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Abstract. We collect here recent results covering various aspects of the dynamical properties of
interacting particle systems. In Section 1 we study the hydrodynamic limit of a facilitated exclusion
process. Section 2 evidences a cuto� phenomenon for the mixing time of the weakly asymmetric
exclusion process. Section 3 presents a study of the infection time in the Duarte model. Finally,
Section 4 presents the study of a front propagation in the FA-1f model.

Résumé. Nous rassemblons ici des résultats récents sur di�érentes propriétés dynamiques des sys-
tèmes de particules en interaction. En section 1 on étudie la limite hydrodynamique d'un processus
d'exclusion facilité. La section 2 met en évidence un phénomène de cuto� pour le temps de mélange

du processus d'exclusion faiblement asymétrique. La section 3 présente une étude du temps d'infection

du modèle de Duarte. En�n, la section 4 présente l'étude de la propagation d'un front dans le modèle
FA-1f.

Introduction

Interacting particle systems appear naturally as microscopic models for various dynamical phenomena. Here
we will consider a subfamily of these models consisting of continuous time Markov processes on a state space
that can be represented as {0, 1}Λ, with Λ = Zd, {1, . . . , N}d or TN = (Z/NZ)d. Let us consider that 1 denotes
the presence of a particle and 0 an empty site, though di�erent interpretations are possible depending on the
physical motivation for the model, as will be seen in the di�erent sections. These motivations, far from being
inconsequential, will lead the mathematician to focus on di�erent aspects of the corresponding model. The
dynamics considered will be either of Kawasaki type, i.e. conservative (an update corresponds to a particle
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jumping to an empty site), or of Glauber type, i.e. non-conservative (an update corresponds to a particle being
deleted or created on an empty site).

In the �rst category, we will consider the very standard simple exclusion process (Section 2), as well as a
facilitated version (Section 1), both in dimension 1. In these models, single particles occupy the sites of a lattice,
and each one can jump at some rate to an empty neighboring vacant site. More precisely, to each lattice site is
attached an independent random Poisson clock. When the clock rings, if there is a particle at this site, then it
jumps to a neighboring site with a probability depending on the local con�guration. In this class of models the
total number of particles is always conserved along the evolution. This family of interacting particle processes
has turned out to be rich enough to describe many physical systems and capture very complex features [3,20,26].

For these di�usive systems, maybe the most natural question is to understand how the density of particles
evolves in time: choose the initial con�guration in agreement with a certain (not necessarily constant) density
pro�le; what density pro�le describes the con�guration at a later time? This is the problem of the hydrodynamic
limit. In general we expect that in the right time scale (given by that of the underlying random walks), the
answer will be given by the solution to a certain PDE depending on the model. For the simple exclusion process,
this has been known for decades [13, 19, 20]: the PDE is the heat equation in the symmetric case, the inviscid
Burgers equation in the asymmetric case and a viscous Burgers equation in certain weakly asymmetric cases.
The interest of the (symmetric) facilitated exclusion process considered in Section 1 stems from the fact that
its microscopic mechanism should induce a separation between two phases in the limit, thus modelling melting
phenomena. This is a consequence of choosing degenerate jump rates, meaning that the probability for a particle
to jump to an empty neighbor vanishes as soon as some local constraint is not satis�ed. In Section 1 we present
a result describing the hydrodynamic limit of the liquid phase.

The hydrodynamic limit gives a �rst idea of the long-time distribution of a conservative system. A related
but di�erent question is to quantify the distance to equilibrium of the system in a (large) �nite domain. In many
systems we expect that the total variation distance undergoes a sharp transition: that is the cuto� phenomenon.
It has been established in a variety of models, and an ongoing research e�ort consists in identifying necessary
and/or su�cient conditions for that phenomenon to occur. Section 2 presents new cuto� results for the weakly
asymmetric exclusion process, in which the particles have a bias which vanishes with the size of the domain.

For non-conservative systems, the relaxation to equilibrium follows a very di�erent pattern, since it is not
governed by random walk di�usion. The models that we will consider in this category are Kinetically Constrained
Models (KCM), which have been introduced as toy models for supercooled liquids approaching the liquid�glass
transition [11, 32], a major open problem in condensed matter physics. A con�guration of a KCM is given
by assigning to each vertex x ∈ Zd an occupation variable which corresponds to an empty or occupied site
(in Section 3, we will rather use the terminology infected/healthy to make the comparison with bootstrap
percolation more transparent). The evolution is given by a Markovian stochastic dynamics of Glauber type.
With rate one, each vertex updates its occupation variable to occupied or to empty with probability p ∈ [0, 1]
and q = 1− p, respectively, if the con�guration satis�es a certain local constraint. The constraint is chosen in

a way that does not depend on the updated vertex, so that the product Bernoulli measure µq := Ber(1− q)⊗Zd

is reversible w.r.t. such processes.
Similarly to the facilitated exclusion process of Section 1, the presence of degenerate rates in the dynamics

leads to the existence of frozen structures and it is interesting to understand how these a�ect the mixing
properties of the dynamics. It is known [11] that inside the ergodic phase (with no in�nite frozen structure),
the relaxation time to equilibrium does not diverge with the size of the domain. A physically relevant question
is to understand how this relaxation time or other related quantities diverge as the density is increased toward
the ergodicity threshold. Section 3 analyzes this divergence for the infection time in the Duarte model, a two-
dimensional KCM, and compares it with the divergence of the analogous quantity in the corresponding bootstrap
percolation model.

Out-of-equilibrium dynamics of KCM, i.e. when the process is started from a measure di�erent from µq, are
much less understood. In Section 4, we see that in the one-dimensional FA-1f model, a vacancy propagates
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equilibrium linearly in an initially frozen region. This result belongs to the family of shape theorems for models
with propagation of infection.

1. Facilitated exclusion processes

Marielle Simon

This is based on a recent collaborative work [6] with O. Blondel, C. Erignoux and M. Sasada.

1.1. Multiphase media and kinetically constrained lattice gases

1.1.1. PDEs for multiphase media

We are interested here in the models that describe the evolution of a multiphase medium (for instance the
joint evolution of liquid and solid phases). These physical phenomena typically involve non�equilibrium phase
transitions which can be found in nature, ranging from morphological transitions of growing surfaces to moving
fronts of populations, or tra�c jams. The porous medium equation written as

∂tρ = div(ρm−1 ∇ρ) (1)

is one of the simplest examples of nonlinear evolution equation of parabolic type. The constant m > 1 regulates
the behavior of the di�usion coe�cient (D(ρ) = ρm−1) close to vanishing densities. Above, div and ∇ are
respectively the divergence and gradient operators in Rd. The evolution equation (1) is often used to describe
the evolution of the scaled density ρ : Rd × R+ → [0, 1] of an ideal gas �owing in a homogeneous medium. It
is known that, starting from an initial density ρ0, the solution ρ(x, t) is nonnegative and has compact support
in the space variables for each positive t. Thus there are interfaces separating the regions where ρ is positive
from those where it is zero. When m = 1 (resp. m < 1), equation (1) is called heat equation (resp. fast di�usion
equation).

More generally, the Stefan problem introduced in [35] typically describes the temperature distribution in a
homogeneous medium which is subjected to a phase change between ice and water. Let us assume �rst that heat
di�uses linearly, and let us write the evolution equation of both separate media, with the separation interface
allowed to evolve in time. We de�ne the water region as the domain where ρ > 0 and the ice region where
ρ = 0. In one dimension, the mathematical formulation is the following: �nd a curve x = Γ(t) and a function
ρ(x, t) ≥ 0 such that{

∂tρ = D ∂2
xxρ, if 0 < x < Γ(t),

ρ(x, t) = 0, if x ≥ Γ(t),
and

dΓ

dt
= −∂xρ(Γ(t), t), (2)

where D > 0 is a di�usion constant, plus initial and boundary conditions. The second condition on the free
boundary Γ(t) physically corresponds to the presence of latent heat at the phase transition. The mathematical
solution to (2) is usually obtained via the weak formulation and the regularity of Γ(t) can be analyzed (see [30]
for a recent review on the Stefan problem). The combination of nonlinear di�usion (similar to (1)) with the
Stefan problem has been less studied and that is what we will focus on.

1.1.2. Facilitated exclusion process

Some macroscopic equations featuring free boundaries have been recently derived from microscopic particle
systems, for instance in [14,16], however in non�degenerate settings. Our ultimate goal (and prospective work)
is to derive the Stefan problem from a conservative and degenerate microscopic dynamics. This is why we chose
to work with kinetically constrained lattice gases which are usually studied in the context of glassy dynamics (as
examples of systems in which the transition out of a liquid state is due to dynamical arrest), see [1, 17] or [32]
for a review.
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Figure 1. Constrained jumps of particles: the only possible jumps are represented by directed arrows.

In [6,33] a microscopic dynamics called facilitated exclusion process is investigated (see also [1,17]). Particles
are distributed on the points of the �nite torus of size N , with the exclusion restriction, meaning that no two
particles can occupy the same site. A particle at x jumps to an empty neighboring site, say x+ 1, at rate 1 if
there is a particle at x− 1, and rate 0 else. The jump rate from x+ 1 to x is given by a similar rule: a particle
at x+ 1 can jump to site x at rate 1 if there is a particle at x+ 2, and rate 0 else. Examples of jumps are given
in Figure 1. Because of the extra constraint to allow a jump, the dynamics is referred to as degenerate.

This dynamics conserves the total number of particles
∑
x η(x) and is reversible. However, its invariant

measures are not product, contrary to the vast majority of similar models (see Proposition 1.3). Because of
the jump constraint, we identify two distinct regimes for the macroscopic behavior of this model. Either the
macroscopic density is larger than 1

2 , in which case the system behaves di�usively, or the density is lower than 1
2 ,

in which case the system remains frozen. The interfaces between these two phases propagate as particles from
the supercritical phase (ρ > 1

2 ) di�use towards the subcritical phase (ρ <
1
2 ). We expect that the macroscopic

density pro�le for this exclusion dynamics evolves under the di�usive time scaling according to the Stefan
problem

∂tρ = ∂xx
(
G(ρ)

)
where G(ρ) = 2ρ−1

ρ 1{ρ> 1
2}
. (3)

In [6] we are able to treat the liquid part of the problem and we provide an estimation of the time needed by
the system to enter into the ergodic state: if the density is initially larger than 1

2 and if the microscopic system

is of size N , then at a macroscopic time of order (logN)α/N2, with high probability the system of particles has
already reached the ergodic component. This is the content of Theorem 1.6 below.

Let us give an outline of what follows: in Section 1.2 we give a precise de�nition of the interacting particle
system, and investigate in detail its characteristics. In Section 1.3 we state the main results of [6], which concern
the sub-di�usive estimate of the transience time, and the hydrodynamic limits in the subcritical phase (ρ > 1

2 ).

1.2. Microscopic characteristics

Let TN := Z/NZ be the �nite one-dimensional torus of size N . The facilitated exclusion process {ηt(x) ; x ∈
TN} is a Markov process on {0, 1}TN , whose time evolution is ruled by the in�nitesimal generator LN , which
acts on functions f : {0, 1}TN → R as

LNf(η) :=
∑
x∈TN

cx,x+1(η)
(
f(ηx,x+1)− f(η)

)
, (4)

where the constraint and the exclusion rule are encoded in the rates cx,x+1 as

cx,x+1(η) = η(x− 1)η(x)(1− η(x+ 1)) + η(x+ 2)η(x+ 1)(1− η(x)), (5)

and ηx,y denotes the con�guration obtained from η by exchanging the states of sites x, y, namely ηx,y(x) = η(y),
ηx,y(y) = η(x) and ηx,y(z) = η(z) if z 6= x, y. Figure 1 shows examples of jumps. The dynamics obviously
conserves the total number of particles

∑
x∈TN η(x). Because the jump rates can vanish, the dynamics is referred

to as degenerate.

We start by giving the classi�cation of the con�gurations into transient/recurrent states. For any k ∈
{1, . . . , N}, we denote by HkN the hyperplane which contains all con�gurations η with exactly k particles,
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Figure 2. One absorbing (blocked) con�guration, with N = 10 and k = 4

Figure 3. One transient bad con�guration, with N = 10 and k = 4

Figure 4. One ergodic con�guration, with N = 10 and k = 6

Figure 5. One transient good con�guration, with N = 10 and k = 6

namely:

HkN :=
{
η ∈ {0, 1}TN :

∑
x∈TN

η(x) = k
}
.

One can easily check the following statements:

(1) if k ≤ N
2 , then a con�guration η ∈ HkN satis�es one of these two properties:

• either it is completely blocked, in the sense that no particle can perform a jump (since the constraint
(5) is never satis�ed). These con�gurations are absorbing states for the dynamics: they are exactly
the con�gurations in which all particles are isolated, see Figure 2;

• or there exist in η some particles which are able to jump. However, starting from one of these
con�gurations, with probability one, in a �nite number of steps the process will end in a blocked
con�guration. These con�gurations are called transient bad, see Figure 3.

(2) if k > N
2 , similarly a con�guration η ∈ HkN satis�es one of these two properties:

• either η is in the ergodic component, i.e. the set of recurrent states for the process, which here
form an irreducible component; we call them ergodic con�gurations. They are the con�gurations
in which empty sites are isolated, see Figure 4;

• or, starting from η, the process enters the ergodic component after a �nite number of steps a.s.
These con�gurations are called transient good con�gurations, see Figure 5.

Those observations lead to the following de�nition.

De�nition 1.1. We denote by EN ⊂ {0, 1}TN the set of ergodic con�gurations on TN , namely

EN :=
{
η ∈ {0, 1}TN : ∀ x ∈ TN ,

(
η(x), η(x+ 1)

)
6= (0, 0) and

∑
x∈TN

η(x) > N
2

}
. (6)

For k > N
2 we de�ne

ΩkN := HkN ∩ EN , (7)

as the set of ergodic con�gurations on TN which contain exactly k particles.

We are now able to give the following two results on the invariant measures, taken directly from [6]:
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Lemma 1.2. For any N ≥ 1 and k > N
2 , ΩkN is an irreducible component for the facilitated exclusion process.

Proof. Let us change the point of view and move the zeros around instead of the particles. Then it is clear that
in a con�guration in EN , a zero can jump as long as it remains at distance at least two from the others, and
every allowed jump is reversible. Consequently, it is enough to show that from every con�guration in ΩkN , one
can reach the con�guration ◦ • ◦ • · · · • • where the N − k zeros start alternating with particles until there are
none left. Let η ∈ ΩkN and number its zeros from left to right (the �left-most� site being 1 ∈ TN ). In that order,
pull each of them as much to the left as possible. That way we reach either the desired con�guration, or the
same shifted one step to the right (in case η(N) = 0): • ◦ • ◦ • · · · •. In the second case, iterating the process
brings us back to the desired con�guration. �

Proposition 1.3. (1) For any k > N
2 , the ( canonical) uniform measures on ΩkN , denoted by πkN , are

invariant for the Markov process induced by the in�nitesimal generator LN and satisfy the detailed
balance condition: for any x ∈ TN and η ∈ ΩkN ,

πkN (η)η(x− 1)η(x)(1− η(x+ 1)) = πkN (ηx,x+1)(1− ηx,x+1(x))ηx,x+1(x+ 1)η(x+ 2).

(2) When k/N → ρ > 1
2 , the sequence {πNk } locally converges to a grand-canonical measure πρ on {0, 1}Z.

This measure satis�es: for any η ∈ {0, 1}Z,
(a) πρ(η(0)) = ρ.
(b) for any ` ∈ N, ` ≥ 1

πρ

(
η|{1,...,`} = (0, 1, . . . , 1)

)
= (1− ρ)

(
2ρ−1
ρ

)`−2

, (8)

which, since 1−ρ
ρ = 1− 2ρ−1

ρ , is nothing but

πρ(η(0) = 0)× P
(

Geom
(

1−ρ
ρ

)
≥ `− 2

)
.

Finally, let us say a few words about the instantaneous currents, which are de�ned for any con�guration η
and any site x as

jx,x+1(η) = cx,x+1(η)(η(x+ 1)− η(x)),

and satisfy LN (η(x)) = jx,x+1(η)− jx−1,x(η). One can easily check that our model is gradient, which is to say
that these currents can be written as discrete gradients: for any x ∈ TN ,

jx,x+1(η) = τxh(η)− τx+1h(η),

with the function h given by h(η) := η(−1)η(0) + η(0)η(1) − η(−1)η(0)η(1). As in all gradient models, this
function h plays a fundamental role in the derivation of the hydrodynamic limit.

1.3. Transience time and hydrodynamic limits

We are now ready to state the main results of [6]. In order to derive the macroscopic limit of the facilitated
exclusion process, we �rst �x an initial smooth pro�le ρ0 : T → ( 1

2 , 1], where T = R/Z is the continuous one-

dimensional torus. We let the Markov process start from the non-homogeneous product measure on {0, 1}TN
�tting ρ0, de�ned as

µN (η) :=
∏
k∈TN

(
ρ0

(
k
N

)
η(k) +

(
1− ρ0

(
k
N

))
(1− η(k))

)
. (9)

Let {ηNt : t ≥ 0} denote the Markov process driven by the accelerated in�nitesimal generator N2LN starting
from the initial measure µN . Fix T > 0 and denote by PµN the probability measure on the Skorokhod path
space D([0, T ], {0, 1}TN ) corresponding to this dynamics.
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Theorem 1.4 (Hydrodynamic limit, [6]). For any t ∈ [0, T ], any δ > 0 and any continuous test function
ϕ : T→ R, we have

lim
N→∞

PµN
[∣∣∣∣ 1

N

∑
x∈TN

ϕ
( x
N

)
ηNt (x)−

∫
T
ϕ(u)ρ(t, u)du

∣∣∣∣ > δ

]
= 0 (10)

where ρ(t, u) is the unique smooth solution of the hydrodynamic equation

∂tρ = ∂xx

(2ρ− 1

ρ

)
, ρ(0, ·) = ρ0(·) : T→ ( 1

2 , 1]. (11)

Remark 1.5. The equation (11) belongs to the family of quasilinear parabolic problems, for which it is quite
standard to prove that there is a unique smooth solution, provided that the initial pro�le satis�es ρ0 >

1
2 .

There are two main di�culties to prove Theorem 1.4. The �rst one lies in the fact that the dynamics is
a priori not ergodic. We therefore need a second result, which states that the accelerated system reaches its
ergodic component at a macroscopic time tN of order o(1) as N → ∞. Therefore, for any macroscopic time
t > 0 and for any N large enough such that tN < t, the con�guration ηNt belongs to the ergodic component
with very high probability. This is the purpose of:

Theorem 1.6 (Transience time for the exclusion process with absorption, [6]). Letting `N = (logN)32 and
tN = `N/N

2, we have

lim
N→∞

PµN
(
ηNtN /∈ EN

)
= 0.

The main idea of its proof is to use an already known mapping, which couples the process {ηNt : t ≥ 0}
generated by LN with a zero-range process which presents the same characteristic separation between ergodic,
transient and inactive states, but has additional pleasant monotonicity properties. These make the estimation
of the time needed to enter into the ergodic component less complicated, although still technical. All the details
are contained in [6, Section 4].

The second main di�culty to prove Theorem 1.4 comes from the nature of the invariant measures of the
process: we need a deep investigation of the canonical and grand canonical measures for the generator LN ,
which only charge the ergodic component EN where all empty sites are isolated. There are two fundamental
properties of πρ which we prove in [6]:

(1) For any density ρ ∈ ( 1
2 , 1), under πρ, the correlations between two boxes at a distance of order ` decay

as exp(−C`). This is the purpose of [6, Lemma 6.5].
(2) The equivalence of ensembles, linking canonical measures to grand-canonical measures as the system

size goes to in�nity, holds. This is the content of [6, Corollary 6.10].

Then, our proof of the hydrodynamic limit relies on the classical entropy method (which is explained in
details for instance in [20, Chapter 5]), but requires adaptations to solve the ergodicity issue, and to account
for the non-product invariant measures. The main steps of the proof are given in [6, Section 5] in the form of
two distinct results:

• the �rst one states that after reaching the ergodic component, the macroscopic density pro�le of the
system is very close to the initial density pro�le ρ0. This is [6, Lemma 5.1];

• the second result states that starting from the ergodic component, the hydrodynamic limit holds. This
is [6, Proposition 5.2]. Its proof uses the classical Replacement Lemma, which, because of the shape
of our canonical and grand canonical measures, requires signi�cant work. In particular, this is where
the two fundamental properties of πρ � the correlations decay and the equivalence of ensembles � are
crucial.
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2. Cutoff phenomenon for the weakly asymmetric simple exclusion process

Cyril Labbé

2.1. Introduction

The simple exclusion process is a model of statistical mechanics that provides a simpli�ed picture for a gas
of interacting particles. Particles move on a lattice, each of them performing a nearest neighbor random walk
independently of the others, and interact only via the exclusion rule that prevents any two particles from sharing
the same site (when a particle tries to jump on a site which is already occupied, this jump is cancelled).

While convergence to equilibrium for a particle system can be considered on a macroscopic scale via the
evolution of the particle density or hydrodynamic pro�le (see e.g. Section 1, [20] and references therein), an
alternative and complementary viewpoint consists in measuring the so-called ε-Total Variation Mixing Time [25].
It is de�ned as the �rst time at which the total variation distance to the stationary state, starting from the
�worst" initial condition, falls below a given threshold ε. Compared to the hydrodynamic pro�le, this provides
a much more microscopic information on the particle system.

We will review the recent progress made on the derivation of the asymptotics of the mixing times for the
simple exclusion process on a segment.

2.2. The Markov chain and its equilibrium measure

Given N ∈ N, k ∈ J1, N − 1K (we use the notation Ja, bK = [a, b]∩Z) and p ∈ (1/2, 1], the Asymmetric Simple
Exclusion Process on J1, NK with k particles and parameter p is the random process on the state space

HkN :=
{
η ∈ {0, 1}N :

N∑
x=1

η(x) = k
}
,

associated with the generator

LN,kf(η) :=

N−1∑
y=1

(
q1{η(y)<η(y+1)} + p1{η(y)>η(y+1)}

)
(f(ηy,y+1)− f(η)), (12)

where q = 1− p and ηy,y+1 is obtained from η by exchanging its values at y and y + 1.

In a more intuitive manner we can materialize the positions of 1 by particles, and say that the particles per-
form random walks with jump rates p to the right and q = 1−p to the left: these random walks are independent
from one another except that any jump that would send a particle to a location already occupied by another
particle is cancelled.

It is convenient to use another, equivalent, representation of a particle con�guration through a so-called height
function. With any con�guration η ∈ HkN , we associate a lattice path h = hη that makes ±1 steps according to
the presence/absence of particles at the corresponding sites:

h(0) = 0 , h(x)− h(x− 1) = 2η(x)− 1 , x ∈ J1, NK .

We say that h has an upward corner (resp. downward corner) at x if h(x + 1) = h(x − 1) = h(x) − 1 (resp.
h(x + 1) = h(x − 1) = h(x) + 1). Note that an upward corner at x corresponds to having a particle at x and
no particle at x + 1; similarly a downward corner at x corresponds to having no particle at x and a particle
at x + 1. Consequently, moving a particle from x to x + 1 corresponds to �ipping an upward corner into a
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downward corner, and similarly, moving a particle from x + 1 to x corresponds to �ipping a downward corner
into an upward corner. One can therefore check that the dynamics of the particles can be rephrased at the
level of the height functions in the following way: any upward corner (resp. downward corner) of h �ips into its
opposite at rate p (resp. q).

We let PN,kt denote the associated semi-group. This Markov chain is irreducible, and admits a unique
invariant (and reversible) probability measure πN,k given by

πN,k(η) :=
1

ZN,k

(
q

p

) 1
2A(η)

. (13)

where ZN,k :=
∑
η∈HkN

(
q
p

) 1
2A(η)

, and A(η) =
∑N
x=1 hη(x) is the area below the height function hη.

In the symmetric case p = q = 1/2, this is simply the uniform measure on the set HkN while in the asymmetric
case p > q, the measure πN,k favors con�gurations with a small area, or equivalently, whose height function is
close to the minimal height function.

Recall that the total variation distance between two probability measures de�ned on the same state space Ω
is de�ned by

‖α− β‖TV = sup
A⊂Ω
{α(A)− β(A)},

where the sup is taken over all measurable sets A.

The mixing time associated with the threshold ε ∈ (0, 1) is de�ned by

TN,kmix (ε) := inf{t ≥ 0 : dN,k(t) ≤ ε}, (14)

where dN,k(t) denotes the total variation distance to equilibrium at time t starting from the worst possible
initial condition

dN,k(t) := max
η∈HkN

‖PN,kt (η, ·)− πN,k‖TV . (15)

From now on, and for the sake of simplicity, we restrict ourselves to the case of a non-trivial density of
particles, that is k/N → α ∈ (0, 1).

2.3. Results on the mixing times

The �rst main contribution on this question is due to Wilson [36]. Therein he showed that in the symmetric
case p = q = 1/2, for any ε ∈ (0, 1), we have for all N large enough

1 + o(1)

π2
N2 logN ≤ TN,kmix (ε) ≤ 2 + o(1)

π2
N2 logN .

Such a behavior of the mixing times is usually referred to as a pre-cuto� phenomenon: all the mixing times
are comprised in between two terms of the same order but whose prefactors di�er. It is generally believed that
for non-pathological Markov chains, this implies a cuto� phenomenon: all the mixing times are equivalent to
each other

TN,kmix (ε) ∼ TN,kmix (1/2) , ∀ε ∈ (0, 1) .

The second main contribution is the work of Benjamini et al. [2] where the asymmetric case (p is larger than
1/2 and independent of N) is considered. It is shown therein that a precuto� phenomenon holds: there exist
0 < C1 < C2 <∞ such that for any ε ∈ (0, 1), we have for all N large enough

C1N ≤ TN,kmix (ε) ≤ C2N .
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Figure 6. The main results on the mixing times of the SEP. p increases from 1/2 to 1 (not on scale)
when reading the picture from left to right. We use the notation � uN as a shorthand for the existence

of two constants C1 < C2 such that for every given ε ∈ (0, 1) we have C1uN ≤ TN,k
mix (ε) ≤ C2uN as

soon as N is large enough. Furthermore, we write ∼ uN as a shorthand for TN,k
mix (ε) ∼ uN for any given

ε ∈ (0, 1) as N →∞. Θ(uN ) denotes a quantity that is � uN .

Later on, Lacoin [23] showed that cuto� holds in the symmetric case p = q = 1/2, namely for all ε ∈ (0, 1)

lim
N→∞

TN,kmix (ε)

N2 logN
=

1

π2
. (16)

Note that the lower bound of Wilson was sharp, but the upper bound was not.

The case of weak asymmetry (when p = pN and q = qN depend on N with bN = pN −qN = o(1)) was studied
only recently by Levin and Peres [24]. Three regimes were identi�ed in terms of the order of magnitude of the
bias bN :

(A) When bN ≤ 1/N , the mixing time remains of the same order as that of the symmetric case N2 logN .
(B) When 1/N ≤ bN ≤ (logN)/N , the mixing time is of order (bN )−2 logN .
(C) When (logN)/N ≤ bN ≤ 1, the mixing time is of order (bN )−1N .

In all regimes, the upper and lower constants di�er so that only precuto� phenomena are established. The
transition occurring around bN ≈ N−1 is the one observed for the hydrodynamic limit: it corresponds to a
crossover regime where the limit is given by a viscous Burgers' equation [13,19,20] which interpolates between
the heat and the inviscid Burgers' equations. The one occurring for bN ≈ N−1 logN is however not observed
in the macroscopic pro�le. It corresponds to a crossover regime for the position of the leftmost particle at
equilibrium: for asymmetries much smaller than N−1 logN , the leftmost particle is at distance negligible
compared to N of site 1, while for much larger asymmetries, it is at distance negligible compared to N from
site N − k + 1 (note that the leftmost particle cannot be located to the right of this site).

In collaboration with Hubert Lacoin [21, 22], we established a cuto� phenomenon for all regimes of (weak)
asymmetry except when the bias is of order (logN)/N . Actually, we identi�ed two main regimes for the pattern
of relaxation to equilibrium. The large bias regime where

lim
N→∞

NbN
logN

=∞, (17)
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and the small bias regime where

lim
N→∞

NbN
logN

= 0 . (18)

We identi�ed the asymptotic expression for the mixing times in both regimes. In the large bias regime we
showed that the mixing time coincides with the time needed by the particle density to reach equilibrium.

Theorem 2.1. When (17) holds and limN→∞ kN/N = α ∈ (0, 1), we have for every ε ∈ (0, 1)

lim
N→∞

bNT
N,kN
mix (ε)

N
=
(√
α+
√

1− α
)2
. (19)

To state our result in the small bias regime, let us introduce the quantity

gapN := (
√
pN −

√
qN )2 + 4

√
pNqN sin

( π

2N

)2

, (20)

which corresponds to the spectral gap associated with the generator (12). Notice that it does not depend on the
number k of particles in the system. The pattern of relaxation is similar to the one observed in the symmetric
case.

Theorem 2.2. When (18) holds, we have

lim
N→∞

gapN T
N,kN
mix (ε)

logN
=

1

2
. (21)

Using Taylor expansion for gapN we have, whenever bN tends to zero

gapN
N→∞∼ 1

2

(
b2N +

( π
N

)2
)
. (22)

These two theorems establish a cuto� phenomenon whenever the bias bN is much larger or much smaller
than (logN)/N . When the bias is of order (logN)/N , the situation is more intricate and establishing cuto�
remains an open question; however, the result of Levin and Peres already shows that a precuto� phenomenon
holds in that case.

3. Bootstrap percolation versus kinetically constrained model: the case of

the Duarte model

Laure Marêché

Bootstrap percolation and kinetically constrained models are interacting particle systems that are very simi-
lar: both kinds of models are dynamics of con�gurations on graphs where any vertex of the graph (we call them
sites) can have two states, either infected or healthy, and the state of a site can change only if a constraint is sat-
is�ed at this site, the constraint being of the form �there are enough infected sites in a neighborhood of the site�.
In bootstrap percolation, a satis�ed constraint will make the corresponding site infected, while in kinetically
constrained models, it can make it infected or healthy at random. These models may be reminiscent of voter
models, in which a site randomly takes the state of one of its neighbors, but they are fundamentally di�erent,
as healthy neighbors will not allow a site to become healthy. Despite their similarities, bootstrap percolation
and kinetically constrained models have di�erences: the former has a deterministic dynamics, the latter have a
stochastic one, the former is monotonic, the latter are not. Here we consider a speci�c, asymmetric constraint,
the Duarte constraint, and we study the e�ects of these di�erences on the behaviors of the two models. We will
see that though these two Duarte models share some properties, an important timescale, the �rst time at which
the origin is infected, diverges much faster in the kinetically constrained model than in bootstrap percolation
when the probability that a site is infected tends to 0.
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3.1. Bootstrap percolation

The bootstrap percolation with the Duarte constraint is a discrete time dynamics of con�gurations on Z2;
at each time t ∈ N, any site of Z2 can be infected or healthy, and the states of the sites evolve according to the
following rules: for any t ∈ N∗,

• any site that is infected at time t− 1 remains infected at time t;
• any site that is healthy at time t− 1 becomes infected at time t if and only if at time t− 1, at least two
sites among its top, left and bottom neighbors are infected.

This last condition is the Duarte constraint; a site can change state only if this constraint is satis�ed (see
Figure 7).

• ◦ ◦ ◦

• ◦ ◦ •

◦ • • ◦

x y

Figure 7. Exempli�cation of the Duarte constraint. The • represent the infected sites and the
◦ the healthy sites. Site x, which has two infected neighbors among the top, left and bottom
ones, will be infected at the next step of the dynamics. Conversely, site y, which has only one
infected neighbor among the top, left and bottom ones, will remain healthy at the next step of
the dynamics.

One can notice that once a site is infected, it will remain so for ever: bootstrap percolation is monotone.
Moreover, this dynamics is deterministic.

We may consider a random initial con�guration in which the states of the sites are independent and the
probability that any given site is infected is q, with q ∈ [0, 1] �xed; we call µq this law on con�gurations.
The �rst question one can ask is: will the dynamics infect the origin with probability 1, or is there a positive
probability that the origin remains healthy for ever? (We could ask the question for any other site, since the
model is translation invariant.) The answer depends on q:

Theorem 3.1 ( [34]). We have the following:

• if q > 0, µq(the origin is infected by the dynamics) = 1;
• if q = 0, µq(the origin is infected by the dynamics) = 0.

The property for q = 0 is easy to see: if q = 0, there are no infected sites in the initial con�guration, hence
the Duarte constraint is satis�ed nowhere, and no site can become infected. Conversely, the result for q > 0
requires a more complex proof, which was done by Roberto H. Schonmann in [34].

Theorem 3.1 implies that there is a phase transition at q = 0. To understand how the dynamics goes from
�almost sure infection of the origin� to �no infection at all of the origin� when q becomes 0, it is natural to
consider the time at which the origin is infected,

τBP = inf{t ∈ N | the origin is infected at time t}

and to study its behavior when q tends to zero.
The following theorem was proven by Béla Bollobás, Hugo Duminil-Copin, Robert Morris and Paul Smith

in [8] (a result on a closely related quantity called critical probability had been previously shown by Thomas
Mountford in [31]).

Theorem 3.2 ( [8]). The median TBP of τBP satis�es TBP = exp(Θ( 1
q ln( 1

q )2)) when q tends to 01.

1If f, g are two positive quantities depending on q, we write f = Θ(g) if 0 < lim infq→0
f
g
≤ lim supq→0

f
g
<∞.
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Figure 8. The • represent the infected sites and the ◦ the healthy sites. This isolated rectangle
of infected sites does not allow to infect the neighboring sites.
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Figure 9. The • represent the initially infected sites, the ◦∗ represent the initially healthy sites
that can be infected by the dynamics, and the ◦ represent the initially healthy sites that cannot
be infected. We can see in a) that if we add to a rectangle of infected sites an infected site
on its left side, we do not obtain any supplementary infection. In b) and c), we see that if we
add the infected site on the top side (respectively the bottom side) of the rectangle, this allows
to infect the part of the top side (respectively the bottom side) at the right of the added site.
Finally, in d), we see that if we add the site on the right side of the rectangle, we can infect the
entire right side.

We would like to replace the Θ with an exact constant, but such a result is not proven yet. An exact constant
was shown for the critical probability by Béla Bollobás, Hugo Duminil-Copin, Robert Morris and Paul Smith
in [9], but this constant cannot be transferred directly to τBP .

Heuristics for Theorem 3.2. Firstly, we notice that since the probability that a site is infected in the initial
con�guration is q, which tends to zero, initially infected sites are scarce, so it is likely there are no initially
infected sites around the origin. To reach the origin, the infection will have to start from a �seed�, a place where
there are initially infected sites, and to propagate to the origin.

Now, we can see on Figure 8 that an isolated rectangle of infected sites does not allow to propagate the
infection; it cannot even infect the neighboring sites. Consequently, in order to propagate, the infection must
encounter initially infected sites on its way.

Moreover, Figure 9 shows that when we add an infected site on a side of a rectangle of infected sites, the most
e�ective propagation of infection is obtained when the added site is on the right side. Therefore, the optimal
seed of infection must have a big right side so we have a large probability to �nd an initially infected site on it,
and as few sites as possible because the more infected sites are required to form the seed, the less probable it
is to �nd one; therefore the optimal seed is a column of infected sites.

To understand the legnth of the optimal column, we notice that the probability not to �nd an infected site
on its right side is (1 − q)|right side| = e−Θ(q|right side|), so for this probability to be small, the right side must
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have length at least Θ( 1
q ln( 1

q )). With such a length, there is a good probability to �nd an infected site on the

right side of the column (then the mechanism of Figure 9 d) allows to infect the entire right side, which is a
new column), then on the right side of the newly infected column (which allows to infect this right side), then
on the column on the right, etc. so infection can propagate over a certain length. As the optimal seed must
contain as few sites as possible, it will be a column of Θ( 1

q ln( 1
q )) initially infected sites. In addition, we see

that the infection essentially propagates to the right.
We deduce that the infection that propagates to the origin comes from a column of Θ( 1

q ln( 1
q )) initially infected

sites at the left of the origin. Moreover, the probability that a given column of Θ( 1
q ln( 1

q )) sites is entirely infected

in the initial con�guration is qΘ( 1
q ln( 1

q )) = exp(Θ( 1
q ln( 1

q ) ln(q))) = exp(−Θ( 1
q ln( 1

q )2)). Therefore, we can expect

the initially infected column of height Θ( 1
q ln( 1

q )) nearest to the origin to be at distance exp(Θ( 1
q ln( 1

q )2)) from

it; to cross this distance, the infection will take a time exp(Θ( 1
q ln( 1

q )2)), hence the scaling of τBP .

3.2. Kinetically constrained model

The kinetically constrained model with the Duarte constraint is also a dynamics of con�gurations on Z2 in
which each site can be either infected or healthy, but this dynamics is stochastic and continuous-time.

To de�ne the dynamics, one has to take independently for each site x ∈ Z2 a Poisson point process Px on
R+ with parameter 1. For each t ∈ Px, the site x can receive an update at time t, which means having its state
replaced by �infected� with probability q and �healthy� with probability 1− q independently of everything else;
x receives an update at time t if and only if the Duarte constraint is satis�ed at time t, that is if and only if at
least two sites among the top, left and bottom neighbors of x are infected at time t (see [11] for more details
on the de�nition of kinetically constrained models).

The state of a site can only change via an update, therefore only when the Duarte constraint is satis�ed,
as in the bootstrap percolation Duarte model. However, one can notice that the occurrence of an update does
not depend on the state of the site, neither does the new state of the site. In particular, an update may allow
an infected site to become healthy, unlike in bootstrap percolation: the kinetically constrained model is not
monotone.

As in the bootstrap percolation case, one can take an initial con�guration of law µq (we denote by Pq the
corresponding distribution of the process) and ask if there exists almost surely a time at which the origin is
infected by the dynamics. It is not exactly the same question as the one we asked for bootstrap percolation,
because when the origin is infected in the kinetically constrained model, it does not necessarily remain so for
ever as it would in bootstrap percolation. Nevertheless, it is interesting to know if the origin is stuck forever in
a healthy state or if its state has a chance to change. The answer is the same as for bootstrap percolation:

Theorem 3.3 ( [11]). We have the following:

• if q > 0, Pq(the origin is infected by the dynamics) = 1;
• if q = 0, Pq(the origin is infected by the dynamics) = 0.

The result for q = 0 has the same origin as in bootstrap percolation: if q = 0, there are no infected sites in
the intial con�guration, hence no update can occur, so no site can change state and get infected. The property
for q > 0 is harder to prove and can be obtained from the results of Nicoletta Cancrini, Fabio Martinelli, Cyril
Roberto and Cristina Toninelli (see [11]).

Theorem 3.3 implies that there is a phase transition at q = 0 in the kinetically constrained model. To
understand it, it is again natural to consider the �rst time at which the origin is infected,

τKCM = inf{t ∈ R+ | the origin is infected at time t}

and to study its behavior as q tends to 0.
There is an easy lower bound for τKCM . Indeed, if a site gets infected in the kinetically constrained model, it

received an update, hence the Duarte constraint was satis�ed at this site, therefore it would have been infectable
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by the bootstrap percolation. Thanks to this, it can be proven that the infection in the kinetically constrained
model cannot propagate much faster that in bootstrap percolation, more precisely (Lemma 4.3 of [28]) that
when q tends to zero2,

Eq(τKCM ) = Ω(TBP ) = exp

(
Ω

(
1

q
ln

(
1

q

)2
))

.

However, this lower bound actually does not yield the true behavior of τKCM , which is given by the following
theorem:

Theorem 3.4 ( [27,29]). Eq(τKCM ) = exp(Θ( 1
q2 ln( 1

q )4)) when q tends to 0.

The upper bound was shown by Fabio Martinelli, Robert Morris and Cristina Toninelli in [29], and the lower
bound was proven by Laure Marêché, Fabio Martinelli and Cristina Toninelli in [27]. Theorem 3.4 implies that
the �rst time at which the origin is infected diverges much faster in the kinetically constrained model than in
bootstrap percolation: the two versions of the Duarte model have di�erent behaviors.

Heuristics for Theorem 3.4. We already noticed that a site that gets infected by the kinetically constrained
model would have been infectable by the bootstrap percolation, hence the infection that reaches the origin in
the kinetically constrained model must come from a seed that allows to propagate infection to the origin in the
bootstrap percolation dynamics: an initially infected column of height Θ( 1

q ln( 1
q )) at the left of the origin.

Moreover, when the bootstrap percolation infects a site, its constraint is satis�ed, hence it can receive an
update in the kinetically constrained model, so it can get infected in the kinetically constrained model. Therefore,
the mechanism by which the infection propagates to the origin in the bootstrap percolation model, by infecting
successively the columns at the right of the initial column, may happen in the kinetically constrained model.

However, this will not happen in practice, because this would require the dynamics to go through a con�gu-
ration where all columns between the initial column and the origin are infected, and since the probability that
a site is infected when receiving an update is q which tends to zero, it is very small, therefore the probability of
infecting so many sites at the same time is really tiny. Before such an improbable event happens, we will have
to wait for a long time. We deduce that what governs the scaling of τKCM is not so much that the infection
has to cross a long distance from the initial infection seed to the origin, but the fact that before infecting the
origin, the dynamics has to go through con�gurations that are very improbable because they contain too many
infected sites. This phenomenon is called energy barrier. Therefore, to �nd the scaling of τKCM , we have to
�nd the optimal way for the dynamics to infect the origin, the one that uses as few infected sites as possible.

Since the smallest cluster of infected sites allowing to propagate infection, hence to act signi�cantly on its
environnement, is a column of height Θ( 1

q ln( 1
q )), the optimal way to infect the origin will be having such

columns move towards the origin. In what follows, we will write just �column� for �column of infected sites of
height Θ( 1

q ln( 1
q ))�.

We need to understand how these columns can move. We notice that such a column is long enough so we
have a good probability to �nd an infected site on its right side, which allows to infect all its right side in the
bootstrap percolation dynamics hence in the kinetically constrained model as in Figure 10. This implies that a
column can create another column at its right. Moreover, if we have two successive columns in the con�guration,
the column at the right can disappear as evidenced by Figure 10. Therefore a column can appear or disappear
when there is a column at its left. This columns dynamics resembles another kinetically constrained model, the
East model, which is a dynamics of con�gurations on Z where a site can receive an update when the site at its
left is infected (see [15]).

Moreover, in the East model, there is a combinatorial result from [12] claiming that before the infection can
reach a distance d from an initially infected site, the dynamics has to go through a con�guration with at least
log2 d infected sites at the same time, because when we allow only n infected sites at the same time in the
con�guration, the infection can go to a distance roughly 2n from the initial infected site. This can be seen by
recursion. Indeed, if when we allow only n infected sites at the same time, there exists a procedure (P) that

2If f, g are two positive quantities depending on q, we write f = Ω(g) if lim infq→0
f
g
> 0.
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Figure 10. From the picture at the left with one infected column, where the • represent the
infected sites and the ◦ the healthy sites, the dynamics can infect successively the sites ◦∗,
yielding the picture at the right with two infected columns. Moreover, from the picture at the
right with two infected colums, the infected sites ◦∗ can receive successive updates that make
them healthy, which gives the picture at the left with a single infected column.

starts with only the origin of Z infected and infects 2n, then when we allow an (n + 1)-th site, we can infect
2n + 1 since its left neighbor is infected. We can then remove all the infected sites used to infect 2n (apart from
the origin) by reversing the procedure (P), which yields a con�guration with two infected sites, the origin and
2n + 1. We now repeat (P), but using 2n + 1 as initially infected site instead of the origin. This allows to infect
(2n + 1) + 2n = 2n+1 + 1, without using more than n+ 1 infected sites, so n+ 1 infected sites allow the infection
to travel to a distance roughly 2n+1 from an initially infected site.

Therefore, as the columns in the Duarte model follow roughly the same dynamics as the infected sites in
the East model, before a column can reach the origin to infect it, the dynamics has to go through a con�g-
uration with at least log2 d columns at the same time, where d is the distance from the origin to the nearest
initially infected column, which is expected to be exp(Θ( 1

q ln( 1
q )2)). Consequently, before infecting the ori-

gin the dynamics will have to go through a con�guration with at least n columns at the same time, where
n = log2(exp(Θ( 1

q ln( 1
q )2))) = Θ( 1

q ln( 1
q )2). Since each column has probability exp(−Θ( 1

q ln( 1
q )2)), such a con-

�guration has probability (e−Θ( 1
q ln( 1

q )2))Θ( 1
q ln( 1

q )2) = exp(−Θ( 1
q2 ln( 1

q )4)). The time the dynamics will take

before going through such an improbable con�guration will be of order exp(Θ( 1
q2 ln( 1

q )4)), which explains the

scaling of τKCM .

4. Front propagation in the FA-1f model

Aurelia Deshayes

A key issue in the study of kinetically constrained models is to analyze the large time evolution when we
start from a distribution di�erent from the equilibrium Bernoulli measure µq. Note that, due to the presence of
the constraints, the KCM dynamics is not attractive3, so powerful tools like monotone coupling and censoring
inequalities cannot be applied. Furthermore, convergence to equilibrium is not uniform on the initial condition
since completely occupied con�gurations are blocked under the dynamics. Therefore the study of the large time
dynamics out of equilibrium is particularly challenging.

In this section, we intend to present a progress in the understanding of kinetically constrained models (KCM),
based on a joint work with Oriane Blondel and Cristina Toninelli [7]. We focus on the Fredrickson-Andersen one
spin facilitated model (FA-1f) where the constraint requires at least one empty nearest neighbor. In particular,
we consider FA-1f on Z starting from a con�guration which has an empty site at the origin and is completely

3A dynamics is attractive if, the more empty sites the initial condition has, the more empty sites the process will have all the
way long.
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occupied in the left half line and we study the evolution of the front, namely the position of the leftmost empty
site. In the following, we will �rst present the FA-1f model and some of its properties related to convergence
to equilibrium. Then, we will explain a coupling with an other interacting particle system, the contact process,
which is not a KCM and satis�es attractivity. Finally, we will present the results on the front that we can
deduce from the coupling.

4.1. FA-1f model

The FA-1f dynamics are described by a Markov process with the following generator: for any local function
f and any σ ∈ {0, 1}Z,

Lf(σ) =
∑
x∈Z

r(x, σ) (f(σx)− f(σ)) (23)

where the rate r(x, σ) = c(x, σ)(qσ(x) + p(1− σ(x))) is the product between a constraint c(x, σ) and a �ip rate
qσ(x) + p(1− σ(x)). The constraint c(x, σ) = 1− σ(x− 1)σ(x+ 1), which requires at least one empty neighbor
to allow the �ip, does not depend on σ(x) so that the FA-1f process is reversible w.r.t. µq := Ber(1 − q)⊗Z.
We denote by LO0 the subspace of initial con�gurations σ with a leftmost empty site at the origin, by σt the
con�gurations of the FA-1f model at time t according to the previous dynamics, and by X(σt) the front. As
usual, Pσ denotes the law of the process started from the con�guration σ. All those objects clearly depend on
q, but to avoid burdensome reading we omit it from the notations.

First, it is easy to see that there is a maximal velocity of the front, that is, there exists a constant v such
that, for every σ ∈ LO0, every c ≥ v and every t, we have Pσ(|X(σt)| ≥ ct) ≤ e−ct. This is an immediate
consequence of the �nite speed propagation of the information. To see that we use the graphical construction
of the model: it is a space-time representation where the update times are marked by exponential clock rings
(recall the beginning of Section 3.2). For an empty site to travel a distance n, it needs to cross at least n
independent clock rings, so the information cannot travel faster than linearly.

In [5] a convergence to equilibrium was proven when the starting distribution is such that the mean distance
between nearest empty sites is uniformly bounded and the equilibrium vacancy density q is larger than a
threshold 1/2. From their work we can easily deduce the following result.

Proposition 4.1. Let q > 1/2, t > 0, K > 0 and f be a bounded function with support contained in [−K,K]
such that µq(f) = 0. If K ≤ etα with α ∈ (0, 1/2), there exists c′ = c′(α, q) > 0 such that,

• if σ has no interval of occupied sites of length
√
t in [−K−vt,K+vt] then |Eσ[f(σt)]| ≤ 1

c′ ‖f‖∞e
−c′
√
t;

• if σ has no interval of occupied sites of length
√
t in [−K,K] then

|Eσ[f(σ
[−K,K]
t )]| ≤ 1

c′ ‖f‖∞e
−c′
√
t, where (σ

[−K,K]
t )t≥0 denotes the FA-1f process in [−K,K] with empty

boundary condition.

This result states that su�ciently many empty sites induce equilibrium. In the following, we will use this
result and a coupling with threshold contact processes to understand the behavior of the front of a con�guration.
To be able to use the previous proposition, we will always consider the density of empty sites q > 1/2.

4.2. Coupling between FA-1f and contact process

The threshold contact process presents similar dynamics to that of the FA-1f process but the update to occupy
an empty site can occur without checking the constraint. In the contact process, the absorbing con�guration
with only occupied sites can be reached. Indeed, all the empty sites can disappear because there is no constraint
the system has to satisfy in order to �ll the last empty site. It is not the case for KCM.

We will denote by ηt the con�guration of the threshold contact process at time t starting from η. This model
is one of the simplest particle systems exhibiting a phase transition, that is, there exists q ∈ (0, 1) such that if
q < q then the probability to reach the absorbing state, starting from a con�guration with a �nite number of
empty sites, is equal to 1, and if q > q then the empty sites persist with positive probability. In the latter case,
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we say that the contact process survives, otherwise we say that the process dies. To ensure that the threshold
contact process survives with positive probability, we will, from now on, suppose that q > q.

Our idea is to couple FA-1f dynamics with a contact process in order to use the well-known behavior of the
second process (ballistic motion of the front, large quantity of empty sites in the already visited zone) to study
the �rst process.

Thanks to Harris graphical representation, starting from any initial con�guration, we can construct both
processes simultaneously using the same Bernoulli and Exponential variables. This construction, called basic
coupling, ensures that every time a site updates from occupied to empty in the contact process, it is also emptied
in the FA-1f process (but it is not the case for the update from empty to occupied because the FA-1f process
requires the constraint). So if two initial con�gurations satisfy σ ≤ η (pointwise4), then a.s. for all time t,
σt ≤ ηt, so that coupled FA-1f and contact trajectories are obtained in such a way that FA-1f con�gurations
contain more empty sites than contact process con�gurations.

We wish to exploit this comparison result between the FA-1f and contact processes to guarantee a su�cient
number of empty sites for the FA-1f dynamics. To this purpose, since the contact process can die, we will need
to build a restart argument �rst.

Lemma 4.2. Let q > q. For any σ ∈ LO0, there exist a process (σt, ηt)t≥0 taking values in ({empty,occupied}Z)2

and two random variables T and Y taking their values in R+ and Z, respectively, such that

(1) (σt)t>0 is an FA-1f process starting from σ ∈ LO0,
(2) ∀t > 0,∀x ∈ Z, σt(x) ≤ ηt(x),
(3) (ηT+t(Y + ·))t>0 is a surviving threshold contact process starting from δ0, the con�guration with a unique

empty site at the origin.

Moreover, T and |Y | have exponentially decaying tail probabilities.

The idea of the proof is to couple a FA-1f process with a contact process and to restart the second one each
time it vanishes. Eventually, the contact process will survive (since q > q̄) and the space-time point (Y, T )
corresponding to the origin of this surviving contact process is not very far from the origin (see Figure 11). The
exponentially decaying tail probabilities come from the known behavior of the contact process: if the process
dies, then it dies quickly (so the extinction times of the contact process tries, represented by the Ui's in Figure
11, are small) and its evolution is linear (so the growth of the contact process tries before extinction, represented
by the Zi's in Figure 11, are also small). Knowing that the FA-1f front has a maximal velocity, we can restart
the process from a location close from the extinction point, that is the length between the origin of the previous
contact process try and the origin of the new one (represented by the Xi's in Figure 11) are small.

Contrary to KCM, the contact process is attractive. This property is essential to prove its linear velocity
and to ensure a good quantity of empty sites.

Thanks to this coupling we have been able to transport some properties from the threshold contact process
to the FA-1f: prove that the front has a minimal velocity v > 0 and give lower bounds on the amount of empty
sites.

4.3. Results

Combining the previous construction with Proposition 4.1, we obtain a result of relaxation far from the front.
To do that we decorrelate the front trajectory from the interval in which we want to relax.

Theorem 4.3. Let q > q, σ ∈ LO0, α < 1/2 and δ > 0. There exists c > 0 such that for any M ≤ eδt
α

,

any f with support in [0,M ], µ(f) = 0 and ‖f‖∞ ≤ 1, if σ has no interval of occupied sites of length
√
t in

[vt,M + (4v − v)t], then ∣∣Eσ [f (θX(σt)+3vtσt
)]∣∣ ≤ e−c√t,

where θ is the space shift operator.

4For the order �empty<occupied�.
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Figure 11. Restart procedure, coupling between FA-1f and surviving contact process.

Figure 12. Simulation of FA-1f dynamics (with empty sites in gray) coupled with restart
threshold contact processes (with empty sites in white). The �rst one is for q > q̄ and the
second one for q < q̄.

Thanks to Theorem 4.3 we know that far from the front the con�gurations starting from σ and σ′ respectively
will be close to a con�guration sampled by the equilibrium measure, so they will be close to each other (for the
total variation distance). Following the strategy of [4,18], we constructed a coupling where we use this property
and where we wait until the con�gurations also coincide near to the front to conclude the following ergodicity
result.

Theorem 4.4. Let q > q. The process seen from the front has a unique invariant measure ν and, starting
from every σ ∈ LO0, it converges in distribution to ν in the following sense: there exist d∗ > 0 and c > 0
(independent of σ) such that for t large enough

‖µ̃σt − ν‖[0,d∗t] ≤ e−ce
(log t)1/4

,

where µ̃σt is the distribution of the con�guration seen from the front at time t starting from σ, i.e. θX(σt)σt, and
‖π − π′‖Λ denotes the total variation distance between the marginals of π and π′ on Λ.
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This convergence result allows us to analyze the increments of the front and to deduce a law of large numbers.
Finally, to study the �uctuations of the front, we generalize the strategy of [18] which is itself based on the
result of Bolthausen [10] to establish a central limit theorem for non stationary random variables but satisfying
a proper mixing condition.

Theorem 4.5. Let q > q. There exist s = s(q) and v = v(q) such that for all σ ∈ LO0

X(σt)

t
−−−→
t→∞

v Pσ − almost surely, (24)

X(σt)− vt√
t

d−−−→
t→∞

N (0, s2) w.r.t. Pσ, (25)

where v = p · ν[σ̃(1) = 0]− q is negative (σ̃ denoting the random con�guration with law ν).

The motion of the front has also been analyzed in [4,18] for another one-dimensional KCM, the East model,
for which the constraint requires the site at the right of x to be empty: similar results, which imply a cuto�
phenomenon have been established.

Unfortunately, these techniques cannot be easily generalized in dimension d ≥ 2 and the shape theorems for
kinetically constrained models are open questions in higher dimensions.
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