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Abstract. We propose in this article a model describing the dynamic of a system of adipocytes, struc-
tured by their sizes. This model takes into account the differentiation of a population of mesenchymal
cells into preadipocytes and of preadipocytes into adipocytes; the differentiation rates depend on the
mean adipocyte radius. The considered equations are therefore ordinary differential equations, coupled
with an advection equation, the growth rate of which depends on food availability and on the total
surface of adipocytes. Since this velocity is discontinuous, we need to introduce a convenient notion
of solutions coming from Filippov theory. We are consequently able to determine the stationary solu-
tions of the system, to prove the existence and uniqueness of solutions and to describe the asymptotic
behavior of solutions in some simple cases. Finally, the parameters of the model are fitted thanks to
some experimental data and numerical simulations are displayed; a spatial extension of the model is
studied numerically.

Résumé. Nous proposons dans cet article un modèle décrivant la dynamique d’un ensemble d’adipocy-
tes structurés en taille. Ce modèle tient compte de la différentiation d’une population de cellules
mésenchymales en préadipocytes et des préadipocytes en adipocytes; les taux de différentiation dépen-
dent du rayon moyen des adipocytes. Les équations considérées sont, par conséquence, des équations
différentielles ordinaires, couplées avec une équation d’advection, dont le taux de croissance dépend
de la nourriture disponible et de la surface totale des adipocytes. Comme la vitesse est discontinue,
nous introduisons une notion appropriée des solutions, provenant de la théorie de Filippov. Nous
sommes alors en mesure de déterminer les solutions stationnaires du système, de prouver l’existence
et l’unicité de solutions et de décrire le comportement asymptotique des solutions dans certains cas
simples. Finalement, les paramètres du modèles sont estimés grâce à des données expérimentales et des
simulations numériques sont présentées; une extension spatiale du modèles est étudiée numériquement.
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8 Inria Bordeaux Sud-Ouest, team Monc. Email: cristina.vaghi@inria.fr

c© EDP Sciences, SMAI 2020

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article published online by EDP Sciences and available at https://www.esaim-proc.org or https://doi.org/10.1051/proc/202067013

http://publications.edpsciences.org/
https://www.esaim-proc.org
https://doi.org/10.1051/proc/202067013


ESAIM: PROCEEDINGS AND SURVEYS 211

Introduction

Obesity is a worldwide major public health issue that doubled since 1980 and affects nowadays almost two
billions of adults considered as overweight and 600 millions considered as obese [12]. Strikingly, obesity is the
most prevalent cause for the development of cardio-metabolic diseases (cardiovascular diseases, type 2 diabetes,
and liver diseases) as well as cancer, increasing mortality and morbidity and justifying the need for intensive
research and intervention policy.

Obesity is characterized by an increase in adipose tissue (AT) mass. This expansion of AT is a complex
process which requires succeeding steps of proliferation, differentiation and maturation of the cells from the
adipocytes lineage [2]. Indeed, within AT, vascular-resident adipose progenitor cells (APCs) proliferate and,
under specific signals, differentiate into pre-adipocytes. Pre-adipocytes also expand through proliferation before
to differentiate into small mature adipocytes. Mature adipocytes have an impressive capacity of expanding their
volume by more than 30-fold through triglyceride accumulation in lipid droplets [7, 16]. Ultimately, one single
large lipid droplet occupies most of the cytoplasm and stiffens locally the AT [20]. The mechanical forces
generated by hypertrophic stiff adipocytes may both limit their size and stimulate the differentiation of APCs
and pre-adipocytes to recruit new adipocytes [15]. Mature adipocyte size is not only critical for adipogenesis
initiation but also for adipocyte functions. Indeed, hypertrophic adipocytes have less ability to properly store
lipids, resulting in spillover of lipids and excessive fat deposition in other tissues, both favorizing cardio-metabolic
diseases. Although there is growing evidence that impaired AT expandability plays a pivotal role in obesity-
related cardio-metabolic diseases, the molecular and cellular basis of this phenomenon is complex and far from
being understood. Indeed, the expansion of AT depends on a large number of parameters including the rate
of APCs and pre-adipocytes proliferation/differentiation/death, the mechanical feedback loop of adipogenesis
stimulation, the size of the adipocytes and the kinetic of their death.

The pathological implication of these phenomena is a motivation for developing new approaches for a better
understanding of the AT formation. Mathematical modeling can provide useful insights, in particular for
identifying leading parameters. Noticeably, the mechanical feedback loop of adipogenesis stimulation is certainly
a pivotal parameter that could control the ability of adipose tissue to expand through the recruitment of new
adipocytes. We refer the reader to [17, 18] for attempts in this direction. Here, we shall present a different
modeling of the AT development, including some differentiation processes and a velocity growth depending on
the total surface, and investigate, theoretically and numerically, the main features of the adopted model.

0.1. Description of the homogeneous in space model

We think of the process as a compartment model with three populations of cells: mesenchymal, pre-adipocytes
and adipocytes, the latter population being structured by the size of the cells. Let t 7→ m(t) and t 7→ p(t) stand
for the number of mesenchymal, and pre-adipocytes, respectively; in the first five sections, both quantities
depend only on the time variable t ≥ 0. Adipocytes are described by their radius distribution function (t, r) 7→
a(t, r): for given 0 ≤ r1 ≤ r2, the integral

∫ r2
r1
a(t, s) ds gives the number of adipocytes with a radius r between

r1 and r2, at time t ≥ 0.
Mesenchymal and pre-adipocytes undergo proliferation and mortality. Furthermore, mesenchymal cells differ-

entiate into pre-adipocytes, while pre-adipocytes differentiate into adipocytes. The mutation of pre-adipocytes
gives rise to adipocytes with radius r? ≥ 0, and r? will be the minimal radius within the adipocytes population.
Adipocytes can undergo mortality and dynamic change of their radius. Radius changes are modeled with a
growth rate function (t, r) 7→ V (t, r). The expression of the growth rate function V will be determined later on,
through volume considerations. As it will be detailed below, we assume the existence of a critical size rc > 0,
which stands for the maximal value of adipocyte radius.

The unknowns depend on the time variable t ∈ [0,+∞) and, for the adipocyte distribution, on the radius
variable r ∈ [r?,+∞). The evolution of the population of mesenchymal cells, pre-adipocytes and adipocytes is
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governed by the following set of equations, defined on the domain (t, r) ∈ [0,+∞)× [r?,+∞)

dm

dt
(t) = −γm(t) + αm(t)− β(r̄(t))m(t),

dp

dt
(t) = −γ′p(t) + α′p(t)− β′(r̄(t))p(t) + β(r̄(t))m(t),

∂a

∂t
(t, r) + ∂r (V a) (t, r) = −γ′′a(t, r),

where all the parameters of the model are nonnegative and can be collected as follows:
α, α′ proliferation rates for m and p,
β, β′ differentiation rates for m and p, which depend on the mean radius of adipocytes r̄(t) at time t,
γ, γ′, γ′′ mortality rates for m, p and a,
rm radius of mesenchymal cells,
r? emergence radius of adipocytes (minimal radius) and radius of pre-adipocytes,
rc maximal radius of adipocytes,
V (t, r) growth rate of an adipocyte of radius r at time t.

Denoting by δ = α− γ and δ′ = α′ − γ′, we obtain the following system:

dm

dt
(t) = δm(t)− β(r̄(t))m(t), (1a)

dp

dt
(t) = δ′p(t)− β′(r̄(t))p(t) + β(r̄(t))m(t), (1b)

∂a

∂t
(t, r) + ∂r (V a) (t, r) = −γ′′a(t, r). (1c)

Initial data and boundary conditions. The system is complemented by initial data

m(0) = m0 ≥ 0, p(0) = p0 ≥ 0, (2a)

a(0, r) = a0(r) ≥ 0. (2b)

Since V (t, r?) is positive, we also need to prescribe the boundary condition for a when r = r?; this is where we
take into account the differentiation of the pre-adipocytes into adipocytes:

V (t, r?) a(t, r?) = β′(r̄(t)) p(t). (3)

For the largest adipocytes, the growth rate vanishes (see below), and we simply assume that V (t, r) a(t, r) = 0
for r > rc. It means that adipocytes beyond a certain size do not exist. Consistently, we also assume that the
support of a0 is included in [r?, rc]. The initial and boundary value problem under consideration is (1a), (1b),
(1c), (4), (5), (6), (2a), (2b), (3).

Dependency of the mutation rates on the mean radius. To keep feedback mechanisms description tractable,
we assume that the differentiation rates β and β′ are functions of the mean radius r̄(t) at time t. As said above,∫ rc
r?
a(t, s) ds represents the total number of adipocytes, at time t. The mean radius of adipocytes at time t is

therefore equal to:

r̄(t) =

∫ rc

r?

s a(t, s) ds∫ rc

r?

a(t, s) ds

(4)
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and we also introduce for further purposes

S(t) = 4π

∫ rc

r?

s2 a(t, s) ds, (5)

the total surface of the adipocytes at time t.
We define β and β′ as functions of r̄, typically with a sigmoid shape that reproduces threshold effects:

β(r̄) = βm +
βM − βm

1 + e
−
r̄−rβ
Rβ

and β′(r̄) = β′m +
β′M − β′m

1 + e
−
r̄−r

β′
R
β′

with all parameters positive and such that βM ≥ βm, β′M ≥ β′m. The image of β is [βm, βM ]; the sigmoid β

is ”centered” on rβ and its slope at mid height is βM−βm
4Rβ

. The behavior of β′ relatively to its parameters is

similar, see Figure 1 for a typical shape. In particular, from a mathematical point of view, β and β′ are bounded
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Figure 1. Shape of β and β′ as functions of the radius. These two functions are used in eq. (1)

Lipschitz-continuous functions.
Description of the growth rate. The dynamics of the radius of an adipocyte t → R(t) with respect to time

can be approximated with the ODE
d

dt
R(t) = V (t, R(t)),

where V is the growth rate. We assume that adipocytes capture all the excess of food, i.e. not used by
the metabolism. Adipocytes gather the food through their membranes, thus the flux of food they receive is
proportional to their surface. Given a radius r? < R < rc the flux of food is proportional to the ratio of the
surface of the considered adipocyte over the total surface of all the adipocytes, that is

k
R2∫ rc

r?

s2a(t, s) ds

where k > 0 is the (excess of) available food. In the present paper, k is constant in time, but it could be relevant
to consider it as evolving in time, for example with time periodic food input to mimic circadian cycle. Thus, in
the time interval [t, t+ dt], the volume variation of such an adipocyte with radius R(t) is governed by

V (t+ dt) = V (t) + k
R(t)2∫ rc

r?

s2a(t, s) ds

× dt.
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Letting dt go to 0, we deduce that the volume obeys the ODE
dV

dt
= k

R(t)2∫ rc

r?

s2a(t, s) ds

. Since the volume V (t)

is related to the radius R(t) by V (t) =
4

3
πR(t)3, we end up with

dV

dt
= 4πR(t)2 dR

dt
= 4πR(t)2 × V (t, R(t)) = k

R(t)2∫ rc

r?

s2a(t, s) ds

.

Consequently, we have

V (t, r) =
k

4π

∫ rc

r?

s2a(t, s) ds

=
k

S(t)
.

This relation holds as far as the radius is not too large. As already mentioned above, the size of the adipocytes is
limited. There are several possibilities to model such a threshold, based either on phenomenological arguments,
or on energetic considerations. In what follows, we make the equation as simple as possible, with the formula

V (t, r) =
k

S(t)
1[r?,rc)(r) (6)

which assumes that the growth rate vanishes outside the domain r ∈ [r?, rc]. This simple definition will allow
us to derive easily interesting formula for the stationary solutions of the model.

However, for the numerical simulations, we adopt the following regularized growth rate :

V (t, r) =
k

S(t)
1[r?,rc−ε)(r)−

r − rc
ε

k

S(t)
1[rc−ε,rc)(r),

where ε > 0 is a small parameter.
Typical values for the parameters are collected in Table 2.

0.2. Definition of the solutions to system (1)-(3)

The definition (6) of the growth rate V raises some slight technical difficulties. Indeed, the equation for the
adipocytes concentration (t, r) 7→ a(t, r) is a transport equation, which is classically understood by means of
the characteristic curves associated with the growth rate V (t, r). However, V , as given by (6), does not fullfil
the regularity required to apply the Cauchy-Lipschitz theorem. Nevertheless, assuming that S(t) ≥ ε > 0 for
all t ∈ [0, T ), V satisfies the following one sided Lipschitz condition (OSLC):

for all r1, r2 ∈ [r?,+∞), for all 0 ≤ t ≤ T <∞,
(
V (t, r1)− V (t, r2)

)
(r1 − r2) ≤ C(t)|r1 − r2|2 with C ∈ L1(0, T ).

Hence, we can appeal to the generalized theory introduced by A. Filippov [10], see also [14] for an application
to transport equations with discontinuous coefficients. It allows us to consider the family of continuous Filippov
maps

Xt : ([0, t]× {r?}) ∪ ({0} × [r?,+∞))→ [r?,+∞),

satisfying Xs(s, r?) = r? for all s ∈ [0, t], X0(0, r) = r for all r ∈ [r?,+∞) and, for fixed (s, r) ∈ (0,∞)×(r?,∞),
the function t 7→ Xt(s, r) is absolutely continuous on [s,∞) and satisfies the differential equation d

dtXt =
V (t,Xt) for almost every t with Cauchy datum Xs(s, r) = r. Owing to the OSLC, Xt is the unique flow of the
differential equation for t ≥ s.
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In our particular case, the characteristic maps associated with a given S can be explicitly computed and are
defined by:

XS
t (0, r) = min

(
r +

∫ t

0

k

S(u)
du, rc

)
, t ≥ 0, XS

t (s, r?) = min

(
r? +

∫ t

s

k

S(u)
du, rc

)
, t ≥ s ≥ 0. (7)

Note that any trajectory issued from r ∈ [r?, rc] do not cross the line r = rc: sizes larger than rc cannot be
reached, which corresponds to the intuition since the velocity vanishes of (rc,∞). Moreover, there is no need of
boundary condition for the transport equation for the adipocytes at r = rc since there is nothing entering from
this end into the domain.

Let a0 be a positive finite measure supported on [r?, rc]. We denote byM−w∗ the set of finite measures on
[r?,+∞) endowed with the weak star topology.

We generalize Eq.(3) by replacing its right-hand side with a given positive continuous function f ∈ C0(R+).
In that context, we will call a solution to the problem (1c)-(2b)-(3) with initial condition, i.e.

∂ta(t, r) + ∂r(V a)(t, r) = −γ′′a(t, r), t > 0, r > r?,

V (t, r?)a(t, r?) = f(t), t > 0,

a(0, r) = a0(r), r > r?

(8)

any measure-valued function a ∈ C0(R+;M − w∗) such that the following Duhamel formula holds: for all
φ ∈ C0

b ([r?,+∞)) and for all t ∈ [0, T ),∫ +∞

r?

φ(r) dat(r) =

∫ t

0

e−γ
′′(t−s)φ

(
XS
t (s, r?)

)
f(s) ds+

∫ +∞

r?

e−γ
′′tφ

(
XS
t (0, r)

)
da0(r) (9)

where T = inf{t : S(t) = 0}.
Note that here, at denotes the measure a at time t and the condition a ∈ C0(R+;M− w∗) means that

lim
h→0

∫
φ(r) dat+h(r) =

∫
φ(r) dat(r)

holds for any continuous and bounded trial function φ. In the following, we shall use the definition (9) with
f(t) = β′(r̄(t))p(t). Moreover, we bear in mind that the problem is non linear, since the growth rate V depends
on the total surface S(t) of the adipocytes, see (5). It turns out that the OSLC on which the construction is
based relies on the positivity of S, that we are going to discuss now, showing that the lifespan of solution is
infinite (for positive times).

Bearing in mind the physical meaning of the unknown, the data f and a0 are non negative, with, furthermore,
supp(a0) ⊂ [r?, rc]. Formula (9) then tells us that at is a non negative measure too. We also remark that the
characteristics issued from [r?, rc] cannot exceed rc (this is a consequence of the well-posedness of this Filippov-
type Cauchy problem) and

∀t ∈ [0, T ), XS
t (([0, t]× {r?}) ∪ ({0} × [r?,+∞))) ⊂ [r?, rc].

Accordingly, the support of at remains in [r?, rc] for all t ∈ [0, T ). Finally, let us discuss formally that the model
does not produce a shrinking of the surface, that would be an obstacle to the global existence of solutions. Since
at is compactly supported, we can use (9) with φ(r) = 4πr2 to compute the surface as:

S(t) = 4π

(
e−γ

′′t

∫ rc

r?

(XS
t (0, r))2 da0(r) +

∫ t

0

e−γ
′′(t−s)(XS

t (s, r?))
2f(s) ds

)
. (10)
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This formula enables to bound from below the value of S(t) as

∀t ∈ [0, T ), S(t) = 4π

∫ +∞

r?

r2 dat(r) = 4π

∫ rc

r?

r2 dat(r) ≥ 4πr2
?e
−γ′′ta0([r?, rc]).

The continuity of S, which comes from the continuity of t 7→ at, enables to conclude that T = +∞.

0.3. Outline of the article

In this article, a complete study of the model is proposed: in section 1, we begin with a computation of the
stationary solutions of the model, followed by a proof of the existence and uniqueness of solutions in Section 2.
The asymptotic in time behavior of the system is described in Section 3 and some numerical simulations are
displayed in Section 4. Finally, this model is extended by considering space heterogeneities through a coupling
with a fluid environment and numerical simulations are presented in Section 5.

1. Stationary solutions

We will use the previous framework to exhibit stationary solutions of the system (1)-(3). Finding a stationary
solution (m, p, a0) is equivalent to finding a solution for the following system:

(δ − β(r̄))m = 0

(δ′ − β′(r̄)) p+ β(r̄)m = 0

V a(r?) = β′(r̄) p, with V =
k

S
,∫ +∞

r?

φ(r) da0(r) =

∫ t

0

e−γ
′′(t−s)φ

(
XS
t (s, r?)

)
β′(r̄)p ds+

∫ +∞

r?

e−γ
′′tφ

(
XS
t (0, r)

)
da0(r)

(11)

for all φ ∈ C0
b ([r?,+∞)) and for all t ∈ [0,+∞), with unknowns a0 a positive finite measure supported on

[r?, rc] and m, p ∈ [0,+∞). The last condition expresses the fact that at = a0 for all t ∈ [0,+∞) where a is a
solution in the sense given in the previous section.

Let (m, p, a0) be a solution to (11) and V = k
S . The characteristics XS

t are computed using the constant

function S = 4π

∫ rc

r?

r2da0(r) and are well defined since a0 is positive, that is to say:

XS
t (s, r?) = min (r? + V (t− s), rc) and XS

t (0, r) = min (r + V t, rc) .

We can hence rewrite the last equation of system (11) at time t =
rc − r?
V

as

∫ rc

r?

φ(r) da0(r) =
β′(r̄)p

V

∫ rc

r?

e−
γ′′
V (u−r?)φ (u) du+ e−

γ′′
V (rc−r?)φ(rc)a0([r?, rc]). (12)

Using the equality a(r?) =
β′(r̄)p

V
, we deduce the form of a0 as:

a0 = a(r?)e
− γ
′′
V (r−r?)1[r?,rc] dr + µδrc ,

where µ can be determined from (12) through the relation:

µ =

∫ rc

r?

a(r?)e
− γ
′′
V (r−r?)e−

γ′′
V (rc−r?) dr + µe−

γ′′
V (rc−r?)
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and finally we find

µ =
V

γ′′
a(r?)e

− γ
′′
V (rc−r?).

Therefore the stationary solutions satisfy

(δ − β(r̄))m = 0

(δ′ − β′(r̄)) p+ β(r̄)m = 0

V a(r?) = β′(r̄) p, with V =
k

S
,

a0 = a(r?)e
− γ
′′
V (r−r?)1[r?,rc] dr +

V

γ′′
a(r?)e

− γ
′′
V (rc−r?)δrc ,

(13)

with unknowns p,m ∈ R+, a(r?) ∈ R∗+.
Note that the expression for a0 enables to compute r̄ and S as functions of V , i.e.:

r̄ =

∫ rc

r?

s da0(s)∫ rc

r?

da0(s)

=
γ′′

V

∫ rc

r?

re−
γ′′
V (r−r?) dr + rce

− γ
′′
V (rc−r?) = r? +

V

γ′′
(1− e−

γ′′
V (rc−r?))

and

S = 4π

∫ rc

r?

s2 da0(s) = 4πa(r?)

(∫ rc

r?

r2e−
γ′′
V (r−r?) dr + r2

c

V

γ′′
e−

γ′′
V (rc−r?)

)
= 4πa(r?)

(
V

γ′′
r2
? − 2

(
V

γ′′

)2 (
rce
− γ
′′
V (rc−r?) − r?

)
+ 2

(
V

γ′′

)3 (
1− e−

γ′′
V (rc−r?)

))
.

(14)

Proposition 1. System (13) has a non-trivial (i.e. with a non-zero a0) solution if and only if one of the
following two conditions hold:

(1) δ′ ∈ β′ ((r?, rc)),
(2) δ ∈ β ((r?, rc)) and δ′ − β′

(
β−1(δ)

)
< 0.

Proof. We begin with noticing that p cannot be zero, since it would imply that a(r?) = 0 and therefore a0 = 0.

Now, remark that the function Ψ such that r̄ = Ψ(V ) and defined by Ψ : V → r? +
V

γ′′
(1 − e−

γ′′
V (rc−r?)) is

strictly increasing on R∗+ and satisfies lim
V→0+

Ψ(V ) = r? and lim
V→+∞

Ψ(V ) = rc.

Assume that there exists a non-trivial solution. If m = 0, we should impose that δ′ ∈ β′((r?, rc)). If m 6= 0,
then m > 0 (we are interested in physical solutions) and it implies that δ ∈ β((r?, rc)), namely δ = β(r̄) with
r̄ such that δ′ − β′(r̄) = −β(r̄)m/p < 0. thus if there exists a non-trivial solution, one of the two conditions is
satisfied.

Conversely, if δ′ ∈ β′ ((r?, rc)) , we find a stationary solution defined by

r̄ = β′−1(δ′), m = 0, V = Ψ−1(r̄), S =
k

V
..

From Eq.(14), we can deduce the value of a(r?) knowing S and V , and therefore a0 and p =
V a(r?)

β′(r̄)
.
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Similarly, if δ ∈ β ((r?, rc)) and δ′ − β′
(
β−1 (δ)

)
< 0, then a solution is given by

r̄ = β−1(δ), V = Ψ−1(r̄), S =
k

V
, a(r?) from Eq.(14), p =

V a(r?)

β′(r̄)
, m =

−(δ′ − β′(r̄))
β(r̄)

p.

�

Remark 1. The stationnary solution may not be unique. Precisely, if exactly one condition is fulfilled, the
stationary solution is unique. However, if both conditions are fulfilled, we may have two different values of r̄
and thus two different stationary solutions: one with m = 0 and another one with m > 0. If one sees stationary
solutions as asymptotic in time unsteady solutions, the non-uniqueness of stationary solutions is understood as
the existence of different limit profiles with different initial conditions. We do not address here the problem of
the stability of the stationary solutions.

2. Existence and uniqueness of unsteady solutions

Equations of system (1)-(3) are coupled altogether as follows: the ODE part of system (1), that is to say
equations (1a) - (1b) is a simple linear ODE system, but which coefficients are defined through the mean radius
function r̄ of adipocytes, defined at Eq.(4). We therefore need to know function a to compute r̄. Conversely,
the transport part of system (1), that is to say equation (1c), depends on the total surface S of a through
the velocity V defined at Eq. (6) and depends on function p solution to the ODE part, through the boundary
condition (3).

In this section, we will prove the existence and uniqueness of solutions to system (1)-(3). To do so, we
will proceed in three steps: first we prove, in Subsection 2.1, the existence and uniqueness of solutions to the
ODE part (1a) - (1b)-(2a). Then, in Subsection 2.2, we prove the existence and uniqueness of solutions to the
transport equation (1c)-(3)-(2b) for a given non negative flux by solving a fixed point equation. We also prove
some stability property with respect to the flux that will be used later. Finally, in Subsection 2.3, we prove
the existence and uniqueness of a solution to the general system thanks to a fixed-point theorem, coupling the
results obtained at the foregoing subsections.

2.1. Some preliminary results on the solution of the ODE part (1a) - (1b)-(2a)

First we will give some existence and stability results on the solution of the ODE part (1a) - (1b) of system
(1) with initial conditions (2a), assuming that the mean radius r̄ ∈ C0([0, T ], [r?, rc]) is given.

Since β and β′ are bounded, the following function:(
m
p

)
7→
(
δ − β(r̄(t)) 0
β(r̄(t)) δ′ − β′(r̄(t))

)(
m
p

)
is Lipschitz-continuous. We call L its Lipschitz modulus.

Therefore, the system satisfies the hypotheses of Cauchy-Lipschitz Theorem and we have the following bound:

max (m(t), p(t)) ≤ max (m0, p0) exp(Lt), for all t ∈ [0, T ]. (15)

Moreover, we can prove the following stability property of the solution with respect to r̄, where p(r̄) denotes
the solution p computed with the mean radius function r̄: for all r̄1, r̄2 ∈ C0([0, T ], [r?, rc]),

|p(r̄1)(t)− p(r̄2)(t)| ≤ C max (m0, p0) ‖r̄1 − r̄2‖L1([0,t]) e
2Lt, for all t ∈ [0, T ]. (16)

Indeed, let us denote by M the following Lipschitz-continuous function of Lipschitz modulus k:

M(r) =

(
δ′ − β′(r) β(r)

0 δ − β(r)

)
.
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We obtain the following inequality, using (15):∥∥∥∥(m(r̄1)(t)−m(r̄2)(t)
p(r̄1)(t)− p(r̄2)(t)

)∥∥∥∥
∞,R2

≤
∫ t

0

(
k |r̄1(s)− r̄2(s)|

∥∥∥∥(m(r̄1)(s)
p(r̄1)(s)

)∥∥∥∥
∞,R2

+

∥∥∥∥M(r̄2(s))

(
m(r̄1)(s)−m(r̄2)(s)
p(r̄1)(s)− p(r̄2)(s)

)∥∥∥∥
∞,R2

)
ds

≤ k
∥∥∥∥(m0

p0

)∥∥∥∥
∞,R2

‖r̄1 − r̄2‖L1([0,t]) e
Lt +

∫ t

0

L

∥∥∥∥(m(r̄1)(s)−m(r̄2)(s)
p(r̄1)(s)− p(r̄2)(s)

)∥∥∥∥
∞,R2

ds

and we conclude thanks to Grönwall’s Lemma.

2.2. Solution to the transport equation (1c)-(3)-(2b) with a given non negative flux

In this section, the first theorem gives an existence and uniqueness result for the transport part (1c) of system
(1), complemented with boundary condition (3) and initial condition (2b).

Remark that the velocity V , involved in the transport equation (8) and defined at Eq.(6), depends on the
total surface S, which is computed thanks to the solution a of Eq. (8). We are therefore led to consider the
following fixed-point problem, coming from the expression of the surface S as a function of the characteristic
curves XS

t , see Eq.(10):

S(t) = 4π

(
e−γ

′′t

∫ rc

r?

(XS
t (0, r))2 da0(r) +

∫ t

0

e−γ
′′(t−s)(XS

t (s, r?))
2f(s) ds

)
(17)

where

XS
t (0, r) = min

(
r +

∫ t

0

k

S(u)
du, rc

)
, t ≥ 0,

XS
t (s, r?) = min

(
r? +

∫ t

0

k

S(u)
du−

∫ s

0

k

S(u)
du, rc

)
, t ≥ s ≥ 0.

It is easy to prove that solutions to Eq. (17) and solutions to Eq. (8) are the same, defining a by the following
formula: ∫ rc

r?

φ(r) dat(r) = e−γ
′′t

∫ rc

r?

φ
(
XS
t (0, r)

)
da0(r) +

∫ t

0

e−γ
′′(t−s)φ

(
XS
t (s, r?)

)
f(s) ds,

for all t ∈ [0, T ] and for all φ ∈ C0
b ([r?, rc]).

Now, let us prove the existence and uniqueness of solutions to system (8).

Theorem 1. Let T > 0, γ′′ > 0, f ∈ C0([0, T ];R+) and a0 ∈M a positive measure supported in [r?, rc]. Then,
system (8), with V defined at Eq. (6), has a unique solution.

Proof. As explained before, it is enough to prove the existence and uniqueness of solutions to the fixed-point
equation (17).

To do so, we define the following operator Γ on C0([0, T ],R∗+) by:

Γ(S)(t) = 4π

(
e−γ

′′t

∫ rc

r?

(XS
t (0, r))2 da0(r) +

∫ t

0

e−γ
′′(t−s)(XS

t (r, r?))
2f(s) ds

)
, t ∈ [0, T ]. (18)

and we prove that Γ is a contraction.

We can prove easily that the range of Γ is E = C0([0, T ], [ε(T ),+∞)), where ε(T ) = 4πe−γ
′′T r2

?

∫ rc

r?

da0 > 0

and, for any µ > 0, we define the following norm on E:

‖f‖E = sup
t∈[0,T ]

|f(t)| e−µt. (19)
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Then, the following inequality holds, for all S1, S2 ∈ E and for all t ∈ [0, T ]:

|Γ(S1)(t)− Γ(S2)(t)| ≤ 8πrck

(∫ rc

r?

da0(r) + ‖f‖L1[0,t]

)∫ t

0

∣∣∣∣ 1

S1(s)
− 1

S2(s)

∣∣∣∣ ds,

which comes from the fact that∣∣∣∣∣
(

min(r +

∫ t

0

k

S1(s)
ds, rc)

)2

−
(

min(r +

∫ t

0

k

S2(s)
ds, rc)

)2
∣∣∣∣∣ ≤ 2rck

∫ t

0

∣∣∣∣ 1

S1(s)
− 1

S2(s)

∣∣∣∣ ds.

Indeed, for any λ, µ, ν ∈ R, one has

|min(λ, ν)2 −min(µ, ν)2| = |min(λ, ν) + min(µ, ν)||min(λ, ν)−min(µ, ν)| ≤ 2|ν||λ− µ|.

Since ∫ t

0

∣∣∣∣ 1

S1(s)
− 1

S2(s)

∣∣∣∣ ds ≤ 1

µε(t)2
eµt ‖S1 − S2‖E ,

we obtain that

|Γ(S1)(t)− Γ(S2)(t)| e−µt ≤ 8πrck

(∫ rc

r?

da0(r) + ‖f‖L1[0,t]

)
1

µε(t)2
‖S1 − S2‖E . (20)

Thus, if we take µ large enough, the operator Γ is a contraction of the complete metric space (E, ‖.‖E) and the
Banach fixed point Theorem proves the existence and uniqueness of the solution to equation (17). �

We will denote by S(f) the unique solution to equation (17), defined at Theorem 1, with the positive flux
condition f . We prove now a stability result, that is to say an estimate of the quantity |S(f1)(t)− S(f2)(t)| for
t ∈ [0, T ].

Theorem 2. Let M ∈ R+. We have the following estimate: there exists a continuous function AM ∈ C0([0, T ])
such that for all t ∈ [0, T ], for all f1, f2 ∈ C0([0, T ], [0,+∞)) such that ‖f1‖L1([0,T ]) ≤M ,

|S(f1)(t)− S(f2)(t)| ≤ AM (t) ‖f1 − f2‖L1([0,t]) .

Proof. We denote by Γ1 (respectively Γ2) the operator defined at Eq.(18) with the flux f1 (respectively f2). We
decompose the difference S(f1)− S(f2) as follows:

‖S(f1)− S(f2)‖E = ‖Γ1 (S(f1))− Γ2 (S(f2))‖E
≤ ‖Γ1 (S(f1))− Γ1(S(f2))‖E + ‖Γ1(S(f2))− Γ2(S(f2))‖E .

Using inequality (20), we can bound from above the first term of the right-hand side as follows:

‖Γ1 (S(f1))− Γ1(S(f2))‖E ≤
8πrck

µε(T )2

(∫ rc

r?

da0(r) + ‖f1‖L1[0,T ]

)
‖S(f1)− S(f2)‖E

and taking µ =
16πrck

ε(T )2

(∫ rc

r?

da0(r) + ‖f1‖L1[0,T ]

)
, we obtain ‖Γ1 (S(f1))− Γ1(S(f2))‖E ≤

1

2
‖S(f1)− S(f2)‖E .

We now control the second term of the right-hand side ‖Γ1(S(f2))− Γ2(S(f2))‖E , i.e.:

‖Γ1(S(f2))− Γ2(S(f2))‖E ≤ ‖Γ1(S(f2))− Γ2(S(f2))‖L∞([0,T ]) ≤ 4πr2
c ‖f1 − f2‖L1([0,T ])
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and therefore, using the value of µ and the definition (19) of the norm,

|S(f2)(T )− S(f1)(T )| ≤ 8πr2
c exp

(
T

16πrck

ε(T )2

(∫ rc

r?

da0(r) +M

))
‖f1 − f2‖L1([0,T ]) .

For any t ∈ [0, T ], applying the previous inequality to the restriction of the solutions to [0, t], we obtain

|S(f2)(t)− S(f1)(t)| ≤ 8πr2
c exp

(
t
16πrck

ε(t)2

(∫ rc

r?

da0(r) +M

))
‖f1 − f2‖L1([0,t]) .

�

2.3. Existence and uniqueness of solutions to system (1)-(3).

Now let us prove the following theorem, that states the existence and uniqueness for the full system (1)-(3),
coupling the results of the previous two subsections.

Once again, this is equivalent to a fixed-point problem. Indeed, the resolution of the ODE part (1a) - (1b)
requires the knowledge of the mean radius r̄, which is computed from the solution a of the transport equation
(1c). In turns, the boundary condition (3), which is necessary to compute a, involves the function p, solution
of the ODE part.

More precisely, we consider a solution (m, p, a) to system (1)-(3). Knowing a, we can compute the function S
thanks to formula (5) and therefore the characteristics XS

t associated to system (1c)-(2b)-(3) thanks to formula
(7).

We can consequently write r̄(t) in the form of a fixed point equation, using formula (4) and Eq.(9) with
f(t) = β(r̄(t))p(t), that is to say

r̄(t) =
e−γ

′′t
∫ rc
r?
XS
t (0, r) da0(r) +

∫ t
0
e−γ

′′(t−s)XS
t (s, r?)β(r̄(s))p(s) ds

e−γ′′t
∫ rc
r?

da0(r) +
∫ t

0
e−γ′′(t−s)β(r̄(s))p(s) ds

. (21)

Conversely, if we find a function r̄, solution to Eq.(21), we can then solve the ODE part (1a) - (1b)-(2a) of
system (1) in order to obtain functions m and p, see Subsection 2.1. We can then deduce surface S from the fixed
point equation (17) with f(t) = β′(r̄(t)) p(t), that is to say, following the notation of Sec. 2.2, S = S(β′(r̄) p).
Solution a is finally given by Eq. (9).

We are therefore reduced to find a solution to the fixed point problem (21) with p solution to Eq. (1b) and
S = S(β′(r̄) p).

Now, let us prove the existence and uniqueness of solutions to system (1)-(3).

Theorem 3. Let m0 ≥ 0, p0 ≥ 0, a0 ∈ M with a0 a positive measure supported in [r?, rc]. Then, for any
0 < T <∞, the system (1)-(3) has a unique solution (m, p, a) ∈ C1([0, T ], [0,+∞))2 × C0([0, T ],M− w∗).

Proof. As explained before, we are reduced to find a solution to the fixed point problem (21) with p solution to
Eq. (1b) and S = S(β′(r̄) p). To do so, let 0 < T <∞ and define the following operator: Λ : C0([0, T ], [r?, rc])→
C0([0, T ], [r?, rc]):

Λ(r̄)(t) =
e−γ

′′t
∫ rc
r?
XS
t (0, r) da0(r) +

∫ t
0
e−γ

′′(t−s)XS
t (s, r?)β(r̄(s))p(s) ds

e−γ′′t
∫ rc
r?

da0(r) +
∫ t

0
e−γ′′(t−s)β(r̄(s))p(s) ds

for all t ∈ [0, T ], (22)

where S = S(β′(r̄) p).
To prove the contraction of operator Λ, we will use the same idea and the same norm (19) than previously.

We will also need the stability results demonstrated at subsections 2.1 and 2.2.
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Let F = C0([0, T ], [r?, rc]). We will prove in the following that there exists A > 0 (which may depend on T )
such that for all r̄1, r̄2 ∈ F and for all t ∈ [0, T ],

|Λ(r̄1)(t)− Λ(r̄2)(t)| ≤ A
∫ t

0

|r̄1(u)− r̄2(u)| du. (23)

Therefore,

|Λ(r̄1)(t)− Λ(r̄2)(t)| ≤ A
∫ t

0

‖r̄1 − r̄2‖F e
µu du ≤ A

µ
‖r̄1 − r̄2‖F e

µt

and finally, if we take µ large enough, Λ is a contraction of the complete metric space (F, ‖.‖F ). Thus the
Banach fixed-point theorem gives the existence and uniqueness of the solution to the fixed point equation (21).

Now let us prove inequality (23). Considering the definition (22) of operator Λ, it is sufficient to prove that
the following three functions are Lipschitz-continuous and bounded with respect to r̄ in L1([0, t]):

(1) r̄ 7→ e−γ
′′t
∫ rc
r?

da0(r) +
∫ t

0
e−γ

′′(t−s)β(r̄(s))p(s) ds,

(2) r̄ 7→ e−γ
′′t
∫ rc
r?
XS
t (0, r) da0(r) where S = S(β′(r̄) p),

(3) r̄ 7→
∫ t

0
e−γ

′′(t−s)XS
t (s, r?)β(r̄(s))p(s) ds where S = S(β′(r̄) p).

First, using the fact that β′ is a bounded Lipschitz-continuous function, the bound (15) and the stability
property (16) regarding the solution p of the ODE part (1b), it is straightforward to prove that for all r̄1, r̄2 ∈ F ,
for all t ∈ [0, T ],

‖β′(r̄1)p(r̄1)− β′(r̄2)p(r̄2)‖L1([0,t]) ≤ B ‖r̄1 − r̄2‖L1([0,t]) , (24)

where p(r̄) denotes the solution p of Eq. (1b) computed with the given mean radius function r̄.

Function (1): Function r̄ 7→ e−γ
′′t
∫ rc
r?

da0(r) +
∫ t

0
e−γ

′′(t−s)β(r̄(s))p(s) ds is therefore clearly bounded from

below and above and Lipschitz-continuous.
Function (2): Function r̄ 7→ e−γ

′′t
∫ rc
r?
XS
t (0, r) da0(r) is bounded from above by rc

∫ rc
r?

da0(r).

Let r̄1, r̄2 ∈ F . Using the expression (7) of the characteristic curves, we obtain that

∣∣∣XS(β′(r̄1) p1)
t (0, r)−XS(β′(r̄2) p2)

t (0, r)
∣∣∣ ≤ ∫ t

0

∣∣∣∣ k

S(β′(r̄1)p(r̄1))
− k

S(β′(r̄2)p(r̄2))

∣∣∣∣ ds

≤ k

ε(T )2

∫ t

0

|S(β′(r̄1)p(r̄1))(s)− S(β′(r̄2)p(r̄2))(s)| ds.

Since β′(r̄1)p(r̄1) and β′(r̄2)p(r̄2) are bounded, see the properties of β′ and Eq. (15), we can use Theorem 2
and inequality (24) to obtain that

∣∣∣XS(β′(r̄1) p1)
t (0, r)−XS(β′(r̄2) p2)

t (0, r)
∣∣∣ ≤ k

ε(T )2

∫ t

0

AN (s) ‖β′(r̄1)p(r̄1)− β′(r̄2)p(r̄2)‖L1([0,s]) ds

≤ C ‖r̄1 − r̄2‖L1([0,t]) ,

which implies that function r̄ 7→ e−γ
′′t
∫ rc
r?
XS
t (0, r) da0(r) is Lipschitz-continuous.

Function (3): A similar proof enables to prove that function r̄ 7→
∫ t

0
e−γ

′′(t−s)XS
t (s, r?)β(r̄(s))p(s) ds is

bounded from above and Lipschitz-continuous. �

3. Asymptotic behavior of the solutions in some simple degenerate cases

In this section, the behavior of the solutions for large times is studied. We first prove that, under some
conditions involving the growth rate and the differentiation rate, the number of mesenchymal cells (resp. of
preadipocytes) goes either to zero or to infinity. We distinguish two situations depending on whether or not
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the death rate γ′′ of the adipocytes vanishes. In the case γ′′ 6= 0, we prove that the mean radius converges
towards the minimal radius as time goes to infinity. In the case γ′′ = 0, we prove that the number of adipocytes
converges towards a Dirac mass at rc.

In some simple cases, we can therefore study the asymptotic behavior of the solution, solving explicitly Eq.
(1a) and (1b) as:

m(t) = m0 exp

(
δt−

∫ t

0

β (r̄(s)) ds

)
,

p(t) = p0 exp

(
δ′t−

∫ t

0

β′ (r̄(s)) ds

)
+

∫ t

0

exp

(
δ(t− s)−

∫ t

s

β′ (r̄(u)) du

)
β (r̄(s))m(s) ds.

For the proof of the asymptotic properties, we also introduce the zeroth and the first momentum of at, that
is to say:

M0(t) =

∫ rc

r?

dat(s), M1(t) =

∫ rc

r?

s dat(s). (25)

Note that r̄(t) =
M1(t)

M0(t)
. We also have the following formula linking the zeroth and the first momenta of a:

M0(t) = M0(0)e−γ
′′t +

∫ t

0

e−γ
′′(t−s)β′

(
M1(s)

M0(s)

)
p(s) ds. (26)

We have therefore the following proposition regarding the asymptotic behavior of m and p:

Proposition 2. Let m0 ≥ 0, p0 ≥ 0, a0 ∈ M− w∗ with a0 positive. We denote by m, p, at the solution given
by Theorem 3. We have the following limits when t→ +∞:

(1) if δ − β(rc) > 0, then m→ +∞,
(2) if δ − β(r?) < 0, then m→ 0,
(3) if m→ 0 and if δ′ − β′(r?) < 0, then p→ 0,
(4) if m→ 0 and if δ′ − β′(rc) > 0, then p→ +∞.

Moreover, If δ − β(r?) < 0 and δ′ − β′(r?) < 0, then there exist C > 0 and ε > 0 such that

p(t) ≤ Ce−εt, ∀t ∈ [0,+∞). (27)

Proof. First of all, as r? ≤ r̄(s) ≤ rc for any s ∈ [0,+∞), we have the following inequality on m:

m0 exp((δ − β(rc))t) ≤ m(t) ≤ m0 exp((δ − β(r?))t) ∀t ∈ [0,+∞), (28)

which gives a limit for m in the two cases δ − β(rc) > 0 and δ − β(r?) < 0.
In the same manner, when m→ 0, we can use the explicit expression to bound p as follows:

p0 exp((δ′ − β′(rc))t) ≤ p(t) ≤ (p0 + o(exp(−δ′ + β′(r?))t)) exp((δ′ − β′(r?))t), ∀t ∈ [0,+∞).

Now, we denote by ρ = −(δ − β(r?)) and ρ′ = −(δ′ − β′(r?)) and we assume that ρ > 0, ρ′ > 0. Thanks to
(28), we obtain that m(t) ≤ m0e

−ρt, ∀t ∈ [0,+∞), and we use this bound in the formula for p, leading to:

p(t) ≤ p0e
−ρ′t +

∫ t

0

e−ρ
′(t−s)β(rc)m0e

−ρs ds



224 ESAIM: PROCEEDINGS AND SURVEYS

δ − β(r?) < 0 δ − β(rc) > 0

δ′ − β′(r?) < 0 (0, 0) (+∞, ?)
δ′ − β′(rc) > 0 (0,+∞) (+∞,+∞)

Table 1. Summary of the asymptotic behaviors of functions t→ (m(t), p(t))

and therefore

p(t) ≤ p0e
−ρt +m0te

−ρt, if ρ = ρ′,

p(t) ≤ p0e
−ρ′t +m0

e−ρt − e−ρ′t

ρ′ − ρ
, if ρ 6= ρ′.

�

The previous proposition can be summarized in Table 1, where the couple in each cell represents

(
lim

t→+∞
m, lim

t→+∞
p

)
.

.

3.1. Case γ′′ 6= 0

In the case when γ′′ 6= 0, we can make precise the result on the mean radius r̄. More precisely, if the growth
of p is exponential, which holds in particular if δ′ − β′(rc) > 0, the total surface increases and the velocity
decreases; meanwhile, the flux of mass in r? increases and therefore a large proportion of the mass of adipocytes
stays around r?.

Proposition 3. We assume that γ′′ 6= 0. We consider m, p, at the solution given by Theorem 3 and M0 the
zeroth momentum of a defined at Eq.(25). Then, we have the following limits when t→ +∞:

(1) if p→ 0, then M0 → 0,
(2) if p→ +∞, then M0 → +∞.

Moreover, if we assume that there exist ε > 0 and C > 0 such that for all t ∈ [0,+∞), p(t) ≥ Ceεt, then
lim

t→+∞
r̄(t) = r?.

Proof. If γ′′ 6= 0 and p→ 0 (resp. p→ +∞) when t→ +∞, we can use Eq.(26) to deduce that M0 → 0 (resp.
M0 → +∞).

Now, let us assume that p(t) ≥ Ceεt, for all t ∈ [0,+∞). First we will prove that the surface increases
exponentially, as follows:

S(t) ≥ r2
?M0(t) ≥ Cr2

?e
−γ′′t

∫ t

0

eγ
′′sβ′(r?)e

εsds.

In particular, for t large enough, there exists C > 0 such that

S(t) ≥ Ceεt/2

and therefore, since r? < rc, we have for t large enough that:

min(r? +

∫ t

s

k

S(u)
du, rc) = r? +

∫ t

s

k

S(u)
du ∈ [r?, r? +Ke−εt/2]. (29)
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Now, from the expression of the mean radius (21) and of the characteristics (7), we get the following equivalent
when t→ +∞:

r̄(t) ∼

∫ t

0

eγ
′′s min(r? +

∫ t

s

k

S(u)
du, rc)β

′(r̄(s))p(s) ds∫ t

0

eγ
′′sβ′(r̄(s))p(s) ds

,

which leads to lim
t→+∞

r̄(t) = r? using Eq.(29).

�

3.2. Case γ′′ = 0

Now, in this section, we consider the case γ′′ = 0. At first sight this assumption on the death rate might
appear biologically questionable. However, it is very relevant. Indeed, adipocytes have usually a very low
mortality rate (for humans, the renewal of half of the population takes about 8 years), see [19]. This could be
different for certain specific experiments performed on mice, due to experimental conditions that can enhance
the adipocytes mortality.

The results on p and m of the previous section still hold but the results on M0 are different. We prove that
in the case when δ − β(r?) < 0 and δ′ − β′(r?) < 0, the number of adipocytes converges towards a Dirac mass
at rc.

Proposition 4. We assume that γ′′ = 0, δ − β(r?) < 0 and δ′ − β′(r?) < 0. We consider m, p, at the solution
given by Theorem 3 and M0 the zeroth momentum of a defined at Eq.(25). Then, we have the following limits
when t→ +∞:

lim
t→+∞

M0(t) = M0(0) +

∫ +∞

0

β′(r̄(s))p(s) ds < +∞

and

at
∗
⇀

(
M0(0) +

∫ +∞

0

β′(r̄(s))p(s) ds

)
δrc .

Proof. The integrability of β′(r̄(s))p(s) comes from the exponential decay of p, see Eq. (27), and the limit for
M0(t) when t→ +∞ comes directly from the expression of M0 at Eq.(26) with γ′′ = 0.

Let us denote this limit by M0,∞ = M0(0) +

∫ +∞

0

β′(r̄(s))p(s) ds. Since the total surface S(t) ≤ r2
cM0,∞,

we can deduce that S is bounded from above and therefore that

∫ +∞

0

k

S(u)
du = +∞. Therefore, for t large

enough, we can define sc(t) as the unique real such that∫ t

sc(t)

k

S(u)
du = rc − r?.

Since S is bounded from above, we can deduce that lim
t→+∞

sc(t) = +∞.

Let φ ∈ C0([r?, rc]). For t large enough , Eq. (9) can be written as:∫ rc

r?

φ(r) dat(r) = φ(rc)

∫ rc

r?

da0(r) + φ(rc)

∫ sc(t)

0

β′(r̄(s))p(s) ds+

∫ t

sc(t)

φ(r? +

∫ t

s

k

S(u)
du)β′(r̄(s))p(s) ds.

Moreover using ∣∣∣∣∣
∫ t

sc(t)

φ(r? +

∫ t

s

k

S(u)
du)β′(r̄(s))p(s) ds

∣∣∣∣∣ ≤ ‖φ‖∞
∫ +∞

sc(t)

β′(r̄(s))p(s) ds,
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Figure 2. Discretization of the interval. The variable a is computed in the middle of each
interval, as well as the velocity.

we can compute the limit and we get:

lim
t→+∞

∫ rc

r?

φ(r) dat(r) = M0,∞φ(rc),

which ends the demonstration. �

4. Numerical simulations

4.1. Numerical scheme

To find a numerical solution to the system of equations, we apply an explicit Euler scheme for the time
approximation and an upwind scheme for the discretization of the transport-like equation of the adipocytes
population.
We consider a grid with a uniform radius-step ∆r > 0 (see Figure 2) and J intervals. The time step is denoted
by ∆t. The time step is not constant and it is updated at each iteration according to the Courant-Friedrichs-
Lewy stability condition, that will be described later on. Nevertheless, for the sake of simplicity, we denote it
by ∆t instead of ∆tn.
Let us denote by mn, pn the approximations of the solutions m(tn) and p(tn) at time tn. Moreover, anj stands for
the approximation of a(tn, rj) at time tn and point rj and V nj+1/2,j∈{0,...,J} is the approximation of the velocity

at time tn at the cells boundaries.
Given the solutions (mn, pn, anj∈{1,...,J}) and the velocity V nj+1/2,j∈{0,...,J} at time tn, the solution at time tn+1

is updated by

mn+1 = mn + ∆t(α(r̄n)− γ)mn −∆tβ(r̄n)mn,

pn+1 = pn + ∆t(α′(r̄n)− γ′)pn + ∆tβ(r̄n)mn −∆tβ′(r̄n)pn,

an+1
j = anj −

∆t

∆r

(
(V nj+1/2)+anj − (V nj+1/2)−anj+1 − (V nj−1/2)+anj−1 + (V nj−1/2)−anj

)
−∆tγ′′anj , j ∈ {1, ..., J},

V n1/2a
n
0 = β′(r̄n)pn.

Here above, for any real number V , (V )+ and (V )− stand for the positive and negative parts of V : (V )+ =
max(V, 0) and (V )− = max(−V, 0).

In this scheme, both integrals involved in the computation of r̄n and the V nj+1/2,j∈{0,...,J} are approximated

via a centered rectangle formula (thus considering that the numerical approximation of a is piecewise constant
in radius). We here decide to smooth out the velocity field by replacing the discontinuous one with the following
Lipschitz-continuous one

V (t, r) =
k

S(t)
1[r?,rc−ε)(r)−

r − rc
ε

k

S(t)
1[rc−ε,rc)(r),
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where ε > 0 is a small parameter, which will be equal to ε = 0.005rc in the simulations.
Note that, in the case of a discontinuous velocity, such as (6), we would have used instead an upwind typed

scheme, that would write (see [5, 6, 9]),

an+1
j = anj −

∆t

∆r

(
(V nj )+anj − (V nj+1)−anj+1 − (V nj−1)+anj−1 + (V nj )−anj

)
−∆tγ′′anj , j ∈ {1, ..., J}.

We refer the reader to [9] for further details on the pros and cons of several schemes for transport with discon-
tinuous velocities.

Stability analysis: That the numerical unknowns remain non negative, as required by the modeling, imposes
constraints on the time step.

Let us consider first the ODE part of the system. We are interested in situations where the parameters satisfy

α− γ − β(r) < 0, α′ − γ′ − β′(r) < 0 ∀r ∈ [r?, rc].

Therefore, we expect the mesenchymal cells to decrease in time as well as the preadipocytes.
For the mesenchymal cells, the discrete relation casts as

mn+1 = (1 + ∆t(α− γ − β(r̄n)))mn

Thus mn+1 remains non negative (if mn is) as far as 1 + ∆t(α − γ − β(r̄n)) ≥ 0. A sufficient condition to
satisfy this is that ∆t|α− γ − β(r)| ≤ 1 for any r, thus the condition we keep is

∆t ≤ 1

maxr∈[r?,rc] |α− γ − β(r)|
.

In the same way we derive the condition for the preadipocytes equation. In the worst situation, m vanishes
and the population of preadipocytes decreases with respect to time. Thus, pn+1 remains non negative provided

∆t <
1

maxr∈[r?,rc] |α′ − γ′ − β′(r)|
.

Now let us consider the PDE in size space for the adipocytes. The upwind scheme is stable (in the linear
case where the velocity field is given, see [5]) if the following Courant-Friedrichs-Lewy condition is satisfied:∣∣∣∣V n∆t

∆r

∣∣∣∣ ≤ 1 ∀n,

where

V n = max
j∈{1,...,J}

V nj .

Therefore, at each iteration the time step is updated in order to fulfill all three conditions identified so far.

4.2. Simulations

The parameters used in the simulations are given in Table 2, according to unpublished experimental data
from C3M. A fit was performed with these data in order to calibrate the parameters; a larger number of available
data will be necessary to improve this calibration.
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Value Unit Parameter or Indications

α = 0.1515 1/day proliferation rate for mesenchymal cells

α′ = 0.0129 1/day proliferation rate for preadipocytes

β(r̄) = 0.0030 + 0.1992

1+e
0.8550−r̄

0.0162

1/day differentiation rate of mesenchymal cells in
preadipocytes (r̄ normalized, r̄ × 10 is in
microns)

β′(r̄) = 0.06043− 0.05965

1+e
r̄−1.1125

0.3640

1/day differentiation rate of preadipocytes in
adipocytes (r̄ normalized, r̄ × 10 is in
microns)

γ = 1.5 10−3 1/day mortality rate for mesenchymal cells

γ′ = 1 10−5 1/day mortality rate for preadipocytes

γ′′ = 1.653 10−6 1/day mortality rate for adipocytes

k̄ = 3.2875 10−9 mol/cell/day available food per adipocytes with k = k̄ ×
]adipocytes

rm = 7.5 µm mesenchymal cells radius

r? = 7.5 µm pre-adipocytes radius

rc = 50.64 µm maximal (critical) adipocytes radius

Table 2. Values for parameters and variables used in the simulations.

4.2.1. Large time behavior of the solutions to the model

The initial condition is defined as follows:

m0 = 2.6793 105 [number of cells] (30a)

p0 = 7.6797 103 [number of cells] (30b)

a0(r) =
0.0311√

2πθ
exp

(
− r

2

2θ

)
108, with θ = 1.003 [number of cells/µm] (30c)

In this initial configuration, the adipocytes have a small radius. We study the behavior of the solution in a
large time scale, namely at the scale of a year (t ∈ (0, 350) days).
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Figure 3. Trend of the number of cells with respect to time (final time =350 days): mes-
enchymal cells (top left), preadipocytes (top right), total number of adipocytes (bottom left),
mean radius of adipocytes (bottom right). Parameters are given in Table 2 and initial datum
in Eq. (30), namely a Gaussian distribution of adipocytes with small radii. The mesenchymal
cells differentiate into preadipocytes, which in turn differentiate into mature adipocytes. For
large times, the number of mesenchymal cells and of preadipocytes go to zero, while the total
number of adipocytes stabilizes to a stationary value and the mean radius of adipocytes stabi-
lizes towards the critical value rc. Note that the mean radius grows quickly at the beginning,
then decreases when adipocytes with a small radius are created from preadipocytes, and finally
increases again.

Figure 3 shows the solution to the system of equations. Since we imposed that the proliferation rate is smaller
than the sum of the differentiation and of the death rates, either the mesenchymal cells or the preadipocytes
tend to zero for large time. At the beginning (first 40 days) the number of preadipocytes increases. This is due
to the differentiation of the mesenchymal cells into preadipocytes. The number of adipocytes increases in time.
Since we have set a very small death rate for the adipocytes (γ′′ ∼ 10−6), the population reaches a plateau and
the death of the adipocytes is not sensitive on this time scale of observation. We observe that the mean radius
of the adipocytes grows rapidly at the beginning (first 10 days). Then, there is a drop due to the differentiation
of preadipocytes into adipocytes: indeed, this process produces a large number of new adipocytes which have
a radius equal to r?. Next, these small adipocytes grow until their radius reaches the critical value rc.
The adipocytes growth can equally be observed in Figure 4. Initially, the adipocytes are small and they are
subjected to a strong growth rate, since the growth rate is proportional to the inverse of the total surface of
adipocytes. When the cells grow, the rate decreases because of an increasing of the surface of adipocytes. Figure
5 shows the distribution of adipocytes at the last time step. We observe the accumulation of the adipocytes
population to the critical radius and the formation of the Dirac mass, according to the theoretical results.
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Figure 4. Adipocytes distribution (left) and growth rate (right) with respect to the radius at
three different time steps (t = 0 day, t = 1.263 day and t = 3.103 days). Parameters are the
same as in Fig.3. We can notice that there is indeed no adipocytes with a radius larger than
the critical value rc. Initially, the growth rate is very high as the total surface is small; it then
decreases when the total surface increases.
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Figure 5. Adipocytes distribution (left) and growth rate (right) with respect to the radius at
the last time step (t = 350 days). Parameters are the same as in Fig.3. Adipocytes accumulate
to the critical radius rc and form a Dirac mass at this value. The growth rate is quite small
compared to its initial value, see Fig. 4, and null for radii larger than the critical radius rc.
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4.2.2. Differentiation rates

We now observe the behavior of the proliferations rates β(r̄(t)) and β′(r̄(t)). Figure 6 shows the dependency
of the two functions with respect to the radius and to time (with parameters as given in Table 2). Since the
mean radius increases rapidly, also the differentiation rates reach rapidly the maximum value.
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Figure 6. Differentiation rates of the mesenchymal cells (blue continuous line) and the
preadipocytes (orange dotted line) with respect to the radius (left) and to time (right). Pa-
rameters are the same as in Fig.3. The differentiation rates are stiff and reach their maximum
values for small radii. Since the mean radius increases quickly initially, the differentiation rates
reach rapidly their maximum values.

The qualitative behavior does not change significantly when working with constant differentiation rates (see
Figure 7). It likely means that the quantities of interest remain in the low or high regions of the sigmoid in this
example.
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Figure 7. Comparison between the cases when β and β′ are sigmoid functions (black line)
and constant (red dotted line). Number of cells with respect to time (final time =350 days):
mesenchymal cells (top left), preadipocytes (top right), total number of adipocytes (bottom
left), mean radius of adipocytes (bottom right). Parameters are the same as in Fig.3. We can
notice that there are no differences between the two cases.

However, changing the parameters of the the sigmoid functions β and β′ can lead to different behaviors of the
solutions. We consider three cases, detailed in Table 3: we fix the slope of the sigmoid functions and we make
the inflection points vary. Figure 8 shows the comparison of the populations dynamics in the different cases.
The larger the inflection point of β′, the more preadipocytes are generated, and therefore differentiate. In fact,
since the differentiation rate is slower, they have time to duplicate. However, the dynamics of the adipocytes
and of the mean radius in Figure 8 suggest that the parameters considered in Table 2 are in good agreement
with the experimental data.

rip,β rip,β′

case 1 0.5rc 0.5rc
case 2 0.5rc rc
case 3 0.5rc 0.7rc

Table 3. Inflection points relative to β and β′ in the different cases.
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Figure 8. Dynamics of the different cells according to different shapes of the differentiation
rates. Number of cells with respect to time (final time = 350 days): mesenchymal cells (top left),
preadipocytes (top right), total number of adipocytes (bottom left), mean radius of adipocytes
(bottom right). Parameters are given in Tables 2 and 3 and initial datum in Eq. (30). The blue
line refers to the parameters set in Table 2 (which correspond to a fit with the experimental
data), the red dotted line to the case where the inflexion points for the differentiation rates
are equal to rip,β = rip,β′ = 0.5rc, the dashed green line to rip,β = 0.5rc, rip,β′ = rc and the
orange line to rip,β = 0.5rc, rip,β′ = 0.7rc. The black circles correspond to the experimental
data. Behaviors of the solutions are significantly different: the larger the inflection point of β′,
the more preadipocytes are created, and therefore the more adipocytes are generated, leading
to a smaller value of the mean radius in large times. In the critical case when rip,β′ = rc,
the preadipocyte number and the adipocyte number tend to infinity asymptotically, while the
mean radius decreases.

4.2.3. Comparison with experimental data

We now compare the models with the experimental data. We test the model structured in size (1) (referred
to as 0D), and the models structured in both size and space, which will be detailed in the next sections: we
refer to these models as 1D and 2D, depending on the space dimension used in the simulations. We observe in
Figure 9 that the solutions to the 0D, the 1D and the 2D models have similar behavior. Since the 0D model
has been calibrated with the data, it is in good agreement with the experimental data.
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Figure 9. Comparison of the models with the experimental data: adipocytes number (left)
and mean radius (right) with respect to time. Parameters for the model of Section 0.1, named
the 0D model, are given in Table 2 and initial datum in Eq. (30), whereas initial datum for
the 1D model is given in Eq. (38), see also Fig.11. Initial datum for the 2D model is given by
an equivalent formula. We observe that the three models show comparable tendency, but with
different values. The 0D model has been calibrated with the experimental data.

5. Extension to a spatial model

5.1. Reinterpretation of the unknowns

We are now going to extend the previous model by incorporating a spatial dependence intended to describe
inhomogeneities and displacement of the adipose tissue, following some ideas of mixture theory, see [1, 3, 8].
The functions (t, x) 7→ m(t, x), (t, x) 7→ p(t, x) now depend also on the space variable x ∈ Ω ⊂ Rn (n = 1 or
2, and Ω is a bounded domain), and they are defined on [0,∞)× Ω with values in [0,∞). For the adipocytes,
(t, x, r) 7→ a(t, x, r) is a function defined on [0,∞) × Ω × [r?,+∞) with values in [0,∞). We also introduce a
new function (t, x) 7→ s(t, x) which is the volume fraction of the surrounding material (tissue) that is carrying
the cells. The motion of all these species is driven by a velocity field (t, x) 7→ u(t, x).

In order to derive the model, let us go back to the mass balance relations. Given r2 > r1 ≥ r?, the integral

4π

3

∫
O

∫ r2

r1

a(t, x, r)r3 dr dx,

gives the volume occupied in O at time t by the adipocytes with a radius r ∈ (r1, r2). Accordingly,

4π

3

∫ ∞
r?

a(t, x, r)r3 dr

defines the volume fraction of the adipocytes, and the total volume of functional adipocytes at time t is given
by

V(t) =
4

3
π

∫
Ω

∫ ∞
r?

s3 a(t, x, s) dsdx.

Schematically, we can split the volume of an adipocyte with radius r ≥ r? into two parts, see Fig. 10: the center,
with radius r?, is mainly made of water (volumetric mass density ρw), like the pre-adipocytes and mesenchymal
cells, while the outer domain is made of lipids (volumetric mass density ρl). Therefore, the mass of such an
adipocyte reads

4π

3

(
ρl(r

3 − r3
?) + ρwr

3
?

)
=

4π

3
ρa(r)r3
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Figure 10. Geometrical description of a growing adipocyte.

with

ρa(r) =
ρl(r

3 − r3
?) + ρwr

3
?

r3
for r ≥ r?.

Accordingly, the mass density of the adipocytes is given by

Ma(t, x) =
4π

3

∫ ∞
r?

ρa(r)a(t, x, r)r3 dr,

and the total mass of adipocytes reads
∫

Ω
Ma(t, x) dx. The evolution of the mass density obeys

∂tMa(t, x) = −4π

3

∫ ∞
r?

γ′′ρa(r)a(t, x, r)r3 dr +
4πr3

?

3
ρwβ

′(r̄(t, x))p(t, x) + 4π

∫ ∞
r?

ρlV a(t, x, r)r2 dr.

The last two terms describe two mechanisms of gain of mass: the transformation of pre-adipocytes into
adipocytes with radius r? and volumetric mass density ρw and the input of lipids from the surface of the
existing adipocytes.

Similarly, the volume fractions of mesenchymal cells and pre-adipocytes are given by

• 4π
3 r

3
mm(t, x) for the mesenchymal cells,

• 4π
3 r

3
?p(t, x) for the preadipocytes,

respectively, with rm and r? the typical radius of these cells. According to the biological data, we will use from
now on that rm = r?.

Given O ⊂ Ω, the integrals
∫
O

4π
3 r

3
?m(t, x) dx and

∫
O

4π
3 r

3
?p(t, x) dx gives the volume occupied in O at time

t by the mesenchymal cells and the preadipocytes, respectively.
The mass of each species is transported by a velocity field (t, x) ∈ [0,∞)×Ω 7→ u(t, x) ∈ Rn, which amounts

to say 

4πr3
?

3
ρw

(∂m
∂t

+ divx(mu)− (α− γ − β)m
)

= 0,

4πr3
?

3
ρw

(∂p
∂t

+ divx(pu)− (α′ − γ′ − β′)p− βm
)

= 0,

∂s

∂t
+ divx(su) = 0.

(31)

For the adipocytes, we get

∂t(ρar
3a) +∇x · (ρar3ua) + ρar

3∂r (V a) = −γ′′ρar3a
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which can also be written in the conservative form

∂t(ρar
3a) +∇x · (ρar3ua) + ∂r

(
ρar

3V a
)
− 3ρlr

2(V a) = −γ′′ρar3a (32)

In fact, we can get rid of the densities in all these equations, and (32) can be simplified as:

∂ta+∇x · (ua) + ∂r (V a) = −γ′′a. (33)

Beyond the transport by the velocity u, the modeling also uses a pressure field, hereafter denoted (t, x) 7→
q(t, x); we shall assume that the parameters β and β′ are now functions of both r̄ and this quantity q. It
incorporates another source of space inhomogeneities. We assume that β, β′ are non decreasing with respect
to q. The pressure acts as a mechanical constraint that limits the expansion of the adipocytes: the weaker
the pressure, the easier the transformation of mesenchymal cells and pre-adipocytes to pre-adipocytes and
adipocytes, respectively.

Let us now discuss the equations for the pair (u, q). The following constraint on the volume fractions holds,
(using that the radius of pre-adipocytes and of mesenchymal cells coincides with the radius r? of the smallest
adipocytes)

s(t, x) +
4π

3

(
r3
?m(t, x) + r3

?p(t, x) +

∫ +∞

r?

r3a(t, x, r) dr

)
= 1, (34)

for a. e. x ∈ Ω, t ≥ 0. Therefore, adding the equations in (31) and (33), we find

divxu =
4π

3

(
r3
?(α− γ)m+ r3

? (α′ − γ′ − β′) p−
∫ ∞
r?

r3∂r (V a) dr

)
.

Using the same boundary condition as (3), we obtain

divxu =
4π

3

(
r3
?(α− γ)m+ r3

? (α′ − γ′) p+ 3

∫ ∞
r?

r2V a dr

)
. (35)

Again, we observe that the last term can be integrated by parts to make two contributions appear, the former
from the passage of pre-adipocytes to adipocytes with size r?, the latter due to surface fluxes of lipids. This
constraint is related to the pressure q, which may be seen as the corresponding Lagrange multiplier.

Next, we use Darcy’s equation:
u(t, x) = −K(x)∇x q(t, x) in Ω, (36)

which have different frames of application [4,11]. In (36), x 7→ K(x) takes values in the set of symmetric positive
matrices. With (36) we are directly led to an equation for q, by using equation (35)

−divx(K(x)∇x q) = divxu

=
4π

3

(
r3
?(α− γ)m+ r3

? (α′ − γ′) p+ 3

∫ ∞
r?

r2V a dr
)
.

We complement the whole system with initial conditions:

m(0, x) = m0(x), p(0, x) = p0(x), s(0, x) = s0(x), a(0, x, r) = a0(x, r),

u(0, x) = u0(x)

satisfying constraint (34).
Finally, we need to impose boundary conditions. For r = r?, we make use of the same birth condition as in

the homogeneous case
V (t, r?) a(t, x, r?) = β′ (r̄(t, x), q(t, x))) p(t, x).

On ∂Ω, we shall find boundary conditions. For example, we can use
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• for cells, the no-incoming-flux condition:

if u · n < 0, then a = p = m = 0 and s = 1

where n stands for the unit outward normal vector on ∂Ω, we also set

q = 0 on ∂Ω.

• or the wall conditions.

These boundary conditions have to be compatible with condition (35).

5.2. Description of the numerical discretization

In order to discretize the system of equations, we apply the finite volume method. First, we find the spatial
velocity u solving the Darcy’s law. We formulate the Darcy’s equation as a Laplace problem:{

−div(K∇ q) = divu, in Ω,

q = 0, on ∂Ω,
(37)

From (37) we compute the pressure q. Then, we find the velocity u thanks to

u = −K∇q, in Ω.

Applying the finite volume method, we obtain the following discretization on each element Ki of the domain.

−
∫
Ki

div(K∇ q)dx =

∫
Ki

div(u)dx

−[K∇ q · n]∂Ki =

∫
Ki

div(u)dx

Finally, we apply an explicit upwind scheme in order to solve the system of hyperbolic equations. Regarding
the adipocytes, we use a “directional” splitting and solve the transport equation either in space or with respect
to the radius dimension applying the finite volume upwind scheme.

5.3. Numerical simulations for the spatial case

In one dimension, we consider an interval (0, L) where L = 1 cm, therefore x ∈ Ω = (0, 0.01). We discretize
the interval in J = 300 subintervals with a homogeneous spatial step ∆x. Moreover, we have to consider the
“radius” dimension of the adipocytes. To approximate their growth, we consider the radius of the adipocytes
r to be in the interval Ir = (r?, R), and we set R = 90µm. We divide Ir into 100 homogeneous intervals of
size ∆r. Then, we solve the problem that has one dimension with respect to the mesenchymal cells m and the
preadipocytes p and two dimensions with respect to the adipocytes a.

Parameters setting and initial conditions

The parameters used for the simulations are the ones introduced in Table 2.
Regarding the initial condition, we consider the three populations to be distributed as gaussians centered in
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different points of Ω with various standard deviations (with respect to space and radius), namely

m0(x) =
m0√

2θ2L2π
exp

(
− (x− xm)2

2θ2L2

)
, (38a)

p0(x) =
p0√

2θ2L2π
exp

(
− (x− xp)2

2θ2L2

)
, (38b)

a0(x, r) =

(
ā0 +

a0√
2πθr

√
θ2
aL

2π
exp

(
− r2

2θr

)
exp

(
− (x− xa)2

θ2
aL

2

))
1r<rc . (38c)

For the numerical simulations, we take the following values for the standard variations : θ = 0.1, θr = 0.1, θa =
0.8.

Figure 11. Initial conditions for m (left), p (center) and a (right) relative to the 1D spatial
model described at Section 5.1. The figure on the right represents the distribution of a in each
point of the space x and with a radius r.

Figure 11 shows the initial conditions of the three unknowns. At the beginning we consider the highest
number of adipocytes to have the minimal radius r?. However, since the growth rate is proportional to the
inverse of the surface of adipocytes in each spatial point, we consider minimum number of cells ā0 in each spatial
point.

Simulations

We study the behavior of the populations and of the mean radius first looking at a small time scale. In
particular, we focus on the growth of the initial adipocytes. Figure 12 shows the adipocyte dynamic in the first
day. We observe a slow growth of cells at the center of the initial gaussian, where the total surface of the cells
is the highest. If we move from this point, the total surface of the cells decreases and consequently the radius
of the cells increases faster. In Figure 13 we observe the global growth of adipocytes at different time steps.
Like with the space homogeneous equations, we observe a high growth rate at the beginning, leading to a fast
growth of the adipocytes at the initial configuration.

Since the spatial velocity is very small, we do not observe a displacement of the different cells in the interval.
The spatial dependency indeed introduces two different timescales relative to the growth of adipocytes and to
the spatial displacement.

We observe on numerical simulations, see Fig.13, that dealing with the space dependent framework favors the
apparition of bimodal size-distributions, that have been recorded in experiments, see [17,18]. We were unable to
reproduce such bimodal shape with the space homogeneous model. It is likely that such distributions correspond
only to transient states of the model; nevertheless they can be relevant on the time scale of observation. Going
further in this direction requires a better knowledge of the parameters of the model and deserves a thorough
investigation.
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6. Conclusion

This work aims at setting up the basis of a multi-species model for adipose tissue growth, with the aim of
improving our understanding of obesity. Our model is based on detailed behaviors and interactions of adipose
tissue cells. It accounts for the adipocyte maturation, starting from mesenchymal cells differentiating into
pre-adipocytes, which in turn differentiate into adipocytes whose sizes grow with food supply. The core of
our model is the coupled regulation of cell differentiation and proliferation using phenomenological laws with
sigmoid shapes that depend on the mean size of adipocytes.

The model in its non-spatial version is able to reproduce with reasonable precision experimental data after
a fitting process, indicating that the main biological phenomena are probably accounted for in our model
hypotheses. The time dynamics of the adipocyte radii exhibits an interesting early overshoot that cannot
be seen in the data because of its sampling. The overshoot is easily explained by the model dynamics and its
existence could be investigated in future experimental work. A shift in early adipocyte numbers is also observed,
probably because of the difficult choice of an initial condition in the absence of a more detailed set of data.

The spatial model also keeps a reasonable agreement with the data, at least in order of magnitude and allows
to exhibit a well known behavior for adipocyte distribution: a bimodal distribution of adipocytes in space [17,18].
This last result can be seen as a first step for validation of our model and makes it very promising. The fact
that we do not observe spatial displacements of the cells needs more investigations and we can consider the
mechanical properties of adipose tissues described in [13] to improve the spatial description in our model.

The next step is now to gather more complete data sets from experimental studies and to reach a proper vali-
dation. Once validated, such a model could prove invaluable to identify and quantify the biological mechanisms
involved in adipose tissue growth and to understand potential dysfunctions linked to obesity.

(a) t = 0.1 days (b) t = 0.2 days (c) t = 0.5 days (d) t = 1 day

Figure 12. Adipocytes distribution with respect to space and radius at different time steps
(t = 0.1 day, t = 0.2 day, t = 0.5 day, and t = 1 day). Initial datum is given in Eq. (38), see
also Fig.11 and parameters in Table 2. Growth of cells is heterogeneous in space: it is slow at
the center of the initial gaussian, where the total surface of the cells is the highest and faster
away from the center. Spatial displacement of the cells is small, since the spatial velocity is
very small.
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(a) t = 0.1 days (b) t = 0.2 days (c) t = 0.5 days (d) t = 1 day

Figure 13. Adipocytes distribution with respect to the radius at different time steps (t = 0.1
day, t = 0.2 day, t = 0.5 day, and t = 1 day). Parameters are the same as in Fig. 12. Adipocytes
grow with respect to time, quickly at early times. We observe in that case the apparition of
bimodal size-distributions, with a peak at the crtitical value rc.
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