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Abstract. Cell migration is a complex phenomenon that plays an important role in many biological processes.

Our aim here is to build and study models of reduced complexity to describe some aspects of cell motility in

tissues. Precisely, we study the impact of some biochemical and mechanical cues on the cell dynamics in

a 2D framework. For that purpose, we model the cell as an active particle with a velocity solution to a

particular Stochastic Differential Equation that describes the intracellular dynamics as well as the presence of

some biochemical cues. In the 1D case, an asymptotic analysis puts to light a transition between migration

dominated by the cell’s internal activity and migration dominated by an external signal. In a second step, we use

the contact algorithm introduced in [15,18] to describe the cell dynamics in an environment with obstacles. In the

2D case, we study how a cell submitted to a constant directional force that mimics the action of chemoattractant,

behaves in the presence of obstacles. We numerically observe the existence of a velocity value that the cell can

not exceed even if the directional force intensity increases. We find that this threshold value depends on the

number of obstacles. Our result confirms a result that was already observed in a discrete framework in [3, 4].

Introduction

Cell migration plays a central role in a wide variety of biological phenomena. In the immune system,
leukocytes migrate into areas of injury where they mediate the immune response [6]. Migration of fibroblasts
and vascular endothelial cells is crucial for wound healing [19]. In metastasis state, tumor cells migrate from
the initial tumor mass into the circulatory system and then leave and migrate into other sites [2, 13]. Finally,
cell migration is significant in many technological applications, such as tissue engineering, since it plays an
important role in colonization of biomaterials scaffolding.

A striking feature of animal cells is their ability to polarize in response to environmental cues. This asymmetry
is fundamental to the structure and function of most cell types. Front-rear polarization, characterized by the
establishment of cell protrusive polarity and directed migration, is controlled by intrinsic cell properties but also
by extracellular cues such as biochemical and physical cues. We will focus here on the impact of biochemical
and mechanical cues for cell crawling on a substrate. To do so we enrich the stochastic model introduced in [7],
which describes cell crawling on an homogeneous substrate in the absence of any biochemical cues, to account
for biochemical and mechanical cues. We first study the 1D case in the presence of a constant gradient of
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attractive signal in the medium, and we show that it captures different cell behaviours, namely a transition
between migration dominated by the cell’s internal activity and migration dominated by the external signal.
More precisely, if the cell sensitivity to the signal is weak then the cell does not always follow the signal and
it can go in another direction. On the contrary the cell follows the signal if its sensitivity to the signal is
high. Then, we numerically investigate the additional role of physical constraints composed by topographical
obstacles. This is done by considering the cell as a rigid disk in the spirit of [10] and by using a specific numerical
method, introduced in [15, 18], to solve the problem of the contact with obstacles. We observe the existence of
a velocity value that the cell can not exceed even if the directional force intensity increases. We find that this
threshold value depends on the number of obstacles. It is to be noticed that such a result was already observed
in [3,4] for the case of a tracer particle that moves in a geometrically confined lattice system populated by bath
particles moving randomly. We believe that this study could help to better understand some aspects of cell
motility in tissues.

The plan of this paper is as follows: in Section 1 we describe the stochastic model we will use to describe
crawling over a flat substrate in the presence of a constant gradient of external signal. In Section 2, we study
the model in dimension one. Finally in Section 3, we enrich the model to account for obstacles.

1. A stochastic model for cell crawling in the presence of a constant
gradient of attractive signal

1.1. A discrete stochastic jump process for cell activity

In this section, we enrich the model introduced in [9] that describes the cell crawling over a flat surface
in the absence of external cue. We extend the model to take into account the effect of a constant gradient of
attractive signal on the dynamics.

In the absence of external cue, cell crawling consists of four main stages (see Figure 1). At first, the cell
extends protrusions in its direction of motion that adhere to the substrate and de-adhere at the cell rear. We
distinguish two types of cell protrusion: lamellipodia that are wide and flat, and filopodia that are finger-like
extensions. Finally, contractile forces generate at the rear of the cell pull the whole cell body forward.

Figure 1. Scheme of cell crawling over a flat substrate [1]

We first recall the model introduced and studied in [7, 9, 11]. The cell is considered as a point, and the
apparition/retraction of filopodial extensions are associated to forces acting on the cell dynamics (see Figure

2). Let Nt be the number of filopodia adhering on the substrate at time t, and denote by ~Vt and (~Fi)i=1,...,Nt

respectively the cell velocity and the filopodial forces exerted by the filopodia at time t. Each filopodial force ~Fi
is assumed to be unitary and constant in time. Denoting by θi = arg( ~Fi), θt = arg(~Vt) and vt = ||~Vt||, the force

and the velocity can be written in polar coordinates as ~Fi = (cos θi, sin θi) and ~Vt = (vt, θt). The cell motion

with velocity ~Vt on the substrate leads to the appearance of a friction force which writes ~f = −γ~Vt, where
the parameter γ denotes the global friction substrate coefficient. Since the crawling of a cell on an adhesive
substrate occurs at very small scales, the inertia is negligible for this system. Therefore by the force balance
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Figure 2. Scheme of a cell with the corresponding forces [16]

principle, the sum of the filopodial forces (~Fi)i=1,...,Nt and the friction ~f cancels leading to

γ~Vt =

Nt∑
i=1

(cos θi, sin θi). (1)

Each filopodium is identified by the quantitative parameter θ ∈ [0, 2π) which indicates its orientation and one
can introduce the Dirac measure δθ which characterizes each filopodium. In this framework, the set of all
filopodial forces are described by the finite point measure νt defined by

νt =

Nt∑
i=1

δθi .

For any measurable function f on [0, 2π), the measure νt is such that 〈νt, f〉 :=
∑Nt
i=1 f(θi) and Nt = 〈νt, 1〉

corresponds to the filopodia population size. With this notation, Equation (1) translates into

γ ~Vt =
(
〈νt, cos〉, 〈νt, sin〉

)
. (2)

The Equation (2) represents the discrete model for computing the velocity ~Vt which is entirely described by the
measure-valued jump process (νt)t. The events that rule the protrusion activity are the following:

• Creation of filopodia: new filopodia form with rate c(θ; ~Vt), so that they form uniformly for a null
velocity, and preferentially in the direction of motion when the velocity increases. This allows to model
cell polarization. More precisely, the creation rate of filopodia is proportional to the probability density
of a circular normal distribution centered in the direction of motion.

• Individual death: each filopodium may disappear with rate d.
• Individual reproduction: each filopodium is able to induce the formation of a new protrusion having

the same orientation or a slightly modified orientation with reproduction rate r. In this latter case, the
orientation of the new filopodium is chosen following a probability distribution g(·, θi) assumed centered
in the ”parent’s” orientation θi with constant variance.

The environment affects the cell migration either mechanically (i.e. rigidity and adhesiveness of the substrate,
presence of obstacles,...) or chemically due to the presence of some molecular species which attract or repulse
it. In both cases, the cell feels its outer environment by using molecular receptors located at its membrane and
at protrusion tips. We consider now the situation where a constant gradient in attractive signal is present in
the environment. We assume that the external signal causes the cell to polarize towards its source by inducing
a constant bias in the protrusions activity. We enrich the model previously described by considering that the
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signal interferes with the creation of the protrusions and by taking into account the direction of the signal. Let
θg be the angle pointing to the direction of the constant gradient of signal. A simple choice is to assume that the
creation rate is proportional to a convex interpolation between the direction of cell motion θt and the direction
of the signal θg:

c(θ; ~Vt, θg) = c∗
[
(1− h)

eκ(vt) cos(θ−θt)

2πI0(κ(vt))
+ h

eβ cos(θ−θg)

2πI0(β)

]
, (3)

where c∗ is the spontaneous creation rate, vt = ‖~Vt‖, κ(vt) = αvt with α ≥ 0 representing the cell capacity
to polarize i.e. to create protrusions in the direction of movement, the parameter β ≥ 0 represents the cell
sensitivity to the signal, I0 denotes the 0-order modified Bessel function of first kind and h ∈ [0, 1] is a real
number. We remark that for h = 0 we obtain the creation rate of the model of migration without signal
introduced in [9]. It can be shown that these rates define a well-posed Markovian Jump process with values in
the space of finite point measures on [0, 2π) (see [8, 9, 12]).

1.2. A continuous stochastic model for cell crawling in the presence of a gradient of
chemoattractants

As it was done in the absence of external signal [7, 9], by using a rescaling procedure, by accelerating the
dynamics and by considering infinitesimal filopodial forces, it is possible to derive a continuous migral model
from the discrete one. In particular, it is possible to obtain the following Stochastic Differential Equation for

the cell velocity ~Vt:

d~Vt =

[
c

γ
((1− h) tanh(αvt)~eθt + h tanh(β)~eθg )− λ~Vt

]
dt+

σ

γ
d ~Wt, (4)

for 0 < t ≤ T with T < +∞. In Equation (4) λ > 0 is related to the lifetime of filopodia, σ > 0 quantifies

the intensity of the noise, ~eθt = ~Vt/vt denotes the direction of the cell motion, ~eθg denotes the direction of the

constant gradient of signal, and ( ~Wt)t≥0 represents a given 2d standard Brownian motion. This equation has

to be supplemented by a random initial velocity ~V0. We remark that when h = 0 we get

d~Vt =

[
c

γ
tanh(αvt)~eθt − λ~Vt

]
dt+

σ

γ
d ~Wt. (5)

Equation (5) was introduced in [8] as the continuous model to describe the cell crawling in the absence of signal.
The first term in the right-hand side represents the capacity of the cell to polarize and to generate driving forces
in the direction of motion. The second term accounts for a death term that originates in the discrete model
from either protrusions retraction or the formation of protrusions in a direction antagonist to motion. Finally,
the last term represents the stochastic fluctuations of the cell dynamics. When α = 0, the model describes the
dynamics of a passive particle moving by a damped Brownian motion. Whereas if α > 0, the model takes into
account the additional term related to the intracellular dynamics, namely the dynamics of the actin cytoskeleton
and the capacity to polarize.

The aim of the next section is to study the different behaviors arising from the competition of the two
phenomena, polarization vs external signal, when varying both parameters α and β.

2. A 1D continuous stochastic model for cell crawling in the presence of a
gradient of chemoattractants

In this section we study equation (4) in dimension one. To do so we follow the lines of [9] in which equation
(5) was studied in dimension one. The direction of the signal ~eθg becomes +1 if the signal is located on the
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positive side of the real line and −1 if it is located on the negative side. More precisely, we reach the following
equation

dVt =

[
c

γ
(1− h) tanh(αVt)± h

c

γ
tanh(β)− λVt

]
dt+

σ

γ
dWt, (6)

for 0 < t ≤ T . In this framework, the cell velocity Vt is a stochastic process taking values in R and Wt is the
standard 1D-Brownian motion. In the first part of this section, we follow the lines of [9] and we recall how
one can find the stationary distribution of Vt solving (6). In the second part we present the results of some
numerical simulations.

Let ps(V, t) be the probability distribution of Vt. By Ito’s formula, the density ps(V, t) solves the following
Fokker-Planck partial differential equation

∂t ps(V, t) = −∂V
[
f±(V )ps(V, t)

]
+

σ2

2γ2
∂2V ps(V, t),

where

f±(V ) :=
c

γ
(1− h) tanh(αV ) ± h c

γ
tanh(β)− λV.

The stationary distribution ps(V ) then satisfies the following equation

−∂V
[
f±(V )ps(V )

]
+

σ2

2γ2
∂2V ps(V ) = 0.

Integrating twice with respect to V , we get the explicit formulation for ps(V ):

ps(V ) = N e−W
±(V ), (7)

where N is a normalization constant and

W±(V ) := −2γ2

σ2

(
(1− h)

c

αγ
ln(cosh(αV ))± h c

γ
tanh(β)V − λ

2
V 2

)
. (8)

In order to study the different behaviours of the stationary velocity by varying the parameters α and β, one
can look for the values of V that minimize the function W±. Indeed by equation (7), the minima points of W±

are also the maxima points of the stationary distribution ps, and thus they represent the velocities which have
the greatest probability to occur. In the following we consider the case for which the signal is on the negative
side of the real line, and thus we analyze the function W−.

Figure 3 shows the graph of the function W− for β = 0.1 with α = 0.1 (Figure 3a) and α = 10 (Figure 3b).
One can notice that for α = 0.1 the function W− has only one global minimum realized by V ∼ 0. Instead,
for α = 10 there exist two minima points V1 < 0 < V2 for which W− has a global minimum in V1 and a local
minimum in V2. Therefore by considering β = 0.1, for α = 0.1 the most probable velocity is V ∼ 0 and the cell
moves as a Brownian motion, whereas for α = 10 there are two most probable velocities V1 < 0 and V2 > 0 but
for which W−(V1) < W−(V2) and the cell moves with more probability towards the signal.

Figure 4 shows the case for β = 1 with α = 0.1 ( Figure 4a) and α = 10 (Figure 4b). One can notice that
the function W− has one global minimum for both α = 0.1 and α = 10 realized respectively by V3 < 0 and
V4 < 0 for which V3 < V4. This means that if β = 1 the cell moves towards the signal for both the values
α = 0.1 and α = 10. In Figure 5 we show the graph of W− with the same value β = 1 but for α = 100. One
can notice that in this case W− has a global minimum for V5 < 0 and a local minimum for V6 > 0 such that
W−(V5) << W−(V6). Even if α is much more larger then the cases presented in Figure 4, the signal is strong
enough to be picked up by the cell which then moves towards the signal.
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(a) α = 0.1 (b) α = 10

Figure 3. Graph of the potential W− defined by (8) for h = 0.5, λ = 1, γ = c = σ = 1,
β = 0.1, α = 0.1 (3a) and α = 10 (3b).

(a) α = 0.1 (b) α = 10

Figure 4. Graph of the potential W− defined by (8) for h = 0.5, λ = 1, γ = c = σ = 1, β = 1,
α = 0.1 (4a) and α = 10 (4b).

Figure 5. Graph of the potential W− defined by (8) h = 0.5, λ = 1, γ = c = σ = 1, β = 1
and α = 100.
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2.1. Numerical simulations

In this section we perform some numerical simulations of Equation (6). We consider h = 0.5, λ = 1,
γ = c = σ = 1 and the signal located in the negative side. We set T = 1000 and let dt = 0.01 be the time-step
in the time interval [0, 1000], and let I = T/dt = 10000 be the number of time iterations in [0, 1000]. For
n = 0, ..., I − 1 let V n = V (tn) be the velocity at time tn := n × dt. We consider the initial condition V 0 = 0
and we compute the velocity V n+1 by using the Euler-Maruyama Method (see [14]) as follows:

V n+1 = V n +

[
c

2γ
tanh(αV n)± c

2γ
tanh(β)− λV n

]
dt+

σ

γ
dWn. (9)

Figures 6a and 6b show respectively the velocity histogram and the cell trajectory for β = 0.1 and α = 0.1. We
notice that the most probable velocity is around zero and that the cell moves as a Brownian particle. This is in
agreement with the graph of W− presented in Figure 3a.

Figures 6c and 6d show respectively the velocity histogram and the cell trajectory for β = 0.1 and α = 10.
We notice that there exist two most probable velocities, one strictly positive and the other strictly negative.
We observe then that the cell moves with non-zero mean velocity by showing more persistence in the trajectory
with respect to the Figure 6b.

Figures 7a and 7b show respectively the velocity histogram and the cell trajectory for β = 1 and α = 0.1.
The velocity histogram has a single peak shifted towards the direction of the signal and the cell trajectory show
a strong persistence in the direction of the signal. This is in agreement with the graph of W− presented in
Figure 4a.

Figures 7c and 7d show respectively the velocity histogram and the cell trajectory for β = 1 and α = 10. We
observe that the velocity histogram does not have a unimodal shape but its larger peak is in the direction of
motion. In addition, the cell trajectory has the same qualitative behavior of the one presented in Figure 7b.

Therefore, it seems that the cell may not follow the signal and go into the wrong direction if β is small and
α is big, whereas when β is big the cell follows the signal if α is small and it may escape if α is big.

3. The effect of topographical obstacles on the cell dynamics

In this section, we study numerically the behavior of an active particle, with the previously described dy-
namics, in an environment containing obstacles and chemoattractants. In our framework, we consider one single
moving particle in an environment containing a uniform distribution of fixed circular obstacles, where a constant
gradient in signal induces a directional bias in its displacement.

We consider N uniformly distributed circular obstacles, each of center qi ∈ R2 and radius rO > 0. We also
assume the cell to be a disk of center X = Xt ∈ R2 and radius r > 0. Let T < +∞ and t ∈ [0, T ]. As in the

previous section, we denote by ~Vt ∈ R2 the particle velocity at time t. In the absence of obstacles, the velocity
~Vt is solution of Equation (4). To deal with the presence of obstacles, that equation is complemented with a
non-overlapping constraint. In particular, we use the method introduced in [15,18] which was developed for the
case of a set of N moving particles. In the following, we give the main ideas of this framework and its numerical
treatment. Finally, we show some numerical simulations.

3.1. Contact algorithm to deal with the obstacles

In this section we recall the contact algorithm presented in [15], that is meant to deal with the non-overlapping

constraint. In the following we indicate by V = Vt = ~Vt the particle velocity and we use the notations of [15].
In particular, V is called spontaneous velocity, since it is the natural velocity which describes the particle’s
free motion. Now, when the particle ”meets” an obstacle, its velocity does need to be modified by the contact
algorithm in order to avoid the overlapping situation. This defines a (unique) new velocity V which will be
called actual velocity. This method is based on a projection of the spontaneous velocities onto a set of admissible
velocities.
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(a) Velocity histogram for α = 0.1 (b) Trajectory for α = 0.1

(c) Velocity histogram for α = 10 (d) Trajectory for α = 10

Figure 6. Histogram for the velocity V solution of Equation (6) (6a,6c) and cell trajectory
(6b,6d) for h = 0.5, λ = 1, γ = c = σ = 1, β = 0.1, α = 0.1 (6a,6b) and α = 10 (6c,6d).

Let q = (X, q1, . . . , qN ) ∈ R2(N+1) be the vector of positions and for i = 1, ..., N let Di(q) := ||qi−X||−rO−r
be the signed distance between the obstacle i and the particle. We require q to belong to the set of feasible
configuration Q defined by

Q = {q ∈ R2(N+1), Di(q) ≥ 0 ∀i = 1, ..., N}.

The contact between the particle and an obstacle occurs when Di(q) = 0 for some i = 1, ..., N . In that case the
velocity V needs to be modified in order to satisfy the non-overlapping constraint. One can introduce the set
Cq defined by Cq = {v ∈ R2 : if Di(q) = 0, then Gi(q) · v ≥ 0, for all i = 1, ..., N},

Gi(q) = ei(q) =
X − qi
||X − qi||

∈ R2.

The quantity Gi(q) indicates the normalized vector starting from qi and pointing to X. If we denote by s the
straight line passing through X and orthogonal to Gi(q), the condition Gi(q) · v ≥ 0 imposes that the particle’s
velocity v must belong to the half-space identified by the line s which does not contain the vector Gi(q). Thus,
the condition Gi(q) · v ≥ 0 gives the admissible velocities v for which the non-overlapping constraint is verified.
The actual velocity V ∈ Cq is defined as the admissible velocity which is the closest to V in the least square
sense. Let PCq : R2 → Cq be the projection operator of the spontaneous velocity space onto the admissible
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(a) Velocity Histogram for α = 0.1 (b) Trajectory for α = 0.1

(c) Velocity Histogram for α = 10 (d) Trajectory for α = 10

Figure 7. Histogram for the velocity V solution of Equation (6) (7a,7c) and cell trajectory
(7b,7d) for h = 0.5, λ = 1, γ = c = σ = 1, β = 1, α = 0.1 (7a,7b) and α = 10 (7c,7d).

velocity space. Then V solves the following problem

Vt = PCq(Vt), for all t ∈ (0, T ]. (10)

For the mathematical properties of the contact algorithm expressed by Equation (10), we refer to [15, 18]. In
the following, we recall the numerical method for solving Equation (10) introduced in [15].

3.2. Numerical scheme introduced in [15]

In this section, we recall the numerical scheme introduced in [15] to simulate the dynamics of a particle in
interaction with topographical obstacles. In particular, in [15] it is shown that the approximation of V is also
the solution of a minimization problem reformulated in a saddle-point form, whose resolution can be done by
the Uzawa algorithm (see also [17]).

For fixed T < +∞, we consider [0, T ] as the time interval. Let I ∈ N∗ and δ := T/I, we denote by {tn := nδ}
for n = 1, ..., I the time discretization. Let V n := Vtn and Vn := Vtn , the quantity V n is then obtained by the
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following rule {
Vn = PCδ

qn
(V n),

Cδq = {v ∈ R2, Di(q) + δGi(q) · v ≥ 0 for all i = 1, ..., N}.
(11)

The definition of Cδq is based on a first order approximation, in terms of velocity, of the non-overlapping constraint

expressed in Cq. Let U := V n, U := Vn, and Cq := Cδq, we consider the functional J defined by J(v) := ||v−U ||2.
The actual velocity U is solution of the following minimization problem under constraintsU ∈ Cq,J(U) = min

v∈Cq
J(v).

(12)

Let B : R2 → RN be the operator defined by

Bv := (B1v, ..., BNv) where Biv := −δGi(q) · v.

The set of constraints Cq rewrites as follows

Cq = {v ∈ R2 : Bv ≤ D}, where D = D(q) = (Di(q))i=1,...,N ∈ RN .

Let C be the cone RN+ and let L : R2 × C → R be the Lagrangian associated to (12) defined by

L(v, µ) = J(v) + µ · (Bv −D).

Consider the following saddle-point problem{
(U , λ) ∈ R2 × C,
L(U , µ) ≤ L(U , λ) ≤ L(v, λ) ∀v ∈ R2,∀µ ∈ C.

(13)

One can remark that for the problem (13), the couple solution (U , λ) is such that U realizes the minimum of L
among the velocities v ∈ R2 and λ realizes the maximum of L among the lagrangian multipliers µ ∈ C. One
can have the following properties.

Proposition 3.1 ( [15]). If the couple (U , λ) is solution of (13), then U is solution of (12).

Proposition 3.2 ( [15]). The couple (U , λ) is solution of (13) if and only if the couple (U , λ) is solution of (14)
defined by 

U +Btλ = U,

BU ≤ D,
λ · (BU −D) = 0.

(14)

The interest is then to solve (14) numerically. To this aim, a possible choice is to use the Uzawa algorithm
which generates two sequences (vk, µk) according to the following rule

ρ > 0, µ0 ∈ C,

vk = U −Btµk−1,
µk = Π+(µk−1 + ρ [Bvk −D]),

(15)
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where Π+ is the euclidean projection onto the cone C and ρ is a fixed parameter. The algorithm can be shown
to converge as soon as 0 < ρ < 2/||B||2 see e.g. [5]. Under this hypothesis, one can get that µk converges to
some λ and vk converges to U such that the couple (U , λ) is solution of (14).

3.3. Numerical simulations

We present in this section some numerical simulations. We describe the geometry we use and a method for
building the uniform distribution of obstacles and then we show some numerical results. We use in particular
the following numerical method. We set T = 50 and let dt = 0.05 be the time-step in the time interval [0, 50],
and let I = T/dt = 2000 be the number of time iterations in [0, 50]. For n = 0, ..., I − 1 let V n ∈ R2 be the
spontaneous velocity and Vn ∈ R2 be the actual velocity at time tn = n× dt. We then write V n = (un, vn) and
Vn = (zn, wn) and we consider random initial conditions V 0 and V0. We first compute the velocity V n+1 by
using the Euler-Maruyama Method (see [14]) for the Equation (4):

un+1 = zn +
c

γ

[
(1− h) tanh(α||Vn||) exθn + h tanh(β) exθg − λz

n
]
dt+

σ

γ
dW x

n ,

vn+1 = wn +
c

γ

[
(1− h) tanh(α||Vn||) eyθn + h tanh(β) eyθg − λw

n
]
dt+

σ

γ
dW y

n ,

where ~eθn = (exθn , e
y
θn

) is the direction of the motion at time tn, ~eθg = (exθg , e
y
θg

) is the direction of the constant

gradient of the signal and dWn = (dW x
n , dW

y
n ) indicates the 2D-Brownian motion at time tn. Successively, we

compute the velocity Vn+1 by using the Uzawa algorithm described in (15). In particular, at step k + 1 of the
Uzawa algorithm we compute

zn+1
k+1 = un+1 − (µk · e1)dt,

wn+1
k+1 = vn+1 − (µk · e2)dt,

µk+1 = Π+(µk − ρ[ (zn+1
k+1e1 + wn+1

k+1e2)dt−G ])

with initial condition µ0 = 0 and ρ > 0, where e1, e2 ∈ RN indicate respectively the normalized distance
between the center of the particle and the centers of the obstacles along the x-axis and the y-axis and the vector
G ∈ RN indicates the signed distance between the particle and the obstacles.

In the following, we simulate different cases. First, we investigate the effect of obstacles on the dynamics
of a Brownian particle that may be damped by a friction term. Then, we additionally consider a constant
directional force and its effect on the dynamics. Finally, we consider the full dynamics as described in Equation
(4), that accounts for cell dynamics. In particular, it provides some intrinsic persistence in the displacement,
and we investigate its interaction with both the obstacles and the constant force. We remark that the constant
force can describe the presence of a constant gradient in chemical signal in the environment of the particle.

3.3.1. Geometry and obstacles distribution

We start by describing the geometry of the domain and the obstacles distribution. We consider a domain
Ω = [0, L]× [0, H], for some L,H > 0 and an uniform obstacles distribution which depends on the dimensions
of Ω. Let rO and r be the obstacles radius and the cell radius respectively, and let N be the total number of
obstacles in Ω. N is computed by the following rule. Let ε > 0 be a geometry parameter to assure the particle
to pass between two obstacles and let d = 2rO + 2r + 2ε be the minimal distance between two obstacles to
ensure the passage of the particle. Let N1 and N2 be the number of obstacles along the horizontal and vertical
directions respectively, defined by

N1 =

[
L

d

]
and N2 =

[
H

d

]
,
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where [ · ] indicates the integer part function. The total number of obstacles in the domain Ω is then

N = N1 ×N2.

We decide to fix the parameter ε = 0.01 and to consider r = mrO for some m > 0. In Figure 8 we show two
examples of the geometry for a particular choice of the parameters.

In the following, we consider the domain Ω = [0, 2]× [0, 2] for which we impose periodic boundary conditions
on the particle’s displacement. We consider different numbers of obstacles N by varying the obstacles radius
rO.

(a) N = 36 (b) N = 900

Figure 8. Domain Ω = [0, 2]× [0, 2]. Obstacles in blue, cell initial position in green.
For case (a): ε = 0.01, rO = 0.1, r = rO/2 = 0.05. For case (b): ε = 0.01, rO = 0.04,
r = rO/2 = 0.02.

3.3.2. Effect of obstacles on the dynamics of a Brownian particle

In this section, we consider the case of a particle moving according to a damped Brownian motion. In
particular, we set α = 0, β = 0, σ = 1 and we investigate the particle’s dynamics for different values of λ > 0
and different numbers of obstacles.

In Figure 9, we show the one and two dimensional velocity histograms for N = 36 obstacles (Figures 9a-9c),
and for N = 900 obstacles in (Figures 9d-9f). We first notice that the one dimensional velocity histograms
are symmetric. This is due to the fact that there is not any bias in the particle’s dynamics, and the obstacles
are uniformly distributed in the domain. By analysing the two dimensional velocity histograms, we notice that
the presence of obstacles does have an effect on the direction of the velocity. For N = 36, they show different
shapes depending on the value of lambda. For λ = 0, the histogram has a squared shape, while it becomes more
circular for larger values of λ. This shows that when the dynamics is weakly damped, the obstacles act on the
directionality of the particle by preventing displacements in other directions than along the x and y axis. For
N = 900, the 2D histograms have the same squared shape, but as λ increases, this shape becomes more smooth.
In particular, we see that as the number of obstacles increases, the squared shape of the velocity histogram
becomes more squared.

In Figure 10, we show two trajectories for N = 900 obstacles with λ = 0 (Figure 10a) and λ = 3 (Figure
10b). We notice that for λ = 0 we observe directional displacement in the particle’s trajectory, which covers all
the domain. For λ = 3, we observe a more compact trajectory, which mainly covers the upper-right part of the
domain. This shows how the persistence induced by the obstacles is stronger for λ = 0 than for λ = 3.
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N = 36

(a) λ = 0 (b) λ = 1 (c) λ = 3

N = 900

(d) λ = 0 (e) λ = 1 (f) λ = 3

Figure 9. One and two dimensional velocity histograms for N = 36 obstacles (9a-9c) and for
N = 900 obstacles (9d-9f). Parameters: α = 0, β = 0, σ = 1, λ = 0 (9a) and (9d), λ = 1 (9b)
and (9e), λ = 3 (9c) and (9f).

3.3.3. Effect of a constant force on the dynamics of a Brownian particle

In this section, we study the effect of a constant directional force on a Brownian particle. In particular, we
set α = 0, λ = 1, σ = 0.2 and then we consider a normalized force F = (2 × 2/5, 1.5 × 2/5). The parameter
β describes the intensity of the effect of the force F on the particle’s dynamics. We investigate the interplay
between the force and the obstacles by varying β and the number of obstacles N .

Figure 11 shows the mean velocity modulus as a function of different values of β, for different numbers of
obstacles. Since Equation (4) involves only tanh(β), we take β ∈ [0, 10], as larger values do not change the
dynamics. The mean velocity was obtained by simulating the model among M = 100 simulations. Figure
11 shows that the mean velocity modulus curve has a non-strictly-monotone behaviour with respect to β,
for any number of obstacles. This is explained by the presence of the obstacles. For small values of β, the
curve is monotonic-increasing when β increases. But when β is large enough, the curve reaches an horizontal
asymptote. This is due to the fact that when the force intensity is strong enough, the particle gets stuck between
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(a) λ = 0 (b) λ = 3

Figure 10. Particle’s trajectories for N = 900 obstacles. Parameters: α = 0, β = 0, σ = 1,
λ = 0 (10a) and λ = 3 (10b).

the obstacles. We notice also that the mean velocity modulus decreases as the number of obstacles N increases.
This shows how obstacles make the environment congested and prevent the particle’s motion.

Figure 11. Mean velocity modulus among M = 100 simulations. We set α = 0, λ = 1,
σ = 0.2 and we simulated for 20 values of β ∈ [0, 10]. Numbers of obstacles considered:
36, 196, 900, 1600, 2704, 3844.

In Figure 12, we show the one and two dimensional velocity histograms for N = 900 obstacles with β = 0.5
(Figure 12a), β = 2 (Figure 12b) and β = 6 (Figure 12c). We first notice that the one dimensional histograms
for x-component and y-component of the velocity show an asymmetry towards positive values, which is due
to the bias induced by the force F . Since the x-component of the force is greater than its y-component, the
asymmetry is stronger in the x-component of the velocity than in its y-component. For β = 0.5, the asymmetry
is very weak and it becomes stronger as β increases. By analysing the two dimensional velocity histograms, we
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notice that the presence of the force makes the velocity distribution more concentrated toward the half-upper-
right side of the domain. For β = 0.5, this effect is weak but remarkable. As β increases the effect becomes
stronger and more remarkable. Figure 13 shows two particle’s trajectories for N = 900 obstacles, for β = 0.5
(Figure 13a) and β = 6 (Figure 13a). We first notice that for both the cases, the particle’s trajectory covers
all the domain. For β = 6, the trajectory direction points toward the upper-right side of the domain, while
for β = 0.5 the trajectory direction changes more frequently. This is due to the fact that as β increases, the
intensity of the effect of the force on the particle’s dynamics becomes stronger.

(a) β = 0.5 (b) β = 2 (c) β = 6

Figure 12. One and two dimensional velocity histograms for N = 900 obstacles. Parameters:
α = 0, λ = 1, σ = 0.2, β = 0.5 (12a), β = 2 (12b), β = 6 (12c).

(a) β = 0.5 (b) β = 6

Figure 13. Particle’s trajectories for N = 900 obstacles. Parameters: α = 0, λ = 1, σ = 0.2,
β = 0.5 (13a) and β = 6 (13b).

3.3.4. Dynamics of an active particle with cellular dynamics

In this section, we study the effect of a constant directional force on an active particle for which the velocity
is solution of equation (4) and mimics the dynamics of a cell. In particular, we set λ = 1, σ = 0.2 and we take
the same force F as previously, namely F = (2× 2/5, 1.5× 2/5). We perform similar numerical experiments as
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the ones done in the previous section, but now we consider α > 0. The parameter α appears in the dynamics
in (4) through the term tanh(αv), where v indicates the norm of the velocity. To investigate the competition
between the two parameters α and β, we focus on large values of α. In particular, in the following we consider
α = 30 and we let vary β ∈ [0, 10].

Figure 14. Mean velocity modulus among M = 100 simulations. We set α = 30, λ = 1,
σ = 0.2 and we simulated for 20 values of β ∈ [0, 10]. Numbers of obstacles considered:
36, 196, 900, 1600, 2704, 3844.

Figure 14 shows the mean velocity modulus as a function of different values of β and for different numbers
of obstacles, by setting α = 30. In comparison with Figure 11, we notice that the qualitative behaviour of the
mean velocity modulus does not change. We remark only that in Figure 14 the mean velocity modulus assumes
smaller values with respect to the results presents in Figure 11.

In Figure 15, we show the one and two dimensional velocity histograms for N = 900 obstacles with β = 0.5
(Figure 15a), β = 2 (Figure 15b) and β = 6 (Figure 15c). We first notice that the one dimensional histograms
for x-component and y-component of the velocity show a shift towards positive values, which is due to the bias
induced by the force F . In comparison with the histograms in Figure 12, this asymmetry is less strong for
both the x-component and the y-component. This is due to the fact that the internal dynamics intensity may
play against the effect of the force. By analysing the two dimensional velocity histograms, we notice that in
comparison with Figure 12, the velocity distribution is less squared and more concentrated in other other parts
of the domain with respect to the half-upper-right side. For β = 0.5, this behaviour is more remarkable. As β
increases, the velocity distribution becomes more concentrated towards parts of the domain different from the
half-upper-right side. This is due to the fact that the force intensity is less efficient on the particle’s dynamics
because now the particle feels also its own internal dynamics. Figure 16 shows two particle’s trajectories for
N = 900 obstacles, for β = 0.5 (Figure 16a) and β = 6 (Figure 16b). We notice that for β = 0.5, the particle’s
trajectories mainly covers the upper part of the domain. For β = 6, we can recognize some persistence directions
in agreement with the direction of the force, but they are also very perturbed. Indeed, since α > 0 and big
enough, the particle’s dynamics feels the competition between the force intensity and its own internal dynamics.
For this reason, the particle may cover different directions with respect to that induced by the constant force.
This is in agreement with the velocity histogram in Figure (15c).
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(a) β = 0.5 (b) β = 2 (c) β = 6

Figure 15. One and two dimensional velocity histograms for N = 900 obstacles. Parameters:
α = 30, λ = 1, σ = 0.2, β = 0.5 (15a), β = 2 (15b), β = 6 (15c).

(a) β = 0.5 (b) β = 6

Figure 16. Particle’s trajectories for N = 900 obstacles. Parameters: α = 30, λ = 1, σ = 0.2,
β = 0.5 (16a) and β = 6 (16b).

Conclusion

In the present proceeding, we studied the effects of some particular biochemical and mechanical cues on cell
migration. In the first part, we introduced a two dimensional continuous stochastic model to describe the effects
of biochemical cues on cell migration. This continuous model relies on biological assumptions. More precisely
we considered the dynamics of a cell in the presence of a constant gradient of attractive signal. With this model
we wanted to study the competition between the internal cell’s dynamics and the intensity of the signal. In the
one dimensional case, we obtained an explicit formulation of the stationary velocity distribution. We noticed
that when the signal intensity is weak, the cell moves according to its internal dynamics. If instead the signal
intensity is strong enough, the cell follows the signal.

In the second part, we numerically investigated the combined effects of obstacles and of a constant directional
force on the cell’s dynamics for a cell described as an active particle. We first considered a damped Brownian
particle in a crowded environment and without external signal. For this case, by analysing the two dimensional
velocity histograms, we noticed that the presence of obstacles has an effect on the directionality of the particle,
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which becomes stronger as the number of obstacles increases and as the damped effect decreases. Then, we
studied the additional effect of a constant directional force. We noticed that the mean velocity modulus increases
as the force intensity increases until it reaches a limit value. Moreover, we saw that the mean velocity modulus
decreases as the number of obstacles increases, but this does not change its qualitative behaviour. We analysed
also the two dimensional velocity histograms. We first noticed that the one dimensional histograms show an
asymmetry towards positive values which becomes more evident as the force intensity increases. Furthermore,
the two dimensional velocity distribution seems to be more concentrated in the direction of the external constant
force. This behaviour becomes more remarkable as the force intensity increases. Finally, we considered an active
particle whose dynamics is also characterized by an internal dynamics in a crowded environment and with an
external signal. We noticed that the mean velocity modulus does not change qualitatively with respect to the
previous case. As for the two dimensional histograms, we noticed that the velocity distribution is not only
concentrated in the direction of the external constant force, but also in other regions of the domain. This
different behaviour is due to the presence of the internal dynamics. We can thus observe that the presence of
the obstacles has an effect on the directional behaviour of the particle’s dynamics. Indeed, the presence of the
obstacles enforces the particle to move towards particular regions of the domain. The presence of an external
constant force enforces the particle to move in the direction of the force. Furthermore, the internal dynamics
enforces the persistence induced by the presence of the obstacles as well as the by external constant force.
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