1.63b 66.32 ± 0.33a 35.57 ± 1.95b 395.44 ± 41.63b 10.70 ± 0.60a 19.19 ± 0.64b 95.67 ± 17.22a 7.93 ± 0.73a 5.09 ± 2.64a

Gryllus bimaculatus 72.70 ± 1.74a 39.54 ± 0.92b 29.13 ± 0.55a 166.50 ± 0.01a 12.33 ± 5.36a 23.74 ± 1.30a 108.49 ± 18.25a 8.27 ± 1.50a 4.36 ± 1.62a

t-test value 5.6 −46.6 −6.4 −11.0 0.61 6.3 1.0 0.41 −0.5

df 5.9 3.0 3.5 3.0 3.1 4.4 6.0 4.4 5.0

P-value 0.002 <0.001 0.005 0.002 0.587 0.003 0.346 0.704 0.658

Means with different superscript letters in each column are significantly different at p<0.05.

that one in every two pregnant women and 40% of school going
children are affected (82). Anemia which causes 20% of maternal
deaths, also leads to irreversible health consequences including
pre-term babies, poor physical and cognitive development, and
increased risk of morbidity in children (82). It is thus, evident
that integrating edible crickets into the regular diets of women
and children might have the potential to address the anemia
problem (61). Recent studies have also shown that acceptability
of common staples that are fortified with edible insect meals is
high (13) and should be encouraged.

Zinc is another mineral of public health importance and the
values obtained for S. icipe or G. bimaculatus in the present study
are comparable to that of A. domesticus (18.64 mg/100 g) (81)
but higher than that reported for A. domesticus (13 mg/100 g)
(61) and Gryllodes Sigillatus (13.9 mg/g) (58). Consumption of
100 g of S. icipe or G. bimaculatus per day would potentially
contribute enough nutrient to meet 100% of the recommended
daily allowance for zinc (2–11 mg/100 g) for all age groups. As
shown in Figure 4, the two cricket species are clearly superior in
zinc content than common animal and plant foods. Thus, they
may play a great role in alleviating this most common deficiency,
which is associated with stunting and hypertension (83).

Calcium content was higher in Gryllus bimaculatus (72.70%)
than in S. icipe (66.07%). Values obtained in this study are higher
than those recorded by Rumpold and Schlüter (36), Mousavi
et al. (84) for A. domesticus. However, the calcium contents in
this study are lower than 130 mg/100 g reported by Rumpold
and Schlüter (36) for the edible cricket A. domesticus. This wide
variation observed between the various studies can be attributed
to the choice of diet fed to the crickets (35). It is anticipated that
100 g of either S. icipe and G. bimaculatus would contribute an
estimated 16.5–18% of RDA for children (Table 3). Thus, these
edible cricket species could potentially contribute significantly
in alleviating calcium deficiencies in many highly vulnerable
communities in sub-Saharan African countries, if incorporated
in their diet regularly.

Magnesium content was higher in S. icipe (35.57 mg/100 g)
than in Gryllus bimaculatus (29.13 mg/100 g) (Table 3). These
values are close to 33.7% and higher than 22.6% previously
reported for adult house cricket (A. domesticus) (39, 85).
Therefore, intake of either S. icipe or G. bimaculatus food
products could potentially contribute to ∼50% of RDA of
magnesium requirements for young children. The role played
by magnesium in the body as a cofactor of enzymes involved

in metabolism, synthesis of protein, RNA and DNA and the
maintenance of electrical potential of nervous tissues and cell
membranes has been well-documented (82).

The potassium content of S. icipe or G. bimaculatus ranged
between 39.54 and 66.32 mg/100 g (Table 4), which is higher
than value reported for other studies (37.4 mg/100g) (86). The
potassium content of S. icipe was close to 74.6 mg/100 g, which
is consistent to that reported for the giant African cricket
(87). However, other studies have reported higher potassium
content in cricket compared to values obtained in this study
(39). The variation in potassium content could be attributed
to differences in diets and age, as reported in crickets such as
Brachytrypes membranaceus L. (88). No significant variation of
copper content was observed between S. icipe and G. bimaculatus
but the values recorded are higher than those reported for
adult A. domesticus (0.62–0.85 mg/100 g) (39, 81). The sodium
content of S. icipe and G. bimaculatus varied considerably,
though the values were higher in the former than in the later.
The sodium content of Gryllus bimaculatus was comparable
to that reported for adult A. domesticus (134 mg/100 g) (39),
while that of S. icipe was similar to that documented for the
same cricket (430 mg/100 g) species (89). A higher potassium:
sodium ratio in the two cricket species than common plant
and animal foods (Figure 4) implies that they could be suitable
source for people with or at risk of hypertension and the
metabolic syndrome (90). The manganese content of S. icipe
andG. bimaculatuswere comparable. Comparative studies shows
that the consumption of these crickets might be capable of
contributing adequately to the amount of the RDA of manganese
required for children, adolescents, adults, and even lactating
mothers (82). However, the values obtained in this study are
considerably higher than that reported for other adult crickets
which ranged between 2.37 and 3.73 mg/100g (37). Similarly,
the manganese content of the two cricket species in this study
is significantly higher than the 1.15 mg/100 g reported in cricket
species (39). However, further research to confirm this extreme
high value of manganese is crucial. Finally, cobalt which is one
of the trace minerals and whose main role is being a component
of vitamin B12 (cyanocobalamin) (91) was recorded in S. icipe
and G. bimaculatus. The value of cobalt in both crickets ranged
between 4.36 and 5.09 mg/100 g, which is consistent to that
reported in the Snout beetle (4.76 mg/100 g), though higher than
those reported for termite (92, 93). This implies that cricket
could potentially be a good source of minerals of public health
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FIGURE 4 | Comparison of mineral content of crickets (Scapsipedus icipe and Gryllus bimaculatus), animal and plant-based sources. Mineral content data for plant

and animal food sources was extracted from FAO/GoK (31), while that of the recommended nutrient intake (RNI) was obtained from FAO/WHO/UNU (56).

importance such as iron and zinc with values that are superior to
those of plant and animal-based food sources (Figure 4).

Vitamins
There is insufficient data published on vitamin composition of
edible insects and particularly on crickets such as A. domestica
(57). In this study, the vitamin A (retinol) content of S. icipe
(42 mcg/100 g) and Gryllus bimaculatus (32 mcg/100 g) varied
considerably (Table 4). These values of vitamin A are relatively
higher than what has been reported from adult domestic house
cricket A. domesticus (24.33 mcg/100 g) (84), Brachytrypes spp.
(0 mcg/100 g), adult grasshopper Cytacanthacris aeruginosus
unicolor (1 mcg/100 g), short horned grasshoppers (6.82

mcg/100 g), Analeptes trifasciata (12.54 mcg/100 g), Anaphe
infracta (2.95 mcg/100g), Anaphe recticulata (3.40 mcg/100 g),
Anaphe spp. (2.78 mcg/100 g), Anaphe venata (3.12 mcg/100 g),
Cirina forda (2.99 mcg/100 g), Apis mellifera (12.44 mcg/100 g),
Oryctes boas (8.58 mcg/100 g), and Rhynchophorus phoenicis
(11.25 mcg/100mg) (88). Therefore, consumption of about
100 g of S. icipe (newly described species in science) can
contribute to approximately 22% RDA of Vitamin A (retinol)
among young children (Table 4). Children in sub-Sahara Africa
and other low-income countries are particularly at risk of
vitamin A deficiency (VAD), thus S. icipe and G. bimaculatus
can be excellent promising and sustainable source of this
vitamin (82).
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TABLE 4 | Vitamin composition of edible cricket species (Scapsipedus icipe and Gryllus bimaculatus) on dry matter basis (mean ± SE).

Cricket species Retinol

(IU)/(mcg/100g)

γ-tocopherol α-tocopherol Provitamin D Vitamin B1 Vitamin B2 Vitamin B3 Vitamin B6 Vitamin B9

(mg/g) (mg/kg)

Scapsipedus icipe 139.41 ± 19.19b/

(41.847 ± 5.757)

0.48 ±0.13a 8.79 ± 4.57a 0.43 ± 0.20a 0.85 ± 0.11a 5.40 ± 1.17a Absent 16.06 ± 4.90a 4.12 ± 0.99a

Gryllus bimaculatus 107.24 ± 26.47a/

(32.172 ± 7.941)

0.52 ± 0.27a 12.55 ± 0.63a 0.22 ± 0.27a 4.23 ± 0.67b 8.90 ± 5.35a 10.93 ± 2.67 52.76 ± 8.67b 5.14 ± 1.01b

t-test value 2.95 0.289 1.87 −1.00 −16.30 −1.68 – −16.8 −2.17

df 16 4.37 3 3 8 8 – 8 16.0

P-value 0.009 0.786 0.158 0.391 <0.001 0.131 – <0.001 0.046

Means with different superscript letters in each column are significantly different at p < 0.05; mcg, microgram; IU, International unit; NEs, niacin equivalents; Values in brackets represent

retinol content in mcg/100 g.

FIGURE 5 | Folic acid content [microgram Dietary Folate Equivalent (mcg DFE)] of Scapsipedus icipe and Gryllus bimaculatus, animal and plant-based sources. Data

for plant and animal food sources was extracted from FAO/GoK (31).

The content of γ-tocopherol (P = 0.7823), alpha-tocopherol
(P = 0.1536), and provitamin D observed in S. icipe and G.
bimaculatus did not vary significantly. The values reported in
this study for γ- and α-tocopherol were considerably higher than
that of vitamin E content (0.072 mg/g) reported in reared cricket
species such as A. domesticus (37). The high level of discrepancy
in results of tocopherol concentrations in edible crickets could be
attributed to the type of feeding substrate used (94).

The provitamin D concentration of the edible crickets
ranged between 0.22 to 0.43 mg/g. However, there was no
statistical significance difference (p = 0.2611) in provitamin D

concentration between the two cricket species. The provitamin
D concentration recorded for S. icipe and G. bimaculatus (0.22–
0.43 mg/g) is much higher than 0.0064 mg/g reported for A.
domesticus (39). This implies that the consumption of S. icipe and
G. bimaculatus could also potentially contribute to the RDA for
children, adolescents, adults, and lactating mothers.

However, the concentration of thiamine (vitamin B1) in
Gryllus bimaculatus (4.23 mg/kg) was significantly higher when
compared to that of S. icipe (0.85 mg/kg) fed on the same
diet. The vitamin B1 content recorded for Gryllus bimaculatus
is comparable to that reported for A. domesticus (3.6 mg/kg)
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(53). On the contrary the vitamin B1 of the two cricket species
studied were considerably lower than 15.2 mg/kg reported for
A. domesticus reared in Kenya (95). Contrarily, the Thiamine
concentrations in S. icipe and G. bimaculatus are higher
comparatively to that reported for other cricket species (0.4
mg/kg) (39). These differences observed could be associated to
species difference and variation in rearing diet formulation (96).

For vitamin B2 (Riboflavin), no significant differences were
observed (p = 0.0728) between S. icipe and G. bimaculatus.
However, our values are comparable to that reported for the
long-horned grasshopper Ruspolia differens (12.8 mg/kg) (97)
and crickets (19.1 mg/kg) (98). The vitamin B2 content of
the two cricket species reported in the present study is higher
than what has been documented for other Orthopteran species
(0.3–0.8 mg/kg) (99) and other commonly eaten insects in
Southwestern Nigeria (0.03–3.24 mg/100 g). The variation in
vitamin B2 content between literature and the findings of this
study could be attributed to differences in species, age and feeding
regime (96). Notably, niacin was not detected in S. icipe but
the value recorded for G. bimaculatus (10.93 mg/kg) are lower
compared to previous studies on crickets with values ranging
between 31.0 and 38.4 mg/kg (39, 53).

The concentrations of vitamin B6 (pyridoxine) among the two
cricket species differed significantly (p < 0.0001) with Gryllus
bimaculatus recording the highest value (52.76 mg/kg) compared
to S. icipe (16.06mg/kg). The vitamin B6 concentrations observed
in both crickets are lower than values (74.7 mg/kg) reported for
other edible crickets (37).

The folic acid content of S. icipe (4.12 mg/kg) and Gryllus
bimaculatus (5.14 mg/kg) were comparable but much higher
than values reported for other edible crickets (1.5 mg/kg) in
literature (39). Similarly, the folic acid content of the two cricket
species is higher than what has been reported in Tenebriomolitor
(1.37 mg/kg) (100). These levels of folic acid are also remarkably
higher than that in some common foods (Figure 5) of animal and
plant origin (Figure 5). Folic acid is a vitamin of public health
significance whose deficiency is being addressed through folic
acid supplementation and food fortification, especially during
pregnancy to reduce cases of birth defects and consequently
morbidity and mortality rates among children (100). Thus, S.
icipe and Gryllus bimaculatus could be promising and cheaper
alternative to commercial folic acid supplements. Similarly, the
riboflavin levels in S. icipe and G. bimaculatus are significantly
higher when compared to that of animal and plant-based
food sources. It remarkable to note that S. icipe and Gryllus
bimaculatus can significantly contribute to the recommended
nutrient intake (RNI) of many vitamins such as riboflavin,
thiamine, folic acids, and niacin, which are very critical for
males, females, children, pregnancy, and lactating mothers as
shown in Table 4 and Figure 5.

CONCLUSION

Scapsipedus icipe and G. bimaculatus present unique
opportunities for improving the nutritional status of resource-
poor and affluence populations toward addressingmacronutrient

and micronutrient malnutrition globally. Our results have
demonstrated that the described cricket species can significantly
contribute to the daily nutrient requirements of children and
adults and children, particularly minerals (iron, zinc, calcium
and others), protein, vitamins, and essential amino acids. It is
important to note that crickets have featured in human diets
around the world for many decades with their consumption
widely practiced in parts of Africa, Asia, and Latin America.
This partly explains why these insects are receiving increasing
attention for their potential to alleviate the projected food and
protein demand by the rapidly growing global population.
Although, the sustainable utilization of crickets to contribute
to our daily nutrient intake has received inadequate research
attention globally, our results generated demonstrate the urgent
need for their inclusion (whole, in-part, or processed flour)
into human diet. This will play an important role toward the
achievement of the “zero hunger” sustainable development goal
target, given that 98% of the 795 million individuals suffering
from hidden hunger live in low- and middle-income countries,
where cricket consumption are widely accepted. Thus, there
is urgent need for innovative community-based strategies for
scaling up the coverage of cricket consumption. However,
further studies on the bioavailability of Fe, Zn and folic acids
from cricket-derived food products are required to quantify their
overall dietary and therapeutic benefits. Also, factors that may
interfere with nutrient intake or absorption such as processing,
preservation, preparation, and incorporation into other foods
needs to be addressed.
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