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Abstract

This thesis concerns the analysis and construction of extremal circulant and other

Abelian Cayley graphs. For the purpose of this thesis, extremal graphs are understood

as graphs with largest possible order for given degree and diameter, and the search for

them is called the degree-diameter problem. The emphasis is on circulant graphs and

on families of graphs defined for infinite diameter classes for given fixed degrees.

Most studies in the degree-diameter problem have employed candidate algebraic

structures to generate graphs that successively improve on previous best results. In

contrast, this study has made extensive use of computer searches to find extremal

graphs and graphs families directly, and has then sought the algebra that describes

them. In this way, the maximum degree for which largest-known circulant graph

families have been discovered, with order greater than the legacy lower bound, has

been increased from 7 to 20 and beyond.

Topics covered include graphs in the following categories, undirected unless stated

otherwise: circulant, other Abelian Cayley, bipartite circulant, arc-transitive

circulant, directed circulant and mixed circulant; and their main properties such as

distance partition, odd girth and automorphism group size.

A major aspect of this thesis is the analysis of a matrix associated with each graph

family, the lattice generator matrix, with newly discovered properties such as

quasimaximality, radius maximality and eccentricity. Important new relationships

between graph families of common dimension have also been discovered: translation,

conjugation and transposition.

An Extremal Order Conjecture is established for extremal undirected circulant and

other Abelian Cayley graphs of any degree and diameter. An equivalent conjecture

for directed circulant graphs and certain classes of mixed circulants is also

established. Most of the extremal and largest-known graphs and graph families

presented here have been discovered by the author and are documented

comprehensively in the appendices.
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Preface

Everything about us, everything around us, everything we know and can

know of is composed ultimately of patterns of nothing; that’s the bottom

line, the final truth. So where we find we have any control over those

patterns, why not make the most elegant ones, the most enjoyable and good

ones, in our own terms?

Iain M. Banks, in Consider Phlebas.
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Chapter 1

Introduction

This thesis presents the results of an extensive study of the degree-diameter problem

for Abelian Cayley graphs and graph families. The initial work was on undirected

circulant graphs. This was subsequently extended to include some specific categories

of circulant graphs: bipartite, arc-transitive, directed and mixed. The search was also

widened to address all undirected Abelian Cayley graphs.

This chapter introduces the subject and some necessary concepts, definitions and

notation. It concludes with a synopsis of the rest of the thesis.

1.1 The degree-diameter problem

The goal of the degree-diameter problem is to find graphs with the largest possible

number of vertices for a given maximum degree and diameter. In this thesis, such

graphs are called extremal graphs. For example, the extremal graph of maximum

degree 3 and diameter 2 is the Petersen graph, with order 10, see Figure 1.1.

Figure 1.1: Petersen graph

Despite the simplicity of the question, the degree-diameter problem is a difficult

combinatorial problem. For the general case of undirected graphs, according to

Combinatorics Wiki [7], only seven graphs with degree greater than 2 are confirmed

to be extremal. The largest of these is the Hoffman-Singleton graph, see Table 1.1.

9 Robert Roderick Lewis



10 1 Introduction

Table 1.1: Order of confirmed extremal graphs of degree greater than 2

Degree Diameter
2 3 4

3 10* 20 38
4 15 - -
5 24 - -
6 32 - -
7 50† - -

* Petersen graph
† Hoffman-Singleton graph

The order of any graph of maximum degree d ≥ 2 and diameter k is bounded above

by the Moore bound [20]:

M(d, k) =

 d (d−1)k−2
d−2 if d > 2

2k + 1 if d = 2.

A graph with order equal to the Moore bound is called a Moore graph. According to

the Hoffman-Singleton Theorem [20], for maximum degree d > 2 and diameter k > 1,

the only possible Moore graphs have diameter k = 2 and degree d = 3, 7 or 57. For

degree 3, this is the Petersen graph of order 10; for degree 7, the Hoffman-Singleton

graph of order 50; but for degree 57, the existence of a Moore graph of order 3250 is

unknown. The existence or non-existence of the Moore graph of degree 57, diameter 2

and order 3250 is probably the most famous open question in the degree-diameter

problem.

Within this context it is useful to clarify precisely what is meant in this thesis by the

existence of a graph or family. For the degree-diameter problem, the diameter of a

graph is considered to be an intrinsic element of its specification, alongside its degree

and order. This is especially true for an Abelian Cayley graph family, where for any

given degree, the order n(k) and generating set {g1(k), . . . , gf (k)} of any graph in the

family may be specified by polynomials in the diameter k. Therefore existence is

understood to refer to graphs with given combinations of degree, diameter, order and,

optionally, generating set. As we shall see later, for Abelian Cayley graphs of degree

2f and diameter k, their existence is equivalent to the existence of the corresponding

lattice covering of Zf by Lee spheres of radius k.

Definition 1.1. An Abelian Cayley graph of given degree, diameter, order and,

optionally, generating set is said to exist if the graph with specified degree, order and

generating set also has the specified diameter. Similarly, an Abelian Cayley graph

family is defined to exist if the value of the diameter k that is the independent

Robert Roderick Lewis



1.1 The degree-diameter problem 11

variable in the polynomials defining the order and generating set of any graph in the

family is equal to the diameter of the graph.

From the literature, it is seen that the degree-diameter problem has been tackled for

undirected, directed and mixed graphs. In addition to the general case, various

subproblems have also been defined by restricting the scope to specific graph classes

including vertex-transitive graphs and Cayley graphs. A general background on the

degree-diameter problem is presented in the comprehensive survey by Miller and

Širáň [35] and the tables of extremal and largest-known graphs on the

CombinatoricsWiki website [7].

Only in relatively few cases have the largest-known graphs been proved to be

extremal, typically restricted to degree 3 for small diameter or diameter 2 for small

degree. Undirected circulant graphs, being highly structured, are a noteworthy

exception, with extremal graphs of degrees 2, 3, 4 and 5 confirmed for all diameters,

and largest-known graphs of degree 6 and 7 that are conjectured extremal. Prior to

the author’s work, the only other circulant graphs with order greater than a legacy

lower bound were degree 8 for all diameters (since superseded by the author) and

some higher degree graphs of diameters 2 and 3. See Table 1.2 for the order of these

graphs up to diameter 10.

Table 1.2: Order of extremal and largest-known circulant graphs up to diameter
10 (excluding legacy lower bound): 2013 status

Degree Diameter
2 3 4 5 6 7 8 9 10

2 5 7 9 11 13 15 17 19 21
3 8 12 16 20 24 28 32 36 40
4 13 25 41 61 85 113 145 181 221
5 16 36 64 100 144 196 256 324 400
6 21 55 117 203 333 515 737 1027 1393
7 26 76 160 308 536 828 1232 1764 2392
8 35 104 241 511 967 1681 2737 4231 6271
9 42 130
10 51 177
11 56
12 67
13 80
14 90
15 96
16 112
17
18
19
20

Robert Roderick Lewis



12 1 Introduction

As a result of the work presented in this thesis, circulant graph families with order

greater than the lower bound have been discovered up to degree 20 and beyond, for

all diameters. Some are conjectured extremal; all are largest known. Similar families

have also been discovered for the wider class of Abelian Cayley graphs, up to degree

15. In Table 1.3, the current status of extremal and largest-known circulant graphs is

presented.

Table 1.3: Order of extremal and largest-known circulant graphs up to degree
20 and diameter 10: 2021 status

Degree Diameter
2 3 4 5 6 7 8 9 10

2 5 7 9 11 13 15 17 19 21
3 8 12 16 20 24 28 32 36 40
4 13 25 41 61 85 113 145 181 221
5 16 36 64 100 144 196 256 324 400
6 21 55 117 203 333 515 737 1027 1393
7 26 76 160 308 536 828 1232 1764 2392
8 35 104 248 528 984 1712 2768 4280 6320
9 42 130 320 700 1416 2548 4304 6804 10320
10 51 177 457 1099 2380 4551 8288 14099 22805
11 56 210 576 1428 3200 6652 12416 21572 35880
12 67 275 819 2120 5044 10777 21384 39996 69965
13 80 312 970 2676 6256 14740 30760 57396 106120
14 90 381 1229 3695 9800 23304 49757 103380 196689
15 96 448 1420 4292 12232 32092 68944 142516 276928
16 112 518 1788 5847 17733 45900 107748 232245 479255
17 130 570 1954 6468 20360 57684 136512 321780 659464
18 138 655 2645 8425 27273 80940 208872 492776 1078280
19 156 722 2696 9652 31440 99420 258040 652004 1416256
20 171 815 3175 12396 42252 132720 371400 930184 2232648

Graphs in bold were discovered by the author

The symmetry and simplicity of circulant graphs, as Cayley graphs of cyclic groups,

admit to their representation by polynomials in the diameter or the degree, which has

been an important factor in the advances achieved so far. These polynomials define

the vertex and edge sets of families of such graphs.

1.2 Graph definitions

For a general introduction to graph theory and the standard definitions, see Godsil

and Royle’s excellent book ‘Algebraic graph theory’ [16] or similar.

A graph is a set of vertices together with a set of edges. Each edge is defined by a pair

of vertices. If the pair is unordered then the edge is undirected. If the pair is ordered

then the edge is directed and is called an arc. An edge may be considered as a pair of

oppositely directed arcs. A graph with only undirected edges is called an undirected

Robert Roderick Lewis



1.3 Abelian Cayley graphs and graph families 13

graph. A graph with only arcs is called a directed graph, or digraph for short. A graph

with at least one undirected edge and one arc is called a mixed graph. The order of a

graph is its number of vertices and the size of the graph, its number of edges. A

simple graph is a graph in which each edge connects two distinct vertices and no two

edges connect the same pair of vertices. A walk is a sequence of edges or arcs joining

a sequence of vertices. A path is a walk where no vertex is repeated, except for the

first and last in case of a closed path. A closed path is called a cycle. The length of a

path is the number of edges or arcs in the path. The distance between two vertices is

the length of the shortest path between them. The diameter of a graph is the largest

distance between any two vertices. The girth of a graph is the length of its shortest

cycle. The odd girth of a graph is the length of its shortest odd-length cycle.

A connected graph is one in which each pair of vertices forms the endpoints of a path.

The degree of a vertex is its number of incident edges, also sometimes called the

valency. For directed and mixed graphs, the indegree and outdegree are similarly

defined. The maximum degree of a graph is the maximum degree of its vertices. A

graph is regular if all its vertices have the same degree. A graph is finite if it has a

finite number of vertices. In this thesis, we only consider circulant and other Abelian

Cayley graphs, which are all finite, simple, connected and regular. Unless otherwise

stated, they are undirected.

A graph is vertex transitive if, for any two vertices in the graph, there is an

automorphism mapping the first to the second. A graph is edge transitive if, for any

two edges in the graph, there is an automorphism mapping the first to the second. A

graph is arc transitive if, for any two arcs in the graph, there is an automorphism

mapping the first to the second. This definition includes edges, which may be

considered in either orientation. Clearly, any arc-transitive graph is vertex transitive

and edge transitive.

1.3 Abelian Cayley graphs and graph families

A Cayley graph X(A,C) is defined for a group A and a connection set C ⊂ A \ {e},
where e is the identity element of the group and C is a generating set of A, as follows.

The vertices of X are identified with the elements of A. The edge set of X consists of

the arcs (u, uc) for any u ∈ A and c ∈ C. If C is symmetric (C = C−1) then X is an

undirected graph. By definition, every Cayley graph is regular, with the degree d of

each vertex equal to the cardinality of C, and also vertex transitive. An Abelian

Cayley graph is a Cayley graph X(A,C) where the group A is Abelian. In the

particular case where A is a cyclic group of order n, then A ∼= Zn and the graph

Robert Roderick Lewis



14 1 Introduction

X(Zn, C) is called a circulant graph. The group Zn has at most one involution, n/2,

and only in case n is even. All other elements of Zn belong to complementary pairs

±i or equivalently i and n− i. Any calculations involving the values of elements of a

cyclic group Zn of order n will assume the arithmetic is modulo n, sometimes

denoting n− i by −i.

Any finite Abelian group is isomorphic to the direct product of a family of cyclic

groups. In this context, it is convenient to introduce a new term, cyclic rank.

Definition 1.2. The cyclic rank of a finite Abelian group is the minimum number of

cyclic subgroups whose direct product is isomorphic to the group.

For example, the group A = Z16 × Z4 × Z4 has cyclic rank 3 and cyclic orders 16, 4

and 4. The cyclic rank of an Abelian Cayley graph is defined to be the cyclic rank of

the corresponding Abelian group. Therefore, a circulant graph has cyclic rank 1.

By definition, any undirected circulant graph on n vertices has rotational and

reflexive symmetries, so that its automorphism group is either the dihedral group on

n points, Dn, of order 2n, or contains the dihedral group as a subgroup. Similarly,

given that any Abelian group is isomorphic to a direct product of cyclic groups, the

automorphism group of an undirected Abelian Cayley graph will include as subgroups

dihedral groups relating to each cyclic component. Therefore, the order of the

automorphism group of an undirected Abelian Cayley graph of order n will be a

multiple of 2n. We define this multiple to be the dihedral index of the automorphism

group, often abbreviated to DI.

In the literature the symbol d is variously used to denote the degree or the diameter

or the dimension of the graph. Adopting the terminology of Macbeth, Šiagiová and

Širáň [32], we will use d for degree and k for diameter.

For an undirected circulant graph X(Zn, C), if n is odd, Zn \ {0} has no element of

order 2. Therefore, C has even cardinality, say d = 2f , and comprises f

complementary pairs of elements, with one of each pair strictly between 0 and n/2.

Any set of size f containing exactly one element from each pair is sufficient to

uniquely determine the connection set and is called a generating set. Without loss of

generality, we will usually choose the generating set which is comprised of the f

elements of C between 0 and n/2 as the canonical generating set G for X. However, it

should be noted that replacing any generator by its additive inverse has no impact on

the connection set and therefore leaves the graph unchanged.
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If n is even, Zn \ {0} has just one element of order 2, namely n/2. In this case, C

comprises f complementary pairs of elements, as for odd n, with or without the

addition of the involutory element n/2. If C has odd cardinality, so that d = 2f + 1,

then the value of its involutory element is defined by the value of n. Therefore, for a

circulant graph of given order and degree, its connection set C is completely defined

by specifying its generating set G. The cardinality of the connection set is equal to

the degree d of the graph, and the cardinality of the generating set, f , is defined to be

the dimension of the graph.

Clearly, if every element of a generating set is multiplied by a constant factor that is

co-prime with the order of the graph, then the resultant set will also be a generating

set of a graph which is isomorphic to the first. Therefore, the isomorphism class of a

circulant graph could have a number of different generating sets. Not all isomorphism

classes of circulant graphs have a primitive generating set (where one of the

generators is 1). An example of an extremal circulant graph with no primitive

generating set is the graph with degree 9, diameter 2, order 42 and generating set

{2, 7, 8, 10} along with the involution, 21.

We now present two important formal definitions: diameter class and Abelian Cayley

graph family. These two concepts are fundamental to most of the results presented in

this thesis. It is a consequence of the two principles discussed later in Section 2.2,

concerning an equivalence between Abelian Cayley graphs of dimension f and lattice

coverings of Zf by Lee spheres, that any Abelian Cayley graph of degree d and

diameter k has a special relationship with other degree d graphs with diameters that

belong to a regular arithmetic sequence including k. The order of each of these graphs

is defined by a common polynomial in the diameter of degree f . The set of all graphs

related in this way is called a family, and the set of diameters for which they exist is

called a diameter class.

Definition 1.3. For a given dimension f , a diameter class K is a subset of a residue

class such that K = {k∗ + nh : n ∈ N}, where h is a constant multiple of f/2 if f is

even and otherwise a multiple of f . The root of a diameter class is its lowest member

k∗, and its period is nh. Such a diameter class is usually referred to by its root, k∗, in

which case it is assumed that h = f/2 if f is even and h = f if f is odd, unless

otherwise stated. For each degree, we also define the principal diameter class to be

the class containing f for odd degree or (f − 1)/2 for even degree.

Definition 1.4. For a given degree d and corresponding dimension f = bd/2c, and

for a given diameter class K, an Abelian Cayley graph family Xd is an infinite set of

graphs Xd = {Xd(k) : k ∈ K} where Xd(k) is an Abelian Cayley graph of degree d,

diameter k, order n(k) and generating set {g1(k), . . . , gf (k)}, where n(k) and gi(k) are
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polynomials in k of maximum degree f . A circulant graph family is similarly defined.

Conversely, a family may also be defined for a given fixed diameter and an infinite

regular sequence of degrees.

For the degree-diameter problem, there are four important properties related to graph

order: upper bound, extremal, largest known and lower bound.

Definition 1.5. An upper bound is a value that is greater than or equal to the order

of any graph of its class for a given degree and diameter k. For various classes of

graph this is denoted as follows:

Uppcirc(d, k) Circulant graphs of degree d and diameter k

Uppbipcirc(d, k) Bipartite circulant graphs of degree d

Uppdircirc(z, k) Directed circulant graphs of directed degree z

Uppmixcirc (z, d, k) Mixed circulant graphs of directed degree z and undirected degree d

UppAbCay(d, k) Abelian Cayley graphs of degree d

Definition 1.6. An extremal graph has order that is greater than or equal to the

order of any graph of its class for a given degree and diameter k. In most cases, the

extremal graphs are unknown and are yet to be discovered. Such a graph has extremal

order, denoted as follows:

Extcirc(d, k) Circulant graphs of degree d and diameter k

(variants as for upper bound cases)

Definition 1.7. A largest-known graph has order that is greater than or equal to the

order of any known graph of its class for a given degree and diameter k. A

largest-known graph might or might not be extremal. It may be verified to be

extremal by mathematical proof or by exhaustive search for all possible graphs of

greater order up to an upper bound. Such a graph has largest-known order, denoted

as follows:

LKcirc(d, k) Circulant graphs of degree d and diameter k

(variants as for upper bound cases)

Definition 1.8. A lower bound is a value that is less than or equal to the order of an

extremal graph of the same class for a given degree and diameter k.

Lowcirc(d, k) Circulant graphs of degree d and diameter k

(variants as for upper bound cases)

These definitions can also be extended to families of graphs of a given type, for fixed

degree and any diameter in a given diameter class, or fixed diameter and any degree

in a given degree class.
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1.4 Vector spaces and norms

In this thesis we consider two vector spaces of arbitrary dimension f . One is the

standard Euclidean space of dimension f , Rf , where R denotes the real numbers, with

the Euclidean norm defined by the inner product of a vector. The other is an f -fold

Cartesian product of the set of integers, Zf . With addition of vectors defined

element-wise, this is isomorphic to the free Abelian group on f generators. We will

usually apply the Manhattan norm to Zf instead of the Euclidean norm.

Definition 1.9. Given any dimension f and any vector v = (v1, . . . , vf ) ∈ Zf , the

Manhattan norm (or length) is defined by δ(v) =
∑f

i=1 |vi| for the length of the vector

v, and then the derived Manhattan distance by δ(u,v) =
∑f

i=1 |ui − vi| for the

distance between vectors u and v.

Definition 1.10. For positive integers f, k, we define the f -dimensional Lee sphere of

radius k, Sf,k to be the set of elements of Zf which can be expressed as a word of

length at most k in the canonical generators ei of Zf , taken positive or negative.

Equivalently, Sf,k is the set of points in Zf distant at most k from the origin under

the Manhattan norm: Sf,k = {(x1, ..., xf ) ∈ Zf : |x1|+ ...+ |xf | ≤ k}. Although called

a sphere, it appears more diamond-like than spherical, having the approximate form

of a regular dual f -cube.

1.5 Vector notation for polynomials

As mentioned, throughout this thesis, with the exception of Chapter 14, graph

families are defined for a fixed degree, with variable diameter specified by a diameter

class. Thus, their order polynomials are also expressed in terms of the variable k,

their diameter. In order to facilitate an understanding of the structure of Abelian

Cayley graph families of given degree d and dimension f = bd/2c, we will find it

extremely useful to convert the polynomials of maximum degree f in the diameter for

graph order and generators into polynomials in a related variable. The first step is to

replace k with the term 2a where a = 2k/f . However, this variable a is in general

only integral for a single diameter class K = {k : k ≡ 0 (mod f)}. In order to ensure

the new variable remains integral for each diameter class K, we introduce a constant

cK such that a = (2k + cK)/f is integral for all k ∈ K. If K has root k∗, then an

admissible value for cK is given by cK = 2(f − k∗) mod f . In order to ensure

−f/2 ≤ cK < f/2, we refine the expression to give cK = (2(f − k∗) + bf/2c)
mod f − bf/2c. For clarity, in each case, a will always be explicitly defined.
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A polynomial of degree f in k, P ′(k), is thus transformed into a polynomial of degree

f in 2a, P (2a). Finally, we adopt a standard vector notation for P (2a) to streamline

presentation.

Notation 1.11. For the polynomial of degree f , P (2a) =
∑f

i=0 ci(2a)i, the

corresponding vector notation is P (2a) = (cf cf−1 . . . c0). Moreover, to divide each

coefficient by a common denominator b, we write (cf cf−1 . . . c0)/b for P (2a)/b.

Note that the vector notation represents a polynomial in 2a and not a.

1.6 Notation for extremal and largest-known graphs and families

Throughout this thesis, and especially in the appendices, extremal and largest-known

graph families and individual graphs are identified uniquely by a short code, such as

F6:2B. The initial letter refers to the category of graph or family and is followed by

the degree. For a graph family, the number after the colon is its diameter class; for

individual graphs, it is its specific diameter. Any final letter indicates its isomorphism

class (if there is more than one). Lower case letters ‘a’ and ‘b’ refer to distinct

transpose pairs; upper case letters ‘A’, ’B’, ... refer to isomorphism classes that are

unrelated by transposition. The tables below list all the categories of graphs and

families and give an example of each.

Table 1.4: Code for extremal and largest-known graph families

Initial Code Degree* Diameter Iso
Category of family Appendix letter example dir undir class (mod) class

Circulant A F F6:2B - 6 2 3 B
Bipartite circulant B D D11:4a - 11 4 5 a
Abelian Cayley C A A14:0 - 14 0 7 -
Directed circulant G H H2:2B 2 - 2 3 B
Mixed circulant G M M2-1:1A 2 1 1 3 A

* directed, undirected

Table 1.5: Code for extremal and largest-known graphs that are not in
largest-known families

Initial Code Isomorphism
Category of graph Appendix letter example Degree Diameter* class

Circulant D G G6:2C 6 2 C
Bipartite circulant E E E11:4 11 4 -
Abelian Cayley F B B14:2 14 2 -

* specific diameter, not diameter class

Robert Roderick Lewis
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1.7 Computing strategies, programs and resources

Searches for circulant and Abelian Cayley graphs of a given degree were conducted

using purpose-built computer programs written in either C++ or GAP programming

languages. Two strategies were followed.

The first strategy requires the degree, diameter and order to be specified. Then a

program, written in C++, iterates through all possible combinations of generators to

check whether a graph with the specified parameters exists. The program can be set

to stop as soon as it finds the first such graph or to continue to find all such graphs.

If the program stops without finding a graph, then this indicates that no such graph

exists. In order to verify that a largest-known graph of a given degree and diameter is

actually extremal, this program can be run for all orders greater than the

largest-known order up to an upper bound. For small degree and diameter, this is

quickly achieved. But as the degree or diameter increases, the time taken increases

exponentially. By degree 10 and diameter 10 the program can run for many days to

check a single order, and above degree 11 is no longer feasible.

The second strategy was developed to take advantage of the discovery of the

relationship between graph families (containing a graph for each diameter in a

specified diameter class) and lattice generator matrices in a specified canonical

format. It requires the degree and diameter class to be specified, but not the order.

This strategy is exponentially more efficient than the first strategy for two reasons:

the search space of admissible matrices is much smaller than the set of admissible

generator sets, and the approach discovers complete graph families rather than

individual graphs. These programs are also written in C++. There is a restriction

that the search only finds graph families that are quasimaximal. We will see later

that it is conjectured that extremal graph families of all degrees are quasimaximal.

However if a graph family had greater order, then this search method would not find

it. The discovery of the largest-known circulant graph families of degree 12 and above

depended on adopting this second strategy as replacement of the first. For both

strategies, extensive use was made of the Open University STEM computer cluster.

As a check on the existence of a graph that has been identified by either strategy, a

different program, also written in C++ but using different logic developed

independently by a colleague, is subsequently run. With this program, the degree,

order and generating set are specified and the program calculates the diameter of the

graph. This provides independent verification of the existence of a graph with the

specified parameters: degree, diameter, order and generating set.

Robert Roderick Lewis



20 1 Introduction

A third step is then adopted for candidate graphs of order less than 100,000. A

program developed in GAP (a system for computational discrete algebra with

particular emphasis on computational group theory) is run as a further verification on

the existence of the graph and to determine its automorphism group.

The existence of every graph of order less than 100,000 documented in the appendices

has been triple-verified in this way.

1.8 Synopsis of the chapters

The subject of each chapter is described below in a brief paragraph. Thesee are

repeated at the start of each chapter for convenience.

Chapter 2 describes the history and the state of knowledge of the degree-diameter

problem for circulant graphs prior to the work for this thesis. This includes an

equivalence between undirected Abelian Cayley graphs of arbitrary dimension f and

lattice coverings of Zf , extremal and largest-known undirected circulant graph

families up to degree 7, extremal directed circulant graphs of degree 2, and legacy

lower and upper bounds for the order of extremal Abelian Cayley graphs.

In Chapter 3, we present an Extremal Order Conjecture for undirected circulant and

Abelian Cayley graphs. The newly discovered graph families described in subsequent

chapters are all evaluated against this conjecture. Any graph families with order

polynomial as specified for the conjecture are called quasimaximal.

In Chapter 4, newly discovered largest-known circulant graph families up to degree 11

are described, along with a proof of the existence of the degree 8 families and lattice

generating vectors for the degree 10 proof. The degree 8 and 9 families and the degree

8 existence proof were previously the subject of the author’s MSc dissertation.

Chapter 5 discusses some important properties of Abelian Cayley graph families:

maximal distance partition levels, distance partition profiles, quasimaximality and

maximum odd girth. Two essential relationships between graph families are also

presented: conjugation, which relates two quasimaximal families of the same degree,

and translation, between an odd-degree family and an even-degree family of the same

odd dimension.

In Chapter 6, we define the canonical lattice generator matrix (LGM) of an Abelian

Cayley graph family. Some interesting properties and relations are discussed for both

quasimaximal and subquasimaximal graph families: radius maximality and

eccentricity. An important theorem is established that proves the existence of all
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graphs in an Abelian Cayley graph family given the existence of graphs of low

diameter. The equivalence is established of a graph family being quasimaximal, its

graphs having maximum odd girth and its canonical LGM being radius maximal. In

the final section, the graph family relationships of translation, conjugation and

transposition are defined in terms of their canonical LGMs.

Chapter 7 describes the enumeration of all the quasimaximal degree 7 circulant

graphs of diameter class 0 (mod 3) by establishing a bijection with the set of all

matrices in canonical quasimaximal LGM format.

Chapter 8 presents newly discovered largest-known circulant graph families up to

degree 20, all quasimaximal. The efficient search for these families depended on LGM

properties discussed in Chapter 6. Many of these families are related to others by the

relationships described in Chapter 5. The interaction of the three relationships -

translation, conjugation and transposition - for the largest-known circulant graph

families of each dimension is presented graphically within a dimensional frame.

In Chapter 9, largest-known bipartite circulant graph families up to degree 11 are

presented, along with some theorems establishing how bipartite circulant graph

families of any degree are related to corresponding non-bipartite families. The

bipartite/non-bipartite relationship, alongside the three previously discussed

relationships of translation, conjugation and transposition are presented graphically

for each dimension by a dimensional frame. An extremal order conjecture for

bipartite circulant graph families is presented.

Chapter 10 presents largest-known non-circulant Abelian Cayley graph families up to

degree 15, and one of degree 19, all quasimaximal.

Chapter 11 illustrates a surprising and beautiful relationship between Lucas

polynomials and an infinite sequence of quasimaximal circulant graph families that

are arc-transitive and have multiplicative generating sets. For any dimension, the

order and generating sets of these families are defined in terms of Lucas polynomials.

Chapter 12 describes some series of circulant graph families beyond degree 20, created

by extending sets of LGMs with common formats to higher dimensions. These

families are conjectured to exist for all dimensions.

In Chapter 13, the Extremal Order Conjecture is extended to the third coefficient in

the order polynomial. A conjecture is also discussed that all extremal Abelian Cayley

graphs above threshold diameters are members of quasimaximal families. Some

established theorems from the literature on asymptotically low-density lattice
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coverings are considered to investigate whether they might indicate the existence, for

sufficiently large dimension, of extremal Abelian Cayley graph families of order

greater than determined by the Extremal Order Conjecture. However, the validity of

these theorems is questioned, and the conjecture is considered to remain valid.

In contrast to all the other chapters, in Chapter 14, graph families are considered

where the diameter is fixed instead of the degree. Graph families with diameter 2 and

arbitrary degree are discussed. Some improved lower and upper bounds are

established for their extremal order.

Chapter 15 is the first chapter where the graphs are not undirected. Directed and

mixed circulant graphs and graph families are explored for small fixed directed and

undirected degree, building on the legacy position described in Section 2.6. As defined

in Section 1.2, a directed graph is a graph where all the edges are directed edges,

called arcs. A mixed graph is a graph with at least one undirected edge and one arc.

Directed and mixed Abelian Cayley graphs have a connection set that is not

inverse-closed. In contrast to undirected circulant graphs, it appears that extremal

directed and mixed circulant graphs of dimension 3 and above do not belong to graph

families with regular diameter classes. An extremal order conjecture is presented for

directed and mixed circulant graphs with undirected degree below 4.

Chapter 16 contains the conclusion, with a brief review of each chapter along with

potential avenues for further research.

After the bibliography, there is an extensive set of appendices of graphs and graph

families, serving not only as evidence for the work accomplished for this thesis, but

also as a reference document for future researchers.
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Chapter 2

Background

Chapter 2 describes the history and the state of knowledge of the degree-diameter

problem for circulant graphs prior to the work for this thesis. This includes an

equivalence between undirected Abelian Cayley graphs of arbitrary dimension f and

lattice coverings of Zf , extremal and largest-known undirected circulant graph

families up to degree 7, extremal directed circulant graphs of degree 2, and legacy

lower and upper bounds for the order of extremal Abelian Cayley graphs.

2.1 Undirected Abelian Cayley graphs and lattice coverings of Zf

Much of the work for this thesis depends on two important principles that are stated

below as Propositions 2.1 and 2.2 and discussed later. Let A be a finite Abelian group

generated by {g1, . . . , gf}. Let X be the undirected Abelian Cayley graph of A with

generating set {g1, . . . , gf}. Let ei be the canonical generators of the free Abelian

group on f generators, Zf , where ei is the i-th unit basis vector of Zf . Let Sf,k be the

Lee sphere of dimension f and radius k (Manhattan norm).

Proposition 2.1. There is a unique canonical epimorphism from Zf onto A sending

ei to gi for all i. The kernel of the epimorphism, Lf , is a lattice in Zf with

corresponding lattice vectors v1, . . . , vf . Then A is isomorphic to Zf/Lf , and the

Cayley graph of A with given generators is isomorphic to the Cayley graph of Zf/Lf
with generators being the cosets eiLf for 1 ≤ i ≤ f .

Proposition 2.2. (Dougherty and Faber [10]). The graph X has diameter at most k

if and only if Sf,k + Lf = Zf , so that this is a lattice covering of Zf .

Proposition 2.1 establishes a relationship between finite Abelian groups with f

generators and the free Abelian group on f generators, isomorphic to Zf , that greatly

facilitates study of the degree-diameter problem for Abelian Cayley graphs. In case

one of the generators gi is an involution, so that the graph X has odd degree, then

there is an alternative version of Proposition 2.2 stated later as Proposition 2.5.

These principles were the basis of Dougherty and Faber’s existence proofs of the

largest-known degree 6 and 7 circulant graph families, [10]. They also offer an efficient
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approach to the search for families of higher dimension, as we shall see in later

chapters.

This relationship is illustrated in Figure 2.1 for the simple case of a circulant graph

X = Cay(Z13, {1, 5}), with degree d = 4, dimension f = 2, diameter k = 2, order

n = 13 and generating set {1,5}, so that its connection set is {1, 5, 8, 12}.

Figure 2.1: Illustration of the relationship between Abelian Cayley graphs and
lattice coverings by Lee spheres
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(a) Graph X = Cay(Z13, {1, 5})

0 1 21211

5

10

8

3

6

9

4

7

(b) Lee sphere in Z2 centred on 0
with radius 2, and horizontal and

vertical steps of 1 and 5

In Figure 2.1(a), taking 0 as the root vertex, the edges incident to 0 are coloured

blue, along with its adjacent vertices; the edges incident to these vertices are coloured

red, along with their adjacent vertices; with the remaining edges shown in grey. In

Figure 2.1(b), centred on 0, with horizontal and vertical steps of 1 and 5 to reflect the

generators, and with arithmetic modulo 13, the numbers at Manhattan distance 1

from 0 are the four connection elements of the graph (1, 5, 8 and 12) and the

numbers at distance 2 are the rest; all coloured-coded to match the graph.

As the extremal circulant graph family of degree 4 has order equal to its Abelian

Cayley graph upper bound, we would expect to see that the corresponding Lee

spheres centred on the corresponding lattice exactly covers Z2 with a tiling. Indeed, it

proves straighforward to tile the integer plane with these Lee spheres in a way that

ensures the horizontal and vertical steps across Lee sphere boundaries. The

corresponding lattice vectors are v1 = (3, 2) and v2 = (−2, 3). Figure 2.2 shows how

four neighbouring Lee spheres, centred on neighbouring lattice points, form part of

the tiling. The lattice vectors are shown as blue and red arrows.
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Figure 2.2: How the Lee spheres centred on lattice points form a tiling for even
degree 4, diameter 2
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v1 = (3, 2)

v2 = (−2, 3)

In this case, the order n = |Zf/Lf | = |M | ≤ |Sf,k|, where M = (v1, ...,vf )T is the

matrix of generating vectors for the lattice Lf . Also, we must have that the

Manhattan length of each vector, δ(vi) ≤ 2k + 1.

Now consider the case where X is an Abelian Cayley graph of odd degree 2f + 1, so

that its connection set includes an involution gm, and let {v1, . . . ,vf} be a set of

associated lattice generating vectors. We now define two lattices corresponding to

graph X whose union is also a lattice in Zf .

Definition 2.3. The principal lattice Lf corresponding to an Abelian Cayley graph

X of odd degree 2f + 1 is defined to be the lattice in Zf generated by the set of

vectors {v1, . . . ,vf} associated with X.

Definition 2.4. The involutory lattice corresponding to an Abelian Cayley graph X

of odd degree 2f + 1 is defined to be the translate of its principal lattice Lf by the

involutory vector vm, associated with the involutory graph generator gm, where

vm = 1
2

∑
vi, thus Lf + vm. As 2vm ∈ Lf , the union Lf ∪ (Lf + vm) is also a lattice.

As vm ∈ Zf , for each coordinate the sum of the elements of vi must be even. The

shortest path from an arbitrary vertex to any other vertex either excludes or includes

a single occurrence of the involution gm. The covering of Zf is then achieved by the
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union of Lee spheres of radius k centred on the principal lattice and Lee spheres of

radius k − 1 centred on the involutory lattice.

This leads to the equivalent of Proposition 2.2 for Abelian Cayley graphs of odd

degree.

Proposition 2.5. (Dougherty and Faber [10]) Let Lf , Sf,k and vi be as above. Let

an undirected Abelian Cayley graph X of degree 2f + 1 be the Cayley graph for Zn
with generating set {g1, ..., gf}. Then X has diameter at most k if and only if

(Sf,k + Lf ) ∪ (Sf,k−1 + vm + Lf ) = Zf .

Figure 2.3: How the Lee spheres centred on principal and involutory lattice
points form a covering for odd degree 5, diameter 3
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In this case, the order n = |Zf/Lf | = |M | ≤ |Sf,k|+ |Sf,k−1|, where M = (v1, ...,vf )T

is the matrix of generating vectors for the lattice Lf . Also, we must have that the

Manhattan distance δ(vm,vi) ≤ 2k.

The extremal circulant graph of degree 5 and diameter 3 has generating set {1, 5}. It

has order 36, just 2 below the Abelian Cayley upper bound of 38. So in this case we

would expect to find a covering by the Lee spheres of radius 3 centred on the

principal lattice and of radius 2 centred on the involutory lattice. Each pair of spheres

overlaps a neighbouring pair translated by one of the lattice vectors in just two

common points, so that the covering is almost a tiling. The principal lattice vectors

are v1 = (5,−1) and v2 = (1, 7) and the involutory vector is vm = (3, 3). Figure 2.3

shows how four principal Lee spheres are aligned around an involutory sphere. The

principal spheres are centred on point 0, by definition, and the involutory spheres on

point 18, being half the order. The two elements 3 and 33 are duplicated in each

principal Lee sphere, at the overlap between neighbouring spheres.

Definition 2.6. For an Abelian Cayley graph of dimension f , we define a lattice

generator matrix to be the f × f matrix M = (v1, . . . ,vf )T , as defined for

Proposition 2.2 for even degree, and for Proposition 2.5 for odd degree. We will often

abbreviate lattice generator matrix to LGM.

Note that the matrix depends on the choice of generating vectors of the lattice, but

the lattice is uniquely determined as the kernel of the previously introduced group

epimorphism.

2.2 Legacy bounds for extremal undirected Abelian Cayley graphs

We briefly review general upper and lower bounds for the order of extremal

undirected Abelian Cayley and circulant graphs of arbitrary degree d and diameter k.

For Abelian Cayley graphs, and thus in particular for circulant graphs, an upper

bound that is much better than the general Moore bound was established for any

given even degree and arbitrary diameter by Wong and Coppersmith in 1974 [51]. An

improved upper bound was discovered by Boesch and Wang in 1985, also for given

odd degree [2]. These results remain the current best upper bounds.

Unaware of their results, Muga recreated their even-degree result in 1994 [40], Garcia

and Peyrat developed an inferior even-degree upper bound in 1997 [15], and

Dougherty and Faber reproduced their even and odd-degree results in 2004 [10].
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For an undirected Abelian Cayley graph of degree d and diameter k, and

corresponding dimension f = bd/2c , Boesch and Wang’s upper bounds are defined by:

UppAbCay(d, k) =

 |Sf,k| for even d

|Sf,k|+ |Sf,k−1| for odd d,

where, by [48], |Sf,k| =
∑f

i=0 2i
(
f
i

)(
k
i

)
.

For even or odd degree, this is a polynomial in k of degree f :

UppAbCay(d, k) =
2f

f !
kf +

2f−1

(f − 1)!
kf−1 +

2f−2(f + 1)

3(f − 2)!
kf−2 +

2f−3f

3(f − 3)!
kf−3 +O(kf−4) for even d

2f+1

f !
kf +

2f−1f(f − 1)(f + 1)

3f !
kf−2 +O(kf−4) for odd d.

For even degree, this is equivalent to achieving an exact tiling of Zf with Lee spheres

of radius k. Such a tiling is possible for dimensions 1 and 2 for any radius, and for

any dimension for radius 1. In 1970, Golomb and Welch [17] conjectured that this is

not possible for any case with dimension f ≥ 3 and radius k ≥ 2. This is the

Golomb-Welch Conjecture. It is still open, although various authors have presented

proofs of non-existence for 3, 4 and 5 dimensions. The paper by Horak [21] covers all

three of these dimensions. However it appears that none of these proofs has

established an improved upper bound.

A constructive lower bound for the order of extremal circulant graphs of even degree

d and arbitrary diameter k was established by Chen and Jia in 1993 [3]:

Lowcirc(d, k) =
1

2

(
4

f

)f
kf +

b

2

(
4

f

)f−1
kf−1 +O(kf−2)

where f = d/2, k ≥ f ≥ 3, and b ≤ 13− 4f with equality if and only if k ≡ f − 3

(mod f).

Lowcirc(d, k) is also a polynomial in k of degree f but with an asymptotically smaller

leading coefficient than UppAbCay(d, k). For even degree d, the ratio of the leading

coefficients of Lowcirc(d, k) and UppAbCay(d, k), denoted by Rf , is given by

Rf = 2f−1
f !

ff
.
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We see that R1 = R2 = 1, and then Rf decreases monotonically to zero with

increasing f . The value of Rf measures the asymptotic efficiency of the associated

lattice covering. Its reciprocal is the lattice covering density.

More generally, Dougherty and Faber also established a lower bound for the order of

extremal Abelian Cayley graphs of even degree d and diameter k ≥ (d− 2)/4, with

corresponding dimension f = d/2 [10]:

LowAbCay(d, k) =
1

2

(
4

f

)f
kf +

(
4

f

)f−1
kf−1 +O(kf−2).

This has the same leading coefficients as the Chen and Jia circulant graph lower

bound, although their second coefficients are greater.

In contrast to these constructive lower bounds with leading coefficient (1/2)(4/f)f , a

theorem in Dougherty and Faber’s paper [10] gives a much higher non-constructive

lower bound with leading coefficient c
f(loge f)

1+log2 e × 2f

f ! , where c is a constant

independent of f and k, which is within a factor 1/f2 of the upper bound. This

significantly sharper lower bound depends on lattice covering theorems by Rogers [46]

and Gritzmann [19]. However there is some doubt about the validity of these

theorems. This is discussed in Section 13.4.

2.3 Legacy largest-known undirected circulant graph families

Here, we consider only undirected circulant graphs. For dimension 1, degrees 2 and 3,

extremal graph families of order Extcirc(2, k) and Extcirc(3, k) are defined trivially.

For dimension 2, extremal degree 4 families of order Extcirc(4, k) were discovered by

Monakhova in 1979 [36]. Monakhova’s paper was only published in Russian and was

not easily accessible in other countries. Consequently, several subsequent independent

discoveries of the same family were published, beginning with two in 1985, by Boesch

and Wang [2] and by Yebra, Fiol, Morillo and Alegre [52]. Extremal degree 5 families

of order Extcirc(5, k) were published by Dougherty and Faber in 2004 [10], although

they were discovered as early as 1994 according to an earlier preprint [11].

For dimension 3, largest-known circulant graph families of order LKcirc(6, k) were

discovered for degree 6 by Monakhova in 2003 [37] and independently by Dougherty

and Faber, also for degree 7, order LKcirc(7, k), in 1994, although not published in a

journal until 2004 [10].

The graph orders Extcirc(2, k), Extcirc(4, k) and LKcirc(6, k) are all odd for any

diameter k. Families of largest-known degree 8 graphs of odd order were discovered
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by Monakhova in 2013 and conjectured to be extremal [37]. However, Monakhova had

limited her search to odd-order graphs because of a 1994 paper by Muga in which he

mistakenly claimed that any extremal circulant graph of even degree and arbitrary

diameter has odd order [40]. The argument was flawed, and the smallest

counterexample is the extremal graph of degree 8 and diameter 3, which has order

104 (see Table 4.2 in Chapter 4).

Largest-known graph families of degree 8 and 9 were discovered by the author in 2014

[24] and are covered in Chapter 4. For even degree 10 and above, apart from the

graphs presented in this thesis, no other circulant graph families have been published

in the literature with order above Chen and Jia’s lower bound construction

Lowcirc(d, k) [3]. For odd degree 11 and above, there are no other published families.

The upper bounds for Abelian Cayley graphs, UppAbCay(d, k), are achieved for

degrees 2, 3 and 4 by extremal circulant graphs. For degree 2, taking Z2k+1 and

generator 1 (so that the connection set C = {±1}), the resultant graph is the cycle

graph on 2k + 1 vertices which has diameter k, so that Extcirc(2, k) = 2k + 1. For

degree 3, taking Z4k and generator 1, connection set C = {±1, 2k}, the graph is a

cycle graph on 4k vertices with 2k edges added to join opposite pairs of vertices. As

UppAbCay(3, k) = 4k, the specified graph is extremal and Extcirc(3, k) = 4k.

For degree 4, the Cayley graph of Z2k2+2k+1 with generating set {1, 2k + 1} has

diameter k for all k. As UppAbCay(4, k) = 2k2 + 2k + 1, this proves the graph is

extremal and Extcirc(4, k) = 2k2 + 2k + 1. For degree 5, Dougherty and Faber [10]

proved that the extremal solution for k > 1 is Z4k2 with generating set {1, 2k − 1}
(connection set {±1,±(2k − 1), 2k2}) and order that is 2 less than UppAbCay(5, k),

giving Extcirc(5, k) = 4k2. For degrees 2, 3, 4 and 5, these extremal circulant graphs

are also extremal Abelian Cayley graphs.

After degree 5, the situation becomes more difficult. Regarding graphs of three

dimensions, Dougherty and Faber [10] verified by computer search that the

largest-known families of circulant graphs of degree 6 and 7 are extremal Abelian

Cayley graphs for diameter k ≤ 18 for degree 6, and for diameter k ≤ 10 for degree 7.

For degrees 6 and 7, the formula for the order of the solution, LKcirc(d, k), depends

on the value of k (mod 3). Tables 2.1 and 2.2 present these solutions alongside the

corresponding expressions for the lower and upper bounds, Lowcirc(d, k) and

UppAbCay(d, k).

Dougherty and Faber [10] proved the existence of the degree 6 and 7 graphs of order

LKcirc(6, k) and LKcirc(7, k) for all greater values of k, and they remain the largest
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Table 2.1: Order of largest-known circulant graph families of degree 6,
LKcirc(6, k), for arbitrary diameter k ≥ 2, compared with lower

bound LowAbCay(6, k) and upper bound UppAbCay(6, k)

Diameter, k Family Order, LKcirc(6, k) Lower bound, LowAbCay(6, k)

k ≡ 0 (mod 3) F6:0A (32k3 + 48k2 + 54k + 27)/27 (32k3 + 48k2)/27
k ≡ 1 (mod 3) F6:1 (32k3 + 48k2 + 78k + 31)/27 (32k3 + 48k2 + 24k + 4)/27
k ≡ 2 (mod 3) F6:2A (32k3 + 48k2 + 54k + 11)/27 (32k3 + 48k2 − 16)/27

Upper bound,
UppAbCay(6, k) = (4k3 + 6k2 + 8k + 3)/3 = (36k3 + 54k2 + 72k + 27)/27

Table 2.2: Order of largest-known circulant graph families of degree 7,
LKcirc(7, k), for arbitrary diameter k ≥ 3, compared with upper

bound UppAbCay(7, k)

Diameter, k Family Order, LKcirc(7, k)

k ≡ 0 (mod 3) F7:0 (64k3 + 108k)/27
k ≡ 1 (mod 3) F7:1A (64k3 + 60k − 16)/27
k ≡ 2 (mod 3) F7:2A (64k3 + 60k + 16)/27

Upper bound, UppAbCay(7, k) = (8k3 + 16k)/3 = (72k3 + 144k)/27

Note: The lower bound LowAbCay(d, k) is only defined for even degree.

Abelian Cayley graphs of three dimensions so far discovered. For the degree 6 graphs,

there is a unique solution up to isomorphism for diameter k ≡ 1 (mod 3), and for

degree 7 there is a unique solution for k ≡ 0 (mod 3). For other values of k, there are

two distinct isomorphism classes of graphs for both degree 6 and 7, where k ≥ 3 for

degree 7.

These polynomials for the order of the graphs are more simply expressed as

polynomials in 2a in vector notation, for suitable definition of a in terms of k, see

Table 2.3.

Table 2.3: Order polynomials for extremal and largest-known circulant graph
families up to degree 7 in vector notation (2a)

Polynomial where Polynomial where
Family in 2a a = Family in 2a a =

Dim f = 1 Extcirc(2, k) Extcirc(3, k)

F2 (1 2)/2 2k F3 (1 2) 2k − 1

Dim f = 2 Extcirc(4, k) Extcirc(5, k)

F4 (1 2 2)/2 k F5 (1 0 0) k

Dim f = 3 LKcirc(6, k) LKcirc(7, k)

F6:0A (1 2 3 2)/2 2k/3 F7:2A (1 2 3 2) (2k − 1)/3
F6:1 (1 0 3 0)/2 (2k + 1)/3 F7:0 (1 0 3 0) 2k/3
F6:2A (1 -2 3 -2)/2 (2k + 2)/3 F7:1A (1 -2 3 -2) (2k + 1)/3
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Apart from giving simpler coefficients for the dimension 3 polynomials, this notation

also reveals symmetries within each degree and between degrees of the same

dimension which hint at underlying relationships that will be explored and used to

advantage in later chapters.

2.4 Dougherty and Faber’s existence proof for circulant families

We summarise the approach taken by Dougherty and Faber in their proof of the

existence of the largest-known degree 6 and 7 circulant graph families for arbitrary

diameter [10]. The same approach was used for the existence proofs of the degree 8

and 10 circulant graph families, and is applicable for all degrees. It also provided the

basis for developing the concept of a lattice generator matrix (LGM), which proves to

be a very useful construct for identifying and describing general Abelian Cayley graph

families of any degree, as we shall see in later chapters.

As mentioned in Section 2.2 and Proposition 2.1, for any Abelian group A with f

generators there is a unique canonical epimorphism from Zf onto A with kernel Lf

which is an f -dimensional lattice in Zf . Then A is isomorphic to Zf/Lf , and the

Cayley graph of A with given generators is isomorphic to the Cayley graph of Zf/Lf
with generators being the cosets eiLf for 1 ≤ i ≤ f .

In Dougherty and Faber’s existence proof for the degree 6 families, they convert the

cubic polynomials in the diameter k for each of the three generators of the graph into

a vector vi in Z3. In order to ensure the vector elements are all integral, a new

parameter a is defined, a = (2k + c)/3 where c is chosen appropriately for each

diameter class. In the general proof for dimension f , a = (2k + c)/f . With this

substitution, the elements of the vectors all have format ±(a± bi) for some integers

bi ≥ 0.

A fourth vector v4 is created from a linear combination of the original three so that

the eight vectors ±vi give one member of L3 in each of the octants of Z3. For the

dimension f case, the original set of f vectors is extended by linear combination to

form a set of 2f−1 vectors so that, taken positive and negative, they lie in each

orthant of Zf .

The proof now requires demonstration that any point x in Zf lies within Manhattan

distance k of a lattice point of Lf . By adding or subtracting lattice vectors, x is

translated to a point x̄ close to 0 such that each of its coordinates has magnitude at

most a+ bmax where bmax is the maximum value of the bi. If the magnitude of every

coordinate is at most a− bmax, then it is straightforward to prove that x lies within
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distance k of a lattice point. The region that requires specific attention, and the

resolution of a large number of special cases that increases rapidly with dimension, is

the shell in Zf around 0 with coordinate magnitudes between a− bmax and a+ bmax.

Resolving each of these exceptions completes the existence proof. A worked example

of all the steps in this proof method can be found in the existence proof of degree 8

circulant graph families, in Section 4.4.

Dougherty and Faber’s proof for the degree 7 families is an extension of the

even-degree case. The same parameter conversion is applied, from k to a. A principal

lattice is established from vectors where the element in one position in turn differs by

at most a constant from the value 2a, while the others have just a constant value. An

involutory vector is set equal to half the sum of the three generating vectors, and an

involutory lattice is constructed by translating the principal one by the involutory

vector, see Proposition 2.5. The proof requires demonstration that any point x lies

within Manhattan distance k of a principal lattice point or within distance k− 1 of an

involutory lattice point.

In both the even and odd degree case, the original f lattice generating vectors form

the rows of an f × f matrix M = (v1, . . . ,vf )T , the lattice generator matrix. By

construction, the determinant of M , |M | = |Zf/Lf |. Hence, |M | equals the order of

the Cayley graph.

2.5 Bounds for extremal directed and mixed Abelian Cayley graphs

For an undirected circulant graph, the dimension f is defined to be the cardinality of

a generating set (excluding any involutory generator), so that f = bd/2c where d is

the degree.

For directed circulant graphs, the dimension is also defined to be the cardinality of a

generating set. However, as the edges are all directed, the generating set contains no

inverse pairs or involutions and is identical to the connection set. Thus, the dimension

is equal to the directed degree. To clarify the terminology, consider a directed

circulant graph with directed degree 1. This means that each vertex has indegree 1,

outdegree 1, and therefore total degree 2. When discussing directed or mixed graphs,

we will always refer to directed degree rather than total degree.

For mixed circulant graphs of directed degree z and undirected degree d, the

dimension f is again the cardinality of a generating set (excluding any involutory

generator) given by f = z + bd/2c. Clearly, a mixed circulant graph with odd

undirected degree must include the involution in its connection set, which means the
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order will be even. For non-circulant mixed or undirected Abelian Cayley graphs,

there may be multiple involutions, which do not contribute to the dimension. In this

case, if the undirected degree d = r1 + 2r2 where r1 is the number of involutions and

r2 is the number of self-inverse pairs in the connection set, then the dimension

f = z + r2.

Lower and upper bounds for the order of extremal directed circulant graphs of any

fixed directed degree and arbitrary diameter were established by Wong and

Coppersmith [51] and are presented in Theorem 2.7.

Theorem 2.7. (Wong and Coppersmith [51]) Let Extdircirc(z, k) be the order of an

extremal directed circulant graph of directed degree z and diameter k. Then for any

fixed directed degree z ≥ 2 and for arbitrary diameter k:

1

zz
kz +O(kz−1) ≤ Extdircirc(z, k) ≤

(
z + k

z

)
=

1

z!
kz +O(kz−1).

For dimensions 1 and 2, extremal directed circulant graph families have been

discovered (see next section). For dimension 3, the cubic coefficient of the lower and

upper bounds for the extremal order are 1/27 and 1/6. The lower bound was

sharpened by Hsu and Jia [22]:

1

16
k3 +

3

8
k2 +O(k) ≤ Extdircirc(3, k).

Also, the upper bound was sharpened by Fiduccia, Forcade and Zito [14]:

Extdircirc(3, k) ≤ 3

25
(k + 3)3.

Beyond dimension 3, Wong and Coppersmith’s bounds remain the best.

An upper bound for mixed Abelian Cayley graphs was established by López,

Pérez-Rosés and Pujolàs in 2017 [30] and proved using recurrence relations and

generating functions. In 2019, Dalfó, Fiol and López provided an elegant derivation of

the bound using combinatorial reasoning [8]. Denoting the number of involutions in a

generating set by r1, the number of pairs of generators and their inverses by r2, and

the number of additional generators without inverses in the connection set by z, so

that the undirected degree is d = r1 + 2r2 and the directed degree is z, then the upper
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bound as a function of the diameter k is

UppmixAbCay(z, r1, r2, k) =
k∑
i=0

(
r2 + z + i

i

)(
r1 + r2
k − i

)
=

2r1+r2

(r2 + z)!
kr2+z +O(kr2+z−1).

As involutions do not contribute to the dimension, we have the dimension f = z + r2,

giving an alternative presentation:

UppmixAbCay(z, r1, r2, k) =
2r1+r2

f !
kf +O(kf−1).

For the undirected case, where z = 0, this reduces to the upper bound UppAbCay(d, k)

established by Boesch and Wang [2] (see Section 2.2). For the directed case, where

r1 = r2 = 0, this gives Wong and Coppersmith’s upper bound [51] (see above). For

general circulant graphs, where the maximum number of involutions is 1, we have a

version that depends directly on the undirected degree d:

Uppmixcirc (z, d, k) =
2b(d+1)/2c

f !
kf +O(kf−1).

2.6 Legacy largest-known directed circulant graph families

For directed circulant graphs, the dimension is equal to the directed degree. For the

trivial case of dimension 1, the extremal directed circulant graph of diameter k is

simply the directed cycle graph of order k + 1. These form a family valid for all k,

with Extdircirc(1, k) = k + 1.

For dimension 2, the quadratic coefficient of the lower and upper bounds for the

extremal order are 1/4 and 1/2. These values bracket the actual value of 1/3 for the

order of extremal families. They were discovered by Wong and Coppersmith in 1974

[51], although only presented as an improved upper bound. A proof of their existence

and extremality was provided in 1994 by Hsu and Jia [22]. The graphs are members

of families that are defined for three diameter classes, modulo 3. Their orders are

given in the following theorem.

Theorem 2.8. (Wong and Coppersmith [51], and Hsu and Jia [22]) For any

diameter k ≥ 2, the order Extdircirc(2, k) of the extremal directed circulant graph of

directed degree 2 is given by

Extdircirc(2, k) =


(k2 + 4k + 3)/3 for k ≡ 0 (mod 3)

(k2 + 4k + 1)/3 for k ≡ 1 (mod 3)

(k2 + 4k + 3)/3 for k ≡ 2 (mod 3).
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For diameter class k ≡ 0 (mod 3) there are two non-isomorphic families, for diameter

class 1 there are three, and for class 2 there are two. The existence of multiple

isomorphism classes for each diameter class has not been previously published.

Formulae for a generating set for each family are shown in Table 2.4.

Table 2.4: Generating sets for extremal directed circulant graph families of
directed degree 2 for diameter k ≥ 2

Family Diameter Generating set Odd Maximal Aut
class g1 g2 girth Girth levels group CI*

H2:0A 0 (mod 3) 1 k + 3 (2k + 3)/3 (2k + 3)/3 2k/3 1
H2:0B 0 (mod 6) 1 (k2 + k − 3)/3 k + 3 (2k + 6)/3 2k/3 2

3 (mod 6) 1 (k2 + k − 3)/3 bipartite (2k + 6)/3 2k/3 2

H2:1A 1 (mod 3) 1 k + 1 (2k + 1)/3 (2k + 1)/3 (2k − 2)/3 1
H2:1B 1 (mod 6) 1 k + 4 bipartite (2k + 4)/3 (2k − 2)/3 1

4 (mod 6) 1 k + 4 k + 1 (2k + 4)/3 (2k − 2)/3 1
H2:1C 1 (mod 3) 1 (k2 + k − 8)/3 (2k + 7)/3 (2k + 7)/3 (2k − 2)/3 1

H2:2A 2 (mod 6) 1 k + 2 (5k + 5)/3 (2k + 2)/3 (2k − 1)/3 2
5 (mod 6) 1 k + 2 bipartite (2k + 2)/3 (2k − 1)/3 2

H2:2B 2 (mod 3) 1 (k2 + k)/3 (2k + 5)/3 (2k + 5)/3 (2k − 1)/3 1

*CI: Cyclic index of the automorphism group

We will return to the topic of directed and mixed circulant graphs of higher

dimension in Chapter 15.
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Chapter 3

The Extremal Order Conjecture for

Abelian Cayley graphs

In Chapter 3, we present an Extremal Order Conjecture for undirected circulant and

Abelian Cayley graphs. The newly discovered graph families described in subsequent

chapters are all evaluated against this conjecture. Any graph families with order

polynomial as specified for the conjecture are called quasimaximal.

We saw in Section 2.2 that Chen and Jia’s lower bound for circulant graphs,

Lowcirc(d, k) [3], and Dougherty and Faber’s lower bound for Abelian Cayley graphs,

LowAbCay(d, k) [10], share a leading coefficient (1/2)(4/f)f , where d and k are the

even degree and the diameter respectively, and f = d/2 is the dimension. For

dimensions 1 and 2, this coefficient is equal to the leading coefficient, 2f/f !, of the

Abelian Cayley upper bound UppAbCay(d, k). But with increasing dimension, their

ratio Rf tends to zero exponentially.

It is noteworthy that the largest-known degree 6 families, with order LKcirc(6, k),

share leading coefficient with the lower bound. Moreover, the graphs in these families

have been verified to be extremal as far as checked, up to diameter k = 18. This was

the basis for an initial conjecture by the author [23] that extremal circulant graph

families of any degree have order polynomial with leading coefficient equal to that of

the circulant graph lower bound. This conjecture was extended in a later paper [28] to

the first two coefficients of the Abelian Cayley lower bound LowAbCay(d, k) and also

to cover extremal Abelian Cayley graph families. This leads to the following formal

statement of the Extremal Order Conjecture for Abelian Cayley and circulant graphs.

Conjecture 3.1. Extremal Order Conjecture for Abelian Cayley and circulant graphs.

Let the order of an extremal Abelian Cayley graph of degree d and diameter k be

ExtAbCay(d, k) and similarly Extcirc(d, k) for an extremal circulant graph. Let f be

the corresponding dimension f = bd/2c and let K be the diameter class

K = {k : k ≡ k∗ (mod f)} for any k∗, 0 ≤ k∗ < f .

Then for any dimension f and diameter class K, ExtAbCay(d, k) and Extcirc(d, k) are

polynomials in k of degree f for all k ∈ K with k > kd for some threshold value kd
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dependent on d. Moreover

ExtAbCay(d, k) =


1

2

(
4

f

)f
kf +

(
4

f

)f−1
kf−1 +O(kf−2) for even d(

4

f

)f
kf +O(kf−2) for odd d,

Extcirc(d, k) =


1

2

(
4

f

)f
kf +

(
4

f

)f−1
kf−1 +O(kf−2) for even d(

4

f

)f
kf +O(kf−2) for odd d.

Note that the difference ExtAbCay(d, k)− Extcirc(d, k) is at most O(kf−2) for any d

and k.

The conjecture is true for dimensions 1 and 2, with kd = 1. For dimension 3, its

conditions are satisfied by the largest-known circulant graphs, with k6 = 1 and k7 = 3,

and also for largest-known Abelian Cayley graphs of dimension 3, which are just the

largest-known circulant graphs.

For even degree, both the leading and second terms are identical to those of the

Abelian Cayley graph lower bound LowAbCay(d, k). Furthermore, for both even and

odd degree, the first two coefficients are the same multiple Rf = 2f−1(f !/ff ) of the

corresponding terms of the Abelian Cayley upper bound UppAbCay(d, k).

Definition 3.2. An Abelian Cayley graph family of arbitrary degree is quasimaximal

if the first two coefficients of its order polynomial in the diameter are equal to those of

the Extremal Order Conjecture. A family with a lower first coefficient, or an equal

first coefficient and lower second coefficient is said to be subquasimaximal.

If Conjecture 3.1 is correct, then this implies the following formulae for the order of

extremal circulant graphs of degrees 8 to 11 above some threshold diameter:

Extcirc(d, k) =



(k4 + 2k3)/2 +O(k2) for d = 8

k4 + 3k2 +O(k2) for d = 9

(512k5 + 1280k4)/3125 +O(k3) for d = 10

1024k5/3125 +O(k3) for d = 11.

As we shall see in the next chapter, largest-known circulant graph families have been

discovered with precisely these coefficients. Indeed, quasimaximal circulant graph

families have been discovered for degrees up to 20 and beyond.
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A much higher lower bound, depending on a theorem by Rogers [46], was mentioned

in Section 2.2 and conflicts with this conjecture. If the Extremal Order Conjecture 3.1

is correct, then Rogers’ theorem is invalid. An alternative position might be that

Rogers’ theorem is valid asymptotically and the Extremal Order Conjecture is valid

only up to some threshold dimension. This question is addressed in Section 13.4.
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Chapter 4

Largest-known circulant graph

families of degrees 6 to 11

In Chapter 4, newly discovered largest-known circulant graph families up to degree 11

are described, along with a proof of the existence of the degree 8 families and lattice

generating vectors for the degree 10 proof. The degree 8 and 9 families and the degree

8 existence proof were previously the subject of the author’s MSc dissertation. As

stated in Definition 1.4, a graph family is an infinite set of graphs of given degree d

and dimension f = bd/2c, defined for each diameter k of a diameter class, with order

and generating set specified by polynomials in k of maximum degree f .

4.1 Dimension 3, degrees 6 and 7

We already noted in Section 2.3 that largest-known circulant graph families of degree

6 and 7 for the three diameter classes 0, 1 and 2 were discovered by Monakhova [37]

and Dougherty and Faber [10]. However, for certain diameter classes there is a second,

non-isomorphic family with the same order that has been discovered by the author

and has not previously been documented. These families exist for degree 6, diameter

classes 0 and 2, and for degree 7, diameter classes 1 and 2. For reference, the legacy

graph families are labelled with suffix A and these new discoveries with suffix B. The

new families are presented below, in Table 4.1. Note the similarity of the polynomials

in each row between degrees 6 and 7. This is structural and is discussed in Chapter 5.

Table 4.1: Order and generating set polynomials for newly discovered
largest-known circulant graph families of degrees 6 and 7, diameter k

(mod 3)

Degree 6 Order and Polynomial Degree 7 Order and Polynomial
family generators in 2a family generators in 2a

F6:0B Order (1 2 3 2)/2 F7:2B Order (1 2 3 2 )
k ≡ 0 g1 (0 0 1 -1) k ≡ 2 g1 (0 0 1 -1)
a = 2k/3 g2 (0 0 1 1) a = (2k − 1)/3 g2 (0 0 1 1)

g3 (0 1 0 1) g3 (0 1 0 1)

F6 : 2B Order (1 -2 3 -2)/2 F7 : 1B Order (1 -2 3 -2 )
k ≡ 2 g1 (0 0 1 1) k ≡ 1 g1 (0 0 1 1)
a = (2k + 2)/3 g2 (0 0 1 -1) a = (2k + 1)/3 g2 (0 0 1 -1)

g3 (0 1 0 1) g3 (0 1 0 1)
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Formulae for the order and a generating set for these families and the other

largest-known families of degrees 6 and 7 are presented in Appendix A.2. Properties

of the graphs up to diameter 16 are given in Appendix D, Tables D.5 and D.6.

4.2 Dimension 4, degrees 8 and 9

Graphs of dimension 4 have degree 8 or 9. This work was originally undertaken by

the author for an MSc dissertation and was published in 2014 [23]. As with

Dougherty and Faber’s approach for dimension 3, an exhaustive computer search was

conducted for potential solutions using all feasible generating sets within relevant

ranges. For small diameter, this process worked well and enabled the discovery of

families of graphs of degree 8 that are just larger than Monakhova’s largest-known

odd-order graphs, [37]. The process was similarly successful for degree 9, although

with no lower bound for comparison.

The order of graphs on generator sets of dimension 4 increases with diameter much

more quickly than for dimension 3, as well as the number of possible permutations for

each order. This means that the calculations to prove the extremality of a candidate

graph by continuing the search up to the relevant upper bound, UppAbCay(d, k),

quickly exceed the available computing power. Therefore, the discovered candidate

families of dimension 4 graphs have only been verified to be extremal for a rather

limited range of diameters, k ≤ 7 for degree 8 and k ≤ 6 for degree 9. The results for

degree 8, up to diameter 16, are shown in Table 4.2. See also Appendix D, Table D.7.

Table 4.2: Largest-known circulant graphs of degree 8

Diameter Order Family (F) Generating set* Upper bound Status
k LKcirc(8, k) or graph (G) UppAbCay(8, k)

2 35 G8:2A 1, 6, 7, 10 41 Extremal
G8:2B 1, 7, 11, 16

3 104 F8:1 1, 16, 20, 27 129 Extremal
4 248 F8:0 1, 61, 72, 76 321 Extremal
5 528 F8:1 1, 89, 156, 162 681 Extremal
6 984 F8:0 1, 163, 348, 354 1289 Extremal
7 1712 F8:1 1, 215, 608, 616 2241 Extremal
8 2768 F8:0 1, 345, 1072, 1080 3649 Largest known
9 4280 F8:1 1, 429, 1660, 1670 5641 Largest known
10 6320 F8:0 1, 631, 2580, 2590 8361 Largest known
11 9048 F8:1 1, 755, 3696, 3708 11969 Largest known
12 12552 F8:0 1, 1045, 5304, 5316 16641 Largest known
13 17024 F8:1 1, 1217, 7196, 7210 22569 Largest known
14 22568 F8:0 1, 1611, 9772, 9786 29961 Largest known
15 29408 F8:1 1, 1839, 12736, 12752 39041 Largest known
16 37664 F8:0 1, 2353, 16608, 16624 50049 Largest known

* for each isomorphism class of graphs just one of the generating sets is listed
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The diameter 2 solution was found by McKay [33] who also discovered the diameter 2

solutions up to degree 16. The solutions for diameters 3 to 5 were found by

Feria-Purón, Ryan and Pérez-Rosés [13] and independently by the author. The

graphs of diameter 6 and above were discovered by the author.

For degree 8, the following quartic polynomials in k determine the order of these

solutions for diameter k ≥ 3:

LKcirc(8, k) =

 (k4 + 2k3 + 6k2 + 4k)/2 for k ≡ 0 (mod 2)

(k4 + 2k3 + 6k2 + 6k + 1)/2 for k ≡ 1 (mod 2).

Over the range of diameters checked, there is just one unique graph up to

isomorphism for each k ≥ 3. The leading coefficient of 1/2 equals the lower bound

value in the formula for Lowcirc(8, k) and is below the upper bound value of 2/3 in

UppAbCay(8, k). The first two coefficients are consistent with the Extremal Order

Conjecture, 3.1. Formulae for generating sets are shown in Table 4.3.

Table 4.3: Order and generating sets of largest-known circulant graph families
of degree 8 for diameter k ≥ 3

Family F8:0 Family F8:1
k ≡ 0 (mod 2) k ≡ 1 (mod 2)

Order, LKcirc(8, k) (k4 + 2k3 + 6k2 + 4k)/2 (k4 + 2k3 + 6k2 + 6k + 1)/2

Generating g1 1 1
set g2 (k3 + 2k2 + 6k + 2)/2 (k3 + k2 + 5k + 3)/2

g3 (k4 + 4k2 − 8k)/4 (k4 + 2k2 − 8k − 11)/4
g4 (k4 + 4k2 − 4k)/4 (k4 + 2k2 − 4k − 7)/4

For k = 2, the formula gives a graph of order 32 whereas the extremal order is 35,

with two non-isomorphic solutions. For 3 ≤ k ≤ 7, the resulting graphs have been

verified to be extremal by exhaustive computer search up to the upper bound

UppAbCay(8, k). The existence of these graphs for all k is proved in Section 4.4. They

are the largest-known degree 8 circulant graph families so far discovered for any k ≥ 3

and are conjectured to be extremal.

The results for degree 9, up to diameter 16, are shown in Table 4.4. See also

Appendix D, Table D.8. The diameter 2 solution was found by McKay [33]. The

solutions for diameters 3 and 4 were found by Feria-Purón, Ryan and Pérez-Rosés

[13], and diameter 4 independently by the author. The graph of diameter 5 and above

were discovered by the author.
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Table 4.4: Largest-known circulant graphs of degree 9

Diameter Order Family (F) Generating set* Upper bound Status
k LKcirc(9, k) or graph (G) UppAbCay(9, k)

2 42 G9:2A 1, 5, 14, 17 50 Extremal
G9:2B 2, 7, 8, 10

3 130 G9:3A 1, 8, 14, 47 170 Extremal
G9:3B 1, 8, 20, 35
G9:3C 1, 26, 49, 61
G9:3D 2, 8, 13, 32

4 320 G9:4 1, 15, 25, 83 450 Extremal
5 700 F9:1a 1, 5, 197, 223 1002 Extremal

F9:1b 1, 45, 225, 231
6 1416 F9:0 1, 7, 575, 611 1970 Extremal
7 2548 F9:1a 1, 7, 521, 571 3530 Largest known

F9:1b 1, 581, 1021, 1029
8 4304 F9:0 1, 9, 1855, 1919 5890 Largest known
9 6804 F9:1a 1, 9, 1849, 1931 9290 Largest known

F9:1b 1, 1305, 1855, 1863
10 10320 F9:0 1, 11, 4599, 4699 14002 Largest known
11 15004 F9:1a 1, 11, 3349, 3471 20330 Largest known

F9:1b 1, 4851, 6655, 6667
12 21192 F9:0 1, 13, 9647, 9791 28610 Largest known
13 29068 F9:1a 1, 13, 7741, 7911 39210 Largest known

F9:1b 1, 5083, 7929, 7943
14 39032 F9:0 1, 15, 18031, 18227 52530 Largest known
15 51300 F9:1a 1, 15, 11857, 12083 69002 Largest known

F9:1b 1, 5835, 15075, 15089
16 66336 F9:0 1, 17, 30975, 31231 89090 Largest known

* for each isomorphism class of graphs just one of the generating sets is listed

For degree 9, the following quartic polynomials in k determine the order of the

largest-known solutions for diameter k ≥ 5:

LKcirc(9, k) =

 k4 + 3k2 + 2k for k ≡ 0 (mod 2)

k4 + 3k2 for k ≡ 1 (mod 2).

This may be compared with the upper bound UppAbCay(9, k) = (4k4 + 20k2 + 6)/3.

Here also, the first two coefficients are consistent with the Extremal Order

Conjecture, 3.1.

Over the range of diameters k ≥ 5 checked, there is a unique family for each even

diameter (F9:0) and two for each odd diameter (F9:1a and F:9:1b). For their

formulae, see Table 4.5.

Formulae for order and a generating set for these largest-known circulant graph

families of degrees 8 and 9 are presented in vector notation as polynomials in 2a in
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Table 4.5: Order and generating sets of largest-known circulant graph families
of degree 9 for diameter k ≥ 5

Family F9:0 Family F9:1a Family F9:1b
k ≡ 0 (mod 2) k ≡ 1 (mod 2) k ≡ 1 (mod 2)

Order, LKcirc(9, k) k4 + 3k2 + 2k k4 + 3k2 k4 + 3k2

Generating g1 1 1 k2

set g2 k + 1 k3 + 2k k3 + 2k − 2
g3 (k4 − k3 + 2k2 − 2)/2 k3 + 3k + 1 k3 + 2k
g4 (k4 − k3 + 4k2 − 2)/2 k3 + k2 + 3k + 2 k3 + 4k − 2

Appendix A.3. Properties of the individual graphs up to diameter 16 are given in

Appendix D, Tables D.7 and D.8.

4.3 Dimension 5, degrees 10 and 11

The author’s work on graphs of dimension 5 (that is, of degree 10 or 11) was

published in 2018 [26]. The process that was followed to discover the largest-known

degree 10 and 11 graphs and the quintic polynomials in the diameter that define their

orders and generating sets was an extension of the methods used by Dougherty and

Faber for the degree 6 and 7 families and by the author for degrees 8 and 9. It

involved a combination of four methods: assumption of the validity of the Extremal

Order Conjecture (Conjecture 3.1), analysis of the largest-known families of smaller

degree to discover common features that may extrapolate, computer searches that

needed to be increasingly focused as the diameter increased, and a measure of

inspiration and pattern recognition. These are discussed in more detail below.

If true, the Extremal Order Conjecture implies that the extremal graphs of degree 10

would have order defined by quintic polynomials in the diameter, one for each

diameter class k (mod 5), and also specifies their common first two coefficients,

reducing the degrees of freedom accordingly. As with the approach for degrees 6 to 9,

for small diameter the extremality of the graphs was confirmed by conducting a

computer search using feasible generating sets for graphs of every order up to the

upper bound. However, the number of possible permutations of elements for

generating sets of dimension 5 increases rapidly with diameter, quickly exceeding

available computing power. For degree 10, the graphs could only be verified extremal

up to diameter 5, which provided a maximum of only one graph as the basis for each

of the five presumed families.

From an analysis of the largest-known families of smaller degree, common factors were

discovered that were tentatively assumed to remain valid, greatly reducing the search
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space for the computer runs. For example, as mentioned earlier, every graph in a

largest-known circulant graph family up to degree 9 has a primitive generating set, so

the computer searches were set to fix one of the generators at 1, eliminating a degree

of freedom. Although all Abelian Cayley graphs have girth 3 or 4 by definition, all the

largest-known families have an odd girth that is maximum (2k + 1), and so the

computer searches were restricted to maximum odd girth, which reduced the run-time

significantly. Also, for each degree d ≤ 9 the order polynomials for the families for

diameter k ≡ 0 (mod f) have value 0 or 1 for k = 0 depending on the parity of the

order of the family, again reducing the degree of freedom. It was also observed that

generating sets of largest-known families often include pairs of generators differing by

a small value that increases linearly with diameter. Where this was found to occur for

a single graph in a family, the subsequent search for other graphs in the prospective

family was restricted to include such pairs, further reducing the degree of freedom.

Even utilising these and other similar techniques, the process remained complex and

time-consuming. Each newly discovered graph became a potential member of its

family, restricting the freedom of the corresponding order polynomial and further

sharpening the search for the next graph in the family. Any subsequent search failure

would require backtracking to eliminate a candidate graph and initiate a search for

Table 4.6: Largest-known degree 10 circulant graphs, up to diameter 16

Diameter Order Family (F, O) Generating set* Status
k LKcirc(10, k) or graph (G)

2 51 G10:2 1, 2, 10, 16, 23 Extremal
3 177 G10:3 1, 12, 19, 27, 87 Extremal
4 457 F10:4 1, 20, 130, 147, 191 Extremal
5 1099 F10:0 1, 53, 207, 272, 536 Extremal
6 2380 F10:1 1, 555, 860, 951, 970 Largest known

2329 O10:1 (odd) 1, 75, 390, 453, 764 Largest-known odd
7 4551 F10:2 1, 739, 1178, 1295, 1301 Largest known
8 8288 F10:3 1, 987, 2367, 2534, 3528 Largest known

8183 O10:3A (odd) 1, 286, 294, 1707, 3758 Largest-known odd
O10:3B (odd) 1, 112, 120, 953, 1504

9 14099 F10:4 1, 247, 1766, 1983, 3494 Largest known
10 22805 F10:0 1, 313, 2495, 2846, 5662 Largest known
11 35568 F10:1 1, 4347, 7470, 7903, 11808 Largest known

35243 O10:1 (odd) 1, 387, 3528, 3877, 7010 Largest-known odd
12 53025 F10:2 1, 5251, 19281, 19291, 19806 Largest known
13 77572 F10:3 1, 6347, 14103, 14740, 21098 Largest known

77077 O10:3A (odd) 1, 1594, 21165, 36774, 36784 Largest-known odd
O10:3B (odd) 1, 4344, 29303, 38093, 38103

14 110045 F10:4 1, 827, 9176, 9935, 18272 Largest known
15 152671 F10:0 1, 973, 11663, 12716, 25364 Largest known
16 208052 F10:1 1, 17147, 30784, 32007, 47918 Largest known

207037 O10:1 (odd) 1, 1131, 14794, 15845, 29496 Largest-known odd

* for each graph family just one of the generating sets is listed
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the next candidate. The challenge eventually yielded to the effort, however, as each

graph family in turn was completed, for degree 10 and similarly for degree 11.

The largest-known degree 10 circulant graphs up to diameter 16 are shown in Table

4.6. For diameters 2 to 4, these results are not new, as documented in Combinatorics

Wiki [7]. The graphs of diameter 5 and above were discovered by the author. For

each diameter class, there is a single family of largest-known graphs, each with at

least one primitive generating set. Note that for diameter k ≡ 1 or 3 (mod 5), when

k ≥ 6 the largest-known graphs have even order. For completeness, the largest-known

degree 10 circulant graphs of odd order and diameter k ≡ 1 and k ≡ 3 (mod 5) are

also included in the table. See also Appendix D, Table D.9.

The following quintic polynomials in k determine the order of these largest-known

circulant graph families for arbitrary diameter k ≥ 4. LKcirc(10, k) =

(512k5 + 1280k4 + 6400k3 + 8000k2 + 6250k + 3125)/3125 for k ≡ 0 (mod 5)

(512k5 + 1280k4 + 6560k3 + 9520k2 + 6100k + 1028)/3125 for k ≡ 1 (mod 5)

(512k5 + 1280k4 + 6080k3 + 7840k2 + 10010k + 3741)/3125 for k ≡ 2 (mod 5)

(512k5 + 1280k4 + 6560k3 + 7600k2 + 4180k + 1344)/3125 for k ≡ 3 (mod 5)

(512k5 + 1280k4 + 6400k3 + 8640k2 + 6890k + 757)/3125 for k ≡ 4 (mod 5).

The largest-known circulant graph families of odd order for diameters k ≡ 1 and

k ≡ 3 (mod 5) have order given by the following quintics: (512k5 + 1280k4 + 5760k3 + 9920k2 + 6450k − 2047)/3125 for k ≡ 1 (mod 5)

(512k5 + 1280k4 + 5760k3 + 8800k2 + 4830k + 819)/3125 for k ≡ 3 (mod 5).

The graphs of all these families have orders that share common leading and second

coefficients, 512/3125 and 1280/3125, consistent with the Extremal Order Conjecture,

3.1.

These formulae define the order LKcirc(10, k) of the largest-known circulant graphs of

degree 10 for any diameter k ≥ 4. For diameter k ≤ 3, the graphs with order defined

by these formulae are not extremal. For k = 2, the formula gives a graph of order 45

whereas the extremal order is 51; for k = 3, the formula gives 156 instead of 177.

Proof of the existence of these graph families for all k ≥ 4 is addressed in Section 4.5.

They are the largest degree 10 circulant graph families discovered and are conjectured

to be extremal for k ≥ 4.
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The process that was followed to discover the largest-known degree 11 graphs and the

quintic polynomials in the diameter that define their orders and generating sets was

the same as for degree 10. The largest-known degree 11 circulant graphs up to

diameter 16 are shown in Table 4.7. See also Appendix D, Table D.10. For diameter

k = 2, there are five distinct isomorphism classes, one of which does not have a

primitive generating set. For k = 3, there are two classes, including one with no

primitive generating set, and just one for diameter 4. For diameters 2 to 4, these

results are not new, as documented in Combinatorics Wiki [7]. The graphs of

diameter 5 and above were discovered by the author. For higher diameters, there are

single graph families for diameter classes 0, 2, 3, and 4, with a primitive generating

set, and two distinct families for diameter class 1, labelled F11:1a and F11:1b.

Table 4.7: Largest-known degree 11 circulant graphs, up to diameter 16

Diameter Order Family (F) Generating set* Status
k LKcirc(11, k) or graph (G)

2 56 G11:2A 1, 2, 10, 15, 22 Extremal
G11:2B 1, 4, 6, 15, 24
G11:2C 1, 6, 10, 15, 18
G11:2D 1, 9, 14, 21, 25
G11:2E 2, 6, 7, 18, 21

3 210 G11:3A 1, 49, 59, 84, 89 Extremal
G11:3B 2, 32, 63, 92, 98

4 576 G11:4 1, 9, 75, 155, 179 Largest known
5 1428 F11:0 1, 169, 285, 289, 387 Largest known
6 3200 F11:1a 1, 101, 925, 1031, 1429 Largest known

F11:1b 1, 265, 851, 1111, 1321
7 6652 F11:2 1, 107, 647, 2235, 2769 Largest known
8 12416 F11:3 1, 145, 863, 4163, 5177 Largest known
9 21572 F11:4 1, 189, 1517, 8113, 9435 Largest known
10 35880 F11:0 1, 2209, 5127, 5135, 12537 Largest known
11 56700 F11:1a 1, 1053, 1061, 10603, 17965 Largest known

F11:1b 1, 4113, 4121, 13301, 23723
12 87248 F11:2 1, 479, 4799, 34947, 39257 Largest known
13 128852 F11:3 1, 581, 5799, 51599, 57989 Largest known
14 184424 F11:4 1, 693, 8325, 76901, 84523 Largest known
15 259260 F11:0 1, 10729, 39875, 39887, 90637 Largest known
16 355576 F11:1a 1, 22307, 131327, 136371, 153621 Largest known

F11:1b 1, 8579, 75569, 75583, 111513

* excludes the involution; for each graph family just one of the generating sets is listed
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The following quintic polynomials in k determine the order of these graph families for

any arbitrary diameter k ≥ 5. LKcirc(11, k) =

(1024k5 + 9600k3 + 12500k)/3125 for k ≡ 0 (mod 5)

(1024k5 + 8960k3 + 2880k2 − 260k − 104)/3125 for k ≡ 1 (mod 5)

(1024k5 + 10240k3 + 640k2 + 5140k − 2528)/3125 for k ≡ 2 (mod 5)

(1024k5 + 10240k3 − 640k2 + 5140k + 2528)/3125 for k ≡ 3 (mod 5)

(1024k5 + 8960k3 + 5120k2 + 740k − 6896)/3125 for k ≡ 4 (mod 5).

Graphs with these orders have been constructed for all diameters up to k = 100.

They are the largest degree 11 circulant graphs discovered for any k ≥ 5 and are

conjectured to be extremal. Above diameter k = 100, the existence of graphs with

these constructions is confirmed by the Existence Proof Theorem 6.16 in Chapter 6.

They are conjectured to be extremal for all higher diameters. The graphs of all these

families have orders that share common leading and second coefficients, 1024/3125

and 0, consistent with the Extremal Order Conjecture, 3.1.

For diameter k ≤ 4, the graphs with order defined by these formulae are not extremal.

For k = 2, 3, 4 respectively, the formulae give graphs of order 40, 172 and 544, whereas

the extremal orders are 56, 210 and 576.

The polynomials for the order of these degree 10 and 11 graph families are more

simply expressed as polynomials in 2a in vector notation, with a suitably defined in

terms of k, see Table 4.8. This format also reveals inherent relationships between

diameter classes within a degree and between the degrees that are not apparent from

the polynomials in k. These will be discussed in the next chapter.

Table 4.8: Order of largest-known circulant graph families of degrees 10 and 11

Deg 10 Order polynomial where Deg 11 Order polynomial where
family in 2a a = family in 2a a =

F10:0 (1 2 8 8 5 2)/2 2k/5 F11:3 (1 2 8 8 5 2) (2k − 1)/5

F10:1 (1 -4 13 -20 14 -4)/2 (2k + 3)/5
O10:1 (1 -4 12 -16 9 -4)/2 F11:4 (1 -4 12 -16 9 -4) (2k + 2)/5

F10:2 (1 0 6 0 5 0)/2 (2k + 1)/5 F11:0 (1 0 6 0 5 0) 2k/5

F10:3 (1 4 13 20 14 4)/2 (2k − 1)/5
O10:3 (1 4 12 20 15 4)/2 F11:1 (1 4 12 20 15 4) (2k − 2)/5

F10:4 (1 -2 8 -8 5 -2)/2 (2k + 2)/5 F11:2 (1 -2 8 -8 5 -2) (2k + 1)/5
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In order to simplify the presentation and reveal inherent relationships, all generating

sets will be shown in vector notation. Generating sets for the five largest-known

degree 10 circulant graph families are presented in Table 4.9

Table 4.9: Generating sets for largest-known degree 10 circulant graph families

Family Polynomial where Family Polynomial where
in 2a a = in 2a a =

F10:0 g1 (0 0 1 3 2 0)/2 2k/5 F10:4 g1 (0 0 1 -3 2 0)/2 (2k + 2)/5
g2 (0 0 2 0 0 0)/2 g2 (0 0 2 0 0 0)/2
g3 (0 0 2 3 3 2)/2 g3 (0 0 2 -3 3 -2)/2
g4 (0 1 2 4 5 2)/2 g4 (0 1 -2 4 -5 2)/2
g5 (0 1 1 2 0 0)/2 g5 (0 1 -1 2 0 0)/2

F10:1 g1 (0 0 1 -4 0 2)/2 (2k + 3)/5 F10:3 g1 (0 0 1 4 0 -2)/2 (2k − 1)/5
g2 (0 1 -2 6 -10 6)/2 g2 (0 1 2 6 10 6)/2
g3 (0 1 -6 14 -23 14)/2 g3 (0 1 6 14 23 14)/2
g4 (0 2 -6 15 -13 2)/2 g4 (0 2 6 15 13 2)/2
g5 (0 2 -7 25 -38 18)/2 g5 (0 2 7 25 38 18)/2

F10:2 g1 (0 0 0 2 0 2)/2 (2k + 1)/5
g2 (0 0 1 0 3 -2)/2
g3 (0 0 1 0 3 2)/2
g4 (0 1 0 5 -2 2)/2
g5 (0 1 0 5 2 2)/2

These generating sets are not primitive (the sets do not include 1). If the generators

in such a set are multiplied by any factor up to the order of the graph, then the

resultant set will be the generating set for an isomorphic graph, as long as the factor

is coprime with the order. At most one valid factor will take any generator to the

value of 1. Therefore, the maximum number of primitive generating sets for an

isomorphic graph is equal to the dimension of the graph. Some graph families have

generating sets that have the maximum number of primitive equivalents for all

diameters of their diameter class. At the other extreme, some have none or only one,

while others have a regularly varying number as the diameter increases.

Although all five largest-known degree 10 circulant graph families have primitive

generating sets for all diameters, some do not have a single set of formulae valid for

all diameters within their diameter class. Therefore, is is more efficient in

presentation to accept imprimitive generating sets. It is a relatively simple exercise to

calculate the primitive generating sets from any given imprimitive one. For the degree

10 case, primitive generating sets are presented in [26] with a more comprehensive

listing in [28].

Generating sets for the five largest-known degree 11 circulant graph families are

preented in Table 4.10
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Table 4.10: Generating sets for largest-known degree 11 circulant graph families

Family Polynomial where Family Polynomial where
in 2a a = in 2a a =

F11:0 g1 (0 1 0 2 0 1) 2k/5 F11:1a g1 (0 1 4 12 16 7) (2k − 2)/5
g2 (0 1 0 4 -4 -1) g2 (0 1 4 10 14 3)
g3 (0 1 0 4 4 -1) g3 (0 1 2 6 4 3)
g4 (0 1 -2 6 -6 1) g4 (0 1 4 12 22 9)
g5 (0 1 2 6 6 1) g5 (0 1 2 8 4 1)

F11:4 g1 (0 1 0 4 0 1) (2k + 2)/5 F11:1b g1 (0 1 6 18 26 13) (2k − 2)/5
g2 (0 1 -4 8 -4 -3) g2 (0 1 4 8 12 5)
g3 (0 1 -4 8 -4 5) g3 (0 1 2 10 16 9)
g4 (0 1 -4 8 -12 5) g4 (0 1 2 4 4 3)
g5 (0 1 -4 16 -12 5) g5 (0 1 2 4 -2 -3)

F11:2 g1 (0 1 0 -2 2 -1) (2k + 1)/5 F11:3 g1 (0 1 0 -2 -2 -1) (2k − 1)/5
g2 (0 1 -2 2 -2 1) g2 (0 1 2 2 2 1)
g3 (0 1 2 -2 2 -1) g3 (0 1 -2 -2 -2 -1)
g4 (0 1 -4 4 -2 1) g4 (0 1 4 4 2 1)
g5 (0 1 -4 6 -4 1) g5 (0 1 4 6 4 1)

Formulae for order and a generating set for these largest-known circulant graph

families of degrees 10 and 11 are presented as polynomials in 2a in Appendix A.4.

Properties of the individual graphs up to diameter 16 are given in Appendix D,

Tables D.9 and D.10.

4.4 Existence proof of the degree 8 families

In this section, we prove the existence of the largest-known degree 8 circulant graph

families of order LKcirc(8, k) for all diameters k. The method of proof closely follows

the approach taken by Dougherty and Faber in their proof of the existence of the

largest-known degree 6 graph families of order LKcirc(6, k) [10]. For both diameter

classes k ≡ 0 and 1 (mod 2) all stages of the proof are presented. However, resolution

of the residual boundary exceptions is only included for the first orthant of the

solution space, as an example. This abridged version of the proof was published in

2014 [23]. The full set of boundary exception resolutions for all orthants can be found

on arXiv [27].

Theorem 4.1. For all k ≥ 2, there is an undirected Cayley graph on four generators

of a cyclic group which has diameter k and order LKcirc(8, k), where

LKcirc(8, k) =

(k4 + 2k3 + 6k2 + 4k)/2 if k ≡ 0 (mod 2)

(k4 + 2k3 + 6k2 + 6k + 1)/2 if k ≡ 1 (mod 2).
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Moreover, for k ≡ 0 (mod 2), a generating set is

{1, (k3 + 2k2 + 6k + 2)/2, (k4 + 4k2 − 8k)/4, (k4 + 4k2 − 4k)/4},
and for k ≡ 1 (mod 2),

{1, (k3 + k2 + 5k + 3)/2, (k4 + 2k2 − 8k − 11)/4, (k4 + 2k2 − 4k − 7)/4}.

Proof. We will show the existence of four-dimensional lattices Lk ⊆ Z4 such that

Z4/Lk is cyclic, Sf,k + Lk = Z4, where Sf,k is the set of points in Z4 at a distance of

at most k from the origin under the Manhattan norm, and |Z4 : Lk| = LKcirc(8, k) as

specified in the theorem. Then, by Proposition 2.1, the resultant Cayley graph has

diameter at most k.

Let a =

k/2 for k ≡ 0 (mod 2)

(k + 1)/2 for k ≡ 1 (mod 2).

For k ≡ 0 (mod 2), let Lk be defined by four generating vectors as follows:

v1 = (−a− 1, a+ 1, a,−a+ 1)

v2 = (a− 1, a+ 1, a+ 1,−a)

v3 = (−a− 1,−a+ 1, a+ 1,−a)

v4 = (−a,−a, a, a+ 1).

Then the following vectors are in Lk:

−(2a2 + 2a+ 1)v1 + (2a2 + a+ 2)v2 − (a+ 2)v3 + v4 = (4a3 + 4a2 + 6a+ 1,−1, 0, 0),

−(2a3−1)v1+(2a3−a2+2a−2)v2−(a2+a−1)v3+(a−1)v4 = (4a4+4a2−4a, 0,−1, 0),

−2a3v1 + (2a3−a2 + 2a− 1)v2− (a2 +a− 1)v3 + (a− 1)v4 = (4a4 + 4a2− 2a, 0, 0,−1).

Hence, we have e2 = (4a3 + 4a2 + 6a+ 1)e1, e3 = (4a4 + 4a2 − 4a)e1 and

e4 = (4a4 + 4a2 − 2a)e1 in Z4/Lk, and so e1 generates Z4/Lk.

Also, det


v1

v2

v3

v4

 = det


8a4 + 8a3 + 12a2 + 4a 0 0 0

4a3 + 4a2 + 6a+ 1 −1 0 0

4a4 + 4a2 − 4a 0 −1 0

4a4 + 4a2 − 2a 0 0 −1


= −(8a4 + 8a3 + 12a2 + 4a) = −(k4 + 2k3 + 6k2 + 4k)/2 = −LKcirc(8, k), as in the

statement of the theorem.

Thus, Z4/Lk is isomorphic to ZLKcirc(8,k) via an isomorphism taking e1, e2, e3, e4 to 1,

4a3 + 4a2 + 6a+ 1, 4a4 + 4a2 − 4a, 4a4 + 4a2 − 2a. As a = k/2 this gives the first

generating set specified in the theorem:

{1, (k3 + 2k2 + 6k + 2)/2, (k4 + 4k2 − 8k)/4, (k4 + 4k2 − 4k)/4}.

Robert Roderick Lewis



4.4 Existence proof of the degree 8 families 53

Similarly, for k ≡ 1 (mod 2) let Lk be defined by four generating vectors as follows:

v1 = (−a+ 1, a+ 1,−a+ 1, a)

v2 = (a+ 1, a+ 1,−a+ 2, a− 1)

v3 = (−a− 1, a− 1, a− 1,−a)

v4 = (−a, a, a, a− 1).

In this case, the following vectors are in Lk:

−(2a2 + a+ 2)v1 + (2a2 + 2a+ 1)v2 − av3 − v4 = (4a3 − 4a2 + 6a− 1,−1, 0, 0),

−(2a3 − a2 − 2a− 2)v1 + (2a3 − 4a− 1)v2 − (a2 − a− 1)v3 − (a− 1)v4 =

(4a4 − 8a3 + 8a2 − 8a, 0,−1, 0),

−(2a3 − a2 − 2a− 1)v1 + (2a3 − 4a)v2 − (a2 − a− 1)v3 − (a− 1)v4 =

(4a4 − 8a3 + 8a2 − 6a, 0, 0,−1).

Hence, we have e2 = (4a3 + 4a2 + 6a− 1)e1, e3 = (4a4 − 8a3 + 8a2 − 8a)e1 and

e4 = (4a4 − 8a3 + 8a2 − 6a)e1, in Z4/Lk, and so e1 generates Z4/Lk.

Also, det


v1

v2

v3

v4

 = det


8a4 − 8a3 + 12a2 − 4a 0 0 0

4a3 − 4a2 + 6a− 1 −1 0 0

4a4 − 8a3 + 8a2 − 8a 0 −1 0

4a4 − 8a3 + 8a2 − 6a 0 0 −1


= −(8a4 − 8a3 + 12a2 − 4a) = −(k4 + 2k3 + 6k2 + 6k+ 1)/2 = −LKcirc(8, k), as in the

statement of the theorem.

Thus, Z4/Lk is isomorphic to ZLKcirc(8,k) with generators

1, 4a3 − 4a2 + 6a− 1, 4a4 − 8a3 + 8a2 − 8a, 4a4 − 8a3 + 8a2 − 6a. As a = (k + 1)/2 in

this case, this gives the second generating set specified in the theorem:

{1, (k3 + k2 + 5k + 3)/2, (k4 + 2k2 − 8k − 11)/4, (k4 + 2k2 − 4k − 7)/4}.

It remains to show that Sf,k + Lk = Z4. First, we consider the case k ≡ 0 (mod 2).

For k = 2, it is straightforward to show directly that Z32 with generators 1, 4, 6, 15 has

diameter 2. So we assume k ≥ 4, giving a ≥ 2. Let

v5 = v1 − v3 + v4 = (−a, a, a− 1, a+ 2)

v6 = v1 − v2 − v4 = (−a, a,−a− 1,−a)

v7 = v1 − v2 − v3 = (−a+ 1, a− 1,−a− 2, a+ 1)

v8 = v2 − v3 + v4 = (a, a, a, a+ 1)

with v1,v2,v3,v4 as defined for k ≡ 0 (mod 2). Then the 16 vectors ±vi for

i = 1, ..., 8 provide one element of Lk lying strictly within each of the 16 orthants of
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Z4. Most of the coordinates of these vectors have absolute value at most a+ 1. Only

±v5 and ±v7 each have one coordinate with absolute value equal to a+ 2.

Now we consider the case k ≡ 1 (mod 2). For k = 3, it may be shown directly that

Z104 with generators 1, 16, 20, 27 has diameter 3. So we assume k ≥ 5, giving a ≥ 3,

and let

v5 = v1 − v2 − v4 = (−a,−a,−a− 1,−a+ 2)

v6 = v2 + v3 − v4 = (a, a,−a+ 1,−a)

v7 = v1 + v3 − v4 = (−a, a,−a,−a+ 1)

v8 = v1 − v2 − v3 = (−a+ 1,−a+ 1,−a, a+ 1)

with v1,v2,v3,v4 as defined for k ≡ 1 (mod 2), so that the 16 vectors ±vi provide

one element of Lk lying strictly within each of the orthants of Z4. In this case, all the

coordinates of these vectors have absolute value at most a+ 1.

We must show that each x ∈ Z4 is in Sf,k + Lk, which means that for any x ∈ Z4 we

need to find a w ∈ Lk such that x−w ∈ Sf,k. However, x−w ∈ Sf,k if and only if

δ(x,w) ≤ k, where δ is the Manhattan norm on Z4. If x,y, z ∈ Z4 and each coordinate

of y lies between the corresponding coordinate of x and z or is equal to one of them,

then δ(x,y) + δ(y, z) = δ(x, z). In such a case we say that “y lies between x and z”.

For any x ∈ Z4, we reduce x by adding appropriate elements of Lk until the resulting

vector lies within Manhattan distance k of 0 or some other element of Lk. The first

stage is to reduce x to a vector whose coordinates all have absolute value at most

a+ 1. If x has a coordinate with absolute value above a+ 1, then let v be one of the

vectors ±vi(1 ≤ i ≤ 8) such that the coordinates of v have the same sign as the

corresponding coordinates of x. If a coordinate of x is 0, then either sign is allowed

for v as long as the corresponding coordinate of v has absolute value ≤ a+ 1. So in

the case k ≡ 0 (mod 2), if the e3 coordinate of x is 0 then we avoid v7 and take v5

instead. Also, if the e4 coordinate of x is 0 (or both e3 and e4 coordinates are 0) then

instead of v5 we take v1.

Now consider x′ = x− v. If a coordinate of x has absolute value s, 1 ≤ s ≤ a+ 1, then

the corresponding coordinate of x′ will have absolute value s′ ≤ a+ 1 because of the

sign matching and the fact that the coordinates of v have absolute value ≤ a+ 2. If a

coordinate of x has absolute value s = 0, then as indicated above, the corresponding

value of x′ will have absolute value s′ ≤ a+ 1 because v is chosen such that the

corresponding coordinate has absolute value ≤ a+ 1. If a coordinate of x has absolute

value s > a+ 1, then the corresponding coordinate of x′ will be strictly smaller in
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absolute value. Therefore, repeating this procedure will result in a vector whose

coordinates all have absolute value at most a+ 1.

If the resulting vector x′ lies between 0 and v, where v = ±vi for some i, then we

have δ(0,x′) + δ(x′,v) = δ(0,v). For k ≡ 0 (mod 2), all of the vectors v satisfy

δ(0,v) = 4a+ 1, and for k ≡ 1 (mod 2) they all satisfy δ(0,v) = 4a− 1. So in either

case we have δ(0,v) = 2k + 1. Since δ(0,x′) and δ(x′,v) are both non-negative

integers, one of them must be at most k, so that x′ ∈ Sf,k + Lk. Hence, we also have

x ∈ Sf,k + Lk as required.

We are left with the case where the absolute value of each coordinate of the reduced x

is at most a+ 1, and x is in the orthant of v, where v = ±vi for some i ≤ 8 but does

not lie between 0 and v. Since Lk is centrosymmetric, we only need to consider the

eight orthants containing v1, ...,v8. For both cases k ≡ 0 and k ≡ 1 (mod 2), the

exceptions need to be considered for each orthant in turn. Only the exceptions for the

orthant of v1 for k ≡ 0 (mod 2) and for k ≡ 1 (mod 2) are included here. The other

orthants are handled similarly. A full proof including all orthants for both cases is

available on arXiv [27].

So suppose that k ≡ 0 (mod 2) and x lies within the orthant of v1, but not between 0

and v1. Then as v1 = (−a− 1, a+ 1, a,−a+ 1), the third coordinate of x is equal to

a+ 1 or the fourth coordinate equals −a or −a− 1. We now distinguish three cases.

Case 1: x = (−r, s, a+ 1,−u) where 0 ≤ r, s ≤ a+ 1 and a ≤ u ≤ a+ 1. Let

x′ = x− v1 = (a+ 1− r, s− a− 1, 1, a− 1− u), which lies between 0 and −v7 unless

r ≤ 1 or s ≤ 1. Let x′′ = x′ + v7 = (2− r, s− 2,−a− 1, 2a− u). If r ≤ 1 and s ≤ 1

then x′′ lies between 0 and −v1 unless u = a, in which case let

x′′′ = x′′ + v1 = (1− a− r, a− 1 + s,−1, a+ 1− u) which lies between 0 and v7. If

r ≤ 1 and s ≥ 2 then x′′ lies between 0 and −v3. If r ≥ 2 and s ≤ 1 then x′′ lies

between 0 and −v2.

Case 2: x = (−r, s, a+ 1,−u) where 0 ≤ r, s ≤ a+ 1 and 0 ≤ u ≤ a− 1. Let

x′ = x− v1 = (a+ 1− r, s− a− 1, 1, a− 1− u), which lies between 0 and −v6 unless

r = 0 or s = 0. Let x′′ = x′ + v6 = (1− r, s− 1,−a,−u− 1). If r = 0 and s = 0 then

x′′ lies between 0 and −v5. If r = 0 and s ≥ 1 then x′′ lies between 0 and −v4. If

r ≥ 1 and s = 0 then x′′ lies between 0 and −v8.

Case 3: x = (−r, s, t,−u) where 0 ≤ r, s ≤ a+ 1 and 0 ≤ t ≤ a and a ≤ u ≤ a+ 1. Let

x′ = x− v1 = (a+ 1− r, s− a− 1, t− a, a− 1− u), which lies between 0 and −v5

unless r = 0 or s = 0 or t = 0. If r = 0 and s = 0, then x lies between 0 and −v7. Let

x′′ = x′ + v5 = (1− r, s− 1, t− 1, 2a+ 1− u). If r = 0, s ≥ 1 and t ≥ 1 then x′′ lies
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between 0 and v8. Let x′′′ = x + v4 = (−a− r, s− a, a+ t, a+ 1− u). If r = 0 and

s ≥ 1 and t = 0, then x′′′ lies between 0 and v4 unless s = a+ 1, in which case if u = a

then x lies between 0 and v2, and if u = a+ 1 then x′′′ lies between 0 and v4. Let

x′′′′ = x− v3 = (a+ 1− r, a− 1 + s, t− a− 1, a− u). If r ≥ 1, s = 0 and t ≥ 1 then

x′′′′ lies between 0 and −v4. If r ≥ 1, s = 0 and t = 0 then x′′′′ lies between 0 and

−v3 if u = a, and between 0 and v6 if u = a+ 1. If r ≥ 1, s ≥ 1 and t = 0 then x′′ lies

between 0 and v7 unless r = a+ 1 or s = a+ 1. If r = a+ 1, s ≥ 1 and t = 0 then x′

lies between 0 and −v8. If r ≥ 1, s = a+ 1 and t = 0 then x′ lies between 0 and −v4.

This completes the cases for the orthant of v1 for k ≡ 0 (mod 2).

Now suppose that k ≡ 1 (mod 2) and x lies within the orthant of v1, but not between

0 and v1. Then the first coordinate of x is equal to −a or −a− 1, or the third

coordinate equals −a or −a− 1, or the fourth equals a+ 1. We distinguish seven cases.

Case 1: x = (−r, s,−t, a+ 1) where a ≤ r, t ≤ a+ 1 and 0 ≤ s ≤ a+ 1. Let

x′ = x− v1 = (a− 1− r, s− a− 1, a− 1− t, 1), which lies between 0 and v8 unless

s ≤ 1 in which case let x′′ = x′ − v8 = (2a− 2− r, s− 2, 2a− 1− t,−a) which lies

between 0 and −v1.

Case 2: x = (−r, s,−t, u) where a ≤ r, t ≤ a+ 1 and 0 ≤ s ≤ a+ 1 and 0 ≤ u ≤ a. Let

x′ = x− v1 = (a− 1− r, s− a− 1, a− 1− t, u− a), which lies between 0 and v5 unless

s = 0 or u ≤ 1, in which case let x′′ = x′ − v5 = (2a− 1− r, s− 1, 2a− t, u− 2). If

s = 0 and u ≤ 1 then x′′ lies between 0 and −v1, unless t = a, in which case let

x′′′ = x′′ + v1 = (a− r, a, 1, u+ a− 2) which lies between 0 and v4. If s = 0 and u ≥ 2

then x′′ lies between 0 and −v7. If s ≥ 1 and u ≤ 1 then x′′ lies between 0 and −v8

unless s = a+ 1, in which case let x′′′′ = x′′+ v8 = (a− r, 1, a− t, a+ u− 1) which lies

between 0 and v1.

Case 3: x = (−r, s,−t, a+ 1) where a ≤ r ≤ a+ 1, 0 ≤ s ≤ a+ 1 and 0 ≤ t ≤ a− 1.

Let x′ = x− v1 = (a− 1− r, s− a− 1, a− 1− t, 1), which lies between 0 and −v6

unless s = 0, in which case let x′′ = x′ + v6 = (2a− 1− r,−1,−t,−a+ 1) which lies

between 0 and −v4.

Case 4: x = (−r, s,−t, a+ 1) where 0 ≤ r ≤ a− 1, 0 ≤ s ≤ a+ 1 and a ≤ t ≤ a+ 1.

Let x′ = x− v1 = (a− 1− r, s− a− 1, a− 1− t, 1), which lies between 0 and −v3

unless s ≤ 1, in which case let x′′ = x′ + v3 = (−2− r, s− 2, 2a− 2− t,−a+ 1) which

lies between 0 and −v2.

Case 5: x = (−r, s,−t, a+ 1) where 0 ≤ r, t ≤ a− 1 and 0 ≤ s ≤ a+ 1. Let

x′ = x− v1 = (a− 1− r, s− a− 1, a− 1− t, 1), which lies between 0 and −v7 unless
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s = 0, in which case let x′′ = x′ + v7 = (−r− 1,−1,−t− 1,−a+ 2) which lies between

0 and v5.

Case 6: x = (−r, s,−t, u) where 0 ≤ r ≤ a− 1, 0 ≤ s ≤ a+ 1, a ≤ t ≤ a+ 1 and

0 ≤ u ≤ a. Let x′ = x− v1 = (a− 1− r, s− a− 1, a− 1− t, u− a), which lies between

0 and −v4 unless s = 0 or u = 0, in which case let

x′′ = x′ + v4 = (−r − 1, s− 1, 2a− 1− t, u− 1). If s = 0 and u = 0 then let

x′′′ = x′′ + v2 = (a− r, a, a+ 1− t, a− 2) which lies between 0 and −v5. If s = 0 and

u ≥ 1 then x′′ lies between 0 and −v6. If s ≥ 1 and u = 0 then x′′ lies between 0 and

v3 unless s = a+ 1, in which case x′ lies between 0 and v6.

Case 7: x = (−r, s,−t, u) where a ≤ r ≤ a+ 1, 0 ≤ s ≤ a+ 1, 0 ≤ t ≤ a− 1 and

0 ≤ u ≤ a. Let x′ = x− v1 = (a− 1− r, s− a− 1, a− 1− t, u− a), which lies between

0 and −v2 unless t = 0 or u = 0, in which case let

x′′ = x′ + v2 = (2a− r, s,−t+ 1, u− 1). If t = 0 and u = 0 then let

x′′′ = x′′ + v8 = (a+ 1− r, s− a+ 1,−a+ 1, a) which lies between 0 and −v3 unless

a ≤ s ≤ a+ 1, in which case let x′′′′ = x− v7 = (a− r, s− a, a, a− 1) which lies

between 0 and v4. If t = 0 and u ≥ 1 then x′′ lies between 0 and −v5 unless s = a+ 1

or u = a in which case let xv = x′′ + v5 = (a− r, s− a,−a,−a+ u+ 1). If s = a+ 1

then x′ lies between 0 and v3. If 1 ≤ s ≤ a and u = a then xv lies between 0 and v8.

If s = 0 and u = a then x′′ lies between 0 and −v7. If t ≥ 1 and u = 0 then x′′ lies

between 0 and v6 unless s = a+ 1, in which case x′ lies between 0 and v3.

This completes the cases for the orthant of v1 for k ≡ 1 (mod 2).

4.5 Lattice generating vectors for the degree 10 families

An outline proof of the existence of the largest-known degree 10 circulant graph

family for diameter class 0, k ≡ 0 (mod 5), was published in 2018 [26], and a more

complete version covering all diameter classes can be found on arXiv [28]. However,

resolution of the residual boundary exceptions was only included for the first orthant

of the solution space in Z5 for diameter class 0, as an example, as the full set of

boundary exception resolution for all orthants and all diameter classes runs to several

thousand pages. They were all resolved and confirmed using a tailored computer

program, and the output is available electronically for inspection.

As the format of the degree 10 existence proof is the same as the degree 8 proof

presented in the previous section 4.4, we only include a set of lattice generating

vectors for all diameter classes, as these lie at the core of the proofs, see Table 4.11.
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Table 4.11: Lattice generating vectors for largest-known degree 10 circulant
graph families

Diameter Parameter
class (mod 5) value One set of lattice generating vectors

k ≡ 0 a = 2k/5 v1 = (a− 1,−a− 2,−a,−a− 1,−a+ 1)
v2 = (a, a− 1,−a− 1,−a− 1,−a)
v3 = (a,−a− 1, a,−a,−a)
v4 = (a,−a− 2,−a− 1, a− 1,−a+ 1)
v5 = (a− 1,−a− 1,−a+ 1,−a− 1, a+ 1)

k ≡ 1 a = (2k + 3)/5 v1 = (a− 1,−a− 1,−a− 1,−a+ 1,−a+ 2)
v2 = (a, a− 2,−a− 1,−a,−a+ 1)
v3 = (a,−a− 1, a− 2,−a,−a+ 1)
v4 = (a− 1,−a,−a, a,−a+ 1)
v5 = (a− 1,−a,−a,−a+ 2, a+ 1)

k ≡ 2 a = (2k + 1)/5 v1 = (a− 2,−a− 1,−a,−a− 1,−a)
v2 = (a− 1, a− 1,−a− 1,−a− 1,−a)
v3 = (a− 1,−a, a,−a− 1,−a)
v4 = (a− 1,−a− 1,−a, a− 1,−a− 1)
v5 = (a− 1,−a− 1,−a,−a, a)

k ≡ 3 a = (2k − 1)/5 v1 = (a− 1,−a− 2,−a− 2,−a,−a+ 1)
v2 = (a, a− 1,−a− 2,−a− 1,−a)
v3 = (a,−a− 2, a− 1,−a− 1,−a)
v4 = (a− 1,−a− 1,−a− 1, a+ 1,−a)
v5 = (a− 1,−a− 1,−a− 1,−a+ 1, a+ 2)

k ≡ 4 a = (2k + 2)/5 v1 = (a− 2,−a− 1,−a,−a− 1,−a+ 1)
v2 = (a− 1, a− 2,−a− 1,−a− 1,−a)
v3 = (a− 1,−a, a,−a,−a)
v4 = (a− 1,−a− 1,−a− 1, a− 1,−a+ 1)
v5 = (a− 2,−a,−a+ 1,−a− 1, a+ 1)

These sets of lattice generating vectors can be taken as the rows of 5× 5 matrices,

forming lattice generator matrices (LGMs) for each graph family. An associated

matrix, the LGM odd basis for each largest-known circulant graph family of degree

10, along with LGMs for each largest-known degree 11 circulant graph family, are

presented in Appendix A.4. Lattice generator matrices are introduced and discussed

in detail in Chapter 6.
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Chapter 5

Properties of Abelian Cayley graph

families

In this chapter, we discuss some important properties of Abelian Cayley graph

families. A common property of Abelian Cayley graphs relates to their distance

partition profiles. We will explore distance levels within the profile and when they

may be considered maximal. The prime motivation is to determine if these profiles

have regular structure related to extremal and largest-known families that might

assist in the search for extremal graph families of higher degree. Vertices in an

Abelian Cayley graph may be characterised not only by their distance from an

arbitrary reference vertex but also by the number of different connection set elements

that generate the edges in a shortest path to each vertex. Distance partition profiles

that include this classification are also investigated. The relation between graph

families being quasimaximal and having maximum odd girth is introduced. Two

essential relationships between graph families are also presented: conjugation, which

relates two quasimaximal families of the same degree; and translation, between an

odd-degree family and an even-degree family of the same odd dimension. These

relationships are treated in more depth in Chapter 6.

5.1 Distance partition profiles

Before discussing distance partition profiles, some definitions are introduced. A graph

is distance transitive if, given any two ordered pairs of vertices (u, u′) and (v, v′) such

that distance(u, u′) = distance(v, v′), there is an automorphism mapping (u, u′) to

(v, v′). If u is a vertex of a graph X of diameter k, then let Xi(u) denote the set of

vertices at distance i from u. The partition {{u}, X1(u), . . . , Xk(u)} is called the

distance partition with respect to u. For vertex-transitive graphs, the cardinality of

Xi(u) for any i is independent of u. This is the basis for a related formal definition of

a distance partition profile.

Definition 5.1. For any vertex-transitive graph X of diameter k, the distance

partition profile of X is a vector of length k + 1 whose i-th coordinate (0 ≤ i ≤ k) is

the cardinality of the element Xi(u) of its distance partition with respect to any

vertex, u.
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We now adapt a property defined for distance-transitive graphs to be applicable to

vertex-transitive graphs. For a distance-transitive graph of diameter k, each vertex in

any given level of its distance partition is joined to a common number of vertices in

the level below, a common number in the same level, and a common number in the

level above. These three sets of k + 1 numbers form a 3× (k + 1) array called the

intersection array of the graph. In general, a vertex-transitive graph does not have an

intersection array because the vertices within each level of its distance partition do

not all have the same number of edges to vertices in the three neighbouring levels.

However, we can define a variant that counts the total number of edges within and

between distance levels.

Definition 5.2. Let X be a vertex-transitive graph of diameter k. The total

intersection array has the same 3× (k + 1) format as a standard intersection array,

but each element counts the total number of adjacent vertices summed across all

vertices within each level of the distance partition.

For extremal and largest-known graph families up to degree 9, we will explore their

distance partition profiles and the manner in which the size of each distance level

increases with increasing diameter until it reaches a maximum value. We will discover

that the number of levels at their maximum value depends linearly on the diameter

for any given degree. These observed relationships will be proved in Chapter 6.

For extremal circulant graphs of dimension 1, for degree 2 the distance partition

profiles for increasing diameter k are (1, 2), (1, 2, 2), (1, 2, 2, 2), (1, 2, 2, 2, 2), . . . ; and

for degree 3 are (1, 3), (1, 3, 4), (1, 3, 4, 4), (1, 3, 4, 4, 4), . . . . In both cases, the size of

each successive level is a constant (2 or 4 respectively). For extremal circulant graphs

of dimension 2, we find for degree 4 the sequence (1, 4), (1, 4, 8),

(1, 4, 8, 12), (1, 4, 8, 12, 16), etc, so that each successive level is 4 more than the

previous. For degree 5, each new level does not immediately take its final size: from

level 2 onwards the size of each new level is 2 below its maximum value, which it

reaches when the next level is added. See Table 5.1. From level 3 onwards, the

Table 5.1: Distance partition profiles for extremal circulant graphs of degree 5

Diameter Order Distance partition level
k Extcirc(5, k) 0 1 2 3 4 5 6

1 6 1 5
2 16 1 5 10
3 36 1 5 12 18
4 64 1 5 12 20 26
5 100 1 5 12 20 28 34
6 144 1 5 12 20 28 36 42
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5.1 Distance partition profiles 61

maximum size of each successive level is 8 more than the previous. So for both degree

3 and 4, the size of the levels increase at a constant rate.

For dimension 3, the evolution of the distance partition profiles for increasing

diameter k becomes more complicated. The profiles for the largest-known graphs of

degree 6 for diameter k ≤ 15 are shown in Table 5.2. For diameters with two

isomorphism classes, both have the same distance partition profile.

Table 5.2: Distance partition profiles for largest-known circulant graphs of
degree 6

Diameter Order Distance partition level
k LKcirc(6, k) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 7 1 6
2 21 1 6 14
3 55 1 6 18 30
4 117 1 6 18 38 54
5 203 1 6 18 38 62 78
6 333 1 6 18 38 66 94 110
7 515 1 6 18 38 66 102 134 150
8 737 1 6 18 38 66 102 142 174 190
9 1027 1 6 18 38 66 102 146 190 222 238
10 1393 1 6 18 38 66 102 146 198 246 278 294
11 1815 1 6 18 38 66 102 146 198 254 302 334 350
12 2329 1 6 18 38 66 102 146 198 258 318 366 398 414
13 2943 1 6 18 38 66 102 146 198 258 326 390 438 470 486
14 3629 1 6 18 38 66 102 146 198 258 326 398 462 510 542 558
15 4431 1 6 18 38 66 102 146 198 258 326 402 478 542 590 622 638

As for degree 5, the size of each new level is initially below its maximum value, but

now the number of increments to reach its maximum is not fixed at 1 but increases

with increasing diameter, so that the maximal zone, where the levels have reached

their maximum value, covers about the first two thirds of the levels. Also, the

difference between the maximum size of successive levels is no longer constant but

increases linearly. Degree 7 is similar, with distance partition profile independent of

isomorphism class and maximal zone covering two thirds of the levels. For the

largest-known circulant graphs of dimension 4, the evolution of the distance partition

profiles follows a similar structure but with certain differences. For both degree 8 and

9, the maximal zone covers about the first half of the levels, and the difference

between the maximum size of successive levels increases as a quadratic. For degree 9,

the two isomorphism classes for odd diameter share the same profile. We note that for

dimensions f = 2 to 4, the proportion of the distance levels covered by the maximal

zone is about 2/f . In Section 6.6, this proportion is proved to remain valid for all

higher dimensions, see Theorem 6.9.
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The use of distance partitions in the analysis of extremal graphs can be taken a stage

further by defining an extension of the intersection array that can be applied to

vertex-transitive graphs, called the total intersection array. So taking Godsil and

Royle’s example of the dodecahedron [16] which has distance partition profile

(1, 3, 6, 6, 3, 1) and standard intersection array
− 1 1 1 2 3

0 0 1 1 0 0

3 2 1 1 1 −

 , its total intersection array becomes


− 3 6 6 6 3

0 0 6 6 0 0

3 6 6 6 3 −

 .

With this definition, the sum of the elements in each column of the total intersection

array is equal to the corresponding element of the distance partition profile multiplied

by the degree. Total intersection arrays provide a useful view on the structure of the

graphs. The position of the first non-zero element in the middle row determines the

odd girth of the graph, and if all those elements are zero then the graph is bipartite.

They can also distinguish between non-isomorphic graphs of common degree,

diameter and order that might have the same distance partition profile. An example

is provided by the four isomorphism classes of extremal circulant graphs of degree 9

and diameter 3, which all have the same odd girth and distance partition profile.

These are easily proved to be distinct by determining their total intersection arrays,

which are all different; see Table 5.3.

Table 5.3: Extremal circulant graphs of the four isomorphism classes for degree
9, diameter 3

Distance
Diameter, Order, Odd partition Total intersection
k Extcirc(9, 3) Generating set girth profile array

3 130 {1, 8, 14, 47} 5 (1, 9, 40, 80)
 − 9 72 244

0 0 44 476
9 72 244 −


3 130 {1, 8, 20, 35} 5 (1, 9, 40, 80)

 − 9 72 242
0 0 46 478
9 72 242 −


3 130 {1, 26, 49, 61} 5 (1, 9, 40, 80)

 − 9 72 286
0 0 2 434
9 72 286 −


3 130 {2, 8, 13, 32} 5 (1, 9, 40, 80)

 − 9 72 234
0 0 54 486
9 72 234 −
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Reverting to the discussion on distance partition profiles, some obvious questions

arise.

1. What is the structure behind the maximum size of each level?

2. What is the logic behind the evolution of the size of each level until it reaches

its maximum?

3. What determines the number of levels in the maximal zone?

First we define a derived upper bound for the size of a level in the distance partition

of an Abelian Cayley graph.

Definition 5.3. For any Abelian Cayley graph of degree d ≥ 2 and diameter k ≥ 2,

the derived upper bound for the size of level l in its distance partition for 2 ≤ l ≤ k,

UpplevelAbCay(d, l), is determined by the first order difference of the Abelian Cayley upper

bound UppAbCay(d, l) described in Section 2.2 for increasing l, so that

UpplevelAbCay(d, l) = UppAbCay(d, l)− UppAbCay(d, l − 1).

Values for d ≤ 11 and l ≤ 10 are shown in Table 5.4.

Table 5.4: UpplevelAbCay(d, l), first order difference of the upper bound,
UppAbCay(d, l)

Dimension Degree Distance, l, from the reference vertex at level 0
f d 2 3 4 5 6 7 8 9 10

1 2 2 2 2 2 2 2 2 2 2
3 4 4 4 4 4 4 4 4 4

2 4 8 12 16 20 24 28 32 36 40
5 12 20 28 36 44 52 60 68 76

3 6 18 38 66 102 146 198 258 326 402
7 24 56 104 168 248 344 456 584 728

4 8 32 88 192 360 608 952 1408 1992 2720
9 40 120 280 552 968 1560 2360 3400 4712

5 10 50 170 450 1002 1970 3530 5890 9290 14002
11 60 220 620 1452 2972 5500 9420 15180 23292

These values are precisely the maximum size of each corresponding level of the

distance partitions. So over the range of degrees and diameters considered, we can see

that for each extremal and largest-known circulant graph each distance partition level

l is filled to the maximum determined by the upper bound UppAbCay(d, l). This is an

immediate consequence of the corresponding lattice covering of Zf . Lee spheres of

radius k, the diameter of the graph, provide a complete covering, with overlapping

that increases with dimension. For any given dimension and diameter, there will be a

critical value l∗ such that Lee spheres of radius l ≤ l∗ centred on the lattice do not

intersect each other. These values of l correspond to the maximal distance levels of

the graph. Formulae for UpplevelAbCay(d, l) as a function of l are presented for degree 2 to
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11 in Table 5.5. For the graphs of dimension 1 and 2, all the levels are maximal, with

the exception of the last level for degree 5. For dimension 3, the proportion of

maximal levels is about 2/3, for dimension 4 about 1/2 and for dimension 5 about

2/5. The exact number of maximal levels in each case is also shown in Table 5.5. For

f ≥ 2, we note that these proportions are represented by the expression 2/f . The

general validity of this ratio is proved in Chapter 6.

Table 5.5: Maximal distance partition levels of extremal and largest-known
circulant graphs of degree 2 to 11 and diameter k: size of each

maximal level, UpplevelAbCay(d, l), and the position of the last maximal
level

Dimension Degree UpplevelAbCay(d, 1) UpplevelAbCay(d, l), l ≥ 2 Last maximal

f d level

1 2 2 2 k
3 3 4 k

2 4 4 4l k
5 5 8l − 4 k − 1

3 6 6 4l2 + 2 b(2k + 1)/3c
7 7 8l2 − 8l + 8 b2k/3c

4 8 8 (8l3 + 16l)/3 b(k + 1)/2c
9 9 (16l3 − 24l2 + 56l − 24)/3 bk/2c

5 10 10 (4l4 + 20l2 + 6)/3 b(2k + 3)/5c
11 11 (8l4 − 16l3 + 64l2 − 56l + 36)/3 b(2k + 2)/5c

5.2 Distance partition profile by vertex type

We have seen that all the extremal and largest-known circulant graphs of degree 2 to

9 of arbitrary diameter k, above some threshold, have maximum odd girth, 2k + 1.

This means that only in the final distance partition level, k, relative to an arbitrary

root vertex, is any vertex adjacent to another in the same level. Thus, any vertex in

level l for 1 ≤ l ≤ k − 1 is adjacent only to vertices in level l − 1 or l + 1 and to none

in level l. In this sense, such a vertex may be defined as thin. As the degree, d, of

each vertex is fixed, if it is adjacent to s vertices in level l − 1 then it must be

adjacent to d− s in level l + 1, and such a thin vertex is defined to be of type Ts.

Vertices in level k may be adjacent to others in the same level but not of course to

any in a further level. Therefore, the type of these thin vertices is also well-defined by

the number of adjacent vertices in the preceding level.

Analysis of the extremal and largest-known circulant graphs of degree 2 to 9 reveals a

regular structure in the number of vertices of each type in each distance partition

level. Examples for graphs of degree 4, 6 and 8, all with diameter 12, are shown in
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Tables 5.6, 5.7 and 5.8, including the successive differences of the sequences at

appropriate order s, ∆s, in the maximal and submaximal zones.

Definition 5.4. The successive difference of order s, ∆s, of a sequence S, is defined

as follows. A first order difference sequence is created by taking the difference

between successive members of sequence S. For any n, an nth-order sequence is

created by taking the difference between successive members of the (n− 1)th-order

sequence. If there is an s such that the members of the sth-order sequence are a

constant value c > 0, say, then the original sequence S is defined to have an sth-order

difference of c, and we write ∆s = c. In case the members of S have a constant value

c, then we define ∆0 = c.

Table 5.6: Distance partition profile by vertex type: extremal graph of degree 4
and diameter 12

Vertex Distance partition level Differences
type 0 1 2 3 4 5 6 7 8 9 10 11 12 Maximal

T0 1
T1 4 4 4 4 4 4 4 4 4 4 4 4 ∆0 = 4
T2 4 8 12 16 20 24 28 32 36 40 44 ∆1 = 4

Total 1 4 8 12 16 20 24 28 32 36 40 44 48 ∆1 = 4

Table 5.7: Distance partition profile by vertex type: largest-known graph of
degree 6, diameter 12

Vertex Distance partition level Differences
type 0 1 2 3 4 5 6 7 8 9 10 11 12 Maximal Submaximal

T0 1
T1 6 6 6 6 6 6 6 6 ∆0 = 6 ∆0 = 0
T2 12 24 36 48 60 72 84 88 76 64 52 ∆1 = 12 ∆1 = −12
T3 8 24 48 80 120 168 226 274 306 322 ∆2 = 8 ∆2 = −16
T4 4 16 28 40 ∆1 = 12

Total 1 6 18 38 66 102 146 198 258 318 366 398 414 ∆2 = 8 ∆2 = −16

Table 5.8: Distance partition profile by vertex type: largest-known graph of
degree 8, diameter 12

Vertex Distance partition level Differences
type 0 1 2 3 4 5 6 7 8 9 10 11 12 Maximal Submaximal

T0 1
T1 8 8 8 8 8 8 4 ∆0 = 8 ∆0 = 0
T2 24 48 72 96 120 136 124 100 76 52 26 ∆1 = 24 ∆1 = −24
T3 32 96 192 320 476 624 720 752 720 624 ∆2 = 32 ∆2 = −64
T4 16 64 160 328 564 844 1124 1356 1495 ∆3 = 16 ∆3 = −48
T5 32 96 192 320 476 ∆2 = 32
T6 2

Total 1 8 32 88 192 360 608 944 1344 1760 2144 2448 2623 ∆3 = 16 ∆3 = −48
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In these examples for graphs of even degree, we can see that the number of different

vertex types increases with degree. Graphs of every degree contain type T1 vertices,

with their number remaining constant and equal to the degree within the maximal

zone, while becoming absent from the submaximal zone within the first few levels.

The number of each subsequent vertex type grows with a constant higher order

difference in the maximal zone before reversing with a constant difference of the same

order in the submaximal zone. In each case, the values of these constants depend only

on the degree and are independent of diameter. The graphs of odd degree display a

similar structure. Common parameters of all the distance partition profiles by vertex

type are presented in Table 5.9 for the maximal levels and in Table 5.10 for the

submaximal levels.

Table 5.9: Number of vertices of each type within maximal levels of extremal
and largest-known graphs of degrees 4 to 9 (dimension f = 2 to 4)

Vertex Even degree d = 2f Odd degree d = 2f + 1
type Ts Difference order Value Difference order Value

1 ≤ s ≤ f ∆s−1 2s
(
f
s

)
∆s−1 2s

(
f
s

)
s = f + 1 - - ∆f−1 2f

Table 5.10: Number of vertices of each type within submaximal levels of
extremal and largest-known graphs of degrees 6 to 9 (dimension

f = 3 and 4)

Vertex Even degree d = 2f Odd degree d = 2f + 1
type Ts Difference order Value Difference order Value

2 ≤ s ≤ f ∆s−1 −(s− 1)2s
(
f
s

)
∆s−1 −(s− 1)2s

(
f
s

)
s = f + 1 ∆f−2 f2f−1 ∆f−1 −(f − 1)2f

s = f + 2 - - ∆f−2 f2f−1

We will now prove for circulant graphs of any degree d and arbitrary diameter k that

the number of vertices of each type in each maximal level is determined by the same

upper bound UppAbCay(d, k) that has been proved to determine the total number of

vertices in each maximal level.

Theorem 5.5. For circulant graphs of any degree d, the number of vertices,

V T (d, s, l), of type Ts in distance partition level l ≥ 1, where the level is maximal, is

given by the following formulae.

For even degree d = 2f where f is the dimension, we have:

V T (d, s, l) =

(
f

s

) s∑
i=1

(−1)s−i
(
s

i

)
UpplevelAbCay(2i, l)
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and hence

V T (d, s, l) =


d for s = 1

2fs
∏s−1
i=1 2(f − i)(l − i)/(i+ 1)2 for s ≥ 2.

For odd degree d = 2f + 1 where f is the dimension, we have the recurrence relation:

V T (d, s, l) = V T (2f, s, l) + V T (2f, s− 1, l − 1) for s, l ≥ 2

and hence

V T (d, s, l) =



d for s = 1

2f(f − 1)(l − 1) + 2f for s = 2

2fs
∏s−1
i=1 2(f − i)(l − i)/(i+ 1)2

+2f(s− 1)
∏s−2
i=1 2(f − i)(l − 1− i)/(i+ 1)2 for s ≥ 3.

Proof. First, consider a circulant graph of even degree d and diameter k, being the

Cayley graph of a cyclic group with generating set G = {g1, ..., gf} where f = d/2 is

the dimension of the graph. Then the connection set is C = {±g1, ...,±gf}.

Let v be a vertex at distance l < k from an arbitrary root vertex u. Suppose for a

contradiction that a path of length l from u to v contains an edge generated by gi and

another edge generated by −gi for some gi ∈ G. As the group is Abelian the path

from u generated from the same set of edges after removing this pair would lead to v

after a distance of only l − 2, contradicting the premise that v is distant l from u.

Hence, if v is distant l from u then for any gi ∈ G no path of length l from u to v

contains edges generated by both gi and −gi.

Suppose there exists a path p of length l ≥ 2 from u to v with two of its edges

generated by different generators, say c1, c2 where |c1| = gi and |c2| = gj for some i, j

with 1 ≤ i < j ≤ f . Then as the group is Abelian, we may reorder the edges of p to

generate two distinct paths p1 = (x1, ..., xl−2, c1, c2) and p2 = (x1, ..., xl−2, c2, c1) from

u to v. Now consider the two vertices v1, v2 both distant l − 1 from u, reached by

following paths p′1 = (x1, ..., xl−2, c1) and p′2 = (x1, ..., xl−2, c2) from u. These are

distinct vertices within distance partition level l − 1 that are adjacent to v in level l.

Thus, v is connected to more than one level l − 1 vertex and so is not a type T1

vertex. Therefore, for any type T1 vertex in level l ≥ 1 there is only one path from u

of length l and each edge of the path is generated by the same element of the
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connection set. Also, every vertex on this path is also a type T1 vertex generated by

the same element. Conversely, every element of the connection set generates a unique

path from u passing through vertices which are all distinct type T1 vertices while the

distance partition level remains in the maximal zone by the definition of the upper

bound UppAbCay(d, l). Therefore, within the maximal zone the number of type T1

vertices in each level, V T (d, 1, l), will be equal to the degree d of the graph. This can

also be expressed as the product of the number of such vertices for each generator,

UpplevelAbCay(2, l) = 2 where UpplevelAbCay(d, l) = UppAbCay(d, l)− UppAbCay(d, l − 1) as

defined in an earlier section, and the number of generators, f , giving

V T (d, 1, l) = 2f = d.

Next, consider any two generators gi, gj ∈ G and all vertices in level l that can be

reached from root vertex u with a path of length l comprised only of edges ±gi and

±gj . As level l is maximal, by definition of the upper bound UppAbCay(d, k) there are

UpplevelAbCay(4, l) such vertices. We now restrict the vertex set to only those vertices

where the path includes at least one edge ±gi and one edge ±gj , so that l ≥ 2. As the

group is Abelian, each of these vertices will have at least one path from u with final

edge ±gi and at least one path with final edge ±gj , and clearly no paths with any

other final edge. Therefore, all these vertices are of type T2. The vertices with paths

only of edges ±gi or only of edges ±gj are excluded. Thus, the number of excluded

vertices is 2UpplevelAbCay(2, l), and so the number of T2 vertices in level l reached by paths

generated by the pair gi, gj is given by UpplevelAbCay(4, l)− 2UpplevelAbCay(2, l) = 4(l− 1). As

there are f(f − 1)/2 distinct pairs of generators, the total number of T2 vertices in

level l is given by V T (d, 2, l) = f(f − 1)/2× 4(l − 1) = d(d− 2)(l − 1)/2.

Similarly, the number of vertices of type T3 in level l ≥ 3 from any given triad of

generators is UpplevelAbCay(6, l)− 3UpplevelAbCay(4, l) + 3UpplevelAbCay(2, l) = 4(l − 1)(l − 2). As

there are f(f − 1)(f − 2)/6 distinct triads of generators, the total number of type T3

vertices in level is V T (d, 3, l) = d(d− 2)(d− 4)(l − 1)(l − 2)/12. Also, the number of

vertices of type T4 in level l ≥ 4 from any given set of four generators is

UpplevelAbCay(8, l)− 4UpplevelAbCay(6, l) + 6UpplevelAbCay(4, l)− 4UpplevelAbCay(2, l) =

8(l − 1)(l − 2)(l − 3)/3, and so the total number of type T4 vertices in level l is

V T (d, 4, l) = d(d− 2)(d− 4)(d− 6)(l − 1)(l − 2)(l − 3)/144. More generally, for even

degree d = 2f and any s ≥ 1,

V T (d, s, l) =

(
f

s

) s∑
i=1

(−1)s−i
(
s

i

)
UpplevelAbCay(2i, l).

This can be reformulated as: V T (d, s, l) = ds
∏s−1
i=1 (d− 2i)(l − i)/(i+ 1)2 for s ≥ 2.
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Now consider a circulant graph of odd degree d = 2f + 1 where f is the dimension,

and order n. If the generating set is G = {g1, ..., gf} then the connection set will be

C = {±g1, ...,±gf , n/2}. As the element n/2 has order 2, it can only generate a path

of length 1 to create one additional type T1 vertex in level 1 but no extra vertices of

type T1 in any higher levels. Consider any level l ≥ 2 within the maximal zone, and

any vertex v in this level. It is possible to reach v by a path comprised either of edges

generated by the non order 2 elements {±g1, . . . ,±gf} alone or else also by including

a single edge generated by the order 2 element n/2. It is not possible to reach any

given vertex v via paths of both cases as the level is within the maximal zone. So for

any s ≥ 2 the total number of vertices of type Ts in level l is the sum of the vertices

reached by paths of either case. The number in the first case is simply the result just

determined for a graph of even degree d = 2f : V T (2f, s, l). For the vertices in the

second case, where the path includes an edge n/2, as the group is Abelian we need

consider only those paths where the final edge is n/2. As vertex v is of type Ts in level

l, then the preceding vertex v′ on each path must be of type Ts−1 in level l − 1, where

the path to v′ is comprised of edges from the connection set C = {±g1, ...,±gf}.
Therefore, invoking the result for even degree again, the number of vertices in this

case is V T (2f, s− 1, l − 1). Hence, for a circulant graph of odd degree d = 2f + 1 we

have V T (d, s, l) = V T (2f, s, l) + V T (2f, s− 1, l − 1) for s, l ≥ 2.

We have seen how an analysis of their distance partitions reveals much interesting

structure of extremal and largest-known circulant graphs up to degree 9. These graphs

were all found to have odd girth that is maximum for their diameter. The maximum

number of vertices in each level of the distance partition was shown to be related to

an established upper bound for the order of Abelian Cayley graphs, UppAbCay(d, k).

These graphs all have a maximal zone where the levels achieve this upper bound, and

for degree d ≥ 5 a submaximal zone where they are smaller. Defining the type of each

vertex in a level according to the number of adjacent vertices in the preceding level,

the number of vertices of each type in each maximal level was also shown to be

related to the same upper bound. Finally, the total number of type T1 vertices in each

of these graphs was determined to be a linear function of their diameter.

We have observed for all the extremal and largest-known graphs of degree 4 to 9 that

the total number of type T1 vertices increases by 4 for every increase by 1 in the

diameter. We have also established that the number of type T1 vertices in each level

l ≥ 2 within the maximal zone is twice the dimension f , giving 2f . The resultant

ratio of 2/f gives a value of 1 for degree 4, 2/3 for degree 6, and 1/2 for degree 8.

This correlates with the proportion of levels that lie within the maximal zone for each

even degree. We also note, for the largest-known graphs of degree 6 to 9, having a
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submaximal zone, that the number of type T2 vertices in each level is initially 0 in

level 1, increases by 4
(
f
2

)
= 2f(f − 1) per level in the maximal zone, and then

decreases at the same rate in the submaximal zone after a limited transition

adjustment between the two zones.

5.3 Quasimaximality and maximum odd girth

Any Abelian Cayley graph of degree d ≥ 3 has at least two distinct generators that,

taken in either order, generate two distinct paths of length 2 between a single pair of

vertices. Hence, these graphs have girth of at most 4. However, the odd girth of a

non-bipartite Abelian Cayley graph of diameter k can vary from a minimum of 3 up

to a maximum of 2k + 1. It is observed that the extremal and largest-known circulant

graph families of degrees 2 to 11 all have odd girth that is maximum for their

diameter. On the other hand, the circulant graphs corresponding to Chen and Jia’s

lower bound have lower odd girth: for example, odd girth k for degree 8 where k ≡ 1

(mod 4), and (4k + 1)/5 for degree 10 where k ≡ 1 (mod 5).

We have already noted that all largest-known circulant graph families are

quasimaximal, meaning that the first two coefficients of their order polynomials are

equal to those of the Extreme Order Conjecture 3.1. For given dimension f and

arbitrary diameter k, this means that the order is given by:

n(d, k) =


1

2

(
4

f

)f
kf +

(
4

f

)f−1
kf−1 +O(kf−2) for even degree d(

4

f

)f
kf +O(kf−2) for odd degree d.

Of the circulant graph families of any degree so far discovered, it emerges that the

ones with maximum odd girth (2k + 1) are all quasimaximal. On the other hand, no

family with lower odd girth has been found to be quasimaximal. These relationships

are proved in Chapter 6. Subquasimaximal families that have order polynomial

unchanged in the first coefficient have second coefficient reduced by an integer

multiple of (4/f)f−1. This multiple is called the quasimaximal defect.

Definition 5.6. If an Abelian Cayley graph family has order polynomial in the

diameter k with first coefficient equal to the Extremal Order Conjecture 3.1 and lower

second coefficient, then the quasimaximal defect of the family is the difference in the

second coefficient expressed as a multiple of (4/f)f−1.

Some examples for degree 7, diameter class 0 (mod 3), are shown in Table 5.11. The

range of valid odd-girth defect increases with increasing quasimaximal defect.
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Table 5.11: The order and odd girth of some degree 7 circulant graph families
of diameter class k ≡ 0 with increasing quasimaximal defect

Quasimaximal Order Odd girth Odd-girth
defect polynomial in 2a defect
(second order coeff) (a = 2k/3)

Quasimaximal Maximum
0 (1 0 3 0) 2k + 1 0

Subquasimaximal Lower
1 (1 -1 0 0) 2k − 1 2

(1 -1 4 0) 4k/3 + 1 2k/3

2 (1 -2 1 0) 2k − 1 2
(1 -2 7 0) 2k − 3 4
(1 -2 6 -6) 4k/3 + 3 2k/3− 2
(1 -2 4 -2) 4k/3 + 1 2k/3
(1 -2 3 -2) 4k/3− 1 2k/3 + 2

3 (1 -3 9 -4) 2k − 1 2
(1 -3 15 0) 2k − 3 4
(1 -3 5 0) 2k − 5 6
(1 -3 12 0) 4k/3 + 3 2k/3− 2
(1 -3 10 0) 4k/3 + 1 2k/3
(1 -3 2 0) 4k/3− 1 2k/3 + 2

4 (1 -4 11 -12) 2k − 1 2
(1 -4 9 0) 2k − 3 4
(1 -4 21 0) 2k − 5 6
(1 -4 7 -24) 2k − 7 8
(1 -4 9 14) 4k/3 + 5 2k/3− 4
(1 -4 8 -20) 4k/3 + 3 2k/3− 2
(1 -4 14 0) 4k/3 + 1 2k/3
(1 -4 3 0) 4k/3− 1 2k/3 + 2

Furthermore, for all known circulant and Abelian Cayley graph families of arbitrary

dimension f , applying the standard conversion from diameter k to parameter 2a

where a = (2k + c)/f for corresponding constant c, such that the order polynomial

n(2a) is given by:

n(2a) =

 (ef . . . e0)/2 for even degree

(ef . . . e0) for odd degree,

then the ei are all integral. These observed relationships are proved for all Abelian

Cayley graphs in Chapter 6.

5.4 Conjugation

Two interesting relationships, conjugation and translation, may be observed between

the families of largest-known degree 6 and 7 circulant graphs and also between those

of degree 10 and 11. These relationships are not apparent when the formulae are
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expressed in conventional terms as polynomials in the diameter k, but become evident

when expressed in terms of the parameter a = (2k + c)/f , with constant c.

The first of these relationships, conjugation, relates quasimaximal graph families of

the same degree. The formulae for the order of some pairs of graph families have an

alternating inverse relation, where the coefficients of one are alternately equal and

negative to the other. Moreover, each generating set of one family is similarly related

to a generating set of the other family. This conjugate relationship may be seen for

the order of largest-known degree 6 graph families between diameter classes k ≡ 0 and

k ≡ 2 (mod 3) in Tables 2.3 and 4.1, and also for the order and generating sets of

degree 10 graph families, between F10:0 and F10:4 and between F10:1 and F10:3 in

Tables 4.6 and 4.8. For ease of reference, the example for F10:0 and F10:4 is

represented here in Table 5.12.

Table 5.12: Order and generating sets for degree 10 graph families F10:0 and
F10:4, demonstrating the conjugation

Order and Family F10:0, k ≡ 0 (mod 5) Family F10:4, k ≡ 4 (mod 5)
generating set Polynomial in 2a where a = 2k/5 Polynomial in 2a where a = (2k + 2)/5

LKcirc(10, k) ( 1 2 8 8 5 2 ) /2 ( 1 -2 8 -8 5 -2 ) /2

g1 ( 0 0 1 3 2 0 ) /2 ( 0 0 1 -3 2 0 ) /2
g2 ( 0 0 2 0 0 0 ) /2 ( 0 0 2 0 0 0 ) /2
g3 ( 0 0 2 3 3 2 ) /2 ( 0 0 2 -3 3 -2 ) /2
g4 ( 0 1 2 4 5 2 ) /2 ( 0 1 -2 4 -5 2 ) /2
g5 ( 0 1 1 2 0 0 ) /2 ( 0 1 -1 2 0 0 ) /2

The formulae defining both graph families (order and generating set) are essentially

the same, with the only difference being that the parameter a is taken positive in one

case and negative in the other. A worked example of this is presented in Table 5.13

where the order of F10:4 is defined by the formulae for F10:0 using negative values for

a. The same logic applies for their generators.

Table 5.13: Example of two degree 10 graph families sharing a common
definition of their order

Family F10:4 Common order, n = ( 1 2 8 8 5 2 ) / 2 Family F10:0

k ≡ 4 (mod 5) k : 9 4 - 0 5 10 k ≡ 0 (mod 5)
−a = (2k + 2)/5 a : -4 -2 - 0 2 4 a = 2k/5
−Order n : −14099 −457 - 1 1099 22805 Order

We have seen that the graph family F10:4 is conjugate to F10:0, and that F10:3 is

conjugate to F10:1. It is easily seen that F10:2 is self-conjugate. More generally, by

definition of the method of construction, for any quasimaximal circulant graph family

defined by formulae with positive values of a, taking negative values of a will produce

a valid quasimaximal graph family. Conjugation only applies to quasimaximal graph
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families because of the inversion of the second coefficient of the order polynomial.

Thus, the conjugate of a graph family that is subquasimaximal in the second

coefficient would have a second coefficient higher than quasimaximal, contrary to the

Extremal Order Conjecture 3.1. It can readily be checked that for degree 6, the

families of largest-known circulant graphs for the classes k ≡ 0 and k ≡ 2 (mod 3) are

also conjugate pairs, with the family for k ≡ 1 being self-conjugate. This is also true

for degree 8, between the families of largest-known graphs for the two classes k ≡ 0

and k ≡ 1 (mod 2) [23]. The alternating inverse relation for the orders of these

families is shown in Table 5.14.

Table 5.14: Order of largest-known degree 6 and 8 circulant graphs,
demonstrating the conjugation

Degree Diameter Order, LKcirc(d, k) Order, LKcirc(d, k)
d k (mod f) in terms of k in terms of 2a where a =

6 0 (32k3 + 48k2 + 54k + 27)/27 (1 2 3 2) / 2 2k/3
1 (32k3 + 48k2 + 78k + 31)/27 (1 0 3 0) / 2 (2k + 1)/3
2 (32k3 + 48k2 + 54k + 11)/27 (1 -2 3 -2) / 2 (2k + 2)/3

8 0 & 2 (k4 + 2k3 + 6k2 + 4k)/2 (1 2 6 4 0) / 2 k/2
1 & 3 (k4 + 2k3 + 6k2 + 6k + 1)/2 (1 -2 6 -4 0) / 2 (k + 1)/2

The same conjugation applies equally between pairs of quasimaximal graph families of

odd degree. For any dimension f and for any k with 0 ≤ k < f , we find that a family

of degree d and diameter class k is the conjugate of a family with diameter class

k∗ = f − 1− k if d is even and with diameter class k∗ = f − k if d is odd. This is

captured in Conjecture 5.7.

Conjecture 5.7. Let X = {X(d, k) : k ∈ K} be a quasimaximal circulant graph

family of degree d and corresponding dimension f = bd/2c for some diameter class K

with root diameter kX so that 0 ≤ kX < f . Let its order be a polynomial nX (2a) of

degree f , with generating set {g1(2a), g2(2a), . . . , gf (2a)} with a = (2k + c)/f where

c = (2(f − kX ) + bf/2c) mod f − bf/2c

Then there exists a quasimaximal circulant graph family Y = {Y (d, k′) : k′ ∈ KY},
conjugate to X , for diameter class KY with root diameter kY , with order

nY(2a′) = nX (−2a′) and generating set {g1(−2a′), . . . , gf (−2a′)}, where kY = f − 1− kX and a′ = (2k′ + 2− c)/f for even d

kY = f − kX and a′ = (2k′ − c)/f for odd d.
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5.5 Translation

The second relationship, translation, is only observed between pairs of Abelian Cayley

graph families of the same odd dimension. For circulant graph families, this is a given

family of odd order and even degree and another of odd degree. This relation is only

reflected in the formulae for the order and generators when expressed as polynomials

in the parameter 2a rather than the diameter k. For dimensions f = 3 and 5, with

appropriate pairing of diameter k (mod f) and definition of the parameter a in terms

of k, the polynomial in a for the order of each family of largest-known odd-order

degree 2f circulant graphs is exactly half the corresponding polynomial for the order

of the family of largest known degree 2f + 1 graphs. The generating set for the degree

2f family is the same as the one for the degree 2f + 1 family, modulo the order of the

graph. This relationship is demonstrated for the polynomials of graph order in Table

5.15, and presented below as Theorem 5.8.

Table 5.15: Correspondence between the order of families of largest known
circulant graphs of degree 2f with odd order and degree 2f + 1, for

odd dimension f = 3 and 5

Diam k Largest known odd-order degree 6 Diam k Largest known degree 7
(mod 3) LKcirc(6, k) where a = (mod 3) LKcirc(7, k) where a =

0 (1 2 3 2)/2 2k/3 2 (1 2 3 2) (2k − 1)/3
1 (1 0 3 0)/2 (2k + 1)/3 0 (1 0 3 0) 2k/3
2 (1 -2 3 -2)/2 (2k + 2)/3 1 (1 -2 3 -2) (2k + 1)/3

Diam k Largest known odd-order degree 10 Diam k Largest known degree 11
(mod 5) where a = (mod 5) LKcirc(11, k) where a =

0 (1 2 8 8 5 2)/2 2k/5 3 (1 2 8 8 5 2) (2k − 1)/5
1 (1 -4 12 -16 9 -4)/2 (2k + 3)/5 4 (1 -4 12 -16 9 -4) (2k + 2)/5
2 (1 0 6 0 5 0)/2 (2k + 1)/5 0 (1 0 6 0 5 0) 2k/5
3 (1 4 12 20 15 4)/2 (2k − 1)/5 1 (1 4 12 20 15 4) (2k − 2)/5
4 (1 -2 8 -8 5 -2)/2 (2k + 2)/5 2 (1 -2 8 -8 5 -2) (2k + 1)/5

(c5 c4 c3 c2 c1 c0)/b = (c5(2a)5 + c4(2a)4 + c3(2a)3 + c2(2a)2 + c1(2a) + c0)/b

Theorem 5.8. For any odd dimension f and any kX where 0 ≤ kX < f , let

X (2f + 1, kX ) be a family of Abelian Cayley graphs X(2f + 1, k) of odd degree 2f + 1

and diameter k for any k ≡ kX (mod f), with order defined by a polynomial nX (2a)

of degree f in the parameter a = (2k + c)/f where c ∈ {−(f − 1)/2, . . . , (f − 1)/2}
such that c ≡ −2kX (mod f), c being chosen so that a is integral, and with generating

set {g1(2a), . . . , gf (2a)} where gi(2a) are polynomials of degree at most f and taken

mod nX (2a).

For kY = (kX + (f − 1)/2) mod f , we define Y(2f, kY) to be the family of Abelian

Cayley graphs Y (2f, k′) of even degree 2f for any k′ ≡ kY (mod f) with order
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nY(2a′) = nX (2a′)/2 where a′ = (2k′ + c+ 1)/f and with generating set

{g1(2a′), . . . , gf (2a′)} mod nY(2a′).

Then for any such k′, Y (2f, k′) has diameter k′.

Proof. Let the lattice generating vectors for X be v1, . . . ,vf , and the corresponding

lattice LX . Let the involutory vector vm = 1
2

∑f
i=1 vi. Then by Proposition 2.2,

(Sf,k + LX) ∪ (Sf,k−1 + vm + LX) = Zf .

We can picture Sf,k + LX as forming an f -dimensional ‘chess board’ of black squares

covered by Lee spheres of radius k centred on the lattice points of LX . The spaces in

between, the white squares, are covered by Sf,k−1 + vm + LX , Lee spheres of radius

k − 1 centred on a copy of the lattice translated by vm. As the union

(Sf,k + LX) ∪ (Sf,k−1 + vm + LX) is a covering of Zf , any point P of Zf either lies

within distance k of the nearest lattice point Q1 of LX or lies within distance k − 1 of

the nearest lattice point Q2 of vm + LX , or possibly both if P lies within an

intersection of the two neighbouring Lee spheres. Therefore, the distance between Q1

and Q2, by the Manhattan norm, δ(Q1, Q2) ≤ 2k.

Let LY be the lattice corresponding to graph Y . By construction, vm ∈ LY and hence

LY = LX ∪ (vm + LX). In this case, all the Lee spheres have radius k′, the diameter

of Y . So the point P is within a distance k′ of one or other of Q1 and Q2, or both.

Hence δ(Q1, Q2) ≤ 2k′ + 1.

First, consider the case kX = 0 for family X . Given any k ≡ kX (mod f), let X be

the graph in X with diameter k. Then, applying the substitution a = 2k/f , we have

δ(Q1, Q2) ≤ 2k = af . As the lattice points for family Y are defined by the same

vectors as for the combined set of lattice points for family Y, we must also have

2k′ + 1 = af , so that a = (2k′ + 1)/f . This substitution gives integer values for a if

and only if k′ ≡ (f − 1)/2 (mod f) and f is odd. Similarly, for any diameter class

kX < f for X , the corresponding diameter class for Y is kY = (kX + (f − 1)/2)

mod f , again only in case f is odd.

Whilst for quasimaximal circulant graph families, translation is only evident when the

order of the even-degree family is odd, it emerges that translation actually occurs

between all Abelian Cayley graph families of odd dimension. For even-order

even-degree quasimaximal circulant graph families, their translates are Abelian Cayley

graph families of cyclic rank 2, and therefore are not apparent as a relation between

circulant graph families. The relationship describing all cases investigated depends on

whether the even-degree family has at least one odd cyclic order or if they are all
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even. If the even-degree Abelian Cayley graph family has at least one odd cyclic

order, then its odd-degree translate has equal cyclic rank. However, if the even-degree

family has only even cyclic orders, then its translate has cyclic rank increased by 1

with a corresponding cyclic order that has constant value. This rule applies equally to

all quasimaximal circulant graph families investigated. It is summarised in Table 5.16.

Table 5.16: Translation between pairs of quasimaximal Abelian Cayley graph
families of odd dimension f

Even degree de = 2f Odd degree do = 2f + 1
Cyclic rank At least one Cyclic rank Smallest

odd cyclic order cyclic order

r yes r -
r no r+1 constant

It appears that translation causes the number of even cyclic orders to be increased by

1. If the even-degree family contains odd cyclic orders, then one of these becomes

even, otherwise an extra constant-valued even cyclic order is created, increasing by 1

the cyclic rank of the family. This has not been proved and remains a conjecture.

Conjecture 5.9. For odd dimension f , let G be a quasimaximal Abelian Cayley

graph family of even degree 2f , and let H be its translate family. Suppose G has cyclic

rank r, of which s have odd cyclic order and the others even.

If s ≥ 1, then H also has cyclic rank r. The number with odd cyclic order is reduced

by 1 to s− 1, and the number with even cyclic order increased by 1 to r − s+ 1.

If s = 0, then H has cyclic rank increased by 1 to r + 1, all of even cyclic order.

Moreover, the smallest cyclic order is constant for all diameters.

Some examples for dimension 7 are presented in Table 5.17.

This relationship does not hold for subquasimaximal families. Table 5.18 shows an

example of an even-order subquasimaximal degree 6 circulant graph family

translating to an Abelian Cayley graph family of cyclic order 2, consistent with the

quasimaximal relationship. It also shows two examples where the graph families

translate to circulant graph families instead.
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Table 5.17: Translation examples for quasimaximal Abelian Cayley graph
families of dimension 7

Degree 14 Abelian Cayley graph families Degree 15 Abelian Cayley graph families
Diam Cyclic orders Diam Cyclic orders
class class

Odd-order degree 14 circulant graph families

0 (1 2 14 20 27 18 11 2) /2 4 (1 2 14 20 27 18 11 2)

1 (1 6 28 76 127 126 67 14) /2 5 (1 6 28 76 127 126 67 14)

3 (1 0 14 0 21 0 7 0) /2 0 (1 0 14 0 21 0 7 0)
odd even

Even-order degree 14 circulant graph families

0 (1 2 15 20 21 12 4 0) /2 4 (1 2 15 20 21 12 4 0) /4 × (4)

2 (1 -4 21 -46 50 -30 8 0) /2 6 (1 -4 21 -46 50 -30 8 0) /8 × (8)
even even even

Degree 14 Abelian Cayley graph families of cyclic rank 2 with at least one odd cyclic order

1 (1 5 24 56 69 43 10) /2 × (1 1) 5 (1 5 24 56 69 43 10) × (1 1)
odd odd even odd

3 (1 0 13 -2 7 2 0) × (1 0)/2 0 (1 0 13 -2 7 2 0) × (1 0)
even odd even even

Degree 14 Abelian Cayley graph families of cyclic rank 2 with all cyclic orders even

0 (1 2 16 20 13 6 0) /2 × (1 0) 4 (1 2 16 20 13 6 0) /2 × (1 0) × (2)

1 (1 5 25 59 54 16 0)/8 × (4 4) 5 (1 5 25 59 54 16 0) /4 × (2 2) × (2)

2 (1 -3 19 -29 12 0) /2 × (1 -1 0) 6 (1 -3 19 -29 12 0 0) /16 × (4 -4) × (4)
even even even even even

Table 5.18: Translation examples for even-order subquasimaximal circulant
graph families of degree 6

Degree 6 circulant families Degree 7 Abelian Cayley families
LGM Diameter Diameter

(odd basis) class Order class Cyclic orders

Translating to degree 7 Abelian Cayley graph family of cyclic rank 2 2a −1 −1
0 2a 0
2 1 2a+ 1

 0 (1 1 2 0)/2 2 (1 1 2 0)/2× (2)
even even even

Translating to degree 7 circulant graph family 2a −1 −1
1 2a 0
1 1 2a+ 1

 0 (1 1 2 0)/2 2 (1 1 2 0)
even even

 2a −1 −1
1 2a −2
1 1 2a− 1

 1 (1 -1 4 0)/2 0 (1 -1 4 0)
even even
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Chapter 6

The lattice generator matrix of an

Abelian Cayley graph family

In Chapter 6, we define the canonical lattice generator matrix (LGM) of an Abelian

Cayley graph family. Some interesting properties and relations are discussed for both

quasimaximal and subquasimaximal graph families: radius maximality and

eccentricity. An important theorem is established that proves the existence of all

graphs in an Abelian Cayley graph family given the existence of graphs of low

diameter. The equivalence is established of a graph family being quasimaximal, its

graphs having maximum odd girth and its canonical LGM being radius maximal. In

the final section, the graph family relationships of translation, conjugation and

transposition are defined in terms of their canonical LGMs.

The first two sections of this chapter define canonical formats for lattice generator

matrices of even and odd degree. They are defined in a natural way. For odd degree,

where each vector has one distinct element that includes the parameter a, the vectors

are ordered so that these elements lie on the leading diagonal. For odd degree, where

each element of each vector includes this parameter, the vectors are chosen and

ordered in a way that is simply derived from the canonical odd-degree format, as will

be made evident in Section 6.3.

6.1 Canonical even-degree lattice generator matrices

The lattice generator matrices constructed by Dougherty and Faber in their existence

proof of the largest-known degree 6 circulant graph families for the three diameter

classes display certain common features and may be presented in a standard,

canonical format. As mentioned in Section 2.1, lattice generator matrices for

even-degree graph families of dimension f are composed of any f independent vectors,

vi for 1 ≤ i ≤ f , out of a set of 2f−1 along with their inverses (2f in total). The

vector elements all have format ±(a± cij) where ci are constants and a = (2k + c)/f

for appropriate constant c. Therefore, the lattice vectors each have Manhattan length

fa = 2k plus a constant (or
√
fa in Euclidean norm). We now give the formal

definition of canonical even-degree LGM format.
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Definition 6.1. An f × f matrix over Z is in canonical even-degree LGM format if

all elements have format ±a+ cij , the coefficient of a is +1 in the first column and

leading diagonal and −1 elsewhere, and the Manhattan length of each row vector is

less than or equal to 2k + 1 where k is the diameter of the associated graph. This

restricts the choice of vectors and the order of the rows and columns to an extent.

The lattice generator matrices defined by Dougherty and Faber are shown below for

the three diameter classes k (mod 3):

k ≡ 0 k ≡ 1 k ≡ 2 a+ 1 a a
a −a a+ 1

a+ 1 a− 1 −a− 1

  a a a
a+ 1 −a a− 1
a− 1 a+ 1 −a

  a a a− 1
a− 1 −a a
a a− 1 −a

 .

These may be transformed into canonical format as follows. For k ≡ 0 and 2, define a

new first row by subtracting the first from the sum of the second and third, and

switch the last two rows. For k ≡ 1, reverse the sign of the second and third columns.

Then we have the following canonical set of lattice generator matrices for the degree 6

families:

k ≡ 0 k ≡ 1 k ≡ 2
a = 2k/3 a = (2k + 1)/3 a = (2k + 2)/3 a −a− 1 −a

a+ 1 a− 1 −a− 1
a −a a+ 1

 a −a −a
a+ 1 a −a+ 1
a− 1 −a− 1 a

 a− 1 −a− 1 −a+ 1
a a− 1 −a

a− 1 −a a

 .

Note that the sum of the absolute values of the elements in each row of the three

matrices, which is also the l1-length of each vector, equals 3a+ 1, 3a and 3a− 1

respectively, which is equal to 2k + 1 in each case. We will see that this length,

2k + 1, is invariant for the lattice generator matrix of any known quasimaximal

even-degree Abelian Cayley graph family. Such an even-degree lattice generator

matrix is called edge-maximal.

6.2 Canonical odd-degree lattice generator matrices

The lattice generating vectors determined by Dougherty and Faber for the

largest-known degree 7 circulant graph families for the three diameter classes may

also be presented in canonical format. As we have seen, in the even-degree case, any

independent set of f lattice generating vectors from a set of 2f−1 determines a lattice

generator matrix. However, the odd-degree case is quite restricted in that there are

only f candidate vectors to choose from: as illustrated in Section 2.1, each vector vi

has an element 2a+ bi in a unique position and constants in the others. Therefore,
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the lattice vectors each have edge length 2a plus a constant, in both Manhattan and

Euclidean norms. Here is the formal definition of canonical odd-degree LGM format.

Definition 6.2. An f × f matrix M over Z is in canonical odd-degree LGM format if

all elements in the leading diagonal have format 2a+ bi, all off-diagonal elements have

constant value cij , the trace of M , Tr(M) ≤ 4k where k is the diameter of the

associated graph, and each column sum is even.

The degree 7 lattice generator matrices defined by Dougherty and Faber are shown

below for each diameter class k (mod 3):

k ≡ 0 k ≡ 1 k ≡ 2
a = 2k/3 a = (2k + 1)/3 a = (2k − 1/3 2a 1 −1
−1 2a −1
1 1 2a

 2a− 1 −1 0
1 2a −1
0 1 2a− 1

 2a+ 1 −1 0
1 2a −1
0 1 2a+ 1


vm =(a a+ 1 a− 1) ( a a a− 1) (a+ 1 a a).

These are in canonical format, with the elements that include 2a on the leading

diagonal.

We also define an involutory vector vm =
∑

vi/2. In fact, odd-degree graphs have

two associated lattices. Apart from the principal lattice described above, we also have

an involutory lattice, which is a translation of the principal lattice by vm. The LGM

uniquely defines both lattices.

We make four observations about these matrices. Firstly, the column totals are even,

ensuring that the elements of vm are integral. Secondly, the trace of each matrix

equals 6a, 6a− 2 and 6a+ 2 respectively, which is equal to 4k in each case. Thirdly,

the off-diagonal elements form an antisymmetric matrix with elements valued at 0 or

±1 only, in which case the matrix is considered to have eccentricity 0.

Definition 6.3. Let M be a canonical odd-degree LGM, and cij and cji any

transpose pair of elements of M . The eccentricity, eccent(cij , cji), of this pair is

defined to be the maximum of two values: the excess above 1 of the larger absolute

value, and the absolute value of their sum. Thus

eccent(cij , cji) = max(max(|cij |, |cji|)− 1, |cij + cji|). The eccentricity of M is defined

to be the maximum eccentricity of its transpose pair elements. So

eccent(M) = maxi<j(eccent(cij , cji)).

With this definition, a canonical odd-degree LGM is off-diagonal antisymmetric with

off-diagonal elements 0, 1 and −1, if and only if its eccentricity is 0.
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The first of these three properties is true for all known odd-degree Abelian Cayley

graph families. The other two are true for all known quasimaximal odd-degree

Abelian Cayley graph families. A less obvious property, also shared by all known

quasimaximal odd-degree Abelian Cayley graph families is that the Manhattan

distance from vm to each of the lattice vectors is equal to the length of the involutory

vector vm, an invariant 2k. Moreover, the distance from vm to any vertex of the

lattice unit cell defined by the lattice vectors is the same invariant. Therefore, all the

vertices of the unit cell lie on the boundary of a Lee sphere of radius 2k centred on

vm. The distances from vm to the vertices are termed radii, and in this case the

lattice generator matrix is said to be radius maximal.

Definition 6.4. Let M be a canonical odd-degree LGM with lattice generating

vectors v1, . . . ,vf and involutory vector vm =
∑

vi/2. Then M is radius maximal if

δ(vi,vm) = 2k for all vi, where k is the diameter of the associated graph and δ is the

Manhattan norm.

6.3 Translation between even and odd degree

For odd dimension, the canonical lattice generator matrices for an odd-degree graph

family and its even-degree translate are directly related, and each can be determined

from the other. We demonstrate this with the example of the largest-known circulant

graph families for degree 6 diameter class 0, with lattice generator matrix

M6 = (w1,w2,w3)
T , and degree 7 diameter class 2, with lattice generator matrix

M7 = (v1,v2,v3)
T . Then

M6 =

 w1

w2

w3

 =

 a −a− 1 −a
a+ 1 a− 1 −a− 1
a −a a+ 1

 .

So  ∑
wi −w1

w2 −w1

w3 −w1

 =

 2a+ 1 −1 0
1 2a −1
0 1 2a+ 1

 = M7 =

 v1

v2

v3

 .

The involutory vector for M7, vm =
∑

vi = (a+ 1 a a). So v1 − vm
v2 + v1 − vm
v3 + v1 − vm

 =

 a −a− 1 −a
a+ 1 a− 1 −a− 1
a −a a+ 1

 = M6.

Construction 6.5. For any translate pair of Abelian Cayley graph families of odd

dimension f , the following formulae are valid for conversion between their lattice

generator matrices in canonical format. Let the even-degree lattice generator matrix
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be M2f = (w1,w2, . . . ,wf )T and the odd-degree one M2f+1 = (v1, v2, . . . , vf )T . Then

we have
w1

w2

. . .
wf

 =


v1 − vm

v2 + v1 − vm
. . .

vf + v1 − vm

 and


v1

v2

. . .
vf

 =


∑

wi − (f − 2)w1

w2 −w1

. . .
wf −w1

 .

It is often more useful to represent the LGM of an even-degree graph family by the

matrix translated by the formulae from its canonical lattice generator matrix into

canonical odd-degree format, called the lattice generator matrix odd basis of the

family, or LGM odd basis for short.

Definition 6.6. For arbitrary dimension f , let M2f be the canonical even-degree

lattice generator matrix of an Abelian Cayley graph family G of degree 2f . Let M2f+1

be the corresponding matrix defined by Construction 6.5. Then M2f+1 is in canonical

odd-degree LGM format and is the lattice generator matrix odd basis of the graph

family G, or LGM odd basis for short.

A noteworthy property is observed for even-degree families of even dimension.

Because the dimension is even, these graph families have no corresponding odd-degree

translates. Nevertheless, in all cases evaluated, applying the matrix translation

formulae to the canonical even-degree lattice generator matrix produces a matrix in

canonical odd-degree format. Moreover, if the even-degree family is quasimaximal,

then the translated matrix has the canonical format of a quasimaximal odd-degree

family, with off-diagonal elements forming an antisymmetric matrix of 0 and ±1

elements, that is, with eccentricity 0. This is a surprising feature, given that the

corresponding odd-degree graph family cannot exist.

There is just one respect in which the odd-girth format is not satisfied: the trace

corresponds to a non-integral diameter class. This is, of course, a consequence of the

reason why translation is invalid for even dimension f : that the conversion between

diameter classes includes a factor (f − 1)/2, which is only integral for odd dimension.

Here is an example for the largest-known circulant graph family of degree 8 and

diameter class 0 (mod 2), with order polynomial in 2a (1 2 6 4 0)/2 where a = k:

Lattice generator matrix LGM odd basis
a− 1 −a− 1 −a− 1 −a
a a− 1 −a− 1 −a− 1
a −a− 1 a− 1 −a− 1
a −a −a a+ 1




2a+ 1 −1 −1 −1
1 2a 0 −1
1 0 2a −1
1 1 1 2a+ 1

 .
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The LGM odd basis has the canonical format of a quasimaximal degree 9 family in

every respect except the trace, 8a+ 2, whereas the trace of such an LGM is always a

multiple of 4.

The canonical lattice generator matrix definition for odd degree is much tighter than

for even degree, for reasons already alluded to. Firstly, the structure of the odd-degree

lattice only admits f lattice vectors, where f is the dimension, which is exactly the

size of the matrix. In contrast, for the even-degree lattice there are 2f−1 distinct

lattice vectors (ignoring negatives) from which an independent set of f may be chosen

for the matrix, subject to the imposed restriction on the sign of a in each position.

A second reason is specific to Abelian Cayley graph families that are quasimaximal.

For all known quasimaximal odd-degree families, their LGM has eccentricity 0. This

important property is discussed in Section 6.4. It greatly restricts the range of

admissible candidate LGMs for quasimaximal odd-degree families.

6.4 Quasimaximal graph families and their LGMs

This section considers properties of odd-degree Abelian Cayley graph families and

their associated lattices and LGMs that are related to quasimaximality. These

properties are:

� a graph family is quasimaximal

� the graphs in a family have maximum odd girth

� the canonical LGM of a graph family has quasimaximal format

� the canonical LGM of a graph family is radius maximal

We first need to define what it means for an LGM to be quasimaximal.

Definition 6.7. A canonical odd-degree LGM M is defined to be quasimaximal if it

has eccentricity 0 and its trace Tr(M) = 4k.

Definition 6.8. A canonical even-degree LGM is defined to be quasimaximal if its

LGM odd basis is quasimaximal.

It is important to note that the term quasimaximal has two different but related

meanings depending on whether it is describing a graph family or a canonical LGM.

When applied to a graph family it means that the first two coefficients in the graph

family’s order polynomial are identical to those of the Extremal Order Conjecture 3.1.

When applied to a canonical LGM it means that the LGM (LGM odd basis, for even

degree) has eccentricity 0 and that its trace is equal to 4k where k is the diameter.
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Consider an Abelian Cayley graph family of odd degree d, with corresponding

dimension f = (d− 1)/2 and diameter class k∗ (mod f), and its canonical LGM

M = (v1 . . .vf )T with involutory vector vm =
∑

vi/2. Then the principal lattice L is

generated by M , and the involutory lattice is the translate of L by the involutory

vector vm. For the lattice of a graph of diameter k, an arbitrary point of Zf lies

within a Manhattan distance k of a principal lattice point or distance k − 1 of an

involutory lattice point. Hence δ(vi,vm) ≤ 2k for all vi. In particular, ||
∑

vi|| ≤ 4k.

The order of the graph is equal to the volume of the unit cell, given by the

determinant of M , and the question arises whether it is maximised only when these

inequalities are all at their limits. In such a case, we would have δ(vi,vm) = 2k for all

vi and ||
∑

vi|| = 4k, which is the definition of radius maximality, as observed for all

quasimaximal families studied.

Theorem 6.9. Let M be a canonical lattice generator matrix for an odd-degree

Abelian Cayley graph family G of dimension f with leading diagonal

(2a+ b1, . . . , 2a+ bf ) where a = (2k + c)/f for any diameter k in the diameter class

and for constant c chosen to ensure a is integral. If M is radius maximal, then the

off-diagonal elements are antisymmetric and the graph family G is quasimaximal.

Proof.

Let M =



2a+ b1 c1i · · · c1f
. . .

. . .
...

di1 − c1i 2a+ bi cif
...

. . .
. . .

df1 − c1f · · · dfi − cif 2a+ bf


=



v1

...

vi
...

vf


,

so that v1, . . . , vf are generating vectors for the principal lattice associated with the

graph family G. Let vm be the corresponding involutory vector, equal to half the

column totals of M . Observing that all the cij terms cancel out, and with δ as the

Manhattan norm, we have

δ(0,vm) = fa+
∑f

g=1 bg/2 +
∑f

g=2

∑g−1
h=1 dgh/2.

δ(vi,vm) = fa+
∑f

g=1 bg/2 +
∑f

g=2

∑g−1
h=1 dgh/2−

∑i−1
h=1 dih −

∑f
g=i+1 dgi.

δ(vi + vj ,vm) = fa+
∑f

g=1 bg/2 +
∑f

g=2

∑g−1
h=1 dgh/2−

∑i−1
h=1 dih −

∑f
g=i+1 dgi

−
∑j−i

h=1 djh −
∑f

g=j+1 dgj + 2dij , for i > j.

Note that the three above expressions all include a term fa+
∑f

g=1 bg/2 and a term

representing half the sum of the dgh with each dgh taken either positive or negative in

distinct combinations. As M is radius maximal, these three expressions all equal 2k
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for any i, j. We have 1 + f + (f − 1)(f − 2)/2 distinct combinations of the dgh to solve

for the values of the (f − 1)(f − 2)/2 different dgh. The trivial solution that dgh = 0

for all g, h is therefore the only solution, and so M is off-diagonal antisymmetric.

Consequently, we have fa+
∑f

g=1 bg/2 = 2k. So Tr(M) = 2fa+
∑f

g=1 bg = 4k.

Therefore, the graph family G is quasimaximal.

However, it is not the case that every matrix in the format of a radius-maximal

canonical quasimaximal odd-degree LGM has an associated Abelian Cayley graph

family. Consider the case for degree 9, diameter class k ≡ 0 (mod 2) with matrix

L =


2a −1 −1 0

1 2a 0 −1

1 0 2a 1

0 1 −1 2a

 , where a = k/2.

L is off-diagonal antisymmetric with elements |cij | ≤ 1. It is readily seen that

Tr(L) = 4k, δ(vm) = 2k, and δ(vi − vm) = 2k for all vi. Hence, L is in canonical

quasimaximal odd-degree LGM format and is radius maximal. However, there are

points within the lattice unit cell that do not lie within a distance k of any principal

lattice point, nor within k − 1 of vm. They are the points (1 a a 0) and (a 0 −1 a),

being the mid-points between vertices, defined by (v2 + v3)/2 and (v1 + v4)/2.

Therefore, the corresponding Lee spheres do not cover Zf and so L is not the LGM of

an associated Abelian Cayley graph family.

Reverting to the argument of Theorem 6.9 with its definition of the matrix M , in

order for M to be in canonical quasimaximal format it remains to show that for all

i < j, |cij | ≤ 1. By definition, vm lies at the centre of the lattice unit cell defined by

the lattice generating vectors v1, . . . , vf . As M is radius maximal, the vertices of the

unit cell are all distant 2k from vm. In order for the lattice to correspond to an

Abelian Cayley graph of diameter k, we require that all points Zf within the unit cell

are covered by a (k− 1)-sphere centred on vm and k-spheres centred on the vertices of

the unit cell. By construction, the (k − 1)-sphere does not intersect any of the

k-spheres, instead abutting each along a common face. As defined by M , the position

of the centre of each k-sphere varies across a hyperplane at constant Manhattan

distance 2k from vm, so that the common faces can slide in any direction that

maintains their non-intersecting contact.

It is instructive to explore the simplest interesting case, dimension 2 and degree 5,

with diameter 3, as illustrated in Figure 2.2 of Chapter 2. For simplicity, the graph
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vertex numbering is omitted from the following figures, but each square represents a

point in Z2. We will consider all configurations relative to vm and its (k − 1)-sphere,

so that each is defined by an offset of two neighbouring vertices, 0 and v2, relative to

vm. In this way, any configuration is fully specified by the pair of offset values.

Three examples for vertex 0 are shown in Figure 6.1.

Figure 6.1: Vertex 0 with offsets 0, +1 and −1

vm

(a) Offset 0

0

vm

(b) Offset +1

0

vm

(c) Offset −1

0

Also, three examples for vertex v2 are shown in Figure 6.2.

Figure 6.2: Vertex v2 with offsets 0, +1 and −1

vm

(a) Offset 0

v2

vm

(b) Offset +1

v2

vm

(c) Offset −1

v2

In the following configurations, intersecting Lee spheres will be coloured light blue in

the overlapping area. Any gap in coverage is coloured dark red. The width of each

configuration is defined to be the difference between the two offsets.

We first consider the balanced configuration with offset (0, 0), with corresponding

width 0, Figure 6.3. This configuration provides full coverage of Z2, and its associated

graph family is the extremal Abelian Cayley graph family A5, of cyclic rank 2,

documented in Appendix C, with order 4k2.
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Figure 6.3: Offset (0, 0), width 0.

v2

0 v1

vm

Offset (0, 0)
Width 0

LGM(
6 0
0 6

) (
2k 0
0 2k

)
vm = (3 3) (k k)

Cell size
2k × 2k = 4k2

Overlaps 2
Gaps 0

Next, we increase the offset of one of the vertices by 1, The alternatives are all

equivalent, and this example is with offset (0, 1), and thus width 1, Figure 6.4.

Figure 6.4: Offset (0, 1), width 1.

v2

0
v1

vm

Offset (0, 1)
Width 1

LGM(
5 −1
1 7

) (
2k − 1 −1

1 2k + 1

)
vm = (3 3) (k k)

Cell size
(2k − 1)(2k + 1) + 1 = 4k2

Overlaps 2
Gaps 0

This also provides full coverage of Z2. Its graph family is the extremal circulant graph

family F5 found in Appendix A, with order 4k2.
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For the third configuration, the offset is further increased to 2, giving an offset of (0,

2) and a width of 2, Figure 6.5.

Figure 6.5: Offset (0, 2), width 2.

v2

0

v1

vm

Offset (0, 2)
Width 2

LGM(
4 −2
2 8

) (
2k − 2 −2

2 2k + 2

)
vm = (3 3) (k k)

Cell size
(2k − 2)(2k + 2) + 4 = 4k2

Overlaps 3
Gaps 1

Although the unit cell size remains 4k2, there is an extra overlapped vertex per unit

cell and also a corresponding gap. The gap represents a vertex in the associated

graph that is distant more than k from reference vertex 0. Hence, this configuration

does not represent a graph family.

An alternative configuration with a width 2 is obtained with an offset (−1, 1), Figure

6.6.

The unit cell size is increased to 4k2 + 4. This exceeds the total size of the two Lee

spheres by 2, which is consistent with the partial covering of Z2 with no overlaps and

two gaps per unit cell.
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Figure 6.6: Offset (−1, 1), width 2.

v2

0

v1

vm

Offset (−1, 1)
Width 2

LGM(
6 −2
2 6

) (
2k −2
2 2k

)
vm = (4 2) (k + 1 k − 1)

Cell size
4k2 + 4

Overlaps 0
Gaps 2

If the offset of both vertices is increased from (0, 0) in step then the width remains 0.

In this final example the offset is (1, 1), giving a width of 0, Figure 6.7.

Figure 6.7: Offset (1, 1), width 0.

v2

0 v1

vm

Offset (1, 1)
Width 0

LGM(
4 0
0 8

) (
2k − 2 0

0 2k + 2

)
vm = (2 4) (k − 1 k + 1)

Cell size
(2k − 2)(2k + 2) = 4k2 − 4

Overlaps 6
Gaps 0
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The unit cell size is reduced to 4k2 − 4 and is fully covered, with six overlaps. Its

associated graph family is Abelian Cayley with cyclic rank 2, and although

quasimaximal is clearly not extremal.

These examples illustrate some relationships which are valid for all radius-maximal

degree 5 configurations.

� If the coverage is full, then the graph family exists and is quasimaximal

� If there are gaps in the coverage, then the graph family does not exist (at least

not with the given diameter)

� The vector matrix in canonical odd-degree LGM format has off-diagonal

elements of magnitude equal to the offset width

� If the offset width is 0, then the graph family exists and is quasimaximal

Abelian Cayley with cyclic rank 2

� If the offset width is 1, then the graph family exists and is quasimaximal

circulant

� If the offset width is 2 or more, then the graph family does not exist

By construction, the magnitude of the off-diagonal elements of the associated LGM is

equal to the offset width, with their signs depending on the direction of the offsets.

Therefore, we have quasimaximal Abelian Cayley graph families of cyclic rank 2

associated with LGMs with zero-value off-diagonal elements, quasimaximal circulant

graph families with off-diagonal elements of magnitude 1, and no quasimaximal graph

families with off-diagonal LGM elements of magnitude 2 or more.

All these configurations represent graph families that are quasimaximal if they exist.

The basic configuration with offset (0, 0) represents the fully symmetric case. It

generalises directly to any dimension f for diameter class k ≡ 0 (mod f), with offset

(0, ..., 0), generating a quasimaximal Abelian Cayley graph family of maximal cyclic

rank, f , and LGM


2a 0 . . . 0

0 2a
. . .

...
...

. . .
. . . 0

0 . . . 0 2a

 with a = 2k/f , so that its order is (4/f)fkf .

This establishes a simple Abelian Cayley graph lower bound for any odd degree.

Increasing both offsets equally, so that the offset width is unchanged, as exemplified

by comparing (0, 0) with (1, 1), serves only to compress the configuration along an

axis, increasing the Lee sphere overlaps and decreasing the size of the unit cell.
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A key question is why there is no quasimaximal degree 5 graph family for offset width

2 or above. The issue is a gap that is created near the four corners of the

(k − 1)-sphere, where the overlaps occur with offset (0, 0), Figure 6.3. When the

width is increased from 0 to 1, with offset (0, 1) as illustrated in Figure 6.4, but

equivalently with (0, −1), (−1, 0) or (1, 0), the overlap at that position is eliminated.

Instead, the two k-spheres and two (k − 1)-spheres abut precisely at a point for a

perfect tiling in that region. Any second step increasing the offset width to 2 opens a

single gap next to this position. The two possible cases from offset (0, 1) are

illustrated by offsets (0, 2) and (−1, 1), Figures 6.5 and 6.6. To isomorphism, there

are no other configurations.

We now extend the argument to higher dimension f . For a simple example, we take

even dimension f ≥ 4, diameter class k ≡ 0 (mod f/2), odd degree d = 2f + 1 and

LGM, M =



2a 0 0 . . . 0

0 2a 0 . . . 0

0 0
. . .

. . .
...

...
...

. . . 2a 0

0 0 . . . 0 2a


where a = 2k/f .

The associated lattice, L, forms a covering of Zf with Lee spheres of radius k, and the

corresponding Abelian Cayley graph family is quasimaximal.

Now consider a variant of M , M ′, with just one eccentric pair of elements.

M ′ =



2a 2 0 . . . 0

−2 2a 0 . . . 0

0 0
. . .

. . .
...

...
...

. . . 2a 0

0 0 . . . 0 2a


=



v1

...

vf


.

It has eccentricity 1, and associated lattice L′. Its involutory vector is

vm = (a− 1 a+ 1 a . . . a). Let points u1 and u2 be defined by u1 = (v1 + w)/2 and

u2 = (v2 + w)/2 where w is the sum of any (f − 2)/2 of v3, . . . ,vf .

It is easily seen that u1 is distant fa/2 + 1 = k + 1 from v1 and vm and at least this

distance from the other vi, and similarly for u2. Hence L′ does not form a covering of

Zf with Lee spheres of radius k. Thus M ′ is not the LGM of an associated

quasimaximal graph family. In every instance investigated of a matrix in canonical

format with positive eccentricity, it was verified not to be the LGM of a quasimaximal

graph family. Unfortunately, it has not yet been possible to prove that this is always

the case. Therefore, this result is only presented here as a conjecture.

Robert Roderick Lewis



6.5 Subquasimaximality and eccentricity 93

Conjecture 6.10. Let M be a canonical lattice generator matrix for a quasimaximal

odd-degree Abelian Cayley graph family. Then M has eccentricity 0 and is therefore

quasimaximal.

The following theorem establishes that any odd-degree Abelian Cayley graph family

with radius-maximal LGM has maximum odd girth, and the converse.

Theorem 6.11. Let G be an odd-degree Abelian Cayley graph family, with lattice

generator matrix M . If M is radius maximal, then the graphs of G have maximum

odd girth, 2k + 1, for diameter k. In particular, the graphs are not bipartite.

Conversely, if the graphs of G have maximum odd girth, 2k + 1, for diameter k, then

M is radius maximal.

Proof. Let the LGM be M = (v1, . . . , vf )T for dimension f , and let the involutory

generator be vm. As M is radius maximal, the Manhattan distance from any

principal lattice point of the unit cell to the centre, defined by vm, is an even distance

2k. Thus, the distance between any two principal lattice points is also even. As the

graphs are vertex transitive, we may consider any cycle to start and finish at principal

lattice points in Zf . Within Zf any path that starts and finishes at the same lattice

point must have even length. The only path in Zf that generates an odd length cycle

in the graph is one between a principal lattice point and an involutory lattice point.

This distance is even, to which a final step is added to jump from the involutory

lattice point back to the principal one. The shortest path between such points has

length 2k, and therefore the shortest odd cycle has length 2k + 1.

Conversely, suppose that M is not radius maximal. Then there is a principal lattice

point, say vi, with Manhattan distance δ(vi,vm) < 2k. As this distance must be

even, the graph contains an odd cycle of length less than 2k + 1.

6.5 Subquasimaximality and eccentricity

In this section we consider subquasimaximal Abelian Cayley graph families and their

associated canonical LGMs. Definition 3.2 defined that a family is subquasimaximal if

the first coefficient of its order polynomial is lower than the Extremal Order

Conjecture, or if its first coefficient is equal and its second coefficient is lower.

We know that the order of a graph family is equal to the magnitude of the

determinant of its lattice generator matrix. In the following, we will initially consider

LGMs in canonical format for odd-degree families. Let M be the LGM in canonical

format of an odd-degree graph family of dimension f , diameter class k ≡ k∗ (mod f),
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with a = (2k + c)/f , where c is chosen to ensure a is integral, so that

M =


2a+ b1 c1,2 . . . c1,f

c2,1 2a+ b2 . . . c2,f
...

...
. . .

...

cf,1 cf,2 . . . 2a+ bf

 .

Then order

n = det(M) = (2a)f +
∑

bi(2a)f−1 + (
∑
i<j

bibj −
∑
i<j

cijcji)(2a)f−2 +O((2a)f−3)

= (1
∑

bi
∑
i<j

bibj −
∑
i<j

cijcji . . . ).

Note that the second coefficient of the order polynomial in 2a is
∑
bi. If the graph

family is quasimaximal, then its trace is equal to 4k and so 4k = 2fa+
∑
bi. If the

family is subquasimaximal, then its quasimaximal defect (see Definition 5.6) is given

by 4k − 2fa−
∑
bi.

For quasimaximal odd-degree Abelian Cayley graph families, it has been observed

that their canonical LGMs have eccentricity 0, which means that their off-diagonal

elements are antisymmetric with magnitude 0 or 1 only. Figure 6.8 shows the valid

combinations of transpose pairs of elements for low values of eccentricity. In each case

the valid region lies on or within the boundary.

Figure 6.8: Valid regions of transpose pairs for eccentricity 0 to 2
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A study of over one hundred Abelian Cayley graph families of degree 7 and diameter

class k ≡ 0 (mod 3), covering a range of quasimaximal defect from 0 (quasimaximal)

to 4, revealed a clear relation between quasimaximal defect and eccentricity. A

representative family for each defect is shown in Table 6.1. These examples all have

eccentricity equal to their quasimaximal defect. However, for every quasimaximal

defect investigated, graph families were found with eccentricity taking every value up

to and including the defect. The sole exception is that there can be no graph families

with odd quasimaximal defect and zero eccentricity because of LGM parity

constraints.

Table 6.1: Quasimaximal defect and eccentricity for selected degree 7 graph
families

Quasi- Lattice Max Max
maximal Order generating off-diag off-diag Eccentricity

defect a = 4k/3 matrix |cij | |cij + cji|

0 (1 0 3 0)
 2a −1 1

1 2a 1
−1 −1 2a

 1 0 0

1 (1 -1 5 -8)
 2a− 1 −2 −1

1 2a− 1 2
2 −1 2a+ 1

 2 1 1

2 (1 -2 9 -8)
 2a− 1 −2 −3

2 2a− 1 −1
1 1 2a

 3 2 2

3 (1 -3 15 0)
 2a− 1 −4 −3

1 2a− 1 −2
2 1 2a− 1

 4 3 3

4 (1 -4 23 0)
 2a− 2 −5 −3

1 2a− 1 −2
3 2 2a− 1

 5 4 4

An extensive investigation was also undertaken on all circulant graph families of

degree 6 and diameter class k ≡ 1 (mod 3) with canonical LGM M with minimum

range 2, that is M = (±a+ bij) where |bij | ≤ 2. A total of 3140 families were

analysed, revealing quasimaximal defect ranging up to 12 and eccentricity of their

LGM odd basis not exceeding the quasimaximal defect in each case, see Table 6.2.

The reason why the eccentricity of subquasimaximal families can increase up to a

maximum equal to the quasimaximal defect of the family is apparent from

consideration of the corresponding lattice covering of Zf . This can most easily be

seen in an example for degree 5, exploring the consequences of increasing by 1 the
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96 6 The lattice generator matrix of an Abelian Cayley graph family

Table 6.2: Number of degree 6 circulant graph families in sample, by
quasimaximal defect and eccentricity

Quasi-
maximal Eccentricity

defect 0 1 2 3 4 5 6 7 8 9 10 11 12

0 16
1 0 115
2 6 94 144
3 0 46 218 98
4 1 25 190 183 44
5 0 16 126 187 104 28
6 1 10 83 144 112 76 25
7 0 11 46 93 79 83 67 14
8 0 8 28 56 49 65 66 35 3
9 0 7 14 23 29 36 49 32 4 0
10 1 3 5 12 10 23 20 22 4 0 0
11 0 1 2 2 5 8 10 8 4 0 0 0
12 0 0 0 0 2 2 3 4 0 0 0 0 0

quasimaximal defect of the quasimaximal configuration with offset (0, 0) presented in

Section 6.4.

Relative to the centre of the lattice unit cell, vm, the quasimaximal defect is increased

by 1 by moving one of the lattice points to a neighbouring point of Z2 such that its

Manhattan distance from vm is reduced by 1. Starting from the configuration shown

in Figure 6.9(a), quasimaximal with offset (0, 0), this can be achieved in four ways:

(0, 1, 0) Move 0 1 to the right

(0, 0, 1) Move 0 1 upwards

(v2, 1, 0) Move v2 1 to the right

(v2, 0, −1) Move v2 1 downwards.

The first way, Move (0, 1, 0), is shown as the configuration in Figure 6.9(b).

As expected, the number of everlaps per unit cell is increased by 6 from (2 to 8),

being the length of v2 in the direction normal to the move. This changes the LGM

from

(
6 0

0 6

)
to

(
5 0

−1 6

)
. The difference is

(
−1 0

−1 0

)
, so that the trace is

reduced by 1 (necessarily equal to the increase in quasimaximal defect) and element

c21 is also reduced by 1. Similarly, Move (v2, 1, 0) changes the LGM by

(
−1 0

1 0

)
,

reducing the trace by 1, but increasing c21 by 1. The other two moves change the

LGM by

(
0 −1

0 −1

)
and

(
0 1

0 −1

)
, again reducing the trace by 1 and changing

element c12 by −1 and +1 respectively.
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Figure 6.9: Increasing quasimaximal defect

v2

(a) Quasimaximal, offset (0, 0)

0 v1

vm

v2

(b) Subquasimaximal, 0 moves 1 to right

0 v1

vm

Similarly, for every initial configuration, these four moves have the effect of reducing

the trace by 1 and increasing or decreasing either off-diagonal element by 1. At least

one of these changes to an off-diagonal element has the effect of increasing the

eccentricity by 1. Others may leave the eccentricity unchanged or reduce it by 1,

depending on the initial configuration. Now the trace defines the quasimaximal

defect. So for every increase by 1 in the quasimaximal defect, the maximum

attainable eccentricity is increased by 1. Therefore, for any degree 5 circulant graph

family, the eccentricity will be less than or equal to the quasimaximal defect.

The restriction that a graph family with odd quasimaximal defect cannot have 0

eccentricity arises from the fact that the off-diagonal transpose pairs have even

magnitude whereas the trace is odd, conflicting with the requirement that the sum of

all elements of the LGM must be even.

The above arguments can be generalised to odd degree graph families and LGMs of

any dimension. This is formalised in the following conjecture.

Conjecture 6.12. For any odd-degree Abelian Cayley graph family of dimension f ,

the eccentricity of its lattice generator matrix is less than or equal to its quasimaximal

defect. Moreover, for any quasimaximal defect, there exist graph families with every

such eccentricity, with the sole exception that no graph family with odd quasimaximal

defect has 0 eccentricity.
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6.6 Maximal distance partition levels of quasimaximal graphs

In Section 5.1 we discussed the distance partition profile of the extremal and

largest-known circulant graph families up to degree 11. The observation was made

that the proportion of maximal partition levels for any dimension f remains constant

with increasing diameter at a value of 2/f within a small constant, as shown in Table

5.5. This proportion is valid for all quasimaximal Abelian Cayley graph families of

any dimension, as demonstrated in the following theorem.

Theorem 6.13. The number of maximal distance partition levels in a quasimaximal

Abelian Cayley graph family of dimension f , for any diameter k above some small

threshold k′, is equal to (2k + s)/f , where k′ and s are constants depending on the

family.

Proof. Let M be a canonical LGM of a quasimaximal Abelian Cayley graph family of

dimension f (or LGM odd basis, for even degree). Then each lattice generating vector

vi has an element of magnitude 2a+ bi in position i, with all other elements of

magnitude 0 or 1, where a = (2k + c)/f for suitable constant c. Thus, the Manhattan

distance between the closest pair of vertices of the lattice unit cell is 2a+ e for some

constant e with |e| < 2(max bi + f). Consider Lee spheres of radius l centred at every

unit cell vertex. None of these will intersect if l ≤ ba+ e/2c. Therefore, distance

partition level l is maximal. But if l > ba+ e/2c at least two of the Lee spheres will

intersect, so that the level will not be maximal. Hence, the highest maximal distance

level is at l = ba+ e/2 + 1c = b(2k + c+ f(e/2 + 1))/fc.

6.7 Existence proof method for graph families

The original existence proof for Abelian Cayley graph families was developed by

Dougherty and Faber [10] and is described in Section 2.4. It is exemplified for degrees

8 and 10 in Sections 4.4 and 4.5, and has two parts: first identify an associated LGM,

and then check all the exceptional cases that arise at the interfaces between the

corresponding Lee spheres to ensure there are no gaps in the covering. For the

largest-known degree 8 circulant graph families, resolution of the exceptional cases

covered 16 pages [27]. For degree 10, full documentation of all exceptional cases runs

to over 10,000 pages of text and was undertaken with a dedicated computer program.

This is already unreadable other than by random sampling to check its validity. For

higher degree, the size of the problem becomes unmanageable.

However, using knowledge of the structure of odd and even LGMs in canonical form,

it is possible to prove the existence of Abelian Cayley graph families quite simply
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from the existence of a single member with low diameter. The principle is that with

increasing diameter, the lattice expands at the same rate as the radius of the Lee

spheres centred on the lattice points, so that the boundaries of neighbouring Lee

spheres maintain their relative positions where they touch or overlap. So if there is a

covering of the space Zf for one diameter in its diameter class, then all higher

diameters in the class will retain the covering. There is one proviso, that the sign of

each element of the LGM must remain unchanged as the diameter increases, so that

the distance between two neighbouring lattice points increases linearly with diameter.

This defines a minimum diameter threshold for each LGM. We start with two

lemmas, for even and odd degree respectively.

Lemma 6.14. Let K = {k : k ≡ k∗ (mod f), k ≥ k∗} be a diameter class for some

k∗ < f . Let a = (2k + c)/f where the constant c is chosen so that a is integral for any

k ∈ K. Let M be an f × f matrix in canonical even-degree LGM format, and

Lk ⊂ Zf its associated lattice. If there exists a k′ ∈ K such that Lee spheres of radius

k′ centred on the lattice points of Lk′ form a covering of Zf , and such that the sign of

each element of the LGM remains constant for all k ∈ K with k ≥ k′, then Lee

spheres of radius k centred on the lattice points of Lk also form a covering of Zf for

any k ∈ K with k > k′.

Proof. First, we consider the case with diameter k′ and let a′ = (2k′ + c)/f . As M is

canonical, the Manhattan length of each generating vector, vi is a′f + ei for some

constants ei. Also, the radius of the Lee spheres is k′ = (a′f − c)/2, which is sufficient

to achieve a covering of Zf .

Now the diameter is increased by f to k′ + f , so that the parameter a is increased by

2 to a′ + 2. Thus, the length of each lattice generating vector is increased by 2f and

the Lee sphere radius by f . So the combined reach of the two Lee spheres centred on

neighbouring lattice points is increased by 2f , equal to the increased separation of

their centres. This leaves the relative position of their common boundaries unaltered,

so that the covering is maintained.

Lemma 6.15. Let K and a be defined as in Lemma 6.14. Let M be an f × f matrix

in canonical odd-degree format with row vector vi, involutory vector vm, and with

associated principal lattice Lk ⊂ Zf and involutory lattice L′k. If there exists a k′ ∈ K
such that Lee spheres of radius k′ centred on the lattice points of Lk′ and Lee spheres

of radius k′ − 1 centred on the lattice points of L′k′ form a covering of Zf , and such

that the sign of each element of the LGM remains constant for all k ∈ K with k ≥ k′,
then Lee spheres of radius k centred on the lattice points of Lk and Lee spheres of

Robert Roderick Lewis



100 6 The lattice generator matrix of an Abelian Cayley graph family

radius k − 1 centred on the lattice points of L′k also form a covering of Zf for any

k ∈ K with k > k′.

Proof. First, we consider the case with diameter k′ and let a′ = (2k′ + c)/f . As M is

canonical, the Manhattan distance between any vertex v of the principal unit cell of L

and the point defined by vm is a′f + e for some constant e depending on v. Also, the

sum of the radii of the Lee spheres centred on v and vm is 2k′ − 1 = a′f − c− 1,

which is sufficient to achieve a covering of Zf .

When the diameter is increased by f , the parameter a is increased by 2. Thus, the

distance between the two lattice points is increased by 2f and the sum of the radii

also by 2f . Hence, the combined reach of the Lee spheres increases in line with the

increased distance between their centres. This leaves the relative position of their

common boundaries unaltered, so that the covering is maintained.

These two lemmas, 6.14 and 6.15, establish the Existence Proof Theorem for Abelian

Cayley graph families.

Theorem 6.16. Existence Proof Theorem for Abelian Cayley graph families. Let M

be a matrix in the format of a canonical lattice generator matrix of either odd or even

degree. If its associated Abelian Cayley graph exists for a given diameter k′ within its

diameter class, and such that the sign of each element of the LGM remains constant

for all greater diameters within its class, then the graph family exists for all greater

diameters within its class, and M is its LGM.

Proof. Directly from Lemmas 6.14 and 6.15.

The existence of the covering in Zf and of the associated Abelian Cayley graph at a

given diameter does not necessarily imply that each member of the family has the

same cyclic rank. For example, the graph at the root diameter might be circulant

while the graph at the next diameter in its diameter class might be non-circulant

Abelian Cayley with cyclic rank 2. The cyclic rank of a graph will be higher whenever

the cyclic order and generator values for a cyclic dimension would otherwise have a

greatest common divisor above 1.

6.8 Quasimaximal equivalence and properties

In this section, a final theorem is established to complete the frame of equivalence and

properties of quasimaximal Abelian Cayley graph families and their lattice generator

matrices (LGMs). In Section 6.4, Theorem 6.9 shows that if the canonical LGM of an
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6.8 Quasimaximal equivalence and properties 101

odd-degree Abelian Cayley graph family is radius maximal then the family is

quasimaximal. We now establish the converse, that if a graph family is quasimaximal

then its canonical LGM is radius maximal.

Theorem 6.17. The canonical lattice generator matrix of a quasimaximal odd-degree

Abelian Cayley graph family is radius maximal.

Proof. We will prove that if the LGM is not radius maximal, then its Abelian Cayley

graph family is not quasimaximal. Consider a lattice L in Zf generated by a

radius-maximal canonical odd-degree LGM, M = (v1 . . .vf )T , with involutory vector

vm =
∑

vi/2. Let Lp be the principal lattice generated by the vectors of M . Then its

involutory lattice is Lp + vm, and L = Lp ∪ (Lp + vm). The corresponding lattice

covering is comprised of Lee spheres of radius k centred on the principal lattice points

and Lee spheres of radius k − 1 centred on the involutory lattice points. As M is

radius maximal, |vi − vm| = 2k for any i. Thus neighbouring pairs of Lee spheres of

radius k and k − 1 abut precisely at an (f − 1)-dimensional hyperplane parallel to

their common faces. Each point in the neighbourhood is either within Manhattan

distance k of the principal lattice point or within k − 1 of the involutory lattice point,

but not both. There is no overlap nor gap between the faces of either sphere.

In contrast, if any radius is submaximal, then the corresponding faces of neighbouring

Lee spheres will overlap at the (f − 1)-dimensional cross-section to a depth equal to

the extent of submaximality, assumed constant. Then the overlap for each involutory

Lee sphere will have a volume of ckf−1 +O(kf−2) for some constant c. This volume

reduces the second coefficient of the order polynomial of the corresponding Abelian

Cayley graph family, so that the family is no longer quasimaximal.

Combining Theorems 6.9, 6.11 and 6.17, we establish that the following three

statements about an odd-degree Abelian Cayley graph family are equivalent.

� The graph family is quasimaximal

� The graph family has maximum odd girth

� Its LGM is radius maximal.

If any one of these three statements is true, then the other two are also true. In this

case, its LGM is off-diagonal antisymmetric, and according to Conjecture 6.10 its

LGM is quasimaximal. By translation between even and odd degrees of the same

dimension, it is inferred that these relationships established for the LGM of

odd-degree graph families apply equally to the LGM odd basis of even degree graph

families. This is supported by the degree 6 investigation described in Section 6.5.

These important relationships are presented graphically in Figure 6.10.
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Figure 6.10: Summary of the main quasimaximal relationships for an Abelian
Cayley graph family and its LGM (LGM odd basis, for even

degree)

Graph family is
quasimaximal

Theorem 6.17

Theorem 6.9

Its LGM is
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Theorem 6.11

Graph family has
maximum odd-girth

Its LGM is
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Theorem 6.9

Its LGM is
quasimaximal

Conjecture 6.10

6.9 Relationships between families: translation, conjugation,

transposition

There are three fundamental relationships between Abelian Cayley graph families of

the same dimension: translation, conjugation and transposition. Translation between

families was introduced and discussed in Section 5.5 and described in terms of

canonical LGMs in Section 6.3. Conjugation between families was introduced in

Section 5.4 and is explained in terms of LGMs and lattice coverings in this section.

The third relationship, transposition, is then introduced. We begin with formal

definitions of all three, followed by a summary with examples, see Table 6.3.

Definition 6.18. Translation is a relationship between pairs of Abelian Cayley graph

families of the same odd dimension f , one of even degree and one of odd, defined in

terms of their canonical LGMs. They belong to different diameter classes. If the

even-degree family has diameter class root kX and the odd-degree kY , then we have

kX = (kY + (f − 1)/2) mod f . Such a pair is related by translation if the LGM of the

odd-degree family is the LGM odd basis of the even-degree family. They are said to

be translates of each other.

Definition 6.19. Conjugation is a relationship between pairs of quasimaximal

Abelian Cayley graph families of any dimension f and the same degree, defined in

terms of their canonical LGMs. They belong to different diameter classes unless the

class is principal. If their diameter class roots are kX and kY , then

kX + kY =

f − 1 for even degree

f for odd degree.
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Such a pair is related by conjugation if the LGM of one family (LGM odd basis, for

even degree) is equal to the matrix obtained by reversing the sign of the constant in

each diagonal element of the other LGM. The families are said to be conjugates of

each other. Conjugate pairs in the principal diameter class are called self-conjugate if

they are isomorphic.

Definition 6.20. Transposition is a relationship between pairs of Abelian Cayley

graph families of the same degree and diameter class, defined in terms of their

canonical LGMs. Such a pair is related by transposition if the canonical LGM of one

family (LGM odd basis, for even degree) is equal to the transpose matrix of the other

LGM. The families are said to be transposes of each other. If the pair are isomorphic,

they are called self-transpose.

Table 6.3: Summary of translation, conjugation and transposition, with an
example of each

Translation Conjugation Transposition

An odd-degree LGM is the
even-degree LGM odd basis
of its translate graph family

The conjugate of an
odd-degree LGM (or
even-degree LGM odd
basis) is obtained by
reversing the sign of the
constant in each diagonal
element

The transpose matrix of an
odd-degree LGM (or even
degree LGM odd basis) is the
LGM of the transpose graph
family

Between different degrees
and different diameter
classes

Between different diameter
classes of the same degree
(unless principal)

Between families of the same
degree and diameter class

Only for odd dimensions Only for quasimaximal
families

Families of the principal
diameter class may be
self-conjugate

Families may be self-transpose

F7:1A LGM F7:1A LGM F9:1a LGM
(d = 7, k ≡ 1 mod 3) (d = 7, k ≡ 1 mod 3) (d = 9, k ≡ 1 mod 2)2a− 1 −1 0

1 2a −1
0 1 2a− 1

 2a− 1 −1 0
1 2a −1
0 1 2a− 1




2a− 2 1 0 1
−1 2a− 1 1 1
0 −1 2a− 1 0
−1 −1 0 2a


F6:2A LGM odd basis F7:2A LGM F9:1b LGM
(d = 6, k ≡ 2 mod 3) (d = 7, k ≡ 2 mod 3) (d = 9, k ≡ 1 mod 2)2a− 1 −1 0

1 2a −1
0 1 2a− 1

 2a+ 1 −1 0
1 2a −1
0 1 2a+ 1




2a− 2 −1 0 −1
1 2a− 1 −1 −1
0 1 2a− 1 0
1 1 0 2a
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We have proved in Theorem 5.8 the validity of translation as defined. Unfortunately

it has not yet been possible to prove the validity of conjugation and transposition

separately, and so these are documented as conjectures. We now prove the validity of

the combination of conjugation and transposition, in other words, that every

quasimaximal Abelian Cayley graph family has a conjugate transpose.

Theorem 6.21. Let X = {X(d, k) : k ∈ K} be a quasimaximal odd-degree Abelian

Cayley graph family of dimension f for some diameter class K with root diameter kX .

Let its canonical LGM be M with leading diagonal (2a+ b1, . . . , 2a+ bf ) where

a = (2k + c)/f with c chosen such that a is an integer for all k ∈ K. Let M ′ be

constructed from M by replacing the leading diagonal with (2a− b1, . . . , 2a− bf ) and

then taking the transpose matrix. Then M ′ is the canonical LGM for a quasimaximal

odd-degree Abelian Cayley graph family of dimension f for diameter class K ′ with root

diameter k′X = f − kX mod f . This family is called the conjugate transpose of X .

Proof. By Theorem 6.17, we may assume that M is radius maximal. Then for any

value of the parameter a corresponding to a diameter k ∈ K, each pair of parallel

(f − 1)-dimensional hyperfaces of adjacent Lee spheres in the associated lattice

covering of Zf abut precisely without overlap or gap. This property remains true

when a takes a negative value as the distance between the pairs of hyperfaces is a

constant and so does not depend on a. Hence M remains radius maximal for negative

a. We now define M ′ = −M to obtain a matrix in canonical LGM format. As M ′

generates a lattice covering and is radius maximal, by Theorem 6.9 it is the LGM for

a quasimaximal graph family.

The conjecture that every quasimaximal Abelian Cayley graph family has a conjugate

family, as defined by Definition 6.20, has already been stated in Chapter 5 as

Conjecture 5.7.

Conjecture 6.22. Every Abelian Cayley graph family has a transpose family as

defined by Definition 6.20.

It is immediate from Theorem 6.21 that Conjectures 5.7 and 6.22 stand or fall

together. Proving the validity of either would prove the other.

Robert Roderick Lewis



Chapter 7

Enumeration of a class of degree 7

circulant graph families

In this chapter, we explore the correlation between families of maximum-odd-girth

circulant graphs and quasimaximal families and also their correlation with canonical

LGMs. The analysis was conducted for degree 7 and diameter class 0 (mod 3), being

a large enough degree to have interesting structure whilst being small enough to be

tractible by computer. What emerges in this case is a compelling example of the

coincidence of those families that are quasimaximal and those with maximum odd

girth, and also of a bijection between those categories of graph families and the set of

matrices with canonical LGM format.

A computer search was conducted to discover the range of order of degree 7 circulant

graphs of diameter class 0 for diameters 3, 6, 9, 12 15 and 18. Considering all

diameter 18 graphs found, the largest has order 13,896 and has maximum odd girth,

37. The largest graph with lower odd girth has order 13,360 and odd girth 35. The

smallest maximum-odd-girth graph covered by the search has order 11,832, an

arbitrary limit. This pattern is repeated across all six diameters, with the order of the

largest lower-odd-girth graph exceeding the largest submaximal one, which exceeded

other maximum-odd-girth ones.

There happen to be 58 graphs of diameter 18 with maximum odd girth with distinct

order between 11,832 and 13,896. They all belong to quasimaximal families that

include the largest 58 graphs of diameter 15 with maximum odd girth, and so on. By

contrast, the lower-odd-girth graphs of diameter 18 with order between 11,832 and

13,360 all belong to subquasimaximal families. This analysis supports the fact that

the graphs in quasimaximal families all have maximum odd girth, Theorem 6.16.

Degree 7 families with largest order are listed in Table 7.1 along with the largest

order family with lower odd girth for comparison.

Considering a general cubic in vector format as (e3 e2 e1 e0), for the order of any

degree 7 quasimaximal family of diameter class 0 (mod 3), we have e3 = 1 and e2 = 0.

So each of the 58 largest degree 7 quasimaximal circulant graph families are uniquely

105 Robert Roderick Lewis
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Table 7.1: Order of eight largest degree 7 circulant graph families

Odd girth Diameter, k
defect 3 6 9 12 15 18 Order polynomial∗

0 76 536 1764 4144 8060 13896 (1 0 3 0)
0 68 520 1740 4112 8020 13848 (1 0 1 0)
0 60 504 1716 4080 7980 13800 (1 0 -1 0)
0 52 480 1676 4024 7908 13712 (1 0 -5 8)
0 36 464 1660 4008 7892 13696 (1 0 -5 -8)
0 36 456 1644 3984 7860 13656 (1 0 -7 0)
0 44 456 1636 3968 7836 13624 (1 0 -9 16)
0 12 424 1604 3936 7804 13592 (1 0 -9 -16)

2 60 480 1636 3912 7692 13360 (1 -1 5 -8)
∗ Cubic in 2a, where a = 2k/3

defined by their values for e1 and e0 and can be positioned on a chart with these two

axes; see Figure 7.1.

Figure 7.1: Parameters e1 and e0 for largest degree 7 quasimaximal
circulant graph families
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Each blue or red point on the chart represents a degree 7 quasimaximal circulant

graph family, and all other such families have e1 < −100 and so lie to the left of the

range of the chart. Some pattern is evident in this chart, with the points aligned in

blue and red diagonal threads as illustrated. Each thread runs with decreasing e1
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value from its first member. The first thread, T1, has first member at position (3,0)

representing the largest-known degree 7 circulant graph family of diameter class 0

with order polynomial (1 0 3 0). The thread runs flat along the horizontal axis, so

that e0 = 0 for every member. Threads T2 to T6 are shown in blue. They are

mirorred by red threads, denoted -T2 to -T6, where the sign of e0 is reversed for each

member. Some families are members of a single thread, others of two or three

threads. Obvious questions to ask are why the quasimaximal degree 7 circulant graph

families should have parameters at these points and no others, and why the points

should be aligned in threads in this way. To answer these questions, we approach the

matter from an alternative perspective by considering all possible LGMs for

quasimaximal degree 7 circulant graph families of diameter class 0 (mod 3).

The canonical quasimaximal degree 7 LGM has the following format, by definition:

M =


2a+ b1 c12 c13

−c12 2a+ b2 c23

−c13 −c23 2a+ b3



subject to constraints. The trace equals 6a, so that b1 + b2 + b3 = 0. Each cij has

value 0 or ±1. The column totals are all even, so that, for instance, b1 − c12 − c13 is

even. We will also impose an additional constraint that each column must contain at

least one non-zero element. The reason for this is discussed later, but its effect is to

exclude Abelian Cayley graph families that are not circulant. Without loss of

generality, we also choose to order the columns so that the leading diagonal is either

(2a+ b1, 2a− b2, 2a− b3), denoted [b1, b2], or (2a− b1, 2a+ b2, 2a+ b3), denoted

−[b1, b2], where 0 ≤ b2 ≤ b3 ≤ b1. Then the zero elements are uniquely determined by

the parity of the diagonal elements, giving four distinct formats:
even c12 c13

−c12 even c23

−c13 −c23 even

 ,


even c12 c13

−c12 odd 0

−c13 0 odd

 ,


odd c12 0

−c12 even c23

0 −c23 odd

 ,


odd 0 c13

0 odd c23

−c13 −c23 even


where |c12| = |c13| = |c23| = 1.

It is clear that the last three are self transpose. However, the first represents two

distinct transpose cases. Therefore, from the specification of the identifier, ±[b1, b2],

and dependent on the parity of b1 and b2, the order of the graphs in the family with

this LGM is uniquely defined as a cubic in 2a, assuming such a family exists.

Representing the cubic in vector format as (e3 e2 e1 e0), we immediately have e3 = 1

and e2 = 0, as the LGM format is quasimaximal. For e1, we have the general

equation: e1 =
∑

i<j bibj −
∑

i 6=j cijcji.
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Note that if the sign of all the bi are reversed then the result is unchanged. Also,

reversing the sign of any cij leaves the results unchanged as the product of the pairs is

always −1 in this case. Hence, for any b1 and b2, the value of e1 for [b1, b2] is the same

as for −[b1, b2]. In contrast, although the magnitude of e0 remains unchanged, its sign

is reversed. See Table 7.2.

Table 7.2: Formulae for e1 and e2 in ±[b1, b2]

b1 b2 b3 e1 e0 (negative for −[b1, b2])

even even even 3− b22 − b1b3 b1b2(b1 − b2)

even odd odd 2− b22 − b1b3 b1b2(b1 − b2)− b1
odd even odd 2− b22 − b1b3 b1b2(b1 − b2) + b2

odd odd even 2− b22 − b1b3 b1b2(b1 − b2) + b1 − b2

By definition, 0 ≤ b2 ≤ bb1/2c. So we have a simple enumeration of the canonical

LGMs as an infinite sequence: [0, 0], [1, 0], [2, 0], [2, 1],−[2, 1], [3, 0], [3, 1],−[3, 1], . . . .

Of course, there is no a priori reason why any of these matrices should actually be the

LGM of an existent graph family. By illustration, some examples are presented in

Table 7.3.

Table 7.3: Some canonical degree 7 quasimaximal LGMs and the order of the
graphs in their families, if they exist

[b1, b2] LGM Order, in 2a where a = 2k/3

[0, 0]

2a −1 −1
1 2a −1
1 1 2a

, (1 0 3 0 )

[1, 0]

2a+ 1 −1 0
1 2a −1
0 1 2a− 1

, (1 0 1 0 )

[3, 1]

2a+ 3 0 −1
0 2a− 1 −1
1 1 2a− 2

, (1 0 -5 8 )

−[3, 1]

2a− 3 0 −1
0 2a+ 1 −1
1 1 2a+ 2

, (1 0 -5 -8 )

If we take the LGMs denoted by ±[b1, b2] where 0 ≤ b1 ≤ 10 and plot them on a chart

by the values of e1 and e0 in their corresponding order cubics, then the points coincide

exactly with the points representing the largest families as shown in Figure 7.1. Over

the relatively wide range of quasimaximal degree 7 families and LGMs investigated,

there is a one-to-one correlation between the two categories. This provides answers to

the earlier questions about the reason that only degree 7 quasimaximal families with
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7 Enumeration of a class of degree 7 circulant graph families 109

particular parameter sets exist: they are precisely the families that correspond to

LGMs in canonical quasimaximal format. This relation supports an enumeration of

all degree 7 quasimaximal circulant graph families of diameter class 0.

The thread T1 runs along the horizontal axis of the chart, containing

[0, 0], [0, 1], [2, 0], . . . ; T2 contains [2, 0], [3, 1], [4, 2], . . . and its reflection -T2 contains

[1, 0], [−[3, 1],−[4, 2], . . . ; etc. See Table 7.4

Table 7.4: The first six members of the first three threads

Thread T1 Thread T2 Thread T3
Position LGM Order coeffs LGM Order coeffs LGM Order coeffs
in thread notation e1 e0 notation e1 e0 notation e1 e0

1 [0, 0] 3 0 [2, 0] -1 0 -[4, 2] -9 -16
2 [1, 0] 1 0 [3, 1] -5 8 -[4, 1] -11 -8
3 [2, 0] -1 0 [4, 2] -9 16 [4, 0] -13 0
4 [3, 0] -7 0 [5, 2] -17 32 [5, 1] -19 24
5 [4, 0] -13 0 [6, 2] -25 48 [6, 2] -25 48
6 [5, 0] -23 0 [7, 2] -37 72 [7, 3] -35 88

For graph families in thread T1, with order polynomial (1 0 e1 e0), the value of e1 and

e0 may be calculated from the position p of the graph family in the thread as follows:

e1 =

−p
2 + 2p+ 2, for odd p

−p2 + 2p+ 1, for even p
e0 = 0.

Similarly for thread T2:

e1 =

−p
2, for odd p

−p2 − 1, for even p
e0 =

2p2 − 2, for odd p

2p2, for even p.

The formulae in Table 7.5 enable the order of the graph family in any position in any

thread to be determined. A similar analysis would also provide formulae for their

generating sets.

Table 7.5: Formulae for the order of quasimaximal circulant graph families of
degree 7 and diameter class 0

Thread Position Linear coefficient Constant term
t p e1 e0

Odd Odd −p2 + 2p− 3t2 + 6t− 1 (2t− 2)p2 − (4t− t)p− 2t3 + 6t2 − 4t
Odd Even −p2 + 2p− 3t2 + 6t− 2 (2t− 2)p2 − (4t− 4)p− 2t3 + 6t2 − 2t− 2
Even Odd −p2 − 3t2 + 6t (2t− 2)p2 − 2t3 + 6t2 − 6t+ 2
Even Even −p2 − 3t2 + 6t− 1 (2t− 2)p2 − 2t3 + 6t2 − 4t

As mentioned, this equivalence between matrices in canonical degree 7 quasimaximal

LGM format for diameter class 0, with the additional constraints, on the one hand,
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110 7 Enumeration of a class of degree 7 circulant graph families

and degree 7 quasimaximal circulant graph families of diameter class 0, on the other,

is a bijection within the range investigated. There are no gaps or exceptions.

You may remember that we imposed an additional constraint that each column in an

LGM had to include at least one non-zero off-diagonal element. If this constraint is

relaxed, then it is possible to have LGMs with one or three columns with all-zero

off-diagonal elements. In the same way that LGMs with no such columns correspond

to circulant graph families, it emerges that LGMs with one such column correspond

to Abelian Cayley graph families of cyclic rank 2, and those with three, to Abelian

Cayley graph families of cyclic rank 3. These also appear to be bijections. The

foregoing relates to quasimaximal graph families of degree 7 and diameter class 0. It

is conjectured that the same bijection exists for the other two diameter classes, and

equally for degree 6.

Conjecture 7.1. For degree 7 and each of the three diameter classes (0, 1 and 2 mod

3) there is a bijection between quasimaximal circulant graph families and matrices in

canonical quasimaximal LGM format with at least one non-zero off-diagonal element

in each column. There are also bijections between quasimaximal Abelian Cayley

graphs of cyclic rank 2 and 3 and matrices in canonical quasimaximal LGM format

with one and three columns with all-zero off-diagonal elements respectively. Similarly,

for degree 6 and each of the three diameter classes, there are bijections between the

same categories of graph families and matrices in the format of canonical

quasimaximal LGM odd basis respectively.

On the other hand, we have already seen in Section 6.4 an example for degree 9 of a

matrix in canonical quasimaximal LGM format that is not the LGM of a graph

family. It is conjectured that for dimension 4 and above, the canonical quasimaximal

LGM format admits matrices where the distance between a pair of neighbouring

vertices of the lattice unit cell exceeds 2k + 1 where k is the diameter, and that these

matrices are not LGMs for Abelian Cayley graph families.

Conjecture 7.2. For each degree greater than or equal to 8, there are matrices in

canonical quasimaximal LGM format that are not the LGM for an Abelian Cayley

graph family.
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Chapter 8

Largest-known circulant graph

families of degrees 12 to 20

Chapter 8 presents newly discovered largest-known circulant graph families up to

degree 20, all quasimaximal. The efficient search for these families depended on LGM

properties discussed in Chapter 6. Many of these families are related to others by the

relationships described in Chapter 5. The interaction of the three relationships -

translation, conjugation and transposition - for the largest-known circulant graph

families of each dimension is presented graphically within a dimensional frame. As

defined by Definition 1.4, a graph family is an infinite set of graphs of given degree d

and dimension f = bd/2c, defined for each diameter k of a diameter class, with order

and generating set specified by polynomials in k of maximum degree f .

8.1 Improved search strategy for graph families

The largest-known circulant graph families up to degree 11 were found by increasingly

time-consuming computer search, with individual trials running for up to a month in

some cases. Despite various optimisation assumptions being made and algorithmic

efficiencies adopted, it was clear that this approach had reached practical limits. In

order to discover a graph family by this approach, it is necessary first to discover

candidate graphs for a set of diameters equal to the dimension, as this is the order of

the target polynomial. For each diameter, this requires running the computer search

program for each order within a reasonable range of values.

A rough order of magnitude for the number of potential generating sets to be checked

for each order n of a graph of dimension f can be obtained from the number of

combinations of size f that can be chosen from n/2 elements (as generators can be

taken as the lower of each pair of connection elements). Each combination will

duplicate its automorphic equivalents, and this is compensated by dividing by n/2. A

simple calculation reveals the challenge for a degree 12 example, assuming the need to

discover candidate graphs for diameters 3, 6, 9, 12, 15 and 18. Table 8.1 shows the

net number of combinations of generating sets to be tested for graphs with the orders

of the largest-known family.
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112 8 Largest-known circulant graph families of degrees 12 to 20

Table 8.1: Example; degree 12, diameter class 0 (mod 3). Number of trial
graphs to be evaluated for each order at each diameter

Diameter Order Number of trials

3 240 4× 109

6 5,044 4× 1017

9 39,996 9× 1022

12 190,392 1× 1027

15 662,680 2× 1030

18 1,868,940 9× 1032

This rapidly becomes an impossibly large number of combinations to handle.

Moreover, these need to be multiplied by the number of trial orders to be investigated.

A more extreme example is provided by such a search for a graph family of degree 18,

diameter class 0 (mod 9), requiring searches for diameters 9, 18, 27, 36, 45, 54, 63, 72

and 81. The largest-known circulant graph of degree 18 and diameter 81 has order

54,541,109,677,608, over 54 trillion. For this diameter, the number of potential

generating sets to be tested for each order within the specified search range is about

10101, an impossible task.

Searching for large graph families using candidate lattice generator matrices reduces

the computational effort dramatically for two reasons. Firstly, the degrees of freedom

for each degree and diameter class is determined by the dimension and does not

increase with diameter. Secondly, the search is for complete families and not for

individual graphs which need to be matched into families manually.

By restricting the search to canonical lattice generator matrices for quasimaximal

graph families (their odd bases for even degree), we benefit from the restrictions that

the trace is fixed, the eccentricity is 0, and the column totals are all even. For any

dimension f and any chosen leading diagonal (in practice, limited to few alternatives),

the number of candidate lattice generating vectors to be evaluated is roughly

3f(f−1)/2/2f−1. For degree 12, f = 6 and the number is about 450,000. For degree 18,

it is 5× 1014. Although large numbers, these are small in comparison with the number

of trial graphs in the direct search method. Also, the lattice generator matrix search

method does not require trial graph orders to be conjectured in advance. And of

course, the results are whole families, complete with orders and generating sets. This

is the method that was used in the search for largest-known circulant graph families of

degrees 12 to 20. It was also used subsequently in a less-exhaustive search for general

Abelian Cayley graph families up to degree 15, which we will review in Chapter 10.

The mechanism to produce graph families from LGMs is essentially a reversal of the

steps taken by Dougherty and Faber. We need to solve a set of simultaneous
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equations defined by the lattice vectors, the rows of the matrix. In principle this

would be achieved by first inverting the matrix. However, for larger dimension,

inversion can cause rounding errors, especially for elements with magnitude close to

zero. In order to avoid these errors, the calculations are maintained within the ring of

integers by taking the adjoint of the LGM instead of the inverse (where adjoint has

the classical definition as the transpose of the cofactor matrix). After other

calculations have been completed, the values obtained are divided by the determinant

to achieve the desired results.

Candidate generating sets are produced by post-multiplying the adjoint by a column

vector. The algorithm initially loops through combinations of elements of magnitude

0 and 1 in the column vector to find candidate sets that have no zero values and no

duplicates. Selected sets are then tested directly to see if the resultant graph has the

required diameter. If necessary, the column vector elements may progressively include

2, 3, etc., until solutions are found.

For each largest-known circulant graph family of dimension f , we present its lattice

generator matrix (LGM odd basis, for even degree), and its order and a generating

set, expressed as polynomials in vector notation in the variable 2a, where a is defined

in terms of the diameter k as a = (2k + c)/f for a suitable constant c. In order not to

interrupt the flow, only one diameter class, k ≡ 0 (mod f), is included here for each

degree, as an example. The full set of families is presented in Appendix A, and details

of each graph can be found in Appendix D. The existence of these families for all

diameters in their respective diameter classes is confirmed by the Existence Proof

Theorem for Abelian Cayley graph families, Theorem 6.16.

8.2 Circulant graph dimensional frames

By considering transposition, conjugation and translation, it is possible for up to

eight distinct isomorphism classes of Abelian Cayley graph families to be associated

with a single canonical lattice generator matrix. We will consider a canonical

odd-degree LGM of arbitrary dimension and an associated Abelian Cayley graph

family. If the dimension is odd, there will be an even-degree translate of the family. If

the LGM is quasimaximal, both families may have conjugate families of the same

degree but different diameter class (unless the LGM is self-conjugate). The (possibly)

four families may each have a transpose family (unless the LGM is self-transpose).

Any of these three factors may apply, giving a total of 1, 2, 4 or 8 distinct

isomorphism classes.
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As an example, for dimension 9 there are eight such families, all largest-known,

associated with a unique LGM. We define four 9× 9 matrices (two diagonal and an

antisymmetric pair):

D− = Diag(2a, 2a, 2a− 1, 2a− 1, 2a− 1, 2a− 1, 2a− 1, 2a− 1, 2a− 1)

D+ = Diag(2a, 2a, 2a+ 1, 2a+ 1, 2a+ 1, 2a+ 1, 2a+ 1, 2a+ 1, 2a+ 1)

A =



0 −1 −1 −1 −1 0 0 0 0

1 0 0 0 −1 −1 −1 −1 −1

1 0 0 0 −1 −1 −1 −1 0

1 0 0 0 −1 −1 −1 0 −1

1 1 1 1 0 −1 −1 0 −1

0 1 1 1 1 0 0 1 0

0 1 1 1 1 0 0 1 0

0 1 1 0 0 −1 −1 0 −1

0 1 0 1 1 0 0 1 0



and AT .

Note that the sum of a D and an A has the format of a canonical quasimaximal

degree 19 LGM. By conjugation and transposition we have four degree 19

largest-known circulant graph families, and by translation we have four degree 18

largest-known families. These are listed in Table 8.2.

Table 8.2: Eight circulant graph families associated wih a single LGM

Conjugation and transposition

LGM Degree Diameter Order polynomial (in 2a) where Family
class a =

D− +A 19 7 (mod 9) (1 -8 50 -194 462 -698 672 -394 125 -16) (2k + 4)/9 F19:7a
D− +AT 19 7 (mod 9) (1 -8 50 -194 462 -698 672 -394 125 -16) (2k + 4)/9 F19:7b
D+ +A 19 2 (mod 9) (1 8 50 194 462 698 672 394 125 16) (2k − 4)/9 F19:2a
D+ +AT 19 2 (mod 9) (1 8 50 194 462 698 672 394 125 16) (2k − 4)/9 F19:2b

Also translation

LGM Degree Diameter Order polynomial (in 2a) where Family
odd basis class a =

D− +A 18 2 (mod 9) (1 -8 50 -194 462 -698 672 -394 125 -16)/2 (2k + 5)/9 F18:2a
D− +AT 18 2 (mod 9) (1 -8 50 -194 462 -698 672 -394 125 -16)/2 (2k + 5)/9 F18:2b
D+ +A 18 6 (mod 9) (1 8 50 194 462 698 672 394 125 16)/2 (2k − 3)/9 F18:6a
D+ +AT 18 6 (mod 9) (1 8 50 194 462 698 672 394 125 16)/2 (2k − 3)/9 F18:6b

For each dimension, these relationships between largest-known circulant graph

families, where they exist, may be shown graphically by positioning the families

suitably within a dimensional frame, see Table 8.3.
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Table 8.3: Dimensional frame for dimension 9 example (single diameter class)

Degree 18 families Degree 19 families

translate pairs
F18:2a/b ←−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F19:7a/bxy conjugate

xy conjugate
pairs pairs

translate pairs
F18:6a/b ←−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F19:2a/b

a/b represents a transpose pair of families

The even-degree largest-known circulant graph families are positioned on the left,

with the odd-degree families for the corresponding diameter classes at the same level

on the right. For odd dimension, horizontal arrows link families that form translate

pairs. All odd-dimension families have translates, but they may not be largest-known

and they may not be circulant. The lists are indented towards the middle of each list

so that conjugate diameter classes are aligned vertically. Vertical arrows link families

that form conjugate pairs. Apart from families in the middle diameter class, which

are self-conjugate, all other families have conjugates, but they may not be

largest-known. Within a degree and diameter class, families may belong to transpose

pairs. Transpose pairs are shown in a single position with the a/b suffix, and, as a

pair, may have conjugates and translates. Non-isomorphic families within a

degree-diameter class that are not transpose pairs, but have distinct unrelated lattice

generator matrices, are labelled with capital letter suffices and placed in separate rows

and columns so that their relationships can be shown independently (such a case only

arises for dimension 3). The frames for dimensions 3, 4 and 5 are shown in Tables 8.4,

8.5 and 8.6.

Table 8.4: Dimension 3: largest-known circulant graph families

Degree 6 families Degree 7 families

F6:0A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F7:2Axy F6:0B ←−−−−−−−−−−−−−−−→ F7:2B
xyl F6:1 ←→ F7:0 l

F6:2B ←−−−−−−−−−−−−−−−→ F7:1B
F6:2A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F7:1A

Table 8.5: Dimension 4: largest-known circulant graph families

Degree 8 families Degree 9 families

F8:0xy F9:0
F9:1a/b

F8:1
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Table 8.6: Dimension 5: largest-known circulant graph families

Degree 10 families Degree 11 families

F10:0 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F11:3xy F10:1 F11:4
xyl F10:2 ←→ F11:0

F10:3 F11:1a/b
F10:4 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F11:2

8.3 Dimension 6, degrees 12 and 13

As the dimension is even, there is no translation of graph families between degrees 12

and 13; they are essentially two independent graph familiy solution spaces. Also, as

the dimension is even, the graph families are defined for diameter classes modulo

h = f/2 = 3. Thus, there are three classes of largest-known circulant graph families

for each degree.

For degree 12, for diameter class 0 there is one self-tranpose family. For diameter

classes 1 and 2, there are transpose pairs of non-isomorphic families. The families for

classes 0, and 2 are not conjugates because the conjugate of each class has lower order

polynomial. For instance, the order of F12:0 is (1 2 11 14 13 6 0)/2 and so has

conjugate in class 2 with order (1 -2 11 -14 13 -6 0)/2. However, the order of F12:2 is

(1 -2 11 -12 -2 4 0)/2, which has a larger (less negative) fourth coefficient.

For degree 13, for all three diameter classes there are transpose pairs of

non-isomorphic families. Moreover, the families for classes 1 and 2 are conjugates of

each other, see Table 8.7.

Table 8.7: Order of largest-known circulant graph families of degrees 12 and 13

Degree 12 families Degree 13 families
F12: Order polynomial in 2a F13: Order polynomial in 2a c*

0 (1 2 11 14 13 6 0)/2 0a/b (1 0 8 2 -1 -4 0) 0
1a/b (1 6 24 58 75 46 10)/2 1a/b (1 4 16 30 29 16 4) -1
2a/b (1 -2 11 -12 -2 4 0)/2 2a/b (1 -4 16 -30 29 -16 4) 1

* for degree 12, a = (k + c)/3 * for degree 13, a = (k + c)/3

These relationships are summarised in the dimensional frame, Table 8.8.

Table 8.8: Dimension 6: largest-known circulant graph families

Degree 12 families Degree 13 families

F12:0 F13:2a/b
F12:1a/b F13:0

xy
F12:2a/b F13:1a/b
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For diameter class 0, the LGM odd bases and formulae for the order and a generating

set for degree 12 are shown in Table 8.9, and the LGMs and formulae for degree 13 in

Table 8.10. A full set, for all diameter classes, is given in Appendix A.5, and

properties of the individual graphs are shown in Appendix D.

Table 8.9: Degree 12, diameter class 0, a = k/3

LGM odd basis Polynomial in 2a

Family F12:0 (self-transpose)
2a+ 1 −1 −1 −1 0 0

1 2a+ 1 −1 0 −1 0
1 1 2a 1 −1 0
1 0 −1 2a −1 −1
0 1 1 1 2a 1
0 0 0 1 −1 2a


Order (1 2 11 14 13 6 0) /2
g1 (0 2 4 24 16 13 0) /2
g2 (0 0 1 -3 -5 -9 0) /2
g3 (0 2 3 14 8 9 2) /2
g4 (0 0 2 1 0 1 −2) /2
g5 (0 1 -1 2 -6 -5 −2) /2
g6 (0 1 3 8 15 7 0) /2

Table 8.10: Degree 13, diameter class 0, a = k/3

LGM Polynomial in 2a

Family F13:0a (transpose of F13:0b)
2a+ 1 −1 −1 0 −1 0

1 2a+ 1 0 0 −1 −1
1 0 2a −1 −1 −1
0 0 1 2a 1 0
1 1 1 −1 2a− 1 −1
0 1 1 0 1 2a− 1


Order (1 0 8 2 -1 -4 0)
g1 (0 1 1 0 1 -2 −1)
g2 (0 1 -2 3 -1 -2 −1)
g3 (0 0 2 8 3 0 −1)
g4 (0 1 1 3 -2 0 −1)
g5 (0 1 -3 4 4 3 −1)
g6 (0 1 3 4 5 4 1)

Family F13:0b (transpose of F13:0a)
2a+ 1 1 1 0 1 0
−1 2a+ 1 0 0 1 1
−1 0 2a 1 1 1
0 0 −1 2a −1 0
−1 −1 −1 1 2a− 1 1
0 −1 1 0 −1 2a− 1


Order (1 0 8 2 -1 -4 0)
g1 (0 1 -2 2 -2 0 1)
g2 (0 1 2 1 5 -4 −1)
g3 (0 1 3 3 0 0 −1)
g4 (0 0 0 6 1 -4 −1)
g5 (0 1 -3 2 4 1 −1)
g6 (0 1 0 0 0 -2 −1)

8.4 Dimension 7, degrees 14 and 15

As the dimension is odd, there is translation between degree 14 graph families of odd

order and degree 15 families. Also, as the dimension is odd, the graph families are

defined for diameter classes modulo f = 7, so there are seven classes of largest-known

circulant graph families for each degree.

For degree 14, for four of the seven diameter classes there are transpose pairs of

non-isomorphic families. They also form two sets of conjugate pairs. However, as they

all have even order, they translate to degree 15 Abelian Cayley graph families of

cyclic rank 2 rather than circulant graph families. For the other three diameter
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classes, the families all have odd order and thus have translates in degree 15. They

are self-transpose. Two form a conjugate pair. The other is self-conjugate and also

has a multiplicative generating set, so that it is arc-transitive.

For degree 15, there is a transpose pair of non-isomorphic families only for diameter

class 3. Their conjugates are not largest-known families and nor are their translates.

For the other six diameter classes, the families are all self-transpose. Two form a

conjugate pair with translates that are largest-known degree 14 families. Another two

form a conjugate pair with translates that are not largest-known. For the fifth,

neither its conjugate nor its translate is largest-known. The final self-transpose family

is self-conjugate and its translate is the arc-transitive degree 14 family, see Table 8.11.

Table 8.11: Order of largest-known circulant graph families of degrees 14 and 15

Degree 14 families Degree 15 families
F14: Order polynomial in 2a F15: Order polynomial in 2a c*

0a/b (1 2 15 20 21 12 4 0)/2 4 (1 2 14 20 27 18 11 2) 0
1 (1 6 28 76 127 126 67 14)/2 5 (1 6 28 76 127 126 67 14) -2
2a/b (1 -4 21 -46 50 -30 8 0)/2 6 (1 -4 20 -44 57 -44 19 -4) 3
3 (1 0 14 0 21 0 7 0)/2 0 (1 0 14 0 21 0 7 0) 1
4a/b (1 4 21 46 50 30 8 0)/2 1 (1 4 20 44 57 44 19 4) -1
5 (1 -6 28 -76 127 -126 67 -14)/2 2 (1 -6 28 -76 127 -126 67 -14) 4
6a/b (1 -2 15 -20 21 -12 4 0)/2 3a/b (1 -2 14 -16 11 -6 3 -2) 2

* for degree 14, a = (2k + c)/7 * for degree 15, a = (2k + c− 1)/7

These relationships are summarised in the dimensional frame, Table 8.12.

Table 8.12: Dimension 7: largest-known circulant graph families

Degree 14 families Degree 15 families

F14:0a/b F15:4xy
F14:1 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F15:5xy F14:2a/b F15:6

xyxy F14:3 ←→ F15:0
xy

F14:4a/b F15:1
F14:5 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F15:2

F14:6a/b F15:3a/b

For diameter class 0, the LGMs and formulae for degrees 14 and 15 are shown in

Tables 8.13 and 8.14, with a full set in Appendix A.6. Properties of the individual

graphs are given in Appendix D.
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Table 8.13: Degree 14, diameter class 0, a = 2k/7

LGM odd basis Polynomial in 2a

Family F14:0a (transpose of F14:0b, conjugate of F14:6a)

2a+ 1 −1 −1 −1 −1 −1 0
1 2a+ 1 −1 0 0 0 −1
1 1 2a 0 1 1 0
1 0 0 2a 1 1 −1
1 0 −1 −1 2a 0 −1
1 0 −1 −1 0 2a −1
0 1 0 1 1 1 2a



Order (1 2 15 20 21 12 4 0) /2
g1 (0 0 1 3 -2 -1 -4 0) /2
g2 (0 0 1 -2 3 -2 -2 0) /2
g3 (0 0 1 6 14 15 8 0) /2
g4 (0 0 0 4 6 -1 0 0) /2
g5 (0 0 1 -1 -3 -5 -3 −2) /2
g6 (0 1 3 14 17 16 9 2) /2
g7 (0 1 1 10 13 10 2 0) /2

Family F14:0b (transpose of F14:0a, conjugate of F14:6b)

2a+ 1 1 1 1 1 1 0
−1 2a+ 1 1 0 0 0 1
−1 −1 2a 0 −1 −1 0
−1 0 0 2a −1 −1 1
−1 0 1 1 2a 0 1
−1 0 1 1 0 2a 1
0 −1 0 −1 −1 −1 2a



Order (1 2 15 20 21 12 4 0) /2
g1 (0 3 0 26 27 25 10 0) /2
g2 (0 0 1 -14 -12 -22 -4 0) /2
g3 (0 0 6 9 23 21 10 0) /2
g4 (0 0 4 1 -6 -5 2 0) /2
g5 (0 1 3 -2 -7 -7 -9 −2) /2
g6 (0 2 5 13 13 14 3 2) /2
g7 (0 2 7 43 38 30 4 0) /2

Table 8.14: Degree 15, diameter class 0, a = 2k/7

LGM Polynomial in 2a

Family F15:0 (self-transpose, self-conjugate, translate of F14:3)

2a 0 −1 −1 −1 −1 0
0 2a 0 −1 −1 −1 −1
1 0 2a 0 −1 −1 −1
1 1 0 2a 0 −1 −1
1 1 1 0 2a 0 −1
1 1 1 1 0 2a 0
0 1 1 1 1 0 2a



Order (1 0 14 0 21 0 7 0)
g1 (0 1 4 10 2 9 -2 1)
g2 (0 1 4 4 12 3 6 −1)
g3 (0 1 2 0 4 1 4 1)
g4 (0 1 0 -2 0 -7 0 −1)
g5 (0 1 -2 0 -4 1 -4 1)
g6 (0 1 -4 4 -12 3 -6 −1)
g7 (0 1 -4 10 -2 9 2 1)

8.5 Dimension 8, degrees 16 and 17

As the dimension is even, there is no translation between graph families of degree 16

and 17. Also, as the dimension is even, the graph families are defined for diameter

classes modulo f/2 = 4. So there are four classes of largest-known circulant graph

families for each degree.

For degree 16, for all four diameter classes there are transpose pairs of non-isomorphic

families. They form two sets of conjugate pairs. For degree 17, for all four diameter

classes there are transpose pairs of non-isomorphic families. Two of the classes form a

set of conjugate pairs, see Table 8.15.

These relationships are summarised in the dimensional frame, Table 8.16.
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Table 8.15: Order of largest-known circulant graph families of degrees 16 and 17

Degree 16 families Degree 17 families
F16: Order polynomial in 2a F17: Order polynomial in 2a c*

0a/b (1 2 20 28 11 2 -4 -4 0)/2 0a/b (1 0 17 0 4 6 -4 0 0) 0
1a/b (1 6 33 100 183 212 151 60 10)/2 1a/b (1 4 25 60 82 78 50 20 4) -1
2a/b (1 -6 33 -100 183 -212 151 -60 10)/2 2a/b (1 -8 44 -150 320 -436 372 -184 40) 2
3a/b (1 -2 20 -28 11 -2 -4 4 0)/2 3a/b (1 -4 25 -60 82 -78 50 -20 4) 1

* for degree 16, a = (k + c)/4 * for degree 17, a = (k + c)/4

Table 8.16: Dimension 8: largest-known circulant graph families

Degree 16 families Degree 17 families

F17:2a/b
F16:0a/bxy

F17:3a/b
F16:1a/b

xyl F17:0a/b
F16:2a/b

F17:1a/b
F16:3a/b

For diameter class 0, the LGMs and formulae for degrees 16 and 17 are shown in

Tables 8.17 and 8.18, with a full set in Appendix A.7. Properties of the individual

graphs are given in Appendix D.

Table 8.17: Degree 16, diameter class 0, a = k/4

LGM odd basis Polynomial in 2a

Family F16:0a (transpose of F16:0b, conjugate of F16:3a)

2a+ 1 0 −1 −1 −1 −1 0 −1
0 2a+ 1 −1 −1 −1 −1 0 −1
1 1 2a+ 1 −1 −1 0 −1 0
1 1 1 2a 0 1 −1 1
1 1 1 0 2a 1 −1 1
1 1 0 −1 −1 2a 0 0
0 0 1 1 1 0 2a 1
1 1 0 −1 −1 0 −1 2a− 1



Order (1 2 20 28 11 2 -4 -4 0)/2
g1 (0 1 3 22 14 -3 -7 -6 0)/2
g2 (0 0 2 3 5 -5 -7 -2 0)/2
g3 (0 0 1 -6 -4 -8 -11 0 0)/2
g4 (0 0 1 10 18 12 7 2 -2)/2
g5 (0 1 1 10 10 -1 -5 -6 -2)/2
g6 (0 0 0 5 25 27 5 -2 0)/2
g7 (0 1 0 15 15 -14 -13 0 0)/2
g8 (0 1 4 19 37 36 19 4 0)/2

Family F16:0b (transpose of F16:0a, conjugate of F16:3b)

2a+ 1 0 1 1 1 1 0 1
0 2a+ 1 1 1 1 1 0 1
−1 −1 2a+ 1 1 1 0 1 0
−1 −1 −1 2a 0 −1 1 −1
−1 −1 −1 0 2a −1 1 −1
−1 −1 0 1 1 2a 0 0
0 0 −1 −1 −1 0 2a −1
−1 −1 0 1 1 0 1 2a− 1



Order (1 2 20 28 11 2 -4 -4 0)/2
g1 (0 2 0 34 21 -8 -3 -2 0)/2
g2 (0 0 2 4 -3 12 3 -6 0)/2
g3 (0 0 1 11 12 11 1 -8 0)/2
g4 (0 0 1 -6 -22 -14 3 4 2)/2
g5 (0 1 3 14 6 -3 5 0 -2)/2
g6 (0 0 1 -6 22 40 -3 -14 0)/2
g7 (0 2 6 45 63 9 -21 -8 0)/2
g8 (0 1 2 10 15 3 -7 -4 0)/2
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Table 8.18: Degree 17, diameter class 0, a = k/4

LGM Polynomial in 2a

Family F17:0a (transpose of F17:0b)

2a+ 1 −1 0 0 −1 −1 −1 −1
1 2a+ 1 −1 −1 −1 0 −1 0
0 1 a2 0 1 0 1 1
0 1 0 a2 1 1 0 1
1 1 −1 −1 2a 1 0 1
1 0 0 −1 −1 2a −1 0
1 1 −1 0 0 1 2a− 1 1
1 0 −1 −1 −1 0 −1 2a− 1



Order (1 0 17 0 4 6 -4 0 0)
g1 (0 1 -1 16 -15 1 -1 -10 1)
g2 (0 1 -1 17 -13 1 5 -11 1)
g3 (0 1 -1 18 -18 8 10 -11 1)
g4 (0 1 0 18 -1 7 0 -10 1)
g5 (0 1 0 16 -3 2 0 -9 1)
g6 (0 1 1 17 14 2 14 8 -1)
g7 (0 0 1 0 15 12 13 8 -1)
g8 (0 1 1 17 21 9 15 9 -1)

Family F17:0b (transpose of F17:0a)

2a+ 1 1 0 0 1 1 1 1
−1 2a+ 1 1 1 1 0 1 0
0 −1 a2 0 −1 0 −1 −1
0 −1 0 a2 −1 −1 0 −1
−1 −1 1 1 2a −1 0 −1
−1 0 0 1 1 2a 1 0
−1 −1 1 0 0 −1 2a− 1 −1
−1 0 1 1 1 0 1 2a− 1



Order (1 0 17 0 4 6 -4 0 0)
g1 (0 1 -4 15 -13 10 4 -6 1)
g2 (0 1 -1 3 -2 -1 4 -5 1)
g3 (0 1 2 22 -6 -12 7 3 -1)
g4 (0 0 4 4 18 24 -5 -6 1)
g5 (0 1 3 8 -1 4 -5 -3 1)
g6 (0 1 1 4 23 -9 -9 6 -1)
g7 (0 1 -2 20 17 3 -4 -4 1)
g8 (0 1 1 3 4 1 4 3 -1)

8.6 Dimension 9, degrees 18 and 19

As the dimension is odd, there is translation between degree 18 graph families of odd

order and degree 19 families. Also, as the dimension is odd, the graph families are

defined for diameter classes modulo f = 9, so there are nine classes of largest-known

circulant graph families for each degree.

For degree 18, for eight of the nine diameter classes there are transpose pairs of

non-isomorphic families. Six of these form conjugate pairs. Only one of these pairs

has odd order and so translates to circulant graph families of degree 19. The final

diameter class is self-transpose, self-conjugate and also translates to a degree 19

circulant graph family. For three of the initial eight diameter classes, classes 1, 3 and

5, the graph families are circulant only for some of the diameters in their class. For

the other diameters, the order and generators all share a common factor in a regular

cycle, resulting in graphs that are Abelian Cayley with cyclic rank 2 (instead of 1 for

circulants). For these diameters, different graph families, F18:1c/d, F18:3 c/d and

F18:5c/d, provide the largest-known circulant graphs. It happens that F18:1c/d are

conjugates of F18:7a/b.

For degree 19, there are transpose pairs of non-isomorphic families for six of the nine

diameter classes. Only one of these pairs translates to largest-known degree 18

families. There is also a conjugate pair of self-transpose families, and a single

Robert Roderick Lewis



122 8 Largest-known circulant graph families of degrees 12 to 20

diameter class that is self-transpose, self-conjugate and translates to a largest-known

degree 18 family, see Table 8.19.

Table 8.19: Order of largest-known circulant graph families of degrees 18 and 19

Degree 18 families Degree 19 families
F18: Order polynomial in 2a F19: Order polynomial in 2a c*

0ab (1 2 23 34 59 52 35 16 4 0)/2 5 (1 2 22 32 62 60 47 26 9 2) 0
1ab (1 6 37 126 265 346 267 112 20 0)/2 6ab (1 6 36 120 253 350 317 184 63 10) -2
1cd (1 6 37 122 251 342 305 172 56 8)/2 -2
2ab (1 -8 50 -194 462 -698 672 -394 125 -16)/2 7ab (1 -8 50 -194 462 -698 672 -394 125 -16) 5
3ab (1 -4 29 -74 115 -122 81 -34 8 0)/2 8ab (1 -4 27 -66 109 -126 104 -62 23 -4) 3
3cd (1 -4 28 -70 118 -132 96 -42 8 0)/2 3
4 (1 0 20 0 58 0 43 0 9 0)/2 0 (1 0 20 0 58 0 43 0 9 0) 1
5ab (1 4 29 74 115 122 81 34 8 0)/2 1ab (1 4 27 68 122 146 119 66 23 4) -1
5cd (1 4 28 72 117 122 89 42 8 0)/2 -1
6ab (1 8 50 194 462 698 672 394 125 16)/2 2ab (1 8 50 194 462 698 672 394 125 16) -3
7ab (1 -6 37 -122 251 -342 305 -172 56 -8)/2 3ab (1 -6 36 -118 245 -338 313 -190 67 -10) 4
8ab (1 -2 23 -34 59 -52 35 -16 4 0)/2 4 (1 -2 22 -32 62 -60 47 -26 9 -2) 2

* for degree 18, a = (2k + c)/9 * for degree 19, a = (2k + c− 1)/9

These relationships are summarised in the dimensional frame, Table 8.20.

Table 8.20: Dimension 9: largest-known circulant graph families

Degree 18 families Degree 19 families

F18:0a/b F19:5xy

F18:1a/b∗ F19:6a/b
xy

F18:2a/b←−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F19:7a/bxy F18:3a/b∗ F19:8a/b
xyl F18:4←→ F19:0

F18:5a/b∗ F19:1a/b
F18:6a/b←−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F19:2a/b

F18:7a/b F19:3a/b
F18:8a/b F19:4

∗ Cyclic rank 2 for some diameters.

For diameter class 0, the LGMs and formulae for degrees 18 and 19 are shown in

Tables 8.21 and 8.22, with a full set in Appendix A.8. Properties of the individual

graphs are given in Appendix D.
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Table 8.21: Degree 18, diameter class 0, a = 2k/9

LGM odd basis Polynomial in 2a

Family F18:0a (transpose of F18:0b, conjugate of F18:8a)

2a+ 1 −1 −1 −1 −1 −1 0 0 0
1 2a+ 1 0 0 −1 −1 −1 −1 0
1 0 2a 0 −1 −1 −1 −1 −1
1 0 0 2a −1 −1 −1 0 0
1 1 1 1 2a 0 0 −1 −1
1 1 1 1 0 2a 0 −1 −1
0 1 1 1 0 0 2a 0 −1
0 1 1 0 1 1 0 2a 0
0 0 1 0 1 1 1 0 2a



Order (1 2 23 34 59 52 35 16 4 0) /2
g1 (0 0 1 7 16 11 12 5 0 0) /2
g2 (0 0 1 2 -6 -5 -8 -4 -2 0) /2
g3 (0 0 2 4 12 9 10 9 4 0) /2
g4 (0 0 1 4 3 8 11 3 0 0) /2
g5 (0 0 1 -5 -8 -24 -24 -19 -9 -2) /2
g6 (0 1 3 18 26 35 28 16 7 2) /2
g7 (0 0 1 -3 6 11 11 8 2 0) /2
g8 (0 0 1 7 19 24 15 6 2 0) /2
g9 (0 1 1 16 20 23 21 10 2 0) /2

Family F18:0b (transpose of F18:0a, conjugate of F18:8b)

2a+ 1 1 1 1 1 1 0 0 0
−1 2a+ 1 0 0 1 1 1 1 0
−1 0 2a 0 1 1 1 1 1
−1 0 0 2a 1 1 1 0 0
−1 −1 −1 −1 2a 0 0 1 1
−1 −1 −1 −1 0 2a 0 1 1
0 −1 −1 −1 0 0 2a 0 1
0 −1 −1 0 −1 −1 0 2a 0
0 0 −1 0 −1 −1 −1 0 2a



Order (1 2 23 34 59 52 35 16 4 0) /2
g1 (0 1 2 15 15 24 15 7 2 0) /2
g2 (0 0 2 1 6 4 2 4 0 0) /2
g3 (0 0 2 4 5 2 -2 -5 -2 0) /2
g4 (0 0 2 2 11 12 15 7 2 0) /2
g5 (0 0 1 10 16 27 25 18 9 2) /2
g6 (0 1 1 13 18 32 27 17 7 2) /2
g7 (0 0 0 7 5 14 10 4 0 0) /2
g8 (0 0 1 -4 -2 -9 -1 2 0 0) /2
g9 (0 0 1 -2 -8 -8 -11 -6 0 0) /2

Table 8.22: Degree 19, diameter class 0, a = 2k/9

LGM Polynomial in 2a

Family F19:0 (self-transpose, self-conjugate, translate of F18:4)

2a −1 −1 −1 −1 0 0 0 0
1 2a 0 0 0 0 −1 −1 −1
1 0 2a −1 −1 0 −1 −1 −1
1 0 1 2a 0 −1 −1 0 0
1 0 1 0 2a 0 −1 −1 0
0 0 0 1 0 2a 1 1 1
0 1 1 1 1 −1 2a 0 1
0 1 1 0 1 −1 0 2a 0
0 1 1 0 0 −1 −1 0 2a



Order (1 0 20 0 58 0 43 0 9 0)
g1 (0 1 4 15 45 30 57 13 17 1)
g2 (0 1 -2 11 -25 22 -23 9 -3 1)
g3 (0 1 0 8 1 18 -6 8 -3 -1)
g4 (0 1 -1 14 9 9 3 -4 -1 -1)
g5 (0 1 -2 12 -13 8 -4 4 -1 1)
g6 (0 1 0 26 -4 40 -16 17 -6 1)
g7 (0 0 2 -6 -1 -11 -20 -3 -10 1)
g8 (0 0 2 -4 5 -33 8 -17 4 -1)
g9 (0 1 1 20 -13 37 -11 10 -3 -1)

8.7 Dimension 10, degree 20

As the dimension is even, there is no translation between degree 20 graph families of

odd order and degree 21 families. The investigation was not progressed beyond degree

20, as the computer runs for proper analysis began to exceed the available resources.

As the dimension is even, the graph families are defined for diameter classes modulo

f/2 = 5, so there are five classes of largest-known circulant graph families for degree

20.
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For degree 20, for all five diameter classes there are transpose pairs of non-isomorphic

families. Two of these, classes 1 and 3, form conjugate pairs. For these two classes,

the graph families F20:1a/b and F20:3a/b are circulant only for some of the diameters

and are Abelian Cayley graph families of cyclic rank 2 for the others. This is similar

to three of the diameter classes of degree 18. For these two diameter classes, different

graph families, F20:1c/d and F20:3c/d, provide the largest-known circulant graphs,

also transpose pairs in a conjugate pair, see Table 8.23.

Table 8.23: Order of largest-known circulant graph families of degree 20

Degree 20 families
F20: Order polynomial in 2a c*

0a/b (1 2 26 42 93 92 86 46 16 4 0)/2 0
1a/b (1 6 42 150 337 512 526 352 142 28 0)/2 -1
1c/d (1 6 41 144 325 500 535 398 198 60 8)/2 -1
2a/b (1 10 70 322 976 1996 2776 2584 1533 518 74)/2 -2
3a/b (1 -6 42 -150 337 -512 526 -352 142 -28 0)/2 2
3c/d (1 -6 41 -144 325 -500 535 -398 198 -60 8)/2 2
4a/b (1 -2 26 -40 89 -92 77 -44 18 -4 0)/2 1

* for degree 20, a = (k + c)/5

These relationships are summarised in the dimensional frame, Table 8.24.

Table 8.24: Dimension 10: largest-known circulant graph families

Degree 20 families (Degree 21 not investigated)

F20:0a/b
F20:1a/b∗

l F20:2a/b
F20:3a/b∗

F20:4a/b

∗ Cyclic rank 2 for some diameters.

For diameter class 0, the LGM odd bases and formulae for degree 20 are shown in

Table 8.25, with a full set in Appendix A.9. Properties of the individual graphs are

given in Appendix D.
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Table 8.25: Degree 20, diameter class 0, a = k/5

Family F20:0a (transpose of F20:0b)

LGM odd basis

2a+ 1 0 −1 −1 −1 −1 −1 0 0 0
0 2a+ 1 0 0 0 −1 −1 −1 0 0
1 0 2a 0 0 −1 −1 −1 −1 −1
1 0 0 2a −1 −1 −1 −1 −1 0
1 0 0 1 2a 0 0 0 −1 −1
1 1 1 1 0 2a 0 0 −1 −1
1 1 1 1 0 0 2a 0 −1 −1
0 1 1 1 0 0 0 2a −1 0
0 0 1 1 1 1 1 1 2a 0
0 0 1 0 1 1 1 0 0 2a


Polynomial in 2a

Order (1 2 26 42 93 92 86 46 16 4 0)/2
g1 (0 1 0 17 11 42 19 26 4 2 0)/2
g2 (0 0 1 3 3 5 6 2 4 −2 0)/2
g3 (0 0 2 2 7 1 1 1 0 4 0)/2
g4 (0 0 2 4 10 8 14 6 6 2 0)/2
g5 (0 0 1 −4 −3 −17 −18 −21 −12 −4 0)/2
g6 (0 0 1 −7 −8 −27 −24 −28 −15 −8 −2)/2
g7 (0 1 3 19 34 66 68 58 31 8 2)/2
g8 (0 0 0 6 18 28 36 24 14 2 0)/2
g9 (0 0 1 9 8 22 3 5 −8 −4 0)/2
g10 (0 0 1 7 10 30 23 27 10 4 0)/2

Family F20:0b (transpose of F20:0a)

LGM odd basis

2a+ 1 0 1 1 1 1 1 0 0 0
0 2a+ 1 0 0 0 1 1 1 0 0
−1 0 2a 0 0 1 1 1 1 1
−1 0 0 2a 1 1 1 1 1 0
−1 0 0 −1 2a 0 0 0 1 1
−1 −1 −1 −1 0 2a 0 0 1 1
−1 −1 −1 −1 0 0 2a 0 1 1
0 −1 −1 −1 0 0 0 2a 1 0
0 0 −1 −1 −1 −1 −1 −1 2a 0
0 0 −1 0 −1 −1 −1 0 0 2a


Polynomial in 2a

Order (1 2 26 42 93 92 86 46 16 4 0)/2
g1 (0 1 2 19 19 48 31 30 10 2 0)/2
g2 (0 0 1 −1 3 7 4 12 2 2 0)/2
g3 (0 0 2 4 13 17 17 11 6 0 0)/2
g4 (0 0 2 2 10 6 16 6 4 2 0)/2
g5 (0 0 1 6 13 17 12 11 −2 0 0)/2
g6 (0 0 1 9 16 33 36 32 21 8 2)/2
g7 (0 1 1 17 26 60 56 54 25 8 2)/2
g8 (0 0 0 6 0 16 4 8 0 −2 0)/2
g9 (0 0 1 −5 −10 −26 −29 −29 −14 −4 0)/2
g10 (0 0 1 −3 −2 −16 −7 −9 0 0 0)/2
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Chapter 9

Bipartite circulant graph families

In Chapter 9, largest-known bipartite circulant graph families up to degree 11 are

presented, along with some theorems establishing how bipartite circulant graph

families of any degree are related to corresponding non-bipartite families. The

bipartite/non-bipartite relationship, alongside the three previously discussed

relationships of translation, conjugation and transposition are presented graphically

for each dimension by a dimensional frame. An extremal order conjecture for

bipartite circulant graph families is presented.

A bipartite graph is a graph whose vertices can be divided into two disjoint sets such

that every edge connects a vertex from one set to a vertex of the other. Clearly, such

a graph does not contain any odd length cycles. To avoid ambiguity, in this chapter

we will use the term general circulant graph to distinguish undirected circulant

graphs that are not restricted to be bipartite. For each degree d and diameter k, we

denote by Extbipcirc(d, k) the order of an extremal bipartite circulant graph and by

Extcirc(d, k) the order of an extremal general circulant graph. Similarly, LKbip
circ(d, k)

and LKcirc(d, k) denote corresponding largest-known graphs.

As any Cayley graph is vertex transitive the order of the two partite sets must be

equal and therefore the order, n, of any bipartite circulant graph is even. When the

degree is odd, then the connection set will include the unique involutory element n/2,

creating an edge between vertices 0 and n/2, which must therefore lie in different

partite sets. Thus, for odd degree we have the additional constraint on the order, that

n ≡ 2 (mod 4). In case the generating set is primitive, so that the odd vertices

comprise one partite set and the even vertices the other, then all the generator

elements must be odd.

9.1 Relations between bipartite circulant graphs and general

circulant graphs

In this section, we discuss two important relations between bipartite circulant graphs

and certain categories of general circulant graphs of the same dimension. The first is

a mapping from a category of general circulant graphs of odd degree to bipartite

circulant graphs of even degree, Theorem 9.1.
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Theorem 9.1. Let X be a circulant graph of odd degree d = 2f + 1 and order n = 2m

where m is even, with generating set {g1, . . . , gf} where gi < m is odd for i = 1, . . . , f ,

and diameter k. Then there exists a bipartite circulant graph X ′ of degree d′ = 2f and

order n′ = m with generating set {g′1, . . . , g′f} where g′i = gi if gi ≤ m/2 and

g′i = m− gi otherwise, and with diameter k′ = k − 1 or k. If X contains a vertex v

such that the distance dX(0, v) = dX(0, v+m) = k, then k′ = k; otherwise k′ = k− 1.

Proof. As graph X has odd degree, its connection set includes the involutory element

m. The graph X ′ is created from X by identifying involutory pairs of vertices

{i, i+m} for i = 0, . . . ,m− 1, so that i and i+m in X are both mapped to i in X ′.

This also maps the generating set {g1, . . . , gf} to {g′1, . . . , g′f} as required. The

involution for each vertex is eliminated and the degree of X ′ is reduced to 2f . As the

order of X ′ is even and all the elements of its connection set are odd, the graph is

bipartite.

Let v be a vertex of X ′, so that v and v +m are vertices of X. As X has diameter k

we have distance dX(0, v) ≤ k and dX(0, v +m) ≤ k. If the shortest path in X from 0

to v includes an edge defined by the involution m, then dX(0, v +m) ≤ k − 1 with a

path excluding m. Otherwise, the shortest path in X from 0 to v excludes the edge

m. In either case, the path is identified with a path in X ′ from 0 to v of length l ≤ k.

Hence, the diameter of X ′, k′ ≤ k. If there exists a vertex v in X such that

dX(0, v) = dX(0, v +m) = k then dX′(0, v) = k, so that k′ = k; otherwise

k′ = k − 1.

The second relation is a 1-1 mapping between a category of general circulant graphs

of even degree and bipartite circulant graphs of odd degree, Theorems 9.2 and 9.3.

Theorem 9.2. Let X be a bipartite circulant graph of odd degree d = 2f + 1, order

n = 2m where m is odd, and diameter k, with generating set {g1, . . . , gf} where

gi < m is necessarily odd for i = 1, . . . , f . Then there exists a circulant graph X ′ of

degree d′ = 2f , order n′ = m and diameter k′ = k − 1 with generating set {g′1, . . . , g′f}
where g′i = gi if gi ≤ m/2 and g′i = |gi −m| otherwise.

Proof. As graph X has odd degree, its connection set includes the involutory element

m. The graph X ′ is created from X by identifying involutory pairs of vertices

{i, i+m} for i = 0, . . . ,m− 1, so that i and i+m in X are both mapped to i in X ′.

This also maps the generating set {g1, . . . , gf} to {g′1, . . . , g′f} as required. The

involution for each vertex is eliminated and the degree of X ′ is reduced to 2f . Let v

be a vertex of X ′, so that v and v +m are vertices of X. As X has diameter k, we
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have distance dX(0, v) ≤ k and dX(0, v +m) ≤ k. If dX(0, v) = k, then we cannot also

have dX(0, v +m) = k as this would create a closed path of length 2k + 1, contrary to

the assumption that X is bipartite. Hence, either the distance dX(0, v) ≤ k − 1 or

dX(0, v +m) ≤ k − 1, so that the diameter of X ′, k′ = k − 1.

Theorem 9.3. Let X ′ be a circulant graph of even degree d′ = 2f , order n′ = m

where m is odd, and diameter k′ = k − 1, with generating set {g′1, . . . , g′f} where

g′i < m/2. Then there exists a bipartite circulant graph X of degree d = 2f + 1, order

n = 2m and diameter k, with generating set {g1, . . . , gf} where gi = g′i if g′i is odd and

gi = |g′i −m| otherwise.

Proof. We create graph X from X ′ by lifting each vertex v of X ′ to an adjacent pair

of vertices v and v +m in X, connected by the addition of the involution m to the

connection set. The generating set of X, {g1, . . . , gf} is defined by gi = g′i if g′i is odd,

and gi = |g′i −m| otherwise, so that the new generators are all odd. Hence the graph

X is bipartite. Let v be a vertex of X ′, so that v and v +m are adjacent vertices of

X. Then there is a shortest path in X ′ from 0 to v of length l ≤ k′ = k − 1, say

(δ1g
′
i1
, . . . , δlg

′
il

) where δi = ±1. Thus, (δ1gi1 , . . . , δlgil) defines a shortest path in X

from 0 to v or v +m of length l and excluding any edge defined by the involution m.

Therefore, the distance from 0 to the other vertex of the pair in X is l + 1. Hence X

has diameter k.

These theorems are particularly useful in the consideration of extremal and

largest-known circulant graphs because most of the families of extremal and

largest-known general circulant graphs belong to the categories covered by the

theorems. Moreover, it emerges that each family of extremal and largest-known

bipartite circulant graphs is closely related, in terms of their order and generating

sets, with one or more families of extremal and largest-known general circulant graphs

of the same dimension.

Within any given odd dimension, if we consider odd degree families of general

circulant graphs, then Theorem 9.1 and Theorem 5.8 define mappings from this

domain to even-degree circulant graphs that are respectively bipartite and odd-order

general. This establishes a direct relation between bipartite circulant graphs and

odd-order general circulant graphs of the same even degree and odd dimension. It

emerges that this relation extends also to general circulant graphs of even order,

despite the non-existence of corresponding odd degree graphs. This is formalised in

Theorem 9.4.
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Theorem 9.4. For any odd dimension f and any kX where 0 ≤ kX < f , let

X (2f, kX ) be a family of bipartite circulant graphs X(2f, k) of even degree 2f and

diameter k for any k ≡ kX (mod f), with order defined by a polynomial nX (a) of

degree f in the parameter a = (4k + c)/f where

c =


(−4kX ) mod f for kX < (f − 1)/2

2 for kX = (f − 1)/2

4− {4(kX + 1) mod f} for kX > (f − 1)/2,

c being chosen so that a is integral, and with generating set G = {g1(a), . . . , gf (a)}
where gi(a) are polynomials of degree at most f and taken mod nX (a).

For kY ≡ (kX + (f − 1)/2) (mod f), we define Y(2f, kY) to be the family of general

circulant graphs Y (2f, k′) of the same even degree 2f for any k′ ≡ kY (mod f) with

order nY(a′) = nX (a′) where a′ = (4k′ + c+ 2)/f and with generating set

G′ = {g1(a′, . . . , gf (a′)} mod nY(a′). Then for any such k′, Y (2f, k′) has diameter

k′. The converse also holds.

The extremal and largest-known general circulant graph families of odd degrees 3 to

19, and all diameter classes, have odd generating sets (sets where all generators are

odd). Therefore, Theorem 9.1 can be applied, and the resultant even-degree families

are extremal and largest-known bipartite circulant graph families for even degrees 2

to 18, respectively, for all diameter classes. There is one exception, for the degree 8

odd-diameter bipartite graph family. In this case, there is a degree 9 graph family for

even diameter k with the property that its graphs do not contain any vertex v such

that the distance d(0, v) = d(0, v +m) = k, where 2m is the order of the graph. Thus,

by the final part of the Theorem 9.1, the resultant family is the largest-known

bipartite circulant graph family of degree 8 and odd diameter class.

Similarly, by Theorem 9.3, the extremal and largest-known odd-degree bipartite

circulant graph families are derived from the extremal and largest-known even-degree

general circulant graph families of odd order. The extremal families of degree 2 and 4,

and the largest-known families of degree 6, have odd order for all diameter classes,

and so Theorem 9.3 may be applied. For degree 8, the largest-known odd-order

families are the ones found by Monakhova [38], and Theorem 9.3 is applied to them.

For higher even degrees, the order of the largest-known general circulant graphs may

be odd or even depending on the diameter class. In each case, it is the largest-known

family of odd order that is used to construct the largest-known bipartite circulant

graph family for each diameter class for each odd degree.
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The relationships between general circulant graph families and bipartite graph

families defined by Theorems 9.1, 9.2 and 9.3 are reflected by similar relationships

between their LGMs and mappings such as transposition, conjugation and

translation. This is demonstrated with the example of dimension 3, degrees 6 and 7.

In Table 9.1, the general circulant dimensional frame from Table 8.4 is shown,

followed by the corresponding dimensional frame for largest-known bipartite

circulants. Then in the same format, the LGMs and order polynomials common to

Table 9.1: Comparison between largest-known general and bipartite circulant
graph families of dimension 3

Largest-known general circulant graph families
a = Degree 6 families Degree 7 families a =

2k/3 F6:0A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F7:2A (2k − 1)/3
2k/3

xy F6:0B ←−−−−−−−−−−−−−−−→ F7:2B
xy (2k − 1)/3

(2k + 1)/3 l F6:1 ←→ F7:0 l 2k/3
(2k + 2)/3 F6:2B ←−−−−−−−−−−−−−−−→ F7:1B (2k + 1)/3
(2k + 2)/3 F6:2A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ F7:1A (2k + 1)/3

Largest-known bipartite circulant graph families
a = Degree 6 families Degree 7 families a =

(2k − 1)/3 D6:2A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ D7:1A (2k − 2)/3
(2k − 1)/3

xy D6:2B ←−−−−−−−−−−−−−−−→ D7:1B
xy (2k − 2)/3

2k/3 l D6:0 ←→ D7:2 l (2k − 1)/3
(2k + 1)/3 D6:1B ←−−−−−−−−−−−−−−−→ D7:0B 2k/3
(2k + 1)/3 D6:1A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ D7:0A 2k/3

Largest-known general and bipartite circulant graph families
Degree 6 LGM odd bases Degree 7 LGMs2a+ 1−1 0

1 2a −1
0 1 2a+ 1

 2a+ 1−1 0
1 2a −1
0 1 2a+ 1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

xy

2a+ 2−1−1
1 2a −1
1 1 2a

 2a+ 2−1−1
1 2a −1
1 1 2a

 xy

←−−−−−−−−−−−−−−−−−−→

xy
2a−1−1

1 2a −1
1 1 2a

 2a−1−1
1 2a −1
1 1 2a

 xy←→

2a− 2−1−1
1 2a −1
1 1 2a

 2a− 2−1−1
1 2a −1
1 1 2a

←−−−−−−−−−−−−−−−−−−→

2a− 1−1 0
1 2a −1
0 1 2a− 1

 2a− 1−1 0
1 2a −1
0 1 2a− 1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Largest-known general and bipartite circulant graph families
Degree 6 order polynomial in 2a Degree 7 order polynomial in 2a

(1 2 3 2)/2 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (1 2 3 2)xy (1 2 3 2)/2 ←−−−−−−−−−−−−−−−−−−−−−−→ (1 2 3 2)
xyl (1 0 3 0)/2 ←→ (1 0 3 0) l

(1 -2 3 -2)/2 ←−−−−−−−−−−−−−−−−−−−−−−→ (1 -2 3 -2)
(1 -2 3 -2)/2 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (1 -2 3 -2)
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both frames are presented, where the value of a in each case is different for general

and bipartite families as indicated in the first two frames.

It has already been mentioned in Section 8.2 that one LGM can be associated with up

to eight distinct isomorphism classes of Abelian Cayley graph families. As a

consequence of the relationships described here between general and bipartite graph

families, we can see that up to eight further graph families may also be based on the

same LGM. This means that up to 16 distinct Abelian Cayley graph families may

share a common LGM basis, depending on four defined axes of relationship:

tranposition, conjugation, translation and bipartition. It should be noted that whilst

the first three relationships preserve quasimaximality, bipartite graph families are

subquasimaximal, having a lower second coefficient in their order polynomials.

9.2 Dimension 1, degrees 2 and 3

As the dimension is odd, there is translation between graph families of degree 2 and

degree 3. Also, as the dimension is odd, the graph families are defined for diameter

classes modulo f = 1, so there is just one diameter class of extremal bipartite

circulant graph families for each degree.

For degree 2, the solutions are trivial, with a single generator element of 1, giving the

cycle graph of order Extbipcirc(2, k) = 2k. This compares with the solution for general

circulant graphs, which are cycle graphs of order Extcirc(2, k) = 2k + 1.

For degree 3, the solutions are again trivial, with a single generator element of 1,

giving a graph of order Extbipcirc(3, k) = 4k − 2 that is a cycle graph with the

‘diameters’ added. This compares with the solution for general circulant graphs,

which are similarly shaped graphs, but of order Extcirc(3, k) = 4k.

These families are summarised in Table 9.2.

Table 9.2: Order of extremal bipartite circulant graph families of degrees 2 & 3

Degree 2 families Degree 3 families
Family Order polynomial in 2a Family Order polynomial in 2a

D2 (1 0)/2 D3 (1 0)

for degree 2, a = 2k for degree 3, a = (2k − 1)

Properties of the individual graphs up to diameter 16 are given in Appendix E, Tables

E.1 and E.2.
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9.3 Dimension 2, degrees 4 and 5

As the dimension is even, there is no translation between graph families of degree 4

and 5. Also, as the dimension is even, the graph families are defined for diameter

classes modulo f/2 = 1, so there is just one diameter class of extremal bipartite

circulant graph families for each degree.

For degree 4, despite there being only one diameter class, there are multiple

isomorphism classes of largest-known bipartite circulant graphs, depending on the

diameter k. This was discovered by Tzvieli in 1991 [49], see Theorem 9.5. These

graphs are shown in Table 9.3 for diameter k ≤ 12. Also, see Appendix E, Table E.3.

Table 9.3: Extremal bipartite circulant graphs of degree 4, up to diameter 12

Diameter Order Generating sets existing for each parameter t

k Extbipcirc(4, k) t = 1 t = 2 t = 3 t = 4 t = 5

2 8 1, 3
3 18 1, 5 1, 7
4 32 1, 7 1, 9
5 50 1, 9 1, 11 1, 19 1, 21
6 72 1, 11 1, 13
7 98 1, 13 1, 15 1, 27 1, 29 1, 41 1, 43
8 128 1, 15 1, 17 1, 47 1, 49
9 162 1, 17 1, 19 1, 35 1, 37 1, 71 1, 73
10 200 1, 19 1, 21 1, 59 1, 61
11 242 1, 21 1, 23 1, 43 1, 45 1, 65 1, 67 1, 87 1, 89 1, 109 1, 111
12 288 1, 23 1, 25 1, 119 1, 121

The graphs have order Extbipcirc(4, k) = 2k2, a quadratic in k reflecting the two degrees

of freedom in specifying the generating set. This compares with the extremal solution

for general circulant graphs, which has order Extcirc(4, k) = 2k2 + 2k + 1.

Theorem 9.5. (Tzvieli [49]) Given any k, then for any t with 1 ≤ t ≤ b(k − 1)/2c
such that gcd(t, k) = 1, there exists a bipartite circulant graph of degree 4, diameter k

and order 2k2 with generating sets {1, 2tk− 1} and {1, 2tk+ 1}. For each t, the pair of

generating sets create isomorphic graphs that belong to a distinct isomorphism class.

It is easily observed that the two generating sets {1, 2tk− 1} and {1, 2tk+ 1} generate

isomorphic graphs by multiplying the first by 2tk + 1 to achieve the second.

Therefore, for any bipartite circulant graph of degree 4, diameter k and order 2k2, the

number of distinct generating sets is equal to the Euler totient function φ(k), being a

count of the numbers below k that are coprime with k. Also, for k > 2 the number of

distinct isomorphism classes is equal to φ(k)/2.
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The obvious question is why there are so many distinct isomorphism classes of degree

4 bipartite circulant graph families, increasing without limit with diameter. Is it

possible that there can be so many distinct LGM odd bases within the format of a

2× 2 matrix? In fact, the answer is yes.

The canonical LGM odd basis that reflects the relationship of Theorem 9.1 is the

LGM for the extremal circulant graph family of degree 5. It is
(
2a+1 −1
1 2a−1

)
, and it

generates a degree 4 bipartite circulant graph family with generating sets that

correspond with parameter value t = 1 for each diameter.

Let us consider a generalisation of this LGM:
(
2a+s −s
s 2a−s

)
. For s > 1, this is not in

canonical format, but its determinant has the same value of 4a2 for any s. Considered

as LGMs of degree 5 Abelian Cayley graphs, for s > 1 the resultant families have

order polynomial in 2a of n = (1 0 0). They are all subquasimaximal because the

diameter for each value of a is greater by 1 than the quasimaximal family with s = 1,

that is k = a+ 1 instead of k = a. These degree 5 subquasimaximal families for s > 1

all satisfy the final condition of Theorem 9.1 that there is no vertex v with d(0, v) = d

(0, v + n/2) = k where k is the diameter. Therefore, by Theorem 9.1, for s ≥ 1,(
2a+s −s
s 2a−s

)
is the LGM odd basis of a bipartite circulant graph family of degree 4

and order (1 0 0)/2 for a = k/2.

For each value of s, the LGM generates a unique self-transpose, self-conjugate,

bipartite circulant graph family, which we denote by D4:s. It is not the case that a

family D4:s, for arbitrary s, has a generating set with parameter t = s for any

diameter k. There is no simple relationship between the parameters s and t. For any

s, the graph family D4:s only contains bipartite circulant graphs for diameters k such

that the greatest common divisor gcd(s, k) = 1. Whenever gcd(s, k) > 1, the graph

generated by the LGM is a bipartite Abelian Cayley graph of cyclic rank 2 where one

of the cyclic orders has the value gcd(s, k). For gcd(s, k) = 1, it emerges that t ∈ N is

the lowest number such that |st− uk| = 1 for some u ∈ N. In this way, the parameter

value t for any diameter k can be determined for any family D4:s. These values are

presented in Table 9.4 for s ≤ 8 and k ≤ 16.

For degree 5, there is just one family of extremal bipartite circulant graphs for each

diameter k (see Appendix E), Table E.4. Their order is given by

Extbipcirc(5, k) = 4k2 − 4k + 2, the quadratic in k again reflecting the two degrees of

freedom in specifying the generating set. This compares with the extremal solution

for general circulant graphs, which has order 4k2. In contrast to the degree 4 case,

there is just one generating set for each diameter.
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Table 9.4: Value of parameter t for diameter k in graph family D4:s

Family Diameter, k
D4:s 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

s = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
s = 2 1 2 3 4 5 6 7
s = 3 1 1 2 2 3 3 4 4 5 5
s = 4 1 1 2 2 3 3 4
s = 5 1 1 1 1 3 3 2 2 5 5 3 3
s = 6 1 1 2 2
s = 7 1 1 1 2 1 1 4 3 3 5 2 2 7
s = 8 1 2 1 1 4 5 1

The order of these families are summarised in Table 9.5.

Table 9.5: Order of extremal bipartite circulant graph families of degrees 4 and
5

Degree 4 family Degree 5 family
Family Order polynomial in 2a Family Order polynomial in 2a

D4:s (1 0 0)/2 D5 (1 -2 2)
(s ≥ 1)

for degree 4, a = k for degree 5, a = k

The LGMs and formulae for order and a generating set for graph families of all

diameter classes are given in Appendix B.1, and properties of the individual graphs

up to diameter 16 in Appendix E, Tables E.3 and E.4.

9.4 Dimension 3, degrees 6 and 7

As the dimension is odd, there is translation between graph families of degree 6 and

degree 7, and the families are defined for diameter classes modulo f = 3, as already

shown in the comparison with general circulant graph families of the same dimension,

earlier in this chapter.

For degree 6, all the families are self-transpose. For diameter class 0, the family is

self-conjugate. For classes 1 and 2, each has two non-isomorphic families forming

conjugate pairs.

For degree 7, the same holds with the proviso that the self-conjugate family is in

diameter class 2. All these families form translate pairs. This structure exactly

mirrors the structure for general circulant graph families of dimension 3, underpinned

by sharing common LGMs. The order polynomials are shown in Table 9.6 and the

dimensional frame in Table 9.7.
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Table 9.6: Order of largest-known bipartite circulant graph families of degrees 6
and 7

Degree 6 families Degree 7 families
Family Order polynomial in 2a Family Order polynomial in 2a c*

D6:0 (1 0 3 0)/2 D7:2 (1 0 3 0) 0
D6:1A/B (1 -2 3 -2)/2 D7:0A/B (1 -2 3 -2) 1
D6:2A/B (1 2 3 2)/2 D7:1A/B (1 2 3 2) -1

* for degree 6, a = (2k + c)/3 * for degree 7, a = (2k + c− 1)/3

Table 9.7: Dimension 3: Largest-known bipartite circulant graph families

Degree 6 families Degree 7 families

D6:2A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ D7:1Axy D6:2B ←−−−−−−−−−−−−−−−→ D7:1B
xyl D6:0 ←→ D7:2 l

D6:1B ←−−−−−−−−−−−−−−−→ D7:0B
D6:1A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ D7:0A

The LGMs and formulae for order and generating sets are presented in Appendix B.2,

and the properties of the individual graphs up to diameter 16 in Appendix E, Tables

E.5 and E.6.

9.5 Dimension 4, degrees 8 and 9

As the dimension is even, there is no translation between graph families of degree 8

and degree 9. Also, the graph families are defined for diameter classes modulo

f/2 = 2, so there are two diameter classes of largest-known bipartite circulant graph

families for each degree.

For degree 8, each diameter class has a self-transpose non-conjugate family. For class

0, family D8:0 is derived from F9:0 by application of Theorem 9.1. However, D8:1 is

not derived from F9:1 because there is a larger-order family of diameter class 0

satisfying the final condition of Theorem 9.1. For diameter k = 4, the graph of family

D8:0 has order 156 and is not extremal. Instead there are two distinct isomorphism

classes of graphs, denoted E8:4A and E8:4B, with order 160. Apart from k = 4,

families D8:0 and D8:1 have been verified to be extremal for diameters k ≤ 7 and are

conjectured to be extremal for all higher diameters.

For degree 9, both diameter classes have a self-transpose family, D9:0 and D9:1, that

form a conjugate pair. They are both derived from the largest-known odd-order

degree 8 general circulant graph families (discovered by Monakhova [38]) by Theorem

9.3. The order polynomials are presented in Table 9.8.
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Table 9.8: Order of largest-known bipartite circulant graph families of degrees 8
and 9

Degree 8 families Degree 9 families
Family Order polynomial in 2a Family Order polynomial in 2a c*

D8:0 (1 0 3 2 0)/2 D9:0 (1 -2 5 -4 2) 0
D8:1 (1 -4 10 -12 4)/2 D9:1 (1 -6 17 -24 14) 1

* for degree 8, a = (k + c)/4 * for degree 9, a = (k + c)/4

These relationships are summarised in the dimensional frame, Table 9.9.

Table 9.9: Dimension 4: Largest-known bipartite circulant graph families

Degree 8 families Degree 9 families

D9:1
D8:0

xy
D8:1

D9:0

A full set of LGMs and formulae for order and a generating set for graph families of

both diameter classes is given in Appendix B.3.

For diameter k = 2, the graph of class 0 has order 14 and is not optimal. Instead there

is one isomorphism class of extremal graph with order 18. For diameter k = 3, the

graph of class 1 has order 62, whereas there are two isomorphism classes of extremal

graph with order 70. For diameter k = 4, the graph of class 1 has order 194 compared

with a single isomorphism class of extremal graph with order 198. Properties of the

individual graphs up to diameter 16 are given in Appendix E, Tables E.7 and E.8.

9.6 Dimension 5, degrees 10 and 11

As the dimension is odd, there is translation between graph families of degree 10 and

degree 11, and the graph families are defined for diameter classes modulo f = 5, so

there are five diameter classes of largest-known bipartite circulant graph families for

each degree.

For degree 10, each diameter class has one self-transpose graph family. The one for

class 0, D10:0, is self-conjugate. The others form two conjugate pairs. For degree 11,

each diameter class also has one self-transpose graph family. D11:3 is self-conjugate

and is the translate of D10:0. Two others form a conjugate pair and are translates of

one of the degree 10 conjugate pairs. The other two are neither conjugates nor

translates.
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The order polynomials are presented in Table 9.10 and the relationships are

summarised in the dimensional frame, Table 9.11.

Table 9.10: Order of largest-known bipartite circulant graph families of degrees
10 and 11

Degree 10 families Degree 11 families
Family Order polynomial in 2a Family Order polynomial in 2a c*

D10:0 (1 0 6 0 5 0)/2 D11:3 (1 0 6 0 5 0) 0
D10:1 (1 4 13 20 14 4)/2 D11:4 (1 4 12 20 15 4) -2
D10:2 (1 -2 8 -8 5 -2)/2 D11:0 (1 -2 8 -8 5 -2) 1
D10:3 (1 2 8 8 5 2)/2 D11:1 (1 2 8 8 5 2) -1
D10:4 (1 -4 13 -20 14 -4)/2 D11:2 (1 -4 12 -16 9 -4) 2

* for degree 10, a = (2k + c)/5 * for degree 11, a = (2k + c− 1)/5

Table 9.11: Dimension 5: Largest-known bipartite circulant graph families

Degree 10 families Degree 11 families

D10:3 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ D11:1xy D10:4 D11:2
xyl D10:0 ←→ D11:3

D10:1 D11:4
D10:2 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ D11:0

LGMs and formulae for order and a generating set for graph families of all diameter

classes are given in Appendix B.4. For degree 10 and diameter 4, the graph in family

D10:4 has order 282, whereas there is a larger graph, E10:4 with order 288. And for

diameter 5, there is another graph, E10:5, with the same order 714 as the graph in

family D10:0. For degree 11, for diameter 2 there is a graph E11:2 larger than the

family graph. This is also true for diameter 3 and 4 with larger graphs E11:3 and

E11:4. Properties of the individual graphs up to diameter 16 are given in Appendix

E, Tables E.9 and E.10.

9.7 Conjectured order of extremal bipartite circulant graphs

In this chapter, the extremal and largest-known families of bipartite circulant graphs

of degree 2 to 11 for arbitrary diameter k have been identified. We have seen that

bipartite circulant graphs are related in various ways to their corresponding general

circulant graphs. In particular, their order is expressed by a polynomial in k of the

same degree, being equal to the dimension of the graph in each case. The first two

coefficients of these polynomials is presented in Table 9.12.

From a comparison of the formulae for the order of the families of extremal and

largest-known bipartite circulant graphs of degree 2 to 11, relationships may be

discerned between the first and second terms and between the degrees, similar to the
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Table 9.12: The first two coefficients in the polynomial formulae for the order
of extremal and largest-known bipartite circulant graphs of degrees

2 to 11 and diameter k, for k ≥ kd for some kd

Dim Even degree d = 2f Odd degree d = 2f + 1
f Coeff of (4k/f)f Coeff of (4k/f)f−1 Coeff of (4k/f)f Coeff of (4k/f)f−1

1 1/2 0 1 -2
2 1/2 0 1 -2
3 1/2 0 1 -2
4 1/2 0 1 -2
5 1/2 0 1 -2

ones between general circulant graph families. Extrapolating these relationships to all

higher degrees leads to the Extremal Order Conjecture for Bipartite Circulant

Graphs, Conjecture 9.6, summarised in Table 9.13.

Conjecture 9.6. Extremal Order Conjecture for Bipartite Circulant Graphs. Given

an extremal bipartite circulant graph familiy of degree d ≥ 2 and arbitrary diameter k,

then the order of each graph in the family is given by a polynomial in k of degree f ,

the dimension of the graph. The leading term in the polynomial is (1/2)(4/f)fkf for

even degree, and (4/f)fkf for odd degree. For the second term, the coefficient of kf−1

is zero for even degree and (−2)(4/f)f−1 for odd. Graphs in such a family are

extremal for all diameters k ≥ kd for some threshold value kd dependent on d.

Table 9.13: The first two coefficients in the polynomial formulae for the
conjectured order of extremal bipartite circulant graphs of degree d

and diameter k, for k ≥ kd for some kd

Degree d Dimension f Coefficient of kf Coefficient of kf−1

d even f = d/2 1
2

(
4
f

)f
0

d odd f = (d− 1)/2
(

4
f

)f
−2
(

4
f

)f−1

The conjecture is true for dimensions 1 and 2, with kd = 1. For dimension 3, it is true

for the families of largest-known circulant graphs with kd = 1, and for dimensions 4

and 5 with kd = 5.

Comparing the conjectured order of extremal bipartite circulant graph families with

the general circulant Extremal Order Conjecture, 3.1, the leading coefficients for both

even and odd degree are identical. The difference in the second coefficient is (4/f)f−1

for even degree and 2(4/f)f−1 for odd. This relationship is a consequence of

Theorems 9.1 to Theorem 9.3 and the fact that corresponding general and bipartite

circulant graph families share common LGMs.
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Chapter 10

Abelian Cayley graph families of

higher cyclic rank

Chapter 10 presents largest-known non-circulant Abelian Cayley graph families up to

degree 15, and one of degree 19, all quasimaximal.

Circulant graphs are simply a special case of Abelian Cayley graphs, where the cyclic

rank is 1. The cyclic rank of an Abelian Cayley graph is at most equal to the

dimension of the generating set. Equality is achieved only when each generator

defines a distinct cyclic subgroup of the associated Abelian group. Depending on the

order of the group, the number of potential generating sets for non-circulant Abelian

Cayley graphs (of cyclic rank greater than 1) may be some orders of magnitude more

than for circulant graphs of the same order. Therefore, a simple search for extremal

Abelian Cayley graphs of given degree and diameter becomes intractable

computationally even earlier than for circulant graphs.

The approach employed for circulant graph families of degree 12 and above, using

canonical quasimaximal LGMs (LGM odd bases, for even degree), is based on a

bijection between lattices in Zf and Abelian Cayley graphs, and so is not limited to

circulant graphs in particular. Therefore, it is reasonable to consider this approach in

the search for Abelian Cayley graph families of cyclic rank 2 or more.

As described in Chapter 9, this search method proceeds by defining a candidate LGM,

taking its adjoint, and then post-multiplying by a sequence of simple column vectors

in turn. Each resulting candidate generating set is then tested for validity before

moving to the next. The enhancement required for Abelian Cayley graph families of

higher cyclic rank is to replace the column vector by a matrix with the number of

columns equal to the cyclic rank. In this way, the candidate generators have the

correct cyclic rank, so that the vector representing each generator has number of

elements equal to the cyclic rank. The complexity of the search algorithm increases

rapidly with cyclic rank, in step with the number of elements in the post-multiplying

matrix (being the product of dimension and cyclic rank). Therefore, it was only

possible to explore Abelian Cayley graph families up to degree 15 with the available

computing resource (compared with degree 20 for circulant graph families). The
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searches were extensive but not exhaustive, so it is possible that these largest-known

Abelian Cayley graph families are not extremal. Also, the procedure only searched for

quasimaximal graph families, and for each degree there is a threshold diameter below

which the extremal graphs do not belong to quasimaximal families. (This is discussed

further in Chapter 13.) Therefore, even in case a graph family is extremal, its

members below the threshold diameter will not be extremal graphs.

Each largest-known non-circulant Abelian Cayley graph family described in this

chapter is comprehensively documented in Appendix C, including its LGM and

formulae for its order and a generating set. The existence of these families for all

diameters in their respective diameter classes is confirmed by the Abelian Cayley

graph families Existence Proof Theorem 6.16. In addition, each graph up to diameter

16 is documented in Appendix F.

Despite the fact that these families exist, it has not always been possible to identify

generating set formulae that are valid for every diameter in the class. It often occurs

that the formulae for a set of generators all share a common factor with the order

formula for every diameter within a subclass of the diameter class. For those

diameters, the formulae will fail to generate a graph. In this chapter and in Appendix

C, the aim has been to find sets of formulae that avoid such a common factor. Where

this has not been possible, then a set with the largest factor found has been selected.

In Appendix C, this is identified at the head of each table. In some cases it has not

proved possible to discover any set of formulae for the generating sets of a family,

such as for degree 13, diameter class 0 (mod 3). More extensive computer searches

may well fill these gaps in future.

It is immediate that the non-circulant Abelian Cayley graphs cannot exist below

degree 4, as they must have dimension at least 2 in order to have cyclic rank above 1.

Therefore, the extremal circulant graph families of degrees 2 and 3 are also extremal

Abelian Cayley graph families.

10.1 Dimension 2, degrees 4 and 5

As the dimension is even, there is no translation between degrees 4 and 5, and the

graph families are defined for diameter classes modulo h = f/2 = 1, giving just one

class per degree.

For degree 4, the largest-known Abelian Cayley graph family is circulant. Degree 5 is

the first degree where non-circulant Abelian Cayley graphs are extremal. The

extremal cyclic-rank 2 graph family has the same order as the extremal circulant
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graph family. Their orders are shown in Table 10.1. See Appendices C.1 and F Table

F.1 for details.

Table 10.1: Order and cyclic orders of extremal Abelian Cayley graph families
of degrees 4 and 5

Degree Order polynomials in 2a
(all diameters) Circulant Non-circulant (with cyclic orders)

Degree 4 (1 2 2)/2 (1 0 0)/2 = (1 0) × (1 0)/2
a = k

Degree 5 (1 0 0) (1 0 0) = (1 0) × (1 0)
a = k

10.2 Dimension 3, degrees 6 and 7

As the dimension is odd, there is translation between degrees 6 and 7, and the graph

families are defined for diameter classes modulo f = 3, giving three classes per degree.

For degrees 6 and 7, the largest-known Abelian Cayley graph families are all

circulant. The largest-known non-circulant Abelian Cayley graph families have cyclic

rank 2 or 3, depending on the diameter class. For degree 6 diameter class 1 and

degree 7 diameter class 0, there are two non-isomorphic largest-known non-circulant

Abelian Cayley graph families: one with cyclic rank 2 and one with cyclic rank 3

(translate pairs). Their orders are shown in Tables 10.2 and 10.3.

Table 10.2: Order and cyclic orders of largest-known Abelian Cayley graph
families of degree 6

Diameter class Order polynomials in 2a for diameter class k
k (mod 3) Circulant Non-circulant (with cyclic orders)

k ≡ 0 (1 2 3 2)/2 (1 2 0 0)/2
a = 2k/3 = (1 2 0)/2 × (1 0)

k ≡ 1 (1 0 3 0)/2 (1 0 0 0)/2
a = (2k + 1)/3 = (1 0 0) × (1 0)/2

(1 0 0 0)/2
= (1 0) × (1 0) × (1 0)/2

k ≡ 2 (1 -2 3 -2)/2 (1 -2 0 0)/2
a = (2k − 1)/3 = (1 -2 0)/2 × (1 0)
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Table 10.3: Order and cyclic orders of largest-known Abelian Cayley graph
families of degree 7

Diameter class Order polynomials in 2a for diameter class k
k (mod 3) Circulant Non-circulant (with cyclic orders)

k ≡ 0 (1 0 3 0) (1 0 0 0)
a = 2k/3 = (1 0 0) × (1 0)

(1 0 0 0)
=(1 0) × (1 0) × (1 0)

k ≡ 1 (1 -2 3 -2) (1 -2 2 0)
a = (2k + 1)/3 = (1 -2 2 0)/2 × (2)

k ≡ 2 (1 2 3 2) (1 2 2 0)
a = (2k − 1)/3 =(1 2 2 0)/2 × (2)

10.3 Dimension 4, degrees 8 and 9

As the dimension is even, there is no translation between degrees 8 and 9, and the

graph families are defined for diameter classes modulo h = f/2 = 2, giving two classes

per degree.

For degree 8, the largest-known Abelian Cayley graph families are both circulant.

However, as an exception, the extremal Abelian Cayley graph of degree 8 and

diameter 2 has cyclic rank 2. It has order 36, with cyclic orders 12 and 3, compared

with 35 for the extremal circulant graph (see Appendix F Table F.2 and Appendix D

Table D.7). The largest-known non-circulant Abelian Cayley graph families have

cyclic rank 2. Their orders are shown in Table 10.4.

Table 10.4: Order and cyclic orders of largest-known Abelian Cayley graph
families of degree 8

Diameter class Order polynomials in 2a for diameter class k
k (mod 2) Circulant Non-circulant (with cyclic orders)

k ≡ 0 (1 2 6 4 0)/2 (1 2 3 4 2)/2
a = k/2 = (1 1 2 2)/2 × (1 1)

k ≡ 1 (1 -2 6 -4 0)/2 (1 -2 3 -4 2)/2
a = (k + 1)/2 = (1 -1 2 -2)/2 × (1 -1)

In contrast, for degree 9, the largest-known Abelian Cayley graph families are both

non-circulant. This is the lowest degree where a non-circulant Abelian Cayley graph

family has larger order polynomial than the largest-known circulant graph family.

Their orders are shown in Table 10.5. See Appendices C.2 and F Table F.3 for details.
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Table 10.5: Order and cyclic orders of largest-known Abelian Cayley graph
families of degree 9

Diameter class Order polynomials in 2a for diameter class k
k (mod 2) Circulant Non-circulant (with cyclic orders)

k ≡ 0 (1 0 3 2 0) (1 0 4 0 0)
a = k/2 = (1 0 4 0)/2 × (2 0)

k ≡ 1 (1 0 3 0 0) (1 0 4 0 -1)
a = k/2 = (1 0 4 0 -1)/2 × (2)

10.4 Dimension 5, degrees 10 and 11

As the dimension is odd, there is translation between degrees 10 and 11, and the graph

families are defined for diameter classes modulo f = 5, giving five classes per degree.

Of the five largest-known Abelian Cayley graph families of degree 10, two are

circulant, two have cyclic rank 2 and one has cyclic rank 3. The largest-known families

of degree 11 are the translates of these families for each class. Their orders are shown

in Tables 10.6 and 10.7. See Appendices C.3 and F Table F.4 and F.5 for details.

Table 10.6: Order and cyclic orders of largest-known Abelian Cayley graph
families of degree 10

Diameter class Order polynomials in 2a for diameter class k
k (mod 5) Circulant Non-circulant (with cyclic orders)

k ≡ 0 (1 2 8 8 5 2)/2 (1 2 7 10 0 0)/2
a = 2k/5 = (1 2 7 10 0)/2 × (1 0)

k ≡ 1 (1 -4 13 -20 14 -4)/2 (1 -4 14 -24 17 -4)/2
a = (2k + 3)/5 = (1 -3 11 -13 4)/2 × (1 -1)

k ≡ 2 (1 0 6 0 5 0)/2 (1 0 7 0 0 0)/2
a = (2k + 1)/5 = (1 0 7 0) × (1 0) × (1 0)/2

k ≡ 3 (1 4 13 20 14 4)/2 (1 4 14 24 17 4)/2
a = (2k − 1)/5 = (1 3 11 13 4)/2 × (1 1)

k ≡ 4 (1 -2 8 -8 5 -2)/2 (1 -2 7 -6 0 0)/2
a = (2k + 2)/5 = (1 -2 7 -6 0)/2 × (1 0)

Robert Roderick Lewis



146 10 Abelian Cayley graph families of higher cyclic rank

Table 10.7: Order and cyclic orders of largest-known Abelian Cayley graph
families of degree 11

Diameter class Order polynomials in 2a for diameter class k
k (mod 5) Circulant Non-circulant (with cyclic orders)

k ≡ 0 (1 0 6 0 5 0) (1 0 7 0 0 0)
a = 2k/5 = (1 0 7 0) × (1 0) × (1 0)

k ≡ 1 (1 4 13 20 14 4) (1 4 14 24 17 4)
a = (2k − 2)/5 = (1 3 11 13 4) × (1 1)

k ≡ 2 (1 -2 8 -8 5 -2) (1 -2 7 -6 2 0)
a = (2k + 1)/5 = (1 -2 7 -6 2 0)/2 × (2)

k ≡ 3 (1 2 8 8 5 2) (1 2 7 10 0 0)
a = (2k − 1)/5 = (1 2 7 10 0)/2 × (1 0) × (2)

k ≡ 4 (1 -4 12 -16 9 -4) (1 -4 14 -24 17 -4)
a = (2k + 2)/5 = (1 -3 11 -13 4) × (1 -1)

10.5 Dimension 6, degrees 12 and 13

As the dimension is even, there is no translation between degrees 12 and 13, and the

graph families are defined for diameter classes modulo h = f/2 = 3, giving three

classes per degree.

For degree 12, the largest known Abelian Cayley graph families are all non-circulant,

with cyclic rank 2. See Table 10.8 and Appendix F Table F.6 for details.

Table 10.8: Order and cyclic orders of largest-known Abelian Cayley graph
families of degree 12

Diameter class Order polynomials in 2a for diameter class k
k (mod 3) Circulant Non-circulant (with cyclic orders)

k ≡ 0 (1 2 11 14 13 6 0)/2 (1 2 12 16 10 0 0)/2
a = k/3 = (1 2 12 16 10 0)/2 × (1 0)

k ≡ 1 (1 6 24 58 75 46 10)/2 (1 6 25 60 72 40 8)/2
a = (k − 1)/3 = (1 5 20 40 32 8)/2 × (1 1)

k ≡ 2 (1 -2 11 -12 -2 4 0)/2 (1 -2 12 -16 10 0 0)/2
a = (k + 1)/3 = (1 -2 12 -16 10 0)/2 × (1 0)

For degree 13, they are also non-circulant. See Table 10.9 and Appendix F Table F.7

for details. For diameters k ≡ 1 and 2, the families are a conjugate pair with cyclic

rank 2. For diameter k ≡ 0, formulae for two different orders are included in the

table: (1 0 10 0 0 0 0) and (1 0 12 0 0 0 0). The first is the largest-known family for

which formulae have also been discovered for generating sets. For the second, it has

not yet been possible to identify generating sets that can be represented by such
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formulae, although graphs with this order have been discovered for diameters up to 21

and included in Appendix F. The order (1 0 12 0 0 0 0) is associated with a graph

family with cyclic rank 4. However, the common factors shared by the cyclic orders

leads to a division into two subfamilies with distinct cyclic order formulae:

(1 0 12 0)/2 × (2 0) × (1 0) × (1 0) for k ≡ 0 (mod 6), and (1 0 12 0)/4 × (4 0) ×
(1 0) × (1 0) for k ≡ 3 (mod 6). Their common LGM is presented in Appendix C.4

which contains details of all the Abelian Cayley graph families of degrees 12 and 13.

Table 10.9: Order and cyclic orders of largest-known Abelian Cayley graph
families of degree 13

Diameter class Order polynomials in 2a for diameter class k
k (mod 3) Circulant Non-circulant (with cyclic orders)

k ≡ 0 (1 0 8 2 -1 -4 0)/2 (1 0 10 0 0 0 0)
a = k/3 = (1 0 10 0 0) × (1 0) × (1 0)

k ≡ 0 (mod 6) (1 0 12 0 0 0 0)
= (1 0 12 0)/2 × (2 0) × (1 0) × (1 0)

k ≡ 3 (mod 6) (1 0 12 0 0 0 0)
= (1 0 12 0)/4 × (4 0) × (1 0) × (1 0)

k ≡ 1 (1 4 16 30 29 16 4) (1 4 17 34 28 8 0)
a = (k − 1)/3 = (1 3 14 20 8 0)/4 × (4 4)

k ≡ 2 (1 -4 16 -30 29 -16 4) (1 -4 17 -34 28 -8 0)
a = (k + 1)/3 = (1 -3 14 -20 8 0)/4 × (4 -4)

10.6 Dimension 7, degrees 14 and 15

As the dimension is odd, there is translation between degrees 14 and 15, and the

graph families are defined for diameter classes modulo f = 7, giving seven classes per

degree.

Of the seven largest-known Abelian Cayley graph families of degree 14, just one is

circulant and the rest have cyclic rank 2. For degree 15, none of the largest-known

families are circulant: six have cyclic rank 3 and the other has cyclic rank 5. Their

orders are shown in Tables 10.10 and 10.11. Details of the graph families and the

graphs up to diameter 16 are given in Appendices C.5 and F Tables F.8 and F.9 for

details.
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Table 10.10: Order and cyclic orders of largest-known Abelian Cayley graph
families of degree 14

Diameter class Order polynomials in 2a for diameter class k
k (mod 7) Circulant Non-circulant (with cyclic orders)

k ≡ 0 (1 2 15 20 21 12 4 0)/2 (1 2 16 20 13 6 0 0)/2
a = 2k/7 = (1 2 16 20 13 6 0)/2 × (1 0)

k ≡ 1 (1 6 28 76 127 126 67 14)/2 (1 6 30 84 113 70 16 0)/2
a = (2k − 2)/7 = (1 5 25 59 54 16 0)/8 × (4 4)

k ≡ 2 (1 -4 21 -46 50 -30 8 0)/2 (1 -4 22 -48 41 -12 0 0)/2
a = (2k + 3)/7 = (1 -3 19 -29 12 0)/2 × (1 -1 0)

k ≡ 3 (1 0 14 0 21 0 7 0)/2 (1 0 13 -2 7 2 0 0)/2
a = (2k + 1)/7 = (1 0 13 -2 7 2 0)/2 × (1 0)

k ≡ 4 (1 4 21 46 50 30 8 0)/2 (1 4 22 48 41 12 0 0)/2
a = (2k − 1)/7 = (1 3 19 29 12 0)/2 × (1 1 0)

k ≡ 5 (1 -6 28 -76 127 -126 67 -14)/2 (1 -6 30 -84 113 -70 16 0)/2
a = (2k + 4)/7 = (1 -5 25 -59 54 -16 0)/8 × (4 -4)

k ≡ 6 (1 -2 15 -20 21 -12 4 0)/2 (1 -2 16 -20 13 -6 0 0)/2
a = (2k + 2)/7 = (1 -2 16 -20 13 -6 0)/2 × (1 0)

Table 10.11: Order and cyclic orders of largest-known Abelian Cayley graph
families of degree 15

Diameter class Order polynomials in 2a for diameter class k
k (mod 7) Circulant Non-circulant (with cyclic orders)

k ≡ 0 (1 0 14 0 21 0 7 0) (1 0 15 0 0 0 0 0)
a = 2k/7 = (1 0 15 0) × (1 0) × (1 0) × (1 0) × (1 0)

k ≡ 1 (1 4 20 44 57 44 19 4) (1 4 22 48 41 12 0 0)
a = (2k − 2)/7 = (1 3 19 29 12 0 0)/16 × (4 4) × (4)

k ≡ 2 (1 -6 28 -76 127 -126 67 -14) (1 -6 30 -84 113 -70 16 0)
a = (2k + 3)/7 = (1 -5 25 -59 54 -16 0)/4 × (2 -2) × (2)

k ≡ 3 (1 -2 14 -16 11 -6 3 -2) (1 -2 16 -20 13 -6 0 0)
a = (2k + 1)/7 = (1 -2 16 -20 13 -6 0)/2 × (1 0) × (2)

k ≡ 4 (1 2 14 20 27 18 11 2) (1 2 16 20 13 6 0 0)
a = (2k − 1)/7 = (1 2 16 20 13 6 0)/2 × (1 0) × (2)

k ≡ 5 (1 6 28 76 127 126 67 14) (1 6 30 84 113 70 16 0)
a = (2k − 3)/7 = (1 5 25 59 54 16 0)/4 × (2 2) × (2)

k ≡ 6 (1 -4 20 -44 57 -44 19 -4) (1 -4 22 -48 41 -12 0 0)
a = (2k + 2)/7 = (1 -3 19 -29 12 0 0)/16 × (4 -4) × (4)
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10.7 Dimension 9, degrees 19

The systematic search for extremal Abelian Cayley graph families only reached degree

15. However, the investigation of a dimension 9 LGM with a format that could be

extrapolated to higher dimensions resulted in the discovery of a quasimaximal Abelian

Cayley graph family with order larger than the largest-known circulant graph family.

It has diameter class k ≡ 0 (mod 9). For diameters k ≡ 9 and 18 (mod 27), it has

cyclic rank 7. LGM, order and generating set polynomials are presented in Appendix

C, Table C.30. For diameters k ≡ 0 (mod 27), the values of these polynomials have

common divisor 9 and therefore do not generate the graph. For this case, the cyclic

rank and generating set have not yet been discovered. The order polynomial is shown

in Table 10.12 alongside the corresponding largest-known circulant graph family.

Table 10.12: Order and cyclic orders of largest-known Abelian Cayley graph
family of degree 19, diameter class 0

Order polynomials in 2a, a = 2k/9
Circulant Non-circulant (with cyclic orders*)

(1 0 20 0 58 0 43 0 9 0) (1 0 27 0 0 0 0 0 0 0)
= (1 0 27 0) × (1 0) × (1 0) × (1 0) × (1 0) × (1 0) × (1 0)

* cyclic orders only for diameter k ≡ 9 and 18 (mod 27)
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Chapter 11

Arc-transitive circulant graph

families from Lucas polynomials

Chapter 11 illustrates a surprising and beautiful relationship between Lucas

polynomials and an infinite sequence of quasimaximal circulant graph families that

are arc-transitive and have multiplicative generating sets. For any dimension, the

order and generating sets of these families are defined in terms of Lucas polynomials.

Lucas polynomials (OEIS:A162514, [42]) are a generalisation of the Fibonacci

sequence developed by Lucas [31]. They are defined recursively: L0(x) = 2,

L1(x) = x, Lf (x) = xLf−1(x) + Lf−2(x) for f > 1. They are also sometimes called

circulant Lucas polynomials. When x = 1, they reduce to give the Lucas number

sequence. An alternative combinatorial definition of Lucas numbers is that Lf (1) is

the number of matchings in a cycle on f vertices.

The first ten Lucas polynomials are shown in Table 11.1 along with their coefficient

representation in vector format. For simplicity of presentation, we adopt the

shorthand notation Lf for the coefficient representation of Lf (x), as shown in the

final column of the table.

Table 11.1: The first ten Lucas polynomials and their coefficient
representation

f Lucas polynomials Lf (x) Coefficient representation Lf

0 2 (2)
1 x (1 0)
2 x2 + 2 (1 0 2)
3 x3 + 3x (1 0 3 0)
4 x4 + 4x2 + 2 (1 0 4 0 2)
5 x5 + 5x3 + 5x (1 0 5 0 5 0)
6 x6 + 6x4 + 9x2 + 2 (1 0 6 0 9 0 2)
7 x7 + 7x5 + 14x3 + 7x (1 0 7 0 14 0 7 0)
8 x8 + 8x6 + 20x4 + 16x2 + 2 (1 0 8 0 20 0 16 0 2)
9 x9 + 9x7 + 27x5 + 30x3 + 9x (1 0 9 0 27 0 30 0 9 0)

For f > 0, the first two terms have coefficient 1 and 0. This is consistent with the

order polynomials in 2a for f -dimensional quasimaximal circulant graph families of

the principal diameter class for each degree. For odd degree d = 2f + 1, diameter
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class k ≡ 0 (mod f), a = 2k/f ; and in case of odd dimension, for even degree d = 2f ,

diameter class k ≡ (f − 1)/2 (mod f), a = (2k + 1)/f . For odd dimension f , we will

present constructions for circulant graph families with order polynomials given by

both these sets of parameters. In fact, it emerges that for each such family of

dimension f , the formulae for all the generators are constructed from the Lucas

polynomials of all lower indices. These graphs are denoted Lucas circulant graphs.

Note that for f > 1, the third coefficient is f .

For the even-degree Lucas family of order n = Lf/2 and diameter class k ≡ (f − 1)/2

(mod f), the generators gi are defined in terms of Li as follows:

g1 = L0/2

g2i = (L(f−1)/2+i − L(f+1)/2−i)/2

g2i+1 = (L(f−1)/2+i + L(f+1)/2−i)/2

for 1 ≤ i ≤ (f − 1)/2, where the Li are polynomials in 2a for a = (2k + 1)/f .

An example for dimension f = 9, diameter class k ≡ 4 (mod 9) is given in Table 11.2.

Here, the order n = L9/2, and the generators are all sums or differences of L0/2 to

L8/2, taken as polynomials in 2a, with a = (2k + 1)/9.

Table 11.2: Example: Lucas family of dimension f = 9, degree d = 18

Order/generator Li Polynomial in 2a for a = (2k + 1)/9

Order, n L9/2 (1 0 9 0 27 0 30 0 9 0)/2

g1 L0/2 (2)/2

g8 & g9 L8/2 (1 0 8 0 20 0 16 0 2)/2
∓ L1/2 ∓ (1 0)/2

g6 & g7 L7/2 (1 0 7 0 14 0 7 0)/2
∓ L2/2 ∓ (1 0 2)/2

g4 & g5 L6/2 (1 0 6 0 9 0 2)/2
∓ L3/2 ∓ (1 0 3 0)/2

g2 & g3 L5/2 (1 0 5 0 5 0)/2
∓ L4/2 ∓ (1 0 4 0 2)/2

For the odd-degree Lucas family of order n = Lf , the first generator remains

g1 = L0/2 = 1. The formulae for the subsequent (f − 1)/2 pairs of generators are just

the complements in Lf/2 of the even-degree generator pairs. Thus,

g2i = (Lf − L(f−1)/2+i + L(f+1)/2−i)/2 and g2i+i = (Lf − L(f−1)/2+i − L(f+1)/2−i)/2,

for i = 1, ..., (f − 1)/2. These are all polynomials in 2a, with a = 2k/f .

All these Lucas graph families are quasimaximal, as determined by the first two

coefficients of their order polynomials, and have maximal odd girth, 2k+ 1, where k is
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the diameter. For degrees d > 20, they are new largest-known circulant graph

families, thereby improving the lower bound for these degrees and diameter classes.

For the even-degree Lucas families, we will now show that their generating sets are

multiplicative and that the graphs are therefore arc-transitive. First, we state and

prove a lemma from the literature, for example see [12].

Lemma 11.1. For m ≥ n, Lm+n = LmLn − (−1)nLm−n, where Li is the ith Lucas

polynomial.

Proof. For n = 0, noting that L0 = 2, we have

LmLn − (−1)nLm−n = 2Lm − Lm = Lm, proving the lemma for n = 0. For n = 1, we

note that L1 = x. Then LmLn − (−1)nLm−n = xLm + Lm−1 = Lm+1 by definition,

proving the lemma for n = 1. Suppose the lemma is true for any n ≤ N . Then

Lm+(N+1) = L(m+1)+N

= Lm+1LN − (−1)NLm+1−N

= (xLm + Lm−1)LN − (−1)NLm+1−N

= Lm(LN+1 − LN−1) + Lm−1LN − (−1)NLm+1−N

= LmLN+1 + Lm−1LN − LmLN−1 − (−1)NLm+1−N

= LmLN+1 + Lm+N−1 + (−1)NLm−(N+1) − Lm+N−1

−(−1)N−1Lm−(N−1) − (−1)NLm−(N−1)

= LmLN+1 − (−1)N+1Lm−(N+1)

proving the lemma for n = N + 1.

Theorem 11.2. The generators for the Lucas circulant graph families of dimension

f ≡ 1 (mod 4) may all be expressed as powers of the second generator

g2 = (L(f+1)/2 − L(f−1)/2)/2, as shown in Table 11.3.

Table 11.3: Generators for the Lucas family of dimension f = 4m+ 1 for
any m ≥ 1

Subscript Generator
class i = 1, ...,m In terms of Lucas polynomials As a power of g2

2 g4i−2 (L(f+4i−3)/2 − L(f−4i+3)/2)/2 g4i−32

3 g4i−1 (L(f+4i−3)/2 + L(f−4i+3)/2)/2 gf−4i+3
2

0 g4i (L(f+4i−1)/2 − L(f−4i+1)/2)/2 gf−4i+1
2

1 g4i+1 (L(f+4i−1)/2 + L(f−4i+1)/2)/2 g4i−12
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Proof. The proof proceeds by induction on i for each of the four subscript classes of

generators in Table 11.3, making extensive use of Lemma 11.1. All the calculations

are modulo n.

For class 2, g2 = (L(f+1)/2 − L(f−1)/2)/2, by definition, is the initial generator.

For the initial generator for class 0, we need to show that g22 = ±gf−1 (mod n). We

have

g22 = (L(f+1)/2 − L(f−1)/2)
2/4

= (L(f+1/2L(f+1)/2 − 2L(f+1)/2L(f−1)/2 + L(f−1)/2L(f−1)/2)/4

= (Lf+1 − 2− 2(Lf + L1) + Lf−1 + 2)/4

= (LfL1 + Lf−1 − 2Lf − 2L1 + Lf−1)/4.

Now Lf/2 = n and L1 is even, so that (L1 − 2)Lf/4 ≡ 0 (mod n). Hence

g22 = (Lf−1 − L1)/2 = gf−1.

For the initial generator for class 1, we must show that g32 = ±g5 (mod n). Now

g32 = g2g
2
2

= (L(f+1)/2 − L(f−1)/2)(Lf−1 − L1)/4

= (L(f+1)/2Lf−1 − L(f+1)/2L1 − L(f−1)/2Lf−1 + L(f−1)/2L1)/4

= (L(3f−1)/2 − L(f−3)/2 − L(f+3)/2 + L(f−1)/2 − L(3f−3)/2 − L(f−1)/2

+L(f+1)/2 − L(f−3)/2)/4

= (LfL(f−1)/2 − L(f+1)/2 − L(f−3)/2 − L(f+3)/2 + L(f−1)/2 − LfL(f−3)/2

−L(f+3)/2 − L(f−1))/2 + L(f+1)/2 − L(f−3)/2)/4

= (Lf (L(f−1)/2 − L(f−3)/2)− 2L(f+3)/2 − 2L(f−3)/2)/4.

Again we have (Lf (L(f−1)/2 − L(f−3)/2)/4 ≡ 0 (mod n). Hence

g32 = −(L(f+3)/2 + L(f−3)/2)/2 = −g5.

For the initial generator for class 3, we must show that g42 = ±gf−2 (mod n). So

g42 = g22g
2
2 = gf−1gf−1

= (Lf−1 − L1)(Lf−1 − L1)

= (Lf−1Lf−1 − 2Lf−1L1 + L1L1)/4

= (L2f−2 + 2− 2(Lf − Lf−2) + L2 − 2)/4

= (LfLf−2 + L2 + 2− 2Lf + 2Lf−2 + L2 − 2)/4

= ((Lf−2 − 2)Lf + 2Lf−2 + 2L2)/4.

We have (Lf−2 − 2)Lf )/4 ≡ 0 (mod n). Hence, g42 = (Lf−2 + L2)/2 = gf−2.
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Having established the initial generator for all four subscript classes, we now need to

consider the inductive step for each. The proof for class 2 is presented below. The

other three proofs are similar. For class 2, we must show that g42g4i−2 = g4(i+1)−2 for

any i. We have

g42g4i−2 = gf−2g4i−2

= (Lf−2 + L2)(L(f+4i−3)/2 − L(f−4i+3)/2)/4

= (Lf−2L(f+4i−3)/2 − Lf−2L(f−4i+3)/2 + L2L(f+4i−3)/2

−L2L(f−4i+3)/2)/4

= (L(3f+4i−7)/2 − L(f−4i−1)/2 − L(3f−4i−1)/2 − L(f+4i−7)/2

+(L(f+4i+1)/2 + L(f+4i−7)/2 − L(f−4i+7)/2 − L(f−4i−1)/2)/4

= (LfL(f+4i−7)/2 + L(f−4i+7)/2 − L(f−4i−1)/2 − LfL(f−4i−1)/2

+L(f+4i+1)/2 − L(f+4i−7)/2 + (L(f+4i+1)/2 + L(f+4i−7)/2

−L(f−4i+7)/2 − L(f−4i−1)/2)/4

= (Lf (L(f+4i−7)/2 − L(f−4i−1)/2) + 2L(f+4i+1)/2 − 2L(f−4i−1)/2)/4

We have Lf (L(f+4i−7)/2 − L(f−4i−1)/2) ≡ 0 (mod n). Hence

g42g4i−2 = (L(f+4i+1)/2 − L(f−4i−1)/2)/2 = g4(i+1)−2.

We now establish that the Lucas circulant graph families considered in Theorem 11.2

have a multiplicative generating set and are therefore arc-transitive.

Theorem 11.3. The even-degree Lucas circulant graph families of dimension f ≡ 1

(mod 4) have multiplicative generating set {1, g2, g22, ..., g
f−1
2 }.

Proof. It has already been established that the generators are all powers of g2, using

the notation of Theorem 11.2. It only remains to demonstrate that |gf2 | = 1. Using

the relationships of generators in class 2 in Table 11.3, gf2 = (Lf − L0)/2 = −1.

The Lucas circulant graph families of dimension f ≡ 3 (mod 4) are proved to have

multiplicative generating sets and are therefore arc-transitive using the same

approach as for dimension f ≡ 1 (mod 4). Only the statements of the theorems are

given here, but their proofs follow the structure for the first case exactly.

Theorem 11.4. The generators for the Lucas circulant graph families of dimension

f ≡ 3 (mod 4) may all be expressed as powers of the second generator

g2 = (L(f+1)/2 − L(f−1)/2)/2, as shown in Table 11.4.
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Table 11.4: Generators for the Lucas family of dimension f = 4m− 1 for
any m ≥ 1

Subscript Generator
class i = 1, ...,m In terms of Lucas polynomials As a power of g2

3 g4i−1 (L(f+4i−3)/2 + L(f−4i+3)/2)/2 gf−4i+3
2

0 g4i (L(f+4i−1)/2 − L(f−4i+1)/2)/2 gf−4i+1
2

1 g4i+1 (L(f+4i−1)/2 + L(f−4i+1)/2)/2 g4i−12

2 g4i+2 (L(f+4i+1)/2 − L(f−4i−1)/2)/2 −g4i+1
2

Theorem 11.5. The even-degree Lucas circulant graph families of dimension f ≡ 3

(mod 4) have multiplicative generating set {1, g2, g22, ..., g
f−1
2 }.

We now establish the arc-transitivity of even-degree Lucas circulant graphs.

Arc-transitivity of odd-degree Lucas graphs is similarly proved.

Theorem 11.6. For any odd dimension f , the even-degree Lucas circulant graph

family is arc-transitive. Denoting its order by n, its automorphism group has order

2nf or a multiple thereof.

Proof. Any circulant graph on n vertices has rotational and reflective symmetries, so

that its automorphism group is either the dihedral group on n elements, Dn of order

2n, or contains the dihedral group as a subgroup. By Theorems 11.3 and 11.5, for any

even-degree Lucas circulant graph of dimension f , its generating set

G = {1, g2, g22, . . . , g
f−1
2 } with |gf2 | = 1 (all mod n), so that G is the multiplicative

orbit of a single generator. This creates an additional set of symmetries, of size f ,

mapping any edge incident to an arbitrary vertex to any other incident edge.

Consequently, these Lucas circulant graphs are edge-transitive. As any circulant has

reflexive symmetry, edge-transitivity implies arc-transitivity.

As far as checked, up to dimension f = 21, the lattice generator matrix (LGM) of an

odd-degree Lucas circulant graph family has a regular format; also the LGM odd

basis for even-degree Lucas families. This is in canonical form for a quasimaximal

graph family. Its rows, along with the involutory vector vm, equal to half the column

totals, constitute the vectors generating the corresponding lattice in Zf , by which the

existence of each family may be proved for arbitrary diameter within the class.
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Theorem 11.7. The lattice generator matrix (LGM) Mf of an odd-degree Lucas

circulant family of dimension f is an f × f matrix with the following form:

Mf =



2a −1 0 · · · 0 −1

1 2a −1
. . . 0

0 1 2a
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . . 2a −1

1 0 · · · 0 1 2a


.

For each odd dimension f , Mf is also the LGM odd basis for the corresponding

even-degree family, consistent with the fact that even- and odd-degree families are

translations of each other.

The existence of these families for all applicable degrees and corresponding diameter

classes has not yet been proved. However, specific graphs of even degree up to 42 and

odd degree up to 35 have been investigated by computer calculation and all have been

verified, and up to these degrees the existence of the families for all higher diameters

in their diameter classes is confirmed by the Existence Proof Theorem 6.16. Those of

degree above 20 are new largest-known arc-transitive circulant graphs. The order of

these graphs are listed below in Table 11.5. Their generating sets are simply

determined from the Lucas polynomial formulae.

Table 11.5: New largest-known arc-transitive circulant graphs from Lucas
polynomials

Dimension Degree Diameter Order

11 22 5 8,119
16 243,289,797

23 11 7,881,197
22 10,161,155,672

13 26 6 47,321
19 9,240,222,891

27 13 141,582,068

15 30 7 275,807
31 15 2,537,720,636

17 34 8 1,607,521
35 17 45,537,549,124

19 38 9 9,369,319

21 42 10 54,608,393
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Chapter 12

Other circulant graph families

beyond degree 20

Chapter 12 describes some series of circulant graph families beyond degree 20, created

by extending sets of LGMs with common formats to higher dimensions. These

families are conjectured to exist for all dimensions.

In the previous chapter, we saw how Lucas polynomials can be used to define an

infinite sequence of graph families of arbitrary odd dimension. These Lucas circulant

graph families are not only defined by a regular pattern of Lucas polynomials, but

may also be defined by a regular pattern of lattice generator matrices to generate

graph families of arbitrary odd dimension. This is facilitated by the fact that each

degree is associated with its principal diameter class: k ≡ 0 (mod f) for even degree

and k ≡ (f − 1)/2 (mod f) for odd degree. For quasimaximal Abelian Cayley graph

families, these are precisely the diameter classes that admit self-conjugation, as it is

possible for the LGM (LGM odd basis for even degree) to have a trace of 2fa where

a = (2k + c)/f for appropriate constant c, so that the second coefficient in the

polynomial in 2a for the order of the graphs is zero.

For the principal diameter class of each degree, in addition to the Lucas graph family

sequences, there are other LGM sequences defined by regular patterns that also

generate valid quasimaximal graphs for low diameters and are conjectured to extend

indefinitely. Writing the order polynomial in 2a of a quasimaximal graph family of

dimension f and odd degree as (cf cf−1 . . . c0), then for the principal diameter class

k ≡ 0 (mod f) and setting a = 2k/f , we have cf = 1 and cf−1 = 0. Therefore, the

relative order of quasimaximal graph families is determined firstly by the value of the

third coefficient, cf−2.
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Reprising the LGMs of the Lucas families, for odd dimension f , we have

Mf =



2a −1 0 · · · 0 −1

1 2a −1
. . . 0

0 1 2a
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . . 2a −1

1 0 · · · 0 1 2a


and cf−2 = f.

Therefore, the aim is to find regular sequences of LGMs giving order polynomials

with third coefficient, cf−2 > f . For f ≥ 2, we will define a sequence of f × f matrices

Af with larger cf−2. First, for f ≥ 4 and 4 ≤ m ≤ f , we define af (m) to be the f × f

matrix comprised of a 3× 3 block


0 −1 −1

1 2a −1

1 1 2a

 with upper left element at position

m− 2 on the leading diagonal and zeroes elsewhere.

We also similarly define af (3) and af (2) to be the f × f matrices with blocks
2a −1 −1

1 2a −1

1 1 2a

 and

 2a+ 1 −1

1 2a− 1

 in the upper left corner and zeroes

elsewhere. For dimension f ≥ 2, define Af =


∑f/2

i=1 af (2i) for even f∑(f−1)/2
i=1 af (2i+ 1) for odd f.

So the first four members of the sequence are

A2 =

 2a+ 1 −1

1 2a− 1

 , A3 =


2a −1 −1

1 2a −1

1 1 2a

 ,

A4 =


2a+ 1 −1 0 0

1 2a− 1 −1 −1

0 1 2a −1

0 1 1 2a

 , A5 =



2a −1 −1 0 0

1 2a −1 0 0

1 1 2a −1 −1

0 0 1 2a −1

0 0 1 1 2a


.

Expressed as polynomials in 2a, these have determinants (1 0 0), (1 0 3 0), (1 0 3 2

0), (1 0 6 0 5 0) respectively. For even dimension f , the third coefficient

cf−2 = 3(f − 2)/2, and for odd dimension, cf−2 = 3(f − 1)/2, which are both larger

than the Lucas families’ value of cf−2 = f . For dimension 2 ≤ f ≤ 5, these matrices

are the LGMs of the extremal and largest-known circulant graph families of odd
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degree d = 2f + 1 and principal diameter class. These results are summarised in the

following theorem and conjecture.

Theorem 12.1. For dimension f , 2 ≤ f ≤ 13, the matrix Af defined above is the

lattice generator matrix for a quasimaximal Abelian Cayley graph family of degree

2f + 1 and principal diameter class, diameter k ≡ 0 (mod f). Expressed as

polynomials in 2a where a = 2k/f , the order polynomial has third coefficient:

cf−2 =

 3(f − 2)/2 for even f

3(f − 1)/2 for odd f.

For odd dimension f , Af is also the LGM odd basis of the even-degree translate of the

odd-degree graph family, for the principal diameter class, k ≡ (f − 1)/2 (mod f).

Proof. Up to dimension 13, the existence of the graphs in these families has been

verified by computer program for low diameters, see Table 12.1. Therefore, by the

Existence Proof Theorem 6.16, these graphs exist for all diameters in their diameter

classes.

Table 12.1: Verified graphs from LGMs with format Af

Dim Degree Diameter Order polynomial in 2a for a = 2k/f Verified
f class, up to

0 mod . . . diameter

2 5 2 (1 0 0) all
3 7 3 (1 0 3 0) all
4 9 2 (1 0 3 2 0) all
5 11 5 (1 0 6 0 5 0) all
6 13 3 (1 0 6 2 5 4 0) 45
7 15 7 (1 0 9 0 19 0 7 0) 56
8 17 4 (1 0 9 2 19 10 7 6 0) 24
9 19 9 (1 0 12 0 42 0 44 0 9 0) 18
10 21 5 (1 0 12 2 42 16 44 28 9 8 0) 15
11 23 11 (1 0 15 0 74 0 138 0 85 0 11 0) 11
12 25 6 (1 0 15 2 74 22 138 68 85 60 11 10 0) 12
13 27 13 (1 0 18 0 115 0 316 0 363 0 146 0 13 0) 13

Conjecture 12.2. Theorem 12.1 is valid for all dimensions f ≥ 2.

For degrees 21 and 27, these are largest-known circulant graphs, also for degree 26 for

diameter greater than 6. They are included in Appendix D Table D.20 as members of

families F21:0, F26:6 and F27:0. It is conjectured that for any dimension f ≥ 2, these

graph families exist for all the diameters within their diameter class. For dimensions 6

to 9, these families are not largest known, and they are conjectured not to be

extremal for any dimension f ≥ 6.
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A similar sequence of odd-degree LGMs Bf can be constructed for any dimension

f ≥ 4 by pentadiagonal matrices, where the elements in the leading diagonal are 2a

with the exception of the second element, which is 2a+ 1, and the penultimate,

2a− 1. In the first two upper diagonals, the elements are all −1, and 1 in the first two

lower diagonals, with zeroes elsewhere. So the first two members of the sequence are

B4 =


2a −1 −1 0

1 2a+ 1 −1 −1

1 1 2a− 1 −1

0 1 1 2a

 , B5 =



2a −1 −1 0 0

1 2a+ 1 −1 −1 0

1 1 2a −1 −1

0 1 1 2a− 1 −1

0 0 1 1 2a


.

Expressed as polynomials in 2a, these have determinants (1 0 4 0 0 ) and (1 0 6 0 1

0). For any dimension f , the third coefficient cf−2 = 2(f − 2), which is larger than

the previous sequence for f ≥ 6. For dimension 4, degree 9, these matrices are the

LGMs of the largest-known Abelian Cayley graph family for the principal diameter

class, k ≡ 0 (mod 2). These graphs are not circulant, but instead have cyclic rank 2,

and are larger than the corresponding largest-known degree 9 circulant graph family.

Theorem 12.3. For dimension f , 4 ≤ f ≤ 14, the matrix Bf defined above is the

lattice generator matrix for a quasimaximal Abelian Cayley graph family of degree

2f + 1 and principal diameter class, diameter k ≡ 0 (mod f). Expressed as

polynomials in 2a where a = 2k/f , the order polynomial has third coefficient:

cf−2 = 2(f − 2).

For odd dimension f , Bf is also the LGM odd basis of the even-degree translate of the

odd-degree graph family, for the principal diameter class k ≡ (f − 1)/2 (mod f).

Proof. Up to dimension 13, the existence of the graphs in these families has been

verified by computer program for low diameters, see Table 12.2. Therefore, by the

Existence Proof Theorem 6.16, these graphs exist for all diameters in their diameter

classes.

Conjecture 12.4. Theorem 12.3 is valid for all dimensions f ≥ 4.

For dimension f ≡ 0 and 2 (mod 3), the families are circulant, whereas for f ≡ 1

(mod 3) they are Abelian Cayley with cyclic rank 2.

For degree 21 and above, these graph families are largest known for their diameter

classes, although not conjectured to be extremal. For each degree, the diameters
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Table 12.2: Confirmed graphs from LGMs with format Bf

Dim Degree Diameter Order polynomial in 2a for a = 2k/f Cyclic Verified
f class, rank up to

0 mod . . . diameter

4 9 2 (1 0 4 0 0) 2 all
= (1 0 4 0)/2 × (2 0)

5 11 5 (1 0 6 0 1 0) 1 all
6 13 3 (1 0 8 0 7 0 0) 1 45
7 15 7 (1 0 10 0 16 0 0 0) 2 35

= (1 0 10 0 16 0 0) × (1 0)
8 17 4 (1 0 12 0 29 0 6 0 0) 1 24
9 19 9 (1 0 14 0 46 0 25 0 3 0) 1 18
10 21 5 (1 0 16 0 67 0 64 0 8 0 0) 2 15

= (1 0 16 0 67 0 64 0 8 0)/2 × (2 0)
11 23 11 (1 0 18 0 92 0 131 0 33 0 1 0) 1 11
12 25 6 (1 0 20 0 121 0 234 0 107 0 14 0 0) 1 12
13 27 13 (1 0 22 0 154 0 381 0 274 0 52 0 0 0) - -
14 29 7 (1 0 24 0 191 0 580 0 594 0 172 0 11 0 0) 1 14

checked produced a valid Abelian Cayley graph with two exceptions. For degree 14,

the diameter 3 graph is circulant, the graphs at diameter 17 and 24 are Abelian

Cayley with cyclic rank 2, and at diameter 10 no graph was found. It is possible that

the diameter 10 graph exists with a higher cyclic rank. The diameter 3 graph is

circulant because the value of the second cyclic order happens to be 1 in this case.

The second exception is for degree 27. No solution was found for diameter 13, the

only value that was small enough to be checked by computer. However, its

even-translate family, with degree 26, has a confirmed member at diameter 6, a

circulant graph for the same reason as above.

For degrees 22, 23, 25 and 29, these are largest-known circulant graphs. They are

included in Appendix D Table D.20 as members of families F22:5, F23:0, F25:0 and

F29:0. For degree 21, these graphs are largest-known non-circulant Abelian Cayley

graphs. They are included in Appendix F Table F.12 as members of family A21:0. As

mentioned, the only member confirmed for the Abelian Cayley graph family of degree

26, A26:6, is the smallest member with diameter 6 and is, by exception circulant. It is

included in both Appendices D Table D.20 and F Table F.13.
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Chapter 13

Extension of the Extremal Order

Conjecture

In Chapter 13, the Extremal Order Conjecture is extended to the third coefficient in

the order polynomial. A conjecture is also discussed that all extremal Abelian Cayley

graphs above threshold diameters are members of quasimaximal families. Some

established theorems from the literature on asymptotically low-density lattice

coverings are considered to investigate whether they might indicate the existence, for

sufficiently large dimension, of extremal Abelian Cayley graph families of order

greater than determined by the Extremal Order Conjecture. However, the validity of

these theorems is questioned, and the conjecture is considered to remain valid.

13.1 Including bounds on the third coefficient

The Extremal Order Conjecture 3.1, in Chapter 3, states that for an extremal

Abelian Cayley graph family A of degree d, and corresponding dimension f , the order

n of any graph of diameter k in the family is given by

n =


1

2

(
4

f

)f
kf +

(
4

f

)f−1
kf−1 +O(kf−2) for even d(

4

f

)f
kf +O(kf−2) for odd d.

Presented as polynomials in 2a in vector notation, with a = 2k/f , we have

n =

 (1 2 cf−2 . . . c0)/2 for even d

(1 0 cf−2 . . . c0) for odd d.

However, in this format, the ci are generally not integral, unless k ≡ 0 (mod f).

Using, instead, the substitution a = (2k + c)/f where c is chosen such that a remains

integral for all k in the diameter class of the family we have

n =

 (1 cf−1 cf−2 . . . c0)/2 for even d

(1 cf−1 cf−2 . . . c0) for odd d.
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In this case, the coefficient cf−1 is not necessarily 2 or 0 respectively, but the ci are all

integral. In Section 5.3, Table 5.11, there are examples of graph families where the

second coefficient is reduced by 1, 2, 3 and 4. This is the quasimaximal defect of the

family. It is conjectured that, for all degrees, families exist with arbitrary

quasimaximal defect, always integral. In Chapter 9, we have seen that all known

extremal and largest-known bipartite circulant graph families have quasimaximal

defect of 2, and this is reflected in the Extremal Order Conjecture for Bipartite

Circulant Graphs, Conjecture 9.6.

We know that the order of a graph family is equal to the magnitude of the

determinant of its lattice generator matrix. In the following, we will initially consider

LGMs in canonical format for odd-degree families. Let M be the LGM in canonical

format of an odd-degree graph family A of dimension f , diameter class k ≡ 0

(mod f), with a = 2k/f , so that

M =


2a+ b1 c1,2 . . . c1,f

c2,1 2a+ b2 . . . c2,f
...

...
. . .

...

cf,1 cf,2 . . . 2a+ bf

 .

Then order

n = det(M) = (2a)f +
∑

bi(2a)f−1 + (
∑
i<j

bibj −
∑
i<j

cijcji)(2a)f−2 +O((2a)f−3)

= (1
∑

bi
∑
i<j

bibj −
∑
i<j

cijcji . . . ).

Note that the third coefficient depends on the products of pairs of bi in the leading

diagonal. For any given sum
∑
bi, this sum of products is maximal when the bi are

chosen such that maxi<j |bi − bj | is minimised (either 0 or 1).

Now we let A be quasimaximal, so that
∑
bi = 0. This implies that

∑
i<j bibj ≤ 0,

with equality if and only if every bi = 0. Also, for a quasimaximal family, the value of

each cij is either 0, 1 or −1, and the value of the product of each transpose pair

cijcji = 0 or −1. There are f(f − 1)/2 such pairs. So an upper bound for the third

coefficient of the order polynomial in 2a for the graph family is f(f − 1)/2. For odd

dimension f , this maximum is consistent with the canonical LGM format. However,

for even dimension, the column totals would not be even as required. In this case,

each column must include one zero element, giving a maximum of f(f − 2)/2.
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The previous calculations were for the diameter class k ≡ 0 (mod f). We now

generalise this to cover all diameter classes k∗, where 0 ≤ k∗ < f . For the standard

substitution a = (2k + c)/f , we need to chose an integer constant c with

−f/2 ≤ c < f/2 such that a is integral for all diameters k in the class. This is

achieved by setting c = (2(f − k∗) + bf/2c) mod f − bf/2c. As a = (2k + c)/f , we

have 4k/f = 2a− 2c/f . For dimension f , the quasimaximal order n is given by

n = (4k/f)f +O((4k/f)f−2)

= (2a− 2c/f)f +O((2a)f−2)

= (2a)f − 2c(2a)f−1 +O((2a)f−2).

Hence
∑
bi = −2c. As mentioned earlier, the distribution of the bi down the leading

diagonal has an impact on the third coefficient. For a maximal solution, it is required

that the value of
∑
bi is distributed across the bi as evenly as possible. Thus, the

diagonal is comprised of |2c| elements with value 2a± 1 (depending on the sign of c)

and f − |2c| elements with value 2a. Then
∑

i<j bibj = |2c||2c− 1|/2 = 2c2 − |c|. If f

is odd, then a column with diagonal element 2a will have even sum if all the other

elements are ±1. Similarly, for a column with diagonal element 2a± 1 if f is even.

Conversely, if f is odd, then a column with diagonal element 2a± 1 will need to

include at least one zero element for an even sum, also for any column with diagonal

element 2a if f is even.

Thus, to ensure that all column sums are even, a parity correction is applied to the

third coefficient upper bound equal to the minimum number of zeroes in the upper

triangle of the LGM, being half the number of columns to be corrected. Denoting the

order polynomial in 2a by (cf cf−1 cf−2 . . . c0), we have:

cf = 1, cf−1 = −2c, cf−2 ≤ 2c2 − |c|+ f(f − 1)/2− Po,
where Po is the odd-degree parity correction given by

Po =

 (|c| for odd f

f/2− |c| for even f.

The first two coefficients, cf and cf−1 are precisely the original Extremal Order

Conjecture for odd degree. The third, cf−2, extends the conjecture to an upper bound

for the third coefficient.

For even degree, we use the LGM odd basis, which is in the same format, dividing its

determinant by 2 for the order. A similar analysis leads to the following result for
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quasimaximal even-degree Abelian Cayley graph families. Denoting the order

polynomial in 2a by (cf cf−1 cf−2 . . . c0)/2, we have:

cf = 1, cf−1 = 2− 2c, cf−2 ≤ 2(c− 1)2 − |c− 1|+ f(f − 1)/2− Pe,
where Pe is the even-degree parity correction given by

Pe =

 |c− 1| for odd f

f/2− |c− 1| for even f.

The first two coefficients, cf and cf−1 are the original Extremal Order Conjecture for

even degree. The third, cf−2, extends the conjecture to an upper bound for the third

coefficient.

The upper bound for cf−2 is attained when the number of off-diagonal zeroes in the

LGM is minimised. Thus, we have the following conjecture for the order of extremal

circulant and Abelian Cayley graphs.

Conjecture 13.1. Extended Extremal Order Conjecture for Abelian Cayley graphs.

The order of an extremal Abelian Cayley graph of degree d and diameter k is denoted

ExtAbCay(d, k), and similarly Extcirc(d, k) for an extremal circulant graph. To convert

the order polynomials from diameter k, in arbitrary diameter class k∗, to parameter

2a, we use the standard substitution a = (2k + c)/f where c = (2(f − k∗) + bf/2c)
mod f − bf/2c. For any diameter k > kd for some threshold kd depending on d:

For even degree d, ExtAbCay(d, k) = (1 2(1− c) cf−2 cf−3 . . . )/2 where

0 ≤ cf−2 ≤

 2(c− 1)2 + f(f − 2)/2 for even f

2(c− 1)2 − 2|c− 1|+ f(f − 1)/2 for odd f.

For odd degree d, ExtAbCay(d, k) = (1 − 2c cf−2 cf−3 . . . ) where

0 ≤ cf−2 ≤

 2c2 + f(f − 2)/2 for even f

2c2 − 2|c|+ f(f − 1)/2 for odd f.

These bounds are identical for Extcirc(d, k).

It is interesting to compare largest-known circulant and Abelian Cayley graph

families of dimension 3 and above with newly conjectured third coefficient upper

bound. For dimension 3, the largest-known circulant graph families of degrees 6 and 7

achieve this upper bound for all diameter classes. For dimension 4, the largest-known

circulant graph families of degree 8 also achieve the upper bound, and the degree 9

Abelian Cayley graph family for one of the diameter classes. For dimension 5, none of

the circulant families achieve the upper bound. However, the Abelian Cayley graph
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families of both degrees 10 and 11 achieve the upper bound for two of the five

diameter classes. Beyond dimension 5, none of the largest-known Abelian Cayley

graph families achieve the conjectured third coefficient upper bound. See Tables 13.1

and 13.2.

To reconfirm, the specific values for the first two coefficients and the upper bound for

the third in the extended Extremal Order Conjecture for circulant and non-circulant

Abelian Cayley graph families are a direct consequence of the conjecture that their

LGMs are quasimaximal and canonical. Over the range analysed, it appears that the

third coefficient of largest-known circulant graph families achieves roughly 70% of the

upper bound, while for Abelian Cayley graph families it is around 80%. There is too

little data for a reasonable conjecture as to how these proportions evolve for higher

degrees.

For any dimension and diameter class, there are only finitely many combinations of

values in the leading diagonal of a canonical odd-degree quasimaximal LGM that

admit a third coefficient in the order polynomial above any given value. By checking

and discounting all of these for a largest-known circulant or Abelian Cayley graph

family, it is possible to confirm that the graph family is extremal within the context

of families that are quasimaximal. This has been checked for all degrees up to 13.

Those families confirmed to be extremal quasimaximal are indicated by bold text in

the final two columns of Tables 13.1 and 13.2.
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Table 13.1: Comparison of largest-known circulant and Abelian Cayley graph
families’ third coefficients with the conjectured upper bound: Even

degrees

Order polynomials in 2a (1)

Diameter Constant Conjectured Largest-known families’
Dimension Degree class k c in upper bound third coefficient (2)

f d (mod f) a = (2k + c)/f First three coeffs Circulant Abelian Cayley

3 6 0 0 (1 2 3 . . . 3 3
3 6 1 1 (1 0 3 . . . 3 3
3 6 2 2 (1 -2 3 . . . 3 3
4 8 0 0 (1 2 6 . . . 6 6
4 8 1 2 (1 -2 6 . . . 6 6
5 10 0 0 (1 2 10 . . . 8 8
5 10 1 3 (1 -4 14 . . . 13 14
5 10 2 1 (1 0 10 . . . 6 7
5 10 3 -1 (1 4 14 . . . 13 14
5 10 4 2 (1 -2 10 . . . 8 8
6 12 0 0 (1 2 14 . . . 11 12
6 12 1 -2 (1 6 30 . . . 24 25
6 12 2 2 (1 -2 14 . . . 11 12
7 14 0 0 (1 2 21 . . . 15 16
7 14 1 -2 (1 6 33 . . . 28 30
7 14 2 3 (1 -4 25 . . . 21 22
7 14 3 1 (1 0 21 . . . 14 13
7 14 4 -1 (1 4 25 . . . 21 22
7 14 5 4 (1 -6 33 . . . 28 30
7 14 6 2 (1 -2 21 . . . 15 16
8 16 0 0 (1 2 26 . . . 20
8 16 1 -2 (1 6 42 . . . 33
8 16 2 4 (1 -6 42 . . . 33
8 16 3 2 (1 -2 26 . . . 20
9 18 0 0 (1 2 36 . . . 23
9 18 1 -2 (1 6 48 . . . 37
9 18 2 5 (1 -8 60 . . . 50
9 18 3 3 (1 -4 40 . . . 29
9 18 4 1 (1 0 36 . . . 20
9 18 5 -1 (1 4 40 . . . 29
9 18 6 -3 (1 8 60 . . . 50
9 18 7 4 (1 -6 48 . . . 37
9 18 8 2 (1 -2 36 . . . 23
10 20 0 0 (1 2 42 . . . 26
10 20 1 -2 (1 6 58 . . . 42
10 20 2 -4 (1 10 90 . . . 70
10 20 3 4 (1 -6 58 . . . 42
10 20 4 2 (1 -2 42 . . . 26

(1) The order polynomial in 2a is divided by 2

(2) Extremal quasimaximal shown in bold text
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Table 13.2: Comparison of largest-known circulant and Abelian Cayley graph
families’ third coefficients with the conjectured upper bound: Odd

degrees

Order polynomials in 2a
Diameter Constant Conjectured Largest-known families’

Dimension Degree class k c in upper bound third coefficient (1)

f d (mod f) a = (2k + c)/f First three coeffs Circulant Abelian Cayley

3 7 0 0 (1 0 3 . . . 3 3
3 7 1 1 (1 -2 3 . . . 3 3
3 7 2 -1 (1 2 3 . . . 3 3
4 9 0 0 (1 0 4 . . . 3 4
4 9 1 2 (1 -4 12 . . . 9 10
5 11 0 0 (1 0 10 . . . 6 7
5 11 1 -2 (1 4 14 . . . 12 14
5 11 2 1 (1 -2 10 . . . 8 8
5 11 3 -1 (1 2 10 . . . 8 8
5 11 4 2 (1 -4 14 . . . 12 14
6 13 0 0 (1 0 12 . . . 8 12
6 13 1 -2 (1 4 20 . . . 16 17
6 13 2 2 (1 -4 20 . . . 16 17
7 15 0 0 (1 0 21 . . . 14 15
7 15 1 -2 (1 4 25 . . . 20 22
7 15 2 3 (1 -6 33 . . . 28 30
7 15 3 1 (1 -2 21 . . . 14 16
7 15 4 -1 (1 2 21 . . . 14 16
7 15 5 -3 (1 6 33 . . . 28 30
7 15 6 2 (1 -4 25 . . . 20 22
8 17 0 0 (1 0 24 . . . 17
8 17 1 -2 (1 4 32 . . . 25
8 17 2 -4 (1 8 56 . . . 44
8 17 3 2 (1 -4 32 . . . 25
9 19 0 0 (1 0 36 . . . 20 27
9 19 1 -2 (1 4 40 . . . 27
9 19 2 -4 (1 8 60 . . . 50
9 19 3 3 (1 -6 48 . . . 36
9 19 4 1 (1 -2 36 . . . 22
9 19 5 -1 (1 2 36 . . . 22
9 19 6 -3 (1 6 48 . . . 36
9 19 7 4 (1 -8 60 . . . 50
9 19 8 2 (1 -4 40 . . . 27

(1) Extremal quasimaximal shown in bold text

13.2 Why the conjectured third coefficient upper bound is not

achieved

Beyond dimension 6, no largest-known graph family achieves the third coefficient

upper bound. From the formulae for the third coefficient of the polynomial for the

determinant of an odd-degree canonical quasimaximal LGM, it is evident that the

value is maximised only when the number of zero elements is minimised. As far as

checked, as the dimension increases, the minimum number of zero elements in the

LGM of a graph family also increases. So not all matrices in canonical LGM format
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are LGMs for graph families. It appears that the range of lattices generated by such

matrices, together with the associated set of Lee spheres, span the critical zone

around extremality. That is, they generate lattice coverings of space that are

suboptimal (with redundant overlap between Lee spheres) and also optimal (with

minimal overlap, or equivalently minimum covering density). But they also generate

lattices that fall the other side of the limit, so that the Lee spheres do not achieve a

covering but leave some space uncovered between the spheres. This would explain

why canonical LGMs do not all generate graph families and why the third coefficient

is not achieved.

The simplest example of a matrix in odd-degree canonical quasimaximal LGM format

that does not generate a family has dimension 4, and was also given in Section 5.3.

Consider the matrix M as a candidate LGM for a graph family of degree 9 with

a = k/2, diameter class k ≡ 0, and

M =


2a −1 −1 0

1 2a 0 −1

1 0 2a 1

0 1 −1 2a

 .

This has determinant polynomial (1 0 4 0 4), which exceeds the largest-known

circulant family, with order (1 0 3 2 0), and the largest-known Abelian Cayley family,

with order (1 0 4 0 0).

The reason M is not the LGM for a graph family is that its lattice, with associated

Lee spheres, leaves some points of space uncovered. Specifically, there are two points,

(1 a a 0) and (a 0 −1 a), that are not within a distance 2a = k of any of the vertices

defined by the four lattice vectors (rows of the matrix), nor within k − 1 of the

involutory vector (a+ 1 a a− 1 a). This arises from the fact that the distance

between the first and fourth vector, and between the second and third, is

4a+ 2 = 2k + 2 in each case, leaving the uncovered points at the corresponding

midpoints, at a distance of k + 1 from either vertex.

For any dimension, as the number of zero elements in a candidate LGM decreases,

then the distances between the lattice points increase, increasing the likelihood that

the covering fails.
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13.3 Potentially sporadic graphs and diameter thresholds

Largest-known Abelian Cayley graphs (circulant and non-circulant) of arbitrary

degree and any diameter beyond a low threshold are all members of largest-known

quasimaximal graph families with canonical LGMs. An important question is whether

this holds true for extremal Abelian Cayley graphs of arbitrary degree, or whether

there exist extremal sporadic graphs that are not members of a graph family. If such

sporadic graphs exist, then discovering the extremal graph families would not

necessarily reveal the extremal graphs. Also, upper bounds on the order of extremal

graphs that were based on the structure of graph families would not necessarily be

valid. In particular, the Extremal Order Conjecture 3.1 would not be valid universally.

None of the known extremal circulant graphs below the diameter thresholds is a

member of a quasimaximal graph family. If it emerges that they are sporadic, then

this would prove that sporadic graphs exist and support a view that, at some

diameters above the thresholds, extremal graphs may also be sporadic. However, if

they are all members of subquasimaximal families, then this would support the

opposite view, that sporadic graphs do not exist and that all extremal graphs above

the diameter threshold belong to extremal graph families. The known extremal

potentially sporadic graphs up to degree 9 are presented in Table 13.3.

Table 13.3: Extremal potentially sporadic circulant graphs up to degree 9

Graph in largest-
known family Extremal potentially sporadic graph

Degree Diameter Order Family Order Family Generating set

7 2 24 F7:2A 26 G7:2A 1, 2, 8
F7:2B G7:2B 1, 3, 8

8 2 32 F8:0 35 G8:2A 1, 6, 7, 10
G8:2B 1, 7, 11, 16

9 2 32 F9:0 42 G9:2A 1, 5, 14, 17
G9:2B 2, 7, 8, 10

9 3 108 F9:1a 130 G9:3A 1, 8, 14, 17
F9:1b G9:3B 1, 8, 20, 35

G9:3C 1, 26, 49, 61
G9:3D 2, 8, 13, 32

9 4 312 F9:0 320 G9:4 1, 15, 25, 83

For each of these 11 potentially sporadic graphs in turn, computer searches for

circulant graph families that contained the graph were conducted based on LGMs of

increasing quasimaximal defect. After extensive search, each of these graphs was

found to belong to a subquasimaximal family, see Table 13.4. So none of them are

sporadic.
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Table 13.4: Subquasimaximal families containing extremal potentially sporadic
graphs

Family Order a = LGM or Order polynomial Quasimaximal
LGM odd basis in 2a defect

G7:2A 26 (2k − 1)/3
 2a− 2 −2 −1

3 2a 2
−1 −2 2a+ 1

 (1 -1 7 8) 3

G7:2B 26 (2k − 1)/3
 2a− 1 −2 −2

1 2a− 1 −3
2 1 2a+ 1

 (1 -1 8 6) 3

G8:2A 35 k/2


2a− 1 −3 −2 0
2 2a 1 −1
0 −3 2a 1
−1 2 −1 2a


(1 -1 12 4 6)/2 3

G8:2B 35 k/2


2a− 1 −1 −1 −1
3 2a −2 −1
3 1 2a 0
3 0 −1 2a


(1 -1 11 8 2)/2 3

G9:2A 42 k/2


2a− 3 −1 −2 −1
3 2a− 2 0 0
2 −1 2a+ 1 0
2 0 1 2a+ 1


(1 -3 6 11 4) 3

G9:2B 42 k/2


2a− 2 −1 −1 −1
2 2a −1 0
2 0 2a −1
2 −1 0 2a


(1 -2 6 5 8) 2

G9:3A 130 k/2


2a− 2 −3 −1 −3
2 2a− 2 0 −2
1 −2 2a− 1 0
2 −2 −1 2a


(1 -5 17 9 4) 5

G9:3B 130 k/2


2a− 2 −4 −2 −2
2 2a− 2 1 1
−1 −3 2a− 1 −2
2 −2 1 2a


(1 -5 25 -13 -2) 5

G9:3C 130 k/2


2a− 2 −2 −2 −2
−1 2a− 2 −3 −2
1 3 2a− 1 −1
1 2 −1 2a


(1 -5 22 -2 -8) 5

G9:3D 130 k/2


2a− 3 −1 −3 −4
2 2a− 2 1 −1
2 −3 2a− 1 −4
2 1 0 2a


(1 -6 31 -27 13) 6

G9:4 320 k/2


2a− 2 −4 −1 −1
3 2a− 2 1 2
−1 −3 2a− 1 −1
−2 −1 1 2a


(1 -5 23 2 8) 5
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Increased quasimaximal defect increases the extent of overlap of the Lee spheres in

the corresponding lattice covering. This tends to increase the number of distinct

subquasimaximal families that the graph is a member of. So while it is usually the

case that graphs of low diameter belonging to a quasimaximal family belong to no

other family, graphs belonging to a subquasimaximal family may belong to multiple

families. At higher diameter, this duplication becomes increasingly rare as the

asymptotics of the order polynomial of each family separate them from each other.

For example, the degree 9 diameter 2 graph G9:2B was found to be a member of at

least nine quasimaximal families with distinct order polynomials and quasimaximal

defect ranging from 2 to 5. These results provide support for the conjecture that all

Abelian Cayley graphs belong to at least one graph family.

The last question to address on this topic is why extremal graphs below the diameter

threshold for each degree are not members of a quasimaximal family. Regarding the

order of its graphs, a quasimaximal family primarily differs from a subquasimaximal

family in the second coefficient of its order polynomial. We may consider the

contribution of the first two terms in the order polynomial for a quasimaximal family

(which are, by definition, determined uniquely by its degree and diameter) as a

proportion of the order of the largest-known graph for any given degree and diameter.

This proportion increases with diameter but decreases with degree. If we consider a

low diameter such as 3, for example, then this proportion is about 84% for degree 7,

falling to 62% for degree 9, and only 1% by degree 20. It appears from the limited

available data that the largest-known (quasimaximal) families dominate when the

proportion is above about 60%. Below this value, the extremal graphs belong to

subquasimaximal families. If this remains true in broad terms for higher degrees, then

the diameter threshold, above which all extremal Abelian Cayley graphs belong to

extremal families, increases without limit as the degree increases. A corollary is that

many of the largest-known graphs of dimension 6 and above listed in Appendices D, E

and F are almost certainly not extremal, especially those members of quasimaximal

families with diameter below the threshold, see Table 13.5.

Notwithstanding this, it is conjectured that for any degree, a finite diameter threshold

exists above which all extremal Abelian Cayley graphs (circulant and non-circulant)

belong to an extremal quasimaximal graph family.

Conjecture 13.2. For any degree d, there is a diameter threshold kd such that, for

any diameter k ≥ kd, any Abelian Cayley graph of order ExtabCay(d, k) belongs to an

extremal quasimaximal graph family and any circulant graph of order Extcirc(d, k)

belongs to an extremal quasimaximal graph family.
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Table 13.5: Diameter thresholds: quasimaximal families compared with 60%
proportion

Lowest diameter where Approximate diameter
largest-known graph is Proportion* at threshold for 60%

Degree in quasimaximal family this diameter proportion*

6 1 42% 1
7 3 84% 2
8 3 65% 3
9 5 89% 3
10 4 60% 4
11 5 72% 5
12 6 61% 6
13 7 70% 6
14 5 36% 8
15 5 36% 8
16 5 23% 11
17 5 24% 11
18 6 22% 13
19 6 22% 13
20 5 8% 16

*based on sum of first two quasimaximal terms as proportion of largest-known order

13.4 Investigation of higher asymptotic lower bounds

The question of the existence of lower bounds that are higher than the Extremal

Order Conjecture for Abelian Cayley graphs, Conjecture 3.1, was raised in Section 2.2

and mentioned in Chapter 3. Relevant papers by Gritzmann in 1985 [19] and recently

by Ordentlich, Regev and Weiss [43] build on original work by Rogers published in

1959 [46]. In this section, some of the principles supporting Rogers results are

discussed. Doubts are raised about the validity of these results, and the author

reconfirms their confidence in the validity of the Extremal Order Conjecture for all

dimensions.

As discussed earlier, the Extremal Order Conjecture and the search described in this

thesis for largest-known graph families are both based on the structure of the

canonical lattice generator matrices for their corresponding coverings of Zf , where f

is the dimension of the graphs. The density D of a lattice covering of Zf by a convex

polytope of volume Vp centred on all points of a regular lattice with unit cell volume

VL, equal to the determinant of its lattice generator matrix, is given by D = Vp/VL.

Clearly, for a covering, D ≥ 1. For lattice generator matrices that determine graph

families, the graph order is optimised by minimising the density.

If the Golomb-Welch conjecture [17] is true, then the Abelian Cayley graph order

upper bound UppAbCay(d, k) is not achieved for dimension f ≥ 3 because it is

impossible to tile Zf with Lee spheres. The continuous analogue is the impossibility

Robert Roderick Lewis



13.4 Investigation of higher asymptotic lower bounds 177

of tiling f -dimensional Euclidean space Rf with f-orthoplexes, also called

cross-polytopes or dual f -cubes. A simple approach to the problem would be to

determine the maximum volume of a rectangular f -cuboid contained within an

f -orthoplex, and then position the overlapping f -orthoplexes so that their inscribed

f -cuboids achieve a perfect tiling. Assuming the f -cuboid is aligned along the same

axes as the f -orthoplex, then it is straightforward to prove that the f -cuboid with

maximum f -volume contained within an f -orthoplex of radius k (the distance from

its centre to a vertex), is an f -cube of radius k/
√
f and edge length 2k/f centred at

the centre of the f -orthoplex. This f -cube has f -volume (2/f)fkf compared with

(2f/f !)kf for the f -orthoplex, giving a density of ff/f !. This is worse than the

Extremal Order Conjecture by a factor of 2f−1. Therefore, this simple approach does

not provide better solutions.

The Extremal Order Conjecture has a corresponding lattice covering density in Zf of

ff/(2f−1f !). Using Stirling’s approximation, this is asymptotically equivalent for

large f to
√

2/(πf)(e/2)f , or about (0.637/
√
f)(1.359)f . This is exponential in the

dimension. However, two authors have presented much better asymptotic upper

bounds for the lowest density of lattice coverings of f -dimensional Euclidean space,

Rf , by spheres and by convex polytopes. Rogers’ 1959 paper [46] established an

upper bound for spheres of cf(loge f)(1/2) log2(2πe), or about cf(loge f)2.0471, where the

constant c is independent of f , and for arbitrary convex polytopes, of f log2 logef+c.

Rogers’ convex-polytopes upper bound is exponential in log log f , which is a

significant advance on the Extremal Order Conjecture. Gritzmann improved on this

in 1985 [19] with a refinement of Rogers’ sphere covering with certain hyperplane

symmetry assumptions for the convex polytopes that are satisfied to an integer

approximation by the Lee spheres corresponding to Abelian Cayley graphs.

Gritzmann’s density upper bound for this category of convex polytopes is

cf(loge f)1+log2 e, or about cf(loge f)2.4427, where the constant c does not depend on f

or the polytope.

Very recently, Ordentlich, Regev and Weiss [43] have published an improved upper

bound, cf2, for lowest-density lattice coverings of Rf by an arbitrary compact convex

set with nonempty interior, K, where the constant c is independent of f and K. This

is an improvement on Rogers’ result, but for the symmetric convex bodies covered by

Gritzmann, Gritzmann’s result remains the best. These upper bounds on the lattice

covering density are much better than the Extremal Order Conjecture gives. If true,

these results would imply that, for sufficiently large dimension, the Extremal Order

Conjecture would no longer be valid, and would raise the question at what dimension

the Extremal Order Conjecture first failed.
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Gritzmann makes the observation that Rogers’ insight was to show ‘that certain

multiple cylinders provide a rather efficient covering of space’. Their proofs are

developed by constructing a hypercylinder embedded within the sphere or convex

polytope. For sufficiently large dimension f , they define a parameter

h = dlog2 loge f + 4e (renamed here from the original terminology, dimension n and

parameter k, in order to avoid confusion). There is also a constraint that f > h,

which implies that h ≥ 5. The hypercylinder is defined in Rf as the Cartesian

product K × P of an (f − h)-dimensional sphere or convex polytope K and an

h-dimensional hypercube P . The efficient covering is then achieved by constructing

the lattice so that the embedded hypercylinders are perfectly aligned so that their

constituent hypercubes form a tiling of the corresponding h-dimensional subspace.

The remaining f − h dimensions are apparently covered in a more conventional way

by translates of K.

In Rogers’ paper there is an explicit formula for the upper bound in terms of the

dimension f and parameter h. All the terms in the formula are positive for any f

except for a term in square brackets, [14(f − h) loge
27
16 − 3 loge(f − h)], that is positive

only for f ≥ 115. This term is also present in Gritzmann’s formula for symmetric

convex polytopes. For dimension f = 115, the resultant upper bound density by

Rogers’ formula is 120,670, compared with a density exceeding 1014 for the Extremal

Order Conjecture. Apart from the term turning positive at f = 115, there are several

steps in the derivation of the formulae that are valid only ‘for sufficiently large’

dimension. In this context, Gritzmann, in explaining that not many hyperplanes of

symmetry are required, gives the example of needing merely nine for a dimension of

1,000,000,000! Therefore, it is quite possible that the formulae are not valid until the

dimension exceeds 1,000 or more.

Notwithstanding the lack of clarity in the valid range of dimensions for these upper

bounds, it is interesting to explore their possible relevance for low dimensions within

computational range. Lee spheres are a special case of convex polytopes with

rotational and reflexive symmetry in all dimensions. In addition, of course, they are

integer simplexes defined in Zf rather than continuous bodies in Rf . For application

of the embedded hypercylinder covering approach, we initially consider the continuous

analogue: f -orthoplexes of radius k within Rf . For dimension 2, this is a square

diamond and for dimension 3, a regular octahedron. It has f -volume Vo = (2k)f/f !.

Now suppose that we pick one dimension; let one of the lattice vectors be aligned

along its axis and let all the other lattice vectors be orthogonal to it. We then

consider the plane formed by the addition of any other lattice vector. The intersection

with this plane of an f-orthoplex centred on the axis is a diamond of radius k. If we
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slide two such f-orthoplexes together so that they overlap by a length 2x along the

axis, then the maximum width of the overlap in the plane is also 2x. In f -dimensional

space the (f − 1)-dimensional intersection of the two f -orthoplexes will be an

(f − 1)-orthoplex of radius x and (f − 1)-volume (2x)f−1/(f − 1)!. This defines the

(f − 1)-dimensional cross-section of a hypercylinder running along the axis of the

chosen dimension. Each f -orthoplex along the axis adds a length of 2k − 2x to the

hypercylinder, and therefore adds an f -volume of 2(k − x)(2x)f−1/(f − 1)!. This has

a maximum at x = k(f − 1)/f , when the length of the hypercylinder segment is 2k/f

and its cross-section has (f − 1)-area 2f−1

(f−1)!(
f−1
f )f−1kf−1. So its volume is

Vc = 2f

f ! (
f−1
f )f−1kf . Thus, the density of the hypercylinder segment in the

f -orthoplex is Vc/Vo = 2(f−1f )f−1.

Although these embedded hypercylinders achieve a tiling of the 1-dimensional

subspace, they do not in general tile the whole space. Therefore, the volume of the

hypercylinder is an upper bound for the volume of the corresponding lattice that in

general will not be achieved. When the dimension is 3, the cross-section of the

hypercylinder is 2-dimensional and is able to tile the subspace. So in this case the

bound is achieved. The volume of the hypercylinder then has cubic coefficient 16/27,

which is only half of the 32/27 of largest-known degree 6 graph families.

The previous construction does not take full advantage of the fact that orthoplexes

have parallel opposite faces. We again consider the case of dimension 3, so that the

orthoplexes are regular octahedra. We choose an axis orthogonal to the plane of a

face, and stack octahedra with their centres on the axis and with the same alignment,

so that faces of neighbouring octahedra are touching. Then each adjacent pair

touches at the intersection of the two equilateral triangles with one inverted relative

to the other, resulting in a common area in the form of a regular hexagon with area

k2/
√

3, see Figure 13.1.

Figure 13.1: Top view of an octahedron, with the top face shown in blue and
the hidden bottom face in red defining the hexagon
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This defines a hexagonal cylinder of length 2k/
√

3 embedded in the octahedron, with

a volume of (2/3)k3. With appropriate alignment, these hexagons achieve a perfect

tiling of the plane, so that the corresponding lattice represents an Abelian Cayley

graph family of order (2/3)k3 +O(k2). Although higher than the asymptotic order of

the first construction, this is still not good enough to improve on the largest-known

family with order (32/27)k3 +O(k2).

It appears from this analysis that there is nothing to be gained by including a single

cylindrical dimension in the lattice structure. Nevertheless, it demonstrates the

approach that is the basis of Rogers’ and Gritzmann’s theorems, where a minority of

the dimensions are used for the length of cylinders while most are covered in some

other way.

Rogers’ 1959 paper [46] was his last on the subject, but in 1964 he published a book

Packing and Covering [47] to gather together all the known results in the theory of

packing and covering in f -dimensional space for f larger than 3. In this book, Rogers

notes that the result in his 1959 paper is difficult to establish and instead presents a

weaker result that is ‘much easier to prove’. Thus, instead of defining

h = dlog2 loge f + 4e, we have h = dlog2 f + log2 log2 f + 1e. And instead of a lattice

covering density θL(K) ≤ f log2 loge f+c, we have θL(K) ≤ f log2 f+c log2 log2 f . This result

is stated on page 66 of the book as Theorem 5.8.

As in his earlier paper, the proof involves the construction of inscribed hypercylinders,

where the minority, h, of the dimensions are tiled by a hypercube C, and the majority

of the dimensions are covered by an (f − h)-dimensional cross-section of the convex

body. The proportion h/f of dimensions tiled by the hypercubes tends to zero with

increasing dimension, so that the particular mechanism of this construction plays an

increasingly minor role. Moreover, hypercubes are inscribed in the way described as a

simple approach in the second paragraph of this section, contributing for its

dimensions a significantly worse density than the Extremal Order Conjecture.

In his book [47], Rogers states that he confines his attention to very special subsets of

lower-triangular unimodular matrices, asserting that, in his opinion, ‘every lattice

with determinant 1 can be approximated arbitrarily closely’ by such matrices. Rogers

defined the first variant for packings and the second, a subset of the first, for
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coverings (employed in Theorem 5.5):



χ 0 · · · · · · 0 0

0 χ 0 · · · 0 0
... 0

. . .
...

...
...

...
. . . 0 0

0 0 · · · 0 χ 0

α1χ α2χ · · · αf−2χ αf−1χ η





1 0 · · · · · · 0 0

0 1 0 · · · 0 0
... 0

. . .
...

...
...

...
. . . 0 0

0 0 · · · 0 1 0

α1 α2 · · · αf−2 αf−1 1


where η = 1/χf−1 and 0 ≤ αi ≤ 1.

For integer coverings, these are scaled appropriately. For each parameter set, the

determinant is equal to the volume of a unit cell of the lattice and to the order of the

corresponding Abelian Cayley graph. The depth (Manhattan norm) of the deep holes

of the lattice is equal to the minimum radius of a covering with Lee spheres and to

the diameter of the graph. For the first, more general, matrix variant, computer runs

were performed on all relevant combinations of the parameters χ, η and αi for

dimensions 4 to 9 to determine the depth of the deep holes in each case, along with its

determinant χf−1η, in order to discover the maximum graph order for each diameter.

In each case, the optimum occurred when all the αi took the common value of 1/2.

The results are presented in Tables 13.6 and 13.7.

Table 13.6: Optimum matrices in Rogers’ format for a range of diameters, for
dimensions 4, 5 and 6

Diameter Dimension f = 4 Dimension f = 5 Dimension f = 6
k χ η order χ η order χ η order

5 6 2 432
6 6 4 864 6 1 1296
7 8 3 1536 6 3 3888
8 8 5 2560 6 5 6480 6 2 15552
9 10 4 4000 8 3 12288 6 4 31104

10 10 6 6000 8 5 20480 6 6 46656
11 12 5 8640 10 3 30000 8 3 98304
12 12 7 12096 10 5 50000 8 5 163840
13 10 7 70000 8 7 229376
14 12 5 103680 10 4 400000
15 12 7 145152 10 6 600000
16 14 5 192080 10 8 800000
17 14 7 268912 12 5 1244160
18 14 9 345744 12 7 1741824
19 12 9 2239488
20 14 6 3226944
21 14 8 4302592
22 14 10 5378240
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Table 13.7: Optimum matrices in Rogers’ format for a range of diameters, for
dimensions 7, 8 and 9

Diameter Dimension f = 7 Dimension f = 8 Dimension f = 9
k χ η order χ η order χ η order

9 6 1 46656
10 6 3 139968
11 6 5 233280 6 2 559872
12 8 1 262144 6 4 1119744 6 1 1679616
13 8 3 786432 6 6 1679616 6 3 5038848
14 8 5 1310720 8 1 2097152 6 5 8398080
15 8 7 1835008 8 3 6291456 6 7 11757312
16 10 3 3000000 8 5 10485760 8 1 16777216
17 10 5 5000000 8 7 14680064 8 3 50331648
18 10 7 7000000 10 2 20000000 8 5 83886080
19 12 3 8957952 10 4 40000000 8 7 117440512
20 12 5 14929920 10 6 60000000 8 9 150994944
21 12 7 20901888 10 8 80000000 10 3 300000000
22 12 9 26873856 12 3 107495424 10 5 500000000
23 12 5 179159040 10 7 700000000
24 12 7 250822656 10 9 900000000
25 12 9 322486272 12 3 1289945088
26 12 5 2149908480
27 12 7 3009871872
28 12 9 3869835264
29 12 11 4729798656

For each dimension studied, the optimum matrices can be described by a single

parameter a within each diameter class, in the same way as the largest-known

Abelian Cayley graph families. The corresponding Abelian Cayley graphs families do

not have order greater than quasimaximal. They are quasimaximal with maximum

odd girth, but are not largest known. For example, for dimension 5, degree 10, there

are five families, one for each diameter class modulo 5, see Table 13.8.

Table 13.8: Abelian Cayley graph families with LGM in Rogers’ format for
dimension 5, compared with largest known

Diameter Parameter Cyclic Order polynomial in 2a
k (mod 5) a χ η rank Rogers’ format Largest known

0 2k/5 2a a+ 1 4 (1 2 0 0 0 0)/2 (1 2 8 8 5 2)/2
1 (2k + 3)/5 2a a− 2 4 (1 -4 0 0 0 0)/2 (1 -4 14 -24 17 -4)/2
2 (2k + 1)/5 2a a 5 (1 0 0 0 0 0)/2 (1 0 7 0 0 0)/2
3 (2k − 1)/5 2a a+ 2 4 (1 4 0 0 0 0)/2 (1 4 14 24 17 4)/2
4 (2k + 2/5 2a a− 1 4 (1 -2 0 0 0 0)/2 (1 -2 8 -8 5 -2)/2

In each case, in the last row of the LGM, αi = 1/2

These quasimaximal graph families are noteworthy in that their lattice generator

matrices, being in Rogers’ format, are not in canonical LGM format. However, they

are isomorphic to graph families with LGMs in canonical quasimaximal format. For

example, the LGM below for degree 10, diameter class 1 (mod 5) (along with its
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LGM odd basis) generates a graph family isomorphic to the family generated by the

Rogers LGM:

Canonical LGM Canonical LGM odd basis
a −a −a −a −a+ 2
a a −a −a −a+ 2
a −a a −a −a+ 2
a −a −a a −a+ 2
a −a −a −a a− 2




2a 0 0 0 0
0 2a 0 0 0
0 0 2a 0 0
0 0 0 2a 0
0 0 0 0 2a− 4

 .

Note that the involutory vector for the LGM odd basis, half the sum of the columns,

is (a a a a a− 2).

In section 6.3, the method for translating the canonical LGM odd basis of an

even-degree graph family into canonical LGM format was described. It involved

subtracting the involutory vector from the first row vector, followed by further vector

subtractions. The first subtraction has the effect of halving the determinant of the

LGM. To obtain the Rogers’ format LGM from the LGM odd basis, the method is

simplified:

Rogers’ format LGM
2a 0 0 0 0
0 2a 0 0 0
0 0 2a 0 0
0 0 0 2a 0
a a a a a− 2

 .

The involutory vector is subtracted from the last vector instead of the first, and then

the signs of the last row and last column are reversed. Sharing a common LGM odd

basis ensures that the two lattices are identical and hence that the corresponding

even-degree graph families are isomorphic.

Another possible source of Abelian Cayley graph families with order higher than

quasimaximal are lattices associated with optimal packings or coverings in Euclidean

hyperspace. In particular, there are lattices for optimal sphere packings that are tight

in the sense that each sphere is surrounded by the maximum possible number of

touching spheres packed so tightly that there is no room for any of them to move.

Such a case is only known for four dimensions: 1, 2, 8 and 24. Dimension 1 is trivial.

Dimension 2 is a hexagonal tiling of circles in the plane. Dimension 8 are

hyperspheres centred on the points of the E8 (or Gosset) lattice, where each

hypersphere is touched by 240 others. Dimension 24 is the famous Leech lattice,

where the hypersphere on each lattice point is touched by 196,560 others. These

established properties are covered by Conway and Sloane [5].
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Optimal sphere packing does not imply an optimal sphere covering. Also

hyperspheres in Euclidean geometry do not translate directly to integer hyperspace

and Lee spheres with the Manhattan norm. Nevertheless, it was considered

worthwhile to explore these two lattices, which are both lower-triangular and have a

similar format to Rogers’.

The E8 lattice, in its simplest integer form, has determinant value 28 = 256 and is

amenable to computer search. It is converted into an LGM by multiplying each

element by the parameter a:

4a 0 0 0 0 0 0 0

−2a 2a 0 0 0 0 0 0

0 −2a 2a 0 0 0 0 0

0 0 −2a 2a 0 0 0 0

0 0 0 −2a 2a 0 0 0

0 0 0 0 −2a 2a 0 0

0 0 0 0 0 −2a 2a 0

a a a a a a a a


.

In 8-dimensional Euclidean space, each unit cell of the E8 lattice contains two types

of holes: 16 deep holes and 9 shallow holes. The deep holes have a depth of 2a and an

example is (2a 0 0 0 0 0 0 0). The shallow holes, such as (5a/3 a/3 a/3 a/3 a/3 a/3

a/3 a/3), have a depth of 4
√

2a/3. Two of the lattice points at this distance from this

shallow hole are (0 0 0 0 0 0 0 0) and (a a a a a a a a). However, with the Manhattan

norm, the holes are altered. The deep hole above retains its depth of 2a under the

Manhattan norm. But the distance from the shallow hole to the two lattice points is

no longer 4
√

2a/3; instead the respective Manhattan distances are 4a and 16a/3. So

the Euclidean deep hole has become a Manhattan shallow hole, and the Euclidean

shallow hole is now deeper, with the Manhattan norm, than the deep hole and is no

longer actually a hole. The Euclidean shallow hole has integer coordinates only when

a is a multiple of 3. So in general, the holes are further altered when considering not

only Manhattan norm but also integer rather than real hyperspace.

We now consider the E8 LGM under alternative assumptions of space and distance,

and implications for the parameters of a hypothetical corresponding Abelian Cayley

graph family. The E8 LGM has determinant 256a8, representing the order n of the

corresponding graph family. In Euclidean space, the lattice deep hole depth is 2a,

taken to represent the corresponding diameter k. Then we have n = k8. This would

be a significantly better result than the Extremal Order Conjecture with leading term
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(1/2)(4/f)fkf for f = 8: (1/29)k8 ≈ 1.95× 10−3k8. If, instead, we use the Manhattan

norm and diameter k = 4a, then we have n = (1/28)k8, equal to twice the leading

term of the Extremal Order Conjecture. However, moving from real space to integer

space, it emerges that there are more deep holes and they are deeper. For values of a

from 1 to 5, the lattice was searched to determine the number of deep holes in each

unit cell (using the Manhattan norm) and the depth of these holes. The results are

presented in Table 13.9.

Table 13.9: Deep holes in the E8 lattice (Manhattan norm)

Parameter Determinant Number of Depth of deep holes
a n deep holes (Manhattan norm)

1 256 70 4
2 65536 64 10
3 1679616 4480 14
4 16777216 64 20
5 100000000 4480 24

In Euclidean space, the scale of the lattice does not affect the number of deep holes or

the form of the covering, and the unimodular E8 lattice has 16 deep holes per unit

cell with a depth of 1. However, in integer space with the Manhattan norm there are

two distinct cases, depending on the parity of a. For even a, there are 64 deep holes

with Manhattan depth 5a. For odd a, there are 4480 deep holes with depth 5a− 1,

except that many of them are coincident for a = 1. This translates into two families

of Abelian Cayley graphs, with diameter class defined by deep-hole depth.

Unfortunately, although the leading coefficient of their order polynomial in 2a is 1,

compared with 1/2 for quasimaximal graph families, these families are

subquasimaximal as their diameter k = 5a+ c for appropriate constant c, compared

with k = 4a+ c for quasimaximal families, see Table 13.10. These Abelian Cayley

graph families have leading term (2/5)8k8 ≈ 6.55× 10−4k8, about one third of the

Extremal Order Conjecture value.

Table 13.10: E8 lattice graph families compared with largest-known Abelian
Cayley graph families

Lattice Diameter Parameter Order polynomial Comparable orders
k a in 2a for k = 10 and 14

E8 0 (mod 10) k/5 (1 0 0 0 0 0 0 0 0) 65536 (k = 10)

E8 4 (mod 10) (k + 1)/5 (1 0 0 0 0 0 0 0 0) 1679616 (k = 14)

Largest 0 (mod 4) k/4 (1 2 20 28 11 2 -4 -4 0)/2
-known

Largest 2 (mod 4) (k + 2)/4 (1 -6 33 -100 183 -212 151 -60 10)/2 479255 (k = 10)
-known 5109237 (k = 14)
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The 24-dimensional Leech lattice is made unimodular by dividing each element of its

simplest integer representation by
√

8. The determinant of the smallest integer

version is a rather unwieldy 236 = 68, 719, 476, 736, and the second over 4× 1021,

which is too large for investigation by computer. Multiplying each element by a gives

an LGM with determinant n = 236a24. In Euclidean space, the lattice deep-hole depth

is k = 4a, see [4], giving n = (1/2)12k24 ≈ 2.44× 10−4k24. In comparison, the

Extremal Order Conjecture leading term, (1/2)(4/f)fkf , gives

(1/2)(1/6)24k24 ≈ 1.05× 10−19k24. The deep-hole depth by the Manhattan norm

depends on how many of the dimensions are involved in the shortest path from a

lattice point. For example, a path of length a in each of 12 dimensions and 2a/3 in 9

dimensions would also have a Euclidean length of 4a but a Manhattan length of 18a.

Taking k = 18a gives n = (236/1824)k24 ≈ 5.13× 10−20k24, about half the Extremal

Order Conjecture leading term. Unfortunately, because of the large size of its

determinant, it has not been possible to search for its Manhattan deep holes in

integer space. Instead, the above value of 18a is taken as a proxy for their depth.

With both the E8 and the Leech lattices, the LGMs constructed from their matrices

indicate corresponding Abelian Cayley graphs that are broadly in line with the

Extremal Order Conjecture. The E8 family has been shown to be subquasimaximal,

and the Leech family is likely to be.

A final observation about Rogers’ result, casting some doubt on its validity, is an

inconsistency in definition of the hypercube edge length between some supporting

theorems used in the proof of Theorem 5.8 in his 1964 book [47]:

� In Theorem 5.5, the edge length of the 1-dimensional hypercube, C, is defined

to be 2.

� The proof of Theorem 5.6 uses Theorem 5.5 to step inductively from dimension

1 to h, but assumes a hypercube edge length of 1 instead of 2.

� The proof of Theorem 5.8 uses Theorem 5.6, but with hypercube edge length

that varies depending on the convex polytope of the lattice covering.

In summary, four aspects cast doubt on the validity of Rogers result:

� The key to Rogers’ approach is the definition of hypercylinders, formed with

hypercubes, inscribed within the convex polytope. However, these hypercubes

are defined only for a vanishingly small proportion of the dimensions. The

construction for the majority of the dimensions is not defined.

� Rogers’ proof depends on a set of theorems with inconsistent assumptions about

the edge lengths of the hypercubes.
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� Rogers’ lattice generator matrices have an essentially canonical quasimaximal

format. For the low dimensions investigated, they generate quasimaximal

Abelian Cayley graph families with order polynomials that are not extremal but

have first two coefficients that are consistent with the Extremal Order

Conjecture 3.1.

� Rogers’ proof is not constructive. During more than 60 years since Rogers’

paper [46], no construction of such a lattice covering has been published in the

literature.

Gritzmann’s [19] and Ordentlich, Regev and Weiss’s [43] results depend on one of

Roger’s theorems. Therefore, it is considered that the Extremal Order Conjecture for

Abelian Cayley graphs, Conjecture 3.1, remains valid.
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Chapter 14

Graph families of diameter 2 and

above of arbitrary degree

In contrast to all the other chapters, in Chapter 14, graph families are considered

where the diameter is fixed instead of the degree. Graph families with diameter 2 and

arbitrary degree are discussed. Some improved lower and upper bounds are

established for their extremal order.

14.1 Extremal diameter 2 circulant graph orders

We have seen that for every given degree investigated, the extremal and

largest-known circulant graphs for each diameter above a low threshold have order

determined by a periodic sequence of polynomials defined by a set of graph families.

These polynomials have degree equal to the dimension of the graphs.

It is interesting to consider the conjugate problem of the sequence of orders of the

same graphs as the degree increases for any given diameter. Algebraic constructions

that aim to generate sequences of largest-known circulant graphs have all taken this

approach, so far only for diameters 2 and 3. The ones based on direct products of

Galois fields are only valid for a sparse sets of degrees, and none of them achieves

extremal orders. We will consider the main diameter 2 constructions from the

literature and their asymptotic limits in Section 14.3.

For diameter 2, the extremal circulant graphs for each degree do not have order

determined by a periodic sequence of polynomials defined by a set of graph families.

Instead the sequence of extremal orders appears chaotic or random. Our more limited

investigation of graphs of increasing degree for given fixed diameter 3 and above has

found a similar apparent chaotic behaviour. If there is any underlying pattern or

structure to these sequences, then this emerges at higher degrees than has been

studied to date. However, it is conjectured that there is no such structure and that

the sequence of orders of extremal circulant graphs of increasing degree for any fixed

diameter is chaotic throughout, and that this applies also to Abelian Cayley graphs.

Conjecture 14.1. For any given diameter k ≥ 2, there is no finite set of degree

classes {D1, . . . , Dg} where for any degree d, d ∈ Di for some i, and no set of
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circulant graph families {F1, . . . , Fg} defined for each degree class and with order

n1(d), . . . , ng(d) respectively, where ni(d) is a polynomial of degree k, such that for

any i and any d ∈ Di, Extcirc(d, k) = ni(d). Similarly for extremal Abelian Cayley

graphs of diameter k ≥ 2.

Notwithstanding this chaotic behaviour, each sequence studied displays limited

chaotic variation about a single polynomial of degree equal to the diameter. We will

demonstrate this for the case of diameter 2, for which extremal circulant graphs up to

degree 23 have been discovered (see Appendix D).

The best least-squares fit of a quadratic polynomial in the degree to the orders of the

extremal diameter 2 circulant graphs up to degree 23 has a quadratic coefficient of

0.375 to three significant figures, which is 3/8. This polynomial, to three significant

figures, is n̂(d) = 0.375d2 + 0.961d+ 2.07. A graph of the residual (divided by the

degree to normalise), (n̂(d)− Extcirc(d, 2))/d, is shown in Figure 14.1.

Figure 14.1: Diameter 2 circulant graph order, up to degree 23: least-squares
residual divided by the degree
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The absolute value of this residual term remains below 0.35, as indicated by the

parallel red lines. If this were to remain true for every higher degree, then this would

imply the following lower and upper bounds on Extcirc(d, 2):

0.375d2 + 0.611d+ 2.07 < Extcirc(d, 2) < 0.375d2 + 1.311d+ 2.07, and consequently

that the leading coefficient is precisely 3/8, giving

Extcirc(d, 2) =
3

8
k2 +O(k).
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Extending the analysis to general Abelian Cayley graphs of diameter 2 does not

significantly change the quadratic coefficient of the fitted polynomial. We have

extremal orders, either verified or conjectured, for Abelian Cayley graphs only up to

degree 20 (see Appendix F). Across this range, the resultant coefficient in 0.373 to

three significant figures - also equal to 3/8 within the margin of error. All the

extremal non-circulant Abelian Cayley graphs up to degree 20 happen to have cyclic

rank 2. This is a consequence of the restrictions on valid cyclic orders for graphs of

higher cyclic rank with such low orders. We might expect graphs of higher cyclic rank

to become increasingly dominant as the degree increases. The orders of the extremal

and largest-known diameter 2 Abelian Cayley graphs up to cyclic rank 4 and degree

20, as far as discovered, are shown in Table 14.1.

Table 14.1: Order and cyclic order of extremal and largest-known diameter 2
Abelian Cayley graphs by degree and cyclic rank

Circulant Non-circulant
Degree Cyclic rank 1 Cyclic rank 2 Cyclic rank 3 Cyclic rank 4

2 5 - - -
3 8 - - -
4 13 8 = 4× 2 - -
5 16 16 = 4× 4 - -
6 21 18 = 6× 3 - -
7 26 24 = 12× 2 16 = 4× 2× 2 -
8 35 36 = 12× 3 16 = 4× 2× 2 -
9 42 40 = 20× 2 32 = 8× 2× 2 -
10 51 49 = 7× 7 48 = 12× 2× 2 -
11 56 56 = 28× 2 48 = 12× 2× 2 32 = 4× 2× 2× 2
12 67 72 = 12× 6 64 = 16× 2× 2 48 = 6× 2× 2× 2

& 36× 2
13 80 80 = 40× 2 64 = 16× 2× 2 64 = 8× 2× 2× 2

& 4× 4× 4 & 4× 4× 2× 2
14 90 90 = 30× 3 80 = 20× 2× 2 64 = 8× 2× 2× 2

& 4× 4× 2× 2
15 96 100 = 20× 5 80 = 20× 2× 2 64 = 8× 2× 2× 2

& 4× 4× 2× 2
16 112 108 = 54× 2 108 = 12× 3× 3 ?

& 36× 3 & 6× 6× 3
17 130 120 = 60× 2 120 = 30× 2× 2 ?
18 138 147 = 21× 7 135 = 15× 3× 3 ?
19 156 156 = 78× 2 ? ?
20 171 168 = 84× 2 ? ?

Notes: 1) Extremal graphs in bold

2) - does not exist

3) ? has not been investigated
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14.2 Improved diameter 2 lower bounds for all degrees

By a simple counting argument, the upper bound for Abelian Cayley graphs of

diameter 2 and degree d is seen to be

UppAbCay(d, 2) =

(d2 + 2d+ 2)/2 for d ≡ 0 (mod 2)

(d2 + 2d+ 1)/2 for d ≡ 1 (mod 2).

The trivial lower bound has quadratic coefficient 1/4. Various authors have published

general constructions (valid for all d), but none has a quadratic coefficient larger than

1/4. We briefly review them here and present a new largest-known general

construction.

Constructions for Abelian Cayley graphs of diameter 2 and arbitrary degree d were

given by Griggs in 1996 [18]. They have order n = (d2 + 4d+ δ)/4, but are not

circulant.

Dougherty and Faber derived circulant variants of these constructions in 2004 [10],

with order differing by at most a constant. In the same paper, they presented two

improved constructions with higher linear coefficients. Construction A with order

(d2 + 6d+ δ)/4, and Construction B with order (d2 + 8d+ δ)/4. For construction B,

the order n is given by

n =


(d2 + 8d− 4)/4, for d ≡ 0 (mod 4)

(d2 + 8d)/4, for d ≡ 2 (mod 4)

(d2 + 8d− 1)/4, for d ≡ 1 (mod 2).

In 2013, Monakhova published new constructions for even degree that improve on

Dougherty and Faber’s for d ≡ 0 (mod 4) [39]. The order n is given by

n =

(d2 + 8d+ 4)/4, for d ≡ 0 (mod 4)

(d2 + 8d)/4, for d ≡ 2 (mod 4).

We present constructions for four new families with linear coefficient increased from 2

to 3. The existence of these families has been verified by computer search for all

degrees up to 30,000. They are conjectured to exist for all higher degrees.
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Construction 14.2. For every degree d ≤ 30000, there exists a circulant graph of

diameter 2 and order n given by

n =


(d2 + 12d− 28)/4, for d ≡ 0 (mod 4)

(d2 + 12d− 32)/4, for d ≡ 2 (mod 4)

(d2 + 12d− 45)/4, for d ≡ 1 (mod 2).

The generating set for each degree class d (mod 4) is made up of

(s+ 1)/2 elements: 1, 3, . . . , s

u elements: s+ t, s+ 2t, . . . , s+ ut

1 element: s+ (u+ 1)t− 2

where



s = (d− 2)/2, t = (d+ 6)/2, u = (d− 4)/4 for d ≡ 0 (mod 4)

s = (d− 3)/2, t = (d+ 5)/2, u = (d− 5)/4 for d ≡ 1 (mod 4)

s = d/2, t = (d+ 8)/2, u = (d− 6)/4 for d ≡ 2 (mod 4)

s = (d− 1)/2, t = (d+ 7)/2, u = (d− 7)/4 for d ≡ 3 (mod 4).

These graphs establish an improved general lower bound (verified for any degree

10 ≤ d ≤ 30,000). However, the quadratic coefficient remains equal to the trivial

lower bound at 1/4. In the next section, we consider solutions for sparse sets of valid

degrees that improve on this coefficient.

14.3 Improved upper bounds for certain classes of graph families

In this section, we remove the requirement that solutions be valid for all degrees and

consider circulant and Abelian Cayley graph families of diameter 2 for sparse but

infinite sets of degrees. These results were published in a paper [25].

As the Abelian Cayley upper bound for diameter 2, and any degree d, we have

UppAbCay(d, 2) = b12d
2 + d+ 1c. For a lower bound, LKcirc(d, 2), we have the new

circulant graph family with order 1
4d

2 + 3d+ δ in the range 10 ≤ d ≤ 30,000. For all

other degrees, we have order 1
4d

2 + 2d+ δ from Dougherty and Faber [10] and

Monokhova [38]. Thus, we have

1

4
d2 + 2d+ δ ≤ Extcirc(d, 2) ≤ ExtAbCay(d, 2) ≤

⌊
1

2
d2 + d+ 1

⌋
for any d.

The gap between the quadratic coefficients of the lower bound, 1/4, and the upper

bound, 1/2, is disappointingly large. In 2012 Macbeth, Šiagiová and Širáň established
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a better lower bound for circulant graphs valid for a sparse but infinite set of degrees

[32]. Their family of solutions has order n = 9(d2 + d− 6)/25 for degree d = 5p− 3,

where p is a prime with p ≡ 2 (mod 3), giving Extcirc(d, 2) ≥ (9/25)d2 +O(d), with a

quadratic coefficient of 0.360, for admissible values of d. This was achieved by

constructing the direct product of three cyclic groups of pairwise coprime order

F ∗ × F+ × Z9, where F = GF (p) is the Galois field of order p, with additive group

F+ and multiplicative group F ∗, and selecting an appropriate generating set for the

Cayley graph.

Vetŕık extended this method to establish a slightly improved lower bound for a

different infinite set of degrees [50]. The graphs have order n = 13(d2 − 2d− 8)/36 for

degree d = 6p− 2, where p is a prime, p 6= 13, and p 6≡ 1 (mod 13), giving

Extcirc(d, 2) ≥ (13/36)d2 +O(d), with a quadratic coefficient of about 0.361, for

admissible values of d. The construction also involves the direct product of three

cyclic groups of coprime order, F ∗ × F+ × Z13.

By relaxing the specification of the type of graph from circulant to any Abelian

Cayley, an improved lower bound giving ExtAbCay(d, 2) ≥ (3/8)d2 +O(d), with a

quadratic coefficent of 0.375 was identified by Macbeth, Šiagiová and Širáň [32]. This

again involves the direct product of three cyclic groups, but this time their orders are

not coprime so that the group is Abelian but not cyclic. The construction uses

F ∗ × F+ × Z6, where F = GF (p) is the Galois field of order an odd prime power p.

The question arises whether other constructions of a similar form F ∗ × F+ × Zq,

where F = GF (p) is the Galois field of order p, and q ∈ N, might provide improved

lower bounds, with quadratic coefficient above 13/36 for an infinite set of diameter 2

circulant graphs or above 3/8 for Abelian Cayley graphs. In the following sections, we

consider generalisations of this method for diameter 2 circulant and Abelian Cayley

graphs.

14.3.1 Circulant graphs for groups of the form G = F ∗ × F+ × Zq

We first consider circulant graphs and a generalisation of the approach taken by

Macbeth, Šiagiová and Širáň and by Vetŕık based on the cyclic group

G = F ∗ × F+ × Zq, where F = GF (p) for prime p, and q = 9 and 13 respectively. For

the generalisation, we will consider this group for any odd q ∈ N. Beforehand, some

important component sets of the connection set C are defined.

Definition 14.3. For any q ∈ N, x ∈ F ∗, y ∈ F+, u, v, w ∈ Zq, let au(x) = (x, x, u),

bv(x) = (x, 0, v) and cw(y) = (1, y, w), with a−1u (x) = (x−1,−x,−u),

b−1v (x) = (x−1, 0,−v), and c−1w (y) = (1,−y,−w). For any u, v, w ∈ Zq we also define
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Au = {au(x), a−1u (x): x ∈ F ∗}, Bv = {bv(x), b−1v (x): x ∈ F ∗}, C∗w = {cw(y), c−1w (y):

y ∈ F ∗} and C+
w = {cw(y), c−1w (y): y ∈ F+}.

Clearly, for u, v, w 6= 0, Au, Bv and C∗w have size 2(p− 1) and C+
w has size 2p. For

u, v, w = 0, we see that A0 has size 2(p− 1), B0 and C∗0 have size p− 1 and C+
0 has

size p.

In Macbeth, Šiagiová and Širáň’s construction with q = 9, the connection set C is

comprised of the sets A1, B3 and C∗0 along with two other elements, and hence

|C| = 5p− 3. It is relatively straightforward to prove that any element of G can be

expressed as the sum of at most two elements of C so that the resultant Cayley graph

X = (G,C) has diameter 2. As the degree of the graph d = |C|, we have

p = (d+ 3)/5. Thus, the Cayley graph order |G| = 9p(p− 1) = (9/25)(d+ 3)(d− 2),

giving the quadratic coefficient 9/25. A necessary condition for the construction is

that every element of Z9 can be realised as the sum or difference of two of the

subscripts of A1, B3 and C∗0 , that is ±1,±3 and 0. It is also necessary that each of

these pairs of sets generate all but at most a constant number of the elements of

F ∗ × F+, with the exceptions covered separately. In Vetŕık’s construction with

q = 13, the connection set C includes the sets A1, B3 and C+
4 along with two other

elements, thus |C| = 6p− 2. Again, we find that any element of G can be expressed as

the sum of at most two elements of C so that the resultant Cayley graph X = (G,C)

has diameter 2. In this case, we have p = (d+ 2)/6. Thus, the order of the Cayley

graph |G| = 13p(p− 1) = (13/36)(d+ 2)(d− 4).

In both cases, there is a relation between the degree d and the prime number p of the

form d = lp+ δ for constants l, δ (with l = 5 and l = 6 respectively) generating a

graph of order |G| = (q/l2)d2 +O(d). For the generalisation of this approach, we take

the component sets Au, Bv, C
+
w . For any l ≥ 3, we consider different values of q and

for each q, the corresponding family of cyclic groups Gl = F ∗×F+×Zq for any prime

p = |F | such that p− 1, p, q are pairwise coprime. For each Gl, we consider connection

sets C comprised of all possible combinations of the sets Au, Bv, C
+
w , along with a

fixed number of other elements of Gl such that |C| = lp+ δ for some fixed δ, with the

condition that the Cayley graph X(Gl, C) has diameter 2. There is no value in

including A0 in C as any element (x, y, 0) is the sum of two elements of Au for any

u 6= 0, as we shall see later. There is no material difference between including B0 or

C+
0 and no value in including both. So we will consider C+

0 as the only set with

subscript 0 for possible inclusion in C. Thus, if l is odd C+
0 is included in C and if l is

even C+
0 is not included. For any l, we define ql to be the largest value of q for which

such a Cayley graph X(G,C) exists for all admissable p, and define
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Gl = F ∗ × F+ × Zql . It follows that the order of X(Gl, C) is (ql/l
2)d2 +O(d), and we

denote this order by nl(d).

Definition 14.4. Let ExtGalcirc(d, 2) be the largest order of a circulant graph of

diameter 2 and degree d, constructed as the Cayley graph of a group of the form

G = F ∗ × F+ × Zq.

Then ExtGalcirc(d, 2) = supl≥3 nl(d). Theorem 14.5 establishes an improved upper bound

for such graphs, with quadratic coefficient 3/8.

Theorem 14.5. With ExtGalcirc(d, 2) as defined above, ExtGalcirc(d, 2) ≤ (3/8)d2 +O(d).

Proof. Let F ∗ be the multiplicative group and let F+ be the additive group of the

Galois field GF (p), where p is a prime such that (p, q) = 1 and (p− 1, q) = 1, so that

p, p− 1 and q are pairwise coprime. Let G = F ∗ × F+ × Zq. Since F ∗, F+ and Zq are

cyclic groups of coprime order, the group G is also cyclic. Let 0 denote the identity in

F+ and Zq, and 1 the identity in F ∗.

Consider the Cayley graph, X(G,C), of the group G with a connection set C that

includes the union of Au, Bv and C+
w for multiple non-zero values of u, v and w,

numbering m in total. Consider Au for u ∈ U , Bv for v ∈ V and C+
w for w ∈W where

U, V and W are index sets with ga = |U |, gb = |V | and gc = |W |, so that

ga + gb + gc = m. C is constructed to be inverse-closed so that X(G,C) is a circulant

graph of degree d = |C|. Later, we will also consider including the inverse-closed set

C+
0 , and we define l = 2m if C+

0 is not in C and l = 2m+ 1 if C+
0 is in C. We now

investigate how elements of G may be constructed from pairs of the sets Au, Bv, C
+
w .

First, consider Bv and C+
w for v ∈ V and w ∈W . For any x ∈ F ∗, y ∈ F+ we have

(x, y, v + w) = (x, 0, v)(1, y, w) = bv(x)cw(y)

(x, y, v − w) = (x, 0, v)(1, y,−w) = bv(x)c−1w (−y)

(x, y,−v + w) = (x, 0,−v)(1, y, w) = b−1v (x−1)cw(y)

(x, y,−v − w) = (x, 0,−v)(1, y,−w) = b−1v (x−1)c−1w (−y).

Next, consider Au and C+
w for u ∈ U and w ∈W . For any x ∈ F ∗, y ∈ F+ we have

(x, y, u+ w) = (x, x, u)(1, y − x,w) = au(x)cw(y − x)

(x, y, u− w) = (x, x, u)(1, y − x,−w) = au(x)c−1w (x− y)

(x, y,−u+ w) = (x,−x−1,−u)(1, y + x−1, w) = a−1u (x−1)cw(y + x−1)

(x, y,−u− w) = (x,−x−1,−u)(1, y + x−1,−w) = a−1u (x−1)c−1w (−y − x−1).
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Now consider Au and Bv for u ∈ U and v ∈ V . For any x ∈ F ∗, y ∈ F ∗ we have

(x, y, u+ v) = (y, y, u)(xy−1, 0, v) = au(y)bv(xy
−1)

(x, y, u− v) = (y, y, u)(xy−1, 0,−v) = au(y)b−1v (x−1y)

(x, y,−u+ v) = (−y−1, y,−u)(−xy, 0, v) = a−1u (−y)bv(−xy)

(x, y,−u− v) = (−y−1, y,−u)(−xy, 0,−v) = a−1u (−y)b−1v (−x−1y−1).

In case y = 0, introducing also bu(1) and b−1u (1) for u ∈ U ,

(x, 0, u+ v) = (1, 0, u)(x, 0, v) = bu(1)bv(x)

(x, 0, u− v) = (1, 0, u)(x, 0,−v) = bu(1)b−1v (x−1)

(x, 0,−u+ v) = (1, 0,−u)(x, 0, v) = b−1u (1)bv(x)

(x, 0,−u− v) = (1, 0,−u)(x, 0,−v) = b−1u (1)b−1v (x−1).

Finally, consider Au and Au′ for u, u′ ∈ U, u 6= u′. For any x ∈ F ∗ \ {1}, y ∈ F ∗ we

have

(x, y, u− u′) = (xy/(x− 1), xy/(x− 1), u)((x− 1)/y,−y/(x− 1),−u′)
= au(xy/(x− 1))a−1u′ (y/(x− 1)).

In case x = 1, where w′ is any fixed element of W , and introducing also bu−u′−w′(1),

(1, y, u− u′) = (1, y, w′)(1, 0, u− u′ − w′) = cw′(y)bu−u′−w′(1).

And in case y = 0, we consider (x, 0, u− u′) = bu−u′(x). If u− u′ = v for some v ∈ V
then this is immediately covered by bv(x). Otherwise, if u− u′ = v + v′ for some

v, v′ ∈ V then

(x, 0, u− u′) = (x, 0, v + v′) = (x, 0, v)(1, 0, v′) = bv(x)bv′(1),

and similarly for u− u′ = v − v′ or −v − v′. For any remaining uncovered cases

bu−u′(x), it would be necessary to introduce bu(x) for any x ∈ F ∗, using the

construction

(x, 0, u− u′) = (x, 0, u)(1, 0,−u′) = bu(x)b−1u′ (1).

From the above, we see that each pair AuBv, AuC
+
w , BvC

+
w can generate all elements

of G containing up to four values of Zq with a limited number of exceptions that are

covered by the additionally introduced elements as shown above. Similarly, each pair

AuAu′ generates all elements of G containing up to two values of Zq. On the other

hand, the first coordinate of the product of an element of C+
w with an element of C+

w′

Robert Roderick Lewis



198 14 Graph families of diameter 2 and above of arbitrary degree

is always 1, and the second coordinate of the product of an element of Bv with an

element of Bv′ is always 0. So these combinations do not contribute to an efficient

covering of G. Summing the elements listed in the cases above gives the following

lower bound for the degree d of the corresponding circulant graph:

d = |C| ≥ 2ga(p− 1) + 2gb(p− 1) + 2gcp+ 2ga + ga(ga − 1)

= 2m(p− 1) + 2gc + ga + g2a, as m = ga + gb + gc.

An upper bound for the value of q is obtained by assuming there is no duplication

between the values of s+ t, s− t, −s+ t and −s− t across all s, t ∈ {u, v, w} for the

given combinations of Au, Bv and C+
w , with the exception that (x, y, 0) can be created

from two elements of any Au. Thus, the upper bound for q is given by

q ≤ 4gagb + 4gbgc + 4gagc + ga(ga − 1) + 1

= 4gam+ 4gbm− 3g2a − 4g2b − 4gagb − ga + 1, as m = ga + gb + gc.

This is a maximum when the partial derivatives with respect to ga and gb are zero.

We have ∂q/∂ga = 4m− 6ga − 4gb − 1 = 0 and ∂q/∂gb = 4m− 8gb − 4ga = 0. Thus

ga = (2m− 1)/4 and gb = gc = (2m+ 1)/8, and hence q ≤ (12m2 − 4m+ 9)/8. Also

we have d ≥ 2mp− 5m/4 + 1/16 +m2/4, so that p ≤ d/2m+ 5/8− 1/(32m)−m/8.

Thus, we find

|G| ≤ (p− 1)p(12m2 − 4m+ 9)/8

= [3/8− (4m− 9)/(32m2)]d2 +O(d)

≤ (3/8)d2 +O(d), for m > 2.

The exceptional cases, where m ≤ 2, are easily evaluated separately, see Table 14.2.

If instead C also includes the set C+
0 , so that

d = |C| ≥ 2ga(p− 1) + 2gb(p− 1) + (2gc + 1)p+ 2ga + ga(ga − 1), then we find that the

upper bound for n is given by

q ≤ 4gagb + 4gbgc + 4gagc + 2ga + 2gb + ga(ga − 1) + 1.

In this case, partial differentiation gives a maximum value at ga = m/2,

gb = (m+ 1)/4 and gc = (m− 1)/4. Then q ≤ (6m2 + 4m+ 5)/4. Also

d ≥ (2m+ 1)p−m− 1/2 +m2/4, so that p ≤ d/(2m+ 1) + 1/2−m2/(8m+ 2). In

this case |G| ≤ [(6m2 + 4m+ 5)/(4(2m+ 1)2)]d2 +O(d) ≤ (3/8)d2 +O(d) for m > 3.

Again, the exceptional cases, where m ≤ 3, are evaluated separately.
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In both cases, with and without C+
0 as a subset of the connection set C, the optimum

values of ga, gb and gc determined by differentiation are often not integral and the

resultant value of q is never integral. However, in practice it appears possible to find

values such that q achieves the highest odd integer below the calculated value. As

stated earlier, this upper bound assumes it is possible to find a set of values for the u,

v and w such that none of the pairwise combinations are duplicates. This has been

found to be possible in every case for m ≤ 3 and also for the case m = 5 without C+
0 ,

but for no other values checked up to m = 8. A summary of the best results is

presented in Table 14.2.

Table 14.2: Upper bounds and extremal values for the order of the circulant
graph for l ≤ 17

Pairs Sets Upper bound for q Quadratic coefficient Extremal Quadratic
m l Real Integer Fraction Decimal value, q coefficient

1 3 3.75 3 1/3 0.333 3 0.333
2 4 6.125 5 5/16 0.313 5 0.313
2 5 9.25 9 9/25 0.360 9 0.360
3 6 13.125 13 13/36 0.361 13 0.361
3 7 17.75 17 17/49 0.347 17 0.347
4 8 23.125 23 23/64 0.359 21 0.328
4 9 29.25 29 29/81 0.358 27 0.333
5 10 36.125 35 35/100 0.350 35 0.350
5 11 43.75 43 43/121 0.355 41 0.339
6 12 52.125 51 51/144 0.354 49 0.340
6 13 61.25 61 61/169 0.361 57 0.337
7 14 71.125 71 71/196 0.362 65 0.332
7 15 81.75 81 81/225 0.360 75 0.333
8 16 93.125 93 93/256 0.363 87 0.340
8 17 105.25 105 105/289 0.363 97 0.336

Table 14.3: A solution for each extremal value of the order of the circulant
graph for l ≤ 17

Pairs Sets Extremal Values of u Values of v Values of w
m l value, q for Au for Bv for Cw

2 5 9 1 3 0
3 6 13 1 3 4
3 7 17 1, 8 3 0
4 8 21 2, 9 3 1
4 9 27 5, 11 12, 13 0
5 10 35 13, 16 7, 8 9
5 11 41 7, 17 2, 13 0, 1
6 12 49 19, 22, 23 1, 14 16
6 13 57 10, 24 3, 18 0, 1, 2
7 14 65 5, 11, 20, 27 6, 7 30
7 15 75 11, 20, 33 3, 26 0, 1, 2
8 16 87 5, 20, 29 40, 41, 42 13, 39
8 17 97 4, 31, 39 23, 24, 25 0, 13, 26
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In most cases, there are multiple solutions for the connection set, including with

different values for ga, gb and gc. Table 14.3 shows one solution for each case. For

l = 5, this is the solution given by Macbeth, Šiagiová and Širáň [32]. For l = 6, this is

the solution given by Vetŕık [50]. The quadratic coefficient of Vetŕık’s solution, 13/36,

is likely to be the best possible with this form of construction. Although it is possible

for the upper bound to be arbitrarily close to 3/8 for a large enough value of l, we see

from Table 14.2 that the proportion of duplicates appears to increase with l, reaching

about 7% by l = 17.

14.3.2 Abelian Cayley graphs for groups of the form H = F ∗ × F+ × Zq

The circulant graph construction in the previous section can be extended to Abelian

Cayley graphs X(H,C) where H = F ∗ × F+ × Zq by relaxing the requirement that q

is coprime with p and p− 1, for p a prime power, so that the connection set can

include the self-inverse set Bq/2, thus requiring that q be even. In Macbeth, Šiagiová

and Širáň’s construction with q = 6, the connection set C is comprised of the sets

A1, B3 and C∗0 along with two other elements, noting that B3 is Bq/2, and hence

|C| = 4p− 2. It is relatively straightforward to prove that any element of H can be

expressed as the sum of at most two elements of C so that the resultant Cayley graph

X = (H,C) has diameter 2. As the degree of the graph d = |C|, we have

p = (d+ 2)/4. Thus, the order of the Cayley graph

|H| = 6p(p− 1) = (6/16)(d+ 2)(d− 2), giving the quadratic coefficient 3/8.

For the generalisation of this approach, we again take the component sets Au, Bv, C
+
w ,

as defined in Section 2. For any l ≥ 4, we consider different values of q, and for each q

the corresponding family of Abelian groups Hl = F ∗ × F+ × Zq where F = GF (p) for

any prime power p, and q ∈ N. For each Hl, we consider connection sets C comprised

of all possible combinations of the sets Au, Bv, C
+
w , always including Bq/2, along with

a fixed number of other elements of Hl such that |C| = lp+ δ for some fixed δ, with

the condition that the Cayley graph X(Hl, C) has diameter 2. As before we also

consider the potential inclusion of the self-inverse set C0 in the connection set. Thus

as opposed to the circulant graph case, C+
0 is included in C if l is odd and not

included if l is even.

As before, for any l we define ql to be the largest value of q for which such a Cayley

graph X(H,C) exists for all admissable p, and define Hl = F ∗ × F+ × Zql . It follows

that the order of X(Hl, C) is (ql/l
2)d2 +O(d), and we denote this order by ml(d).
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Definition 14.6. Let ExtGalAbCay(d, 2) be the largest order of an Abelian Cayley graph

of diameter 2 and degree d, constructed as the Cayley graph of a group of the form

H = F ∗ × F+ × Zq.

Then ExtGalAbCay(d, 2) = supl≥3ml(d). Theorem 14.7 establishes an improved upper

bound for such graphs, with quadratic coefficient 3/8.

Theorem 14.7. With ExtGalAbCay(d, 2) as defined above,

ExtGalAbCay(d, 2) ≤ (3/8)d2 +O(d).

Proof. Let F ∗ be the multiplicative group and let F+ be the additive group of the

Galois field GF (p), where p is a prime power, and let q be even. Let

H = F ∗ × F+ × Zq. Since F ∗, F+ and Zq are cyclic groups, the group H is Abelian.

Consider the Cayley graph, X(H,C), of the group H with a connection set C that

includes the union of Au, Bv and C+
w for multiple values of u, v and w, not equal to 0

or q/2, numbering m in total. Consider Au for u ∈ U , Bv for v ∈ V and C+
w for

w ∈W where U, V and W are index sets with ga = |U |, gb = |V | and gc = |W |, so

that ga + gb + gc = m. The set C includes Bq/2 and is constructed to be inverse-closed

so that X(H,C) is an Abelian Cayley graph of degree d = |C|. We also consider

including C+
0 . We define l = 2m+ 1 if C+

0 is not in C and l = 2m+ 2 if C+
0 is in C.

We now investigate how elements of H may be constructed from pairs of the sets Au,

Bv, C
+
w .

First, consider Bv and C+
w for v ∈ V and w ∈W , where v 6= q/2, w 6= 0. For any

x ∈ F ∗, y ∈ F+ we have

(x, y, v + w) = (x, 0, v)(1, y, w) = bv(x)cw(y)

(x, y, v − w) = (x, 0, v)(1, y,−w) = bv(x)c−1w (−y)

(x, y,−v + w) = (x, 0,−v)(1, y, w) = b−1v (x−1)cw(y)

(x, y,−v − w) = (x, 0,−v)(1, y,−w) = b−1v (x−1)c−1w (−y).

In case v = q/2, w 6= 0

(x, y, q/2 + w) = (x, 0, q/2)(1, y, w) = bn/2(x)cw(y)

(x, y, q/2− w) = (x, 0, q/2)(1, y, w) = bn/2(x)cw(y).

In case w = 0, v 6= q/2

(x, y, v) = (x, 0, v)(1, y, 0) = bv(x)c0(y)

(x, y,−v) = (x, 0,−v)(1, y, 0) = b−1v (x−1)c0(y).
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And in case v = q/2, w = 0

(x, y, q/2) = (x, 0, q/2)(1, y, 0) = bn/2(x)c0(y).

Next, consider Au and C+
w for u ∈ U and w ∈W , where w 6= 0. For any x ∈ F ∗,

y ∈ F+ we have

(x, y, u+ w) = (x, x, u)(1, y − x,w) = au(x)cw(y − x)

(x, y, u− w) = (x, x, u)(1, y − x,−w) = au(x)c−1w (x− y)

(x, y,−u+ w) = (x,−x−1,−u)(1, y + x−1, w) = a−1u (x−1)cw(y + x−1)

(x, y,−u− w) = (x,−x−1,−u)(1, y + x−1,−w) = a−1u (x−1)c−1w (−y − x−1).

In case w = 0

(x, y, u) = (x, x, u)(1, y − x, 0) = au(x)c0(y − x)

(x, y,−u) = (x,−x−1,−u)(1, y + x−1, 0) = a−1u (x−1)c0(y + x−1).

Now consider Au and Bv for u ∈ U and v ∈ V where v 6= q/2. For any x ∈ F ∗, y ∈ F ∗

we have

(x, y, u+ v) = (y, y, u)(xy−1, 0, v) = au(y)bv(xy
−1)

(x, y, u− v) = (y, y, u)(xy−1, 0,−v) = au(y)b−1v (x−1y)

(x, y,−u+ v) = (−y−1, y,−u)(−xy, 0, v) = a−1u (−y)bv(−xy)

(x, y,−u− v) = (−y−1, y,−u)(−xy, 0,−v) = a−1u (−y)b−1v (−x−1y−1).

In case v = q/2

(x, y, q/2 + u) = (y, y, u)(xy−1, 0, q/2) = au(y)bn/2(xy
−1)

(x, y, q/2− u) = (−y−1, y,−u)(−xy, 0, q/2) = a−1u (y−1)bn/2(−xy).

For y = 0, where v 6= q/2, introducing also bu(1) and b−1u (1) for u ∈ U ,

(x, 0, u+ v) = (1, 0, u)(x, 0, v) = bu(1)bv(x)

(x, 0, u− v) = (1, 0, u)(x, 0,−v) = bu(1)b−1v (x−1)

(x, 0,−u+ v) = (1, 0,−u)(x, 0, v) = b−1u (1)bv(x)

(x, 0,−u− v) = (1, 0,−u)(x, 0,−v) = b−1u (1)b−1v (x−1).

In case v = q/2

(x, 0, q/2 + u) = (1, 0, u)(x, 0, q/2) = bu(1)bn/2(x)

(x, 0, q/2− u) = (1, 0,−u)(x, 0, q/2) = b−1u (1)bn/2(x).
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Finally, consider Au and A′u for u, u′ ∈ U, u 6= u′. For any x ∈ F ∗ \{1}, y ∈ F ∗ we have

(x, y, u− u′) = (xy/(x− 1), xy/(x− 1), u)((x− 1)/y,−y/(x− 1),−u′)
= au(xy/(x− 1))a−1u′ (y/(x− 1)).

In case x = 1, where w′ is any fixed element of W , and introducing also bu−u′−w′(1),

(1, y, u− u′) = (1, y, w′)(1, 0, u− u′ − w′) = cw′(y)bu−u′−w′(1).

And in case y = 0, we consider (x, 0, u− u′) = bu−u′(x). If u− u′ = v for some v ∈ V
then this is immediately covered by bv(x). Otherwise, if u− u′ = v + v′ for some

v, v′ ∈ V then

(x, 0, u− u′) = (x, 0, v + v′) = (x, 0, v)(1, 0, v′) = bv(x)bv′(1)

and similarly for u− u′ = v − v′ or −v − v′. For any remaining uncovered cases

bu−u′(x), it would be necessary to introduce bu(x) for any x ∈ F ∗, using the

construction

(x, 0, u− u′) = (x, 0, u)(1, 0,−u′) = bu(x)b−1u′ (1).

From the above, we see that each pair AuBv, AuC
+
w , BvC

+
w , for v 6= q/2 and w 6= 0,

can generate all elements of H with up to four values of Zq with a limited number of

exceptions that are covered as shown above. Similarly, each pair AuAu′ , AuC
+
w ,

BvC
+
w , for u 6= u′, v = q/2 or w = 0, creates up to two values. On the other hand, the

first coordinate of the product of an element of C+
w with an element of C+

w′ is always

1, and the second coordinate of the product of an element of Bv with an element of

Bv′ is always 0. So these combinations do not contribute to an efficient covering of H.

Summing the elements listed in the cases above gives the following lower bound for

the degree d of the corresponding Abelian Cayley graph:

d = |C| ≥ 2ga(p− 1) + (2gb + 1)(p− 1) + 2gcp+ 2ga + ga(ga − 1)

= (2m+ 1)(p− 1) + 2gc + ga + g2a, as m = ga + gb + gc.

An upper bound for the value of n is obtained by assuming there is no duplication

between the values of s+ t, s− t, −s+ t and −s− t across all s, t ∈ {u, v, w} for the

given combinations of Au, Bv and C+
w , with the exception that (x, y, 0) can be created

from two elements of any Au. Thus, the upper bound for n is given by

q = 4gagb + 4gbgc + 4gagc + ga(ga − 1) + 2ga + 2gc + 1

= 4gam+ 4gbm− 3g2a − 4g2b − 4gagb +m− ga − 2gb + 1, as m = ga + gb + gc.
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This is a maximum when the partial derivatives with respect to ga and gb are zero.

We have ∂q/∂ga = 4m− 6ga − 4gb − 1 = 0 and ∂q/∂gb = 4m− 8gb − 4ga − 2 = 0.

Thus, ga = m/2, gb = (m− 1)/4 and gc = (m+ 1)/4, and hence

q ≤ (6m2 + 4m+ 3)/4. Also, we have d ≥ (2m+ 1)p+m2/4−m− 1/2, so that

p ≤ d/(2m+ 1)− (m2 − 4m− 2)/(8m+ 4). Thus, we find

|H| ≤ (p− 1)p(6m2 + 4m+ 3)/4

= [(6m2 + 4m+ 3)/(4(2m+ 1)2)]d2 +O(d)

≤ (3/8)d2 +O(d), for m ≥ 1.

If instead C also includes the set C+
0 , so that

d = |C| ≥ 2ga(p− 1) + (2gb + 1)(p− 1) + (2gc + 1)p+ 2ga + ga(ga − 1), then we find

that the upper bound for n is given by

q ≤ 4gagb + 4gbgc + 4gagc + 4ga + 2gb + 2gc + ga(ga − 1) + 2

= 4gam+ 4gbm− 3g2a − 4g2b − 4gagb + 2m+ ga + 2.

In this case, partial differentiation gives a maximum value at ga = (2m+ 1)/4,

gb = gc = (2m− 1)/8. Then q = (12m2 + 20m+ 17)/8. Also

d = 2(m+ 1)p+m2/4− 3m/4− 15/16, so that

p = d/2(m+ 1)− (4m2 − 12m− 15)/32(m+ 1), and we have |H| ≤ (3/8)d2 +O(d) for

m ≥ 1.

As for the circulant graph case, the optimum values of ga, gb and gc determined by

differentiation are often not integral and the resultant value of q is never integral. The

upper bound is then the largest even number below the calculated value. This is only

achievable if it is possible to find a set of values for the u, v and w such that none of

the pairwise combinations are duplicates. This has been found to be possible in every

case for m ≤ 3, as for the circulant graphs, but for no higher values checked up to

m = 7. A summary of the best results is presented in Table 14.4.

It is interesting to note that for l = 6 we have extremal value q = 12 with a quadratic

coefficient of 1/3 (Table 14.4), whereas the corresponding circulant graphs have a

higher extremal value, q = 13 with coefficient 13/36 (Table 14.2). This is because the

Abelian Cayley graph connection set is defined to include the two self-inverse sets

Bq/2 and C+
0 along with two pairs of non self-inverse sets, whereas the circulant graph

connection set is comprised of three such pairs and neither of the self-inverse sets.

Without the requirement to include the set Bq/2, the extremal Abelian Cayley graph

with this construction would be the circulant graph.
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Table 14.4: Upper bounds and extremal values for the order of the Abelian
Cayley graph for l ≤ 16

Pairs Sets Upper bound for q Quadratic coefficient Extremal Quadratic
m l Real Integer Fraction Decimal value, q coefficient

1 4 6.125 6 3/8 0.375 6 0.375
2 5 8.75 8 8/25 0.320 8 0.320
2 6 13.125 12 1/3 0.333 12 0.333
3 7 17.25 16 16/49 0.327 16 0.327
3 8 23.125 22 11/32 0.344 22 0.344
4 9 28.75 28 28/81 0.346 26 0.321
4 10 36.125 36 9/25 0.360 34 0.340
5 11 43.25 42 42/121 0.347 40 0.331
5 12 52.125 52 13/36 0.361 48 0.333
6 13 60.75 60 60/169 0.355 56 0.331
6 14 71.125 70 35/98 0.357 66 0.337
7 15 81.25 80 16/45 0.356 72 0.320
7 16 93.125 92 23/64 0.359 86 0.336

Table 14.5: A solution for each extremal value of the order of the Abelian
Cayley graph for l ≤ 16

Pairs Sets Extremal Values of u Values of v Values of w
m l value, q for Au for Bv for Cw

1 4 6 1 3 0
2 5 8 1 4 3
2 6 12 1 6 0, 3
3 7 16 1, 6 8 2
3 8 22 2, 7 11 0, 1
4 9 26 2, 9 13 1, 4
4 10 34 1, 8 2, 17 0, 13
5 11 40 12, 17, 18 1, 20 8
5 12 48 10, 18 3, 24 0, 1, 2
6 13 56 3, 4, 11 1, 26, 28 17
6 14 66 12, 26 3, 18, 33 0, 1, 2
7 15 72 3, 4, 11, 19 1, 34, 36 25
7 16 86 11, 26, 36 3, 20, 43 0, 1, 2

In most cases, there are multiple solutions for the connection set, including with

different values for ga, gb and gc. Table 14.5 shows one solution for each case. For

l = 4, this is the solution given by Macbeth, Šiagiová and Širáň [32]. The quadratic

coefficient of this solution, 3/8, is likely to be unmatched for any other value of l with

this form of construction. Although the upper bound is 3/8, we see from Table 14.4

that the proportion of duplicates appears to increase with l, reaching about 7% by

l = 16.

14.3.3 Extending the validity to any degree above a threshold

We note that the graphs from both constructions by Macbeth, Šiagiová and Širáň and

from Vetŕık’s are only established for values of the degree that are a linear function of
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a sequence of primes belonging to a prescribed congruence class or set of classes. For

example, for Macbeth, Šiagiová and Širáň’s circulant graph construction, the degree

d = 5p− 3 where the prime p ≡ 2 (mod 3). A recent paper by Cullinan and Hajir [6]

defines a method for identifying a bound on the length of interval that will always

contain at least one prime of a prescribed congruence class. This builds on an earlier

paper by Ramaré and Rumely [45] which includes a table, Table 1, that defines triples

(k, x0, ε) where k is the modulo of the congruence class, x0 is a threshold minimum

and ε is a corresponding factor. For any such triple, Cullinan and Hajir established

that for any x > x0 and δ > 2ε/(1− ε) the interval (x, x(1 + δ)] will contain at least

one prime p ≡ a (mod k) for any a coprime with k. Therefore, in each of the graph

constructions discussed, for any sufficiently large degree d it is possible to find a prime

of the correct congruence class such that the corresponding degree d′ < d(1 + δ).

Within the table, x0 takes four values, from 1010 to 10100, with the lowest value of ε

corresponding to x0 = 10100. In Theorem 14.8 below we take the largest value for x0

in order to define the largest possible lower bound on the asymptotic value of the

quadratic coefficient for each construction that is valid for any degree above the

corresponding threshold.

Theorem 14.8. Let ExtGalcirc(d, 2) be defined as for Theorem 14.5 and ExtGalAbCay(d, 2)

as for Theorem 14.7. Then we have the following

0.3581 <
ExtGalcirc(d, 2)

d2
≤ 0.3750 for any d > 5× 10100,

0.3582 <
ExtGalcirc(d, 2)

d2
≤ 0.3750 for any d > 6× 10100,

0.3749 <
ExtGalAbCay(d, 2)

d2
≤ 0.3750 for any d > 4× 10100.

Proof. Note that in this proof k does not denote the diameter, which is 2, but instead

denotes the modulo of the congruence class referenced in Table 1 of Ramaré and

Rumely’s paper [45]. For the Macbeth, Šiagiová and Širáň circulant graph

construction with quadratic coefficient 9/25, we take the triple

k = 3, x0 = 10100, ε = 0.001310 from Table 1 of Ramaré and Rumely’s paper, giving a

value of δ = 0.002623. Then 9/25× 1/(1 + δ)2 ≈ 0.35811. This is valid for p > 10100,

and hence for d > 5× 10100 as d < d′ = 5p− 3. For the Vetŕık circulant graph

construction with quadratic coefficient 13/36, we take the triple

k = 13, x0 = 10100, ε = 0.002020 from the table, giving a value of δ = 0.004048. Then

13/36× 1/(1 + δ)2 ≈ 0.35821, and we note that d′ = 6p− 2. For the Macbeth,

Šiagiová and Širáň Abelian Cayley graph construction with quadratic coefficient 3/8,
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we take the triple k = 1, x0 = 10100, ε = 0.000001 from the table, giving a value of

δ = 0.000002. Then 3/8× 1/(1 + δ)2 ≈ 0.37499, and we note that d′ = 4p− 2.

14.3.4 Upper bound quadratic coefficient

For circulant graphs of diameter 2, employing the method of construction with the

direct product of the additive and multiplicative groups of a Galois field and cyclic

group of any order, it proves to be impossible to achieve a quadratic coefficient for the

order polynomial that is higher than 3/8, thus improving the upper bound for this

construction method from 1/2 to 3/8. For Abelian Cayley graphs constructed in the

same way, the upper bound on the quadratic coefficient is also improved to a value of

3/8. Applying Cullinan and Hajir’s property of intervals containing a prime of a

prescribed congruence class, the asymptotic value of the quadratic coefficient valid for

every degree above a threshold exceeds 0.358 for the two circulant graph construction

and remains at 0.375 to three significant figures for the Abelian Cayley graph

construction.

All of the preceding constructions for diameter 2 circulant graphs and Abelian Cayley

graphs have failed to exceed the value 3/8 for the leading coefficient of the order

quadratic in the degree. However, a recent paper by Pott and Zhou [44] presents two

constructions using generalised difference sets with leading coefficient above 3/8.

They show that ExtAbCay(d, 2) ≥ (25/64)d2 − 2.1d1.525 for sufficiently large degree d,

and also ExtAbCay(d, 2) ≥ (4/9)d2 if d = 3q, q = 2m and m is odd. Prior to this

achievement, the circumstantial evidence supported a conjecture that 3/8 was an

upper bound for diameter 2 Abelian Cayley graphs. With this limit being broken, the

question arises whether the Moore bound coefficient of 1/2 might be achievable with

the right constructions. A related question is whether the 3/8 limit can be exceeded

also for circulant graphs.

14.4 Extremal graphs of higher fixed diameter

For extremal circulant graphs of diameter 2 and arbitrary degree d, we have seen

three pieces of evidence indicating that a quadratic in d with leading coefficient of 3/8

might be a good approximation to their order. Firstly, in Section 14.1, the best fit to

the order of the known extremal circulant graphs is given by a quadratic with leading

coefficient 3/8 to within three significant figures. Secondly, in Section 14.3, the best

algebraic constructions using the direct product of the additive and multiplicative

groups of a Galois field and a cyclic group achieve values for the quadratic coefficient

that are just below 3/8. Thirdly, in the same section, an upper bound was established
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for Abelian Cayley graphs with this type of construction with a quadratic coefficient

of 3/8.

Similar evidence also exists for the diameter 3 case. Unfortunately, the extremal

diameter 3 circulant graphs have only been discovered up to degree 15 (see Appendix

D), which is a quite restricted set for determining with confidence whether a cubic

polynomial in the degree can provide good estimates for their order and for

estimating its leading coefficient. With this proviso, the best fit is obtained with a

cubic coefficient of about 0.074, although the residual remains small between 0.070

and 0.080.

The upper bound of 3/8 for diameter 2 Abelian Cayley graph constructions using

direct products of finite fields, that was established by the author [28], was extended

for similar constructions to provide an upper bound for any fixed diameter, also by

the author. This is included with proof as Observation 3.7 in a jointly authored paper

[1]. For fixed diameter k, the upper bound on the leading coefficient in a polynomial

of degree k for the order of similarly constructed Abelian Cayley graphs of degree d is

given by (k + 1)/(2(k + 2)k−1), so that, for any such graph of order n(d, k) we have

n(d, k) ≤ k + 1

2(k + 2)k−1
dk +O(dk−1).

For diameter 3, this coefficient evaluates to 4/50 or 0.080, which is in good alignment

with the fitted cubic above. Thus, for circulant graphs of diameters 2 and 3, we see

that the best fitted polynomial of corresponding degree has a leading coefficient lying

very close to an upper bound for a category of algebraic constructions giving graphs

of largest order. Unfortunately, extremal circulant graphs of diameter 4 and above are

known for too few degrees to enable a similar investigation for higher diameters.

Nevertheless, extrapolating the diameters 2 and 3 results leads to the following

conjecture for any diameter k ≥ 1.

Conjecture 14.9. Let Extcirc(d, k) denote the order of an extremal circulant graph

of degree d and diameter k. Then for any diameter k ≥ 1:

lim inf
d→∞

Extcirc(d, k)

dk
= lim sup

d→∞

Extcirc(d, k)

dk
=

k + 1

2(k + 2)k−1
.

The Pott and Zhou constructions [44] are proof that this conjecture is not extendable

to Abelian Cayley graphs in general. It might well be that, in time, similar

constructions for circulant graphs will also be found that invalidate this conjecture.
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Chapter 15

Directed and mixed circulant graph

families of given degree

Chapter 15 is the first chapter where the graphs are not undirected. Directed and

mixed circulant graphs and graph families are explored for small fixed directed and

undirected degree, building on the legacy position described in Section 2.6. As defined

in Section 1.2, a directed graph is a graph where all the edges are directed edges,

called arcs. A mixed graph is a graph with at least one undirected edge and one arc.

Directed and mixed Abelian Cayley graphs have a connection set that is not

inverse-closed. In contrast to undirected circulant graphs, it appears that extremal

directed and mixed circulant graphs of dimension 3 and above do not belong to graph

families with regular diameter classes. An extremal order conjecture is presented for

directed and mixed circulant graphs with undirected degree below 4.

As every Abelian Cayley graph is regular, the outdegree of a directed circulant graph

is equal to the indegree and is called the directed degree of the graph, with symbol z.

Then Extdircirc(z, k) denotes the order of an extremal directed circulant graph of

directed degree z and diameter k. Now consider a mixed circulant graph where each

vertex has z incident arcs and d incident edges. Then z is the directed degree and d

the undirected degree. The order of an extremal mixed circulant graph of directed

degree z, undirected degree d and diameter k is denoted by Extmixcirc (z, d, k). Where

the extremal order is unknown, the largest-known order is denoted by LKdir
circ(z, k) or

LKmix
circ (z, d, k) for directed or mixed graphs respectively. As stated in Section 2.5, we

define the dimension f of a general circulant graph (one which is undirected, directed

or mixed) of directed degree z and undirected degree d to be f = z + bd/2c.

In contrast to undirected circulant graphs, any directed or mixed circulant graph on n

vertices has rotational symmetry but might not contain any reflexive symmetry.

Thus, its automorphism group is either the cyclic group on n elements, Cn, of order

n, or contains the cyclic group as a subgroup, and similarly for directed or mixed

Abelian Cayley graphs. Therefore, the order of the automorphism group of a directed

or mixed Abelian Cayley graph of order n will be a multiple of n. We define this

multiple to be the cyclic index of the automorphism group, or CI for short.
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We begin by establishing a theorem that is useful for the comparison of the orders of

extremal and largest-known circulant graph families of the same dimension and

directed degree but with even and odd undirected degree. As a consequence, the

leading coefficient of the polynomial for a lower bound or an upper bound for odd

undirected degree is exactly double the equivalent for even undirected degree of the

same dimension and directed degree.

Lemma 15.1. Let X(n, z, d, k) be a circulant graph of directed degree z ≥ 0,

undirected degree d ≥ 0, order n and diameter k. Then if the undirected degree d is

even, there exists a circulant graph X ′(2n, z, d+ 1, k + 1) of directed degree z,

undirected degree d+ 1, order 2n and diameter k + 1. Conversely, if the undirected

degree d is odd, there exists a circulant graph X ′(n/2, z, d− 1, k − 1) of directed degree

z, undirected degree d− 1, order n/2 and diameter k − 1.

Proof. The proof of the first part is simply the proof of Theorem 9.3, relaxing the

constraint on generators being odd. The second part is similarly proved as for

Theorem 9.2.

Theorem 15.2. Let X (z, d) be a family of circulant graphs of directed degree z and

undirected degree d with order cfk
f + cf−1k

f−1 + · · ·+ c0, where f = z + bd/2c is the

dimension and k is the diameter. Then if the undirected degree d is even, there exists

a circulant graph family X ′(z, d+ 1) of directed degree z and undirected degree d+ 1

with order 2cfk
f +O(kf−1) where k is the diameter. Conversely, if the undirected

degree d is odd, there exists a circulant graph family X ′(z, d− 1) of directed degree z

and undirected degree d− 1 with order (cf/2)kf +O(kf−1), where k is the diameter.

Proof. A direct consequence of Lemma 15.1.

15.1 Extremal mixed circulant graphs of dimensions 1 and 2

We now consider mixed circulant graphs, starting with dimension 1: directed degree

z = 1 and undirected degree d = 1. The extremal mixed circulant graph of diameter k

is simply the directed cycle graph of order 2k with undirected diameters generated by

the involution, so that Extmixcirc (1, 1, k) = 2k, just 1 short of the upper bound

Uppmixcirc (1, 1, k) = 2k + 1.

For dimension 2 with directed degree z = 2, the undirected degree is d = 1. Extremal

families exist and are defined for three diameter classes, modulo 3. Their order

Extmixcirc (2, 1, k), for diameter k ≥ 6, is given below, along with the upper bound for

Robert Roderick Lewis



15.1 Extremal mixed circulant graphs of dimensions 1 and 2 211

comparison:

Extmixcirc (2, 1, k) =


(2k2 + 4k)/3 for k ≡ 0 (mod 3)

(2k2 + 4k)/3 for k ≡ 1 (mod 3)

(2k2 + 4k − 4)/3 for k ≡ 2 (mod 3),

Uppmixcirc (2, 1, k) = k2 + 2k + 1.

There are multiple isomorphism classes for each diameter class. The existence and

extremality of graph families with these orders have been proved by Dalfó, Fiol and

López [8]. One family from each diameter class is shown in Table 15.1 as an example,

along with a generating set. Properties of all isomorphism classes of graphs up to

diameter 16 are given in Appendix G.

Table 15.1: Generating sets for extremal mixed circulant graph families of
directed degree 2 and undirected degree 1 for diameter k ≥ 6

Diameter Generating set∗ Odd Maximal Aut
Family class g1 g2 girth Girth levels group CI†

M2-1:0A 0 (mod 3) 1 k + 1 (2k + 3)/3 (2k + 3)/3 (2k − 3)/3 1
M2-1:1A 1 (mod 6) 1 k + 2 bipartite (2k + 4)/3 (2k − 2)/3 1

4 (mod 6) 1 k + 2 k + 1 (2k + 4)/3 (2k − 2)/3 1
M2-1:2A 2 (mod 6) 1 k (5k − 1)/3 (2k + 2)/3 (2k − 4)/3 1

5 (mod 6) 1 k bipartite (2k + 2)/3 (2k − 4)/3 1

∗ plus the involution † cyclic index of the automorphism group

For dimension 2 with directed degree z = 1, the undirected degree may be 2 or 3. In

both cases largest-known families exist and are defined for three diameter classes,

modulo 3. For undirected degree d = 2, their order LKmix
circ (1, 2, k), for diameter k ≥ 3

is given below, together with the upper bound:

LKmix
circ (1, 2, k) =


(2k2 + 6k + 3)/3 for k ≡ 0 (mod 3)

(2k2 + 6k + 4)/3 for k ≡ 1 (mod 3)

(2k2 + 6k + 4)/3 for k ≡ 2 (mod 3),

Uppmixcirc (1, 2, k) = k2 + 2k + 1.

For diameter class k ≡ 0 (mod 3), there is one isomorphism class for each diameter,

forming a single graph family M1-2:0. For the other two diameter classes, there are a

varying number of isomorphism classes depending on the diameter, forming a range of

families with different diameter period. The examples described, M1-2:1A and
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M1-2:2A, exist for all diameters in their class. Generating sets are shown in Table

15.2.

Table 15.2: Generating sets for largest-known mixed circulant graph families of
directed degree 1 and undirected degree 2 for diameter k ≥ 3

Diameter Generating set Odd Maximal Aut
Family class Directed Undirected girth levels group CI†

M1-2:0 0 (mod 3) 1 (2k + 3)/3 (4k + 3)/3 2k/3 1
M1-2:1A 1 (mod 3) k + 1 (k + 2)/3 (4k + 5)/3 (2k + 1)/3 2
M1-2:2A 2 (mod 3) k + 2 (k + 1)/3 (4k + 7)/3 (2k − 1)/3 2

† cyclic index of the automorphism group

For undirected degree d = 3, the order of the largest-known families, LKmix
circ (1, 3, k),

for diameter k ≥ 3 is given below, with the upper bound:

LKmix
circ (1, 3, k) =


(4k2 + 8k)/3 for k ≡ 0 (mod 3)

(4k2 + 8k)/3 for k ≡ 1 (mod 3)

(4k2 + 8k − 8)/3 for k ≡ 2 (mod 3),

Uppmixcirc (1, 3, k) = 2k2 + 2k + 1.

For diameter classes k ≡ 0 and 1, there is one isomorphism class for each diameter,

forming single families M1-3:0 and M1-3:1. For diameter class 2, there are two

isomorphism classes for each diameter k ≥ 5, forming families M1-3:2A and M1-3:2B,

as well as two additional classes for diameter 5. The existence and extremality of

graph families with these orders was demonstrated using tiling constructions for k ≡ 0

and 1 (mod 3) by Dalfó, Fiol, López and Ryan [9]. Generating sets are shown in

Table 15.3.

Table 15.3: Generating sets for largest-known mixed circulant graph families of
directed degree 1 and undirected degree 3 for diameter k ≥ 3

Diameter Generating set Odd Maximal Aut
Family class Directed Undirected girth levels group CI†

M1-3:0 0 (mod 3) 1 (2k + 3)/3 (4k + 3)/3 2k/3 1

M1-3:1 1 (mod 3) 1 (2k + 1)/3 (4k + 5)/3 (2k − 2)/3 1

M1-3:2A 2 (mod 3) 1 (2k − 1)/3 (4k + 7)/3 (2k − 4)/3 1
M1-3:2B 2 (mod 3) 1 (2k + 5)/3 (4k + 1)/3 (2k − 1)/3 1

† cyclic index of the automorphism group
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15.2 Extremal directed circulant graphs of dimension 3

For dimension 3, Wong and Copperfield’s upper bound for directed circulant graphs

gives Uppmixcirc (3, 0, k) = (k3 + 6k2 + 11k + 6)/6 for any diameter k. Sharper lower and

upper bounds for the cubic coefficient are 1/16 and 3/25 (see Section 2.5).

Largest-known directed circulant graphs of directed degree 3 have been discovered up

to diameter 48: as far as diameter 17 by Fiduccia, Forcada and Zito [14], up to 43 by

Dougherty and Faber [10] and the final five by the author (see Appendix G). They

have been verified to be extremal up to diameter 39 and are conjectured extremal to

48. They do not have order determined by polynomials defined for a set of diameter

classes and so do not belong to graph families. Instead, the sequence of extremal

orders appears chaotic or random. If there is indeed any underlying pattern or

structure to this sequence, then it emerges only at a higher diameter than 48.

However, it is conjectured that there is no such structure and that the sequence, for

increasing diameter, of orders of extremal directed circulant graphs of directed degree

3 is chaotic throughout.

Conjecture 15.3. There is no finite set of diameter classes {K1, . . . ,Kg} where for

any diameter k, k ∈ Ki for some i, and no set of directed circulant graph families

{F1, . . . , Fg} defined for each diameter class and with order n1(k), . . . , ng(k)

respectively, where ni(k) is a cubic polynomial, such that for any i and any k ∈ Ki,

Extdircirc(3, k) = ni(k).

Notwithstanding this chaotic behaviour, it is possible to define a cubic polynomial

n̂(k) in the diameter k that achieves a least-squares fit to the extremal orders up to

diameter 48. This cubic, to four significant figures, is

n̂(k) = 0.08341k3 + 0.7065k2 + 2.058 + 1.796. The question arises whether the leading

coefficient, 0.08341, is a statistical approximation to an underlying actual coefficient

that can be expressed as a simple fraction, similar to the leading coefficients 1 and

1/3 for directed degrees 1 and 2. The value 0.08341 lies relatively close to the unit

fraction 1/12 (0.08333 to five decimals), and no other simple fraction with

denominator below 539 lies closer (45/539 is closer). This justifies exploring 1/12 as

the leading coefficient of the underlying cubic best fit for all diameters. Accepting an

additional total least-squares residual of less than 0.01%, we may instead fit a cubic

with leading coefficient of 1/12: n̂(k) = (1/12)k3 + 0.7125k2 + 1.936k + 2.377.

Normalising the residual term for each diameter by dividing it by k2 enables the

residual to be evaluated as a component of the quadratic coefficient. The normalised

residuals are shown in Figure 15.1.
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Figure 15.1: Order of extremal directed circulant graphs of directed degree 3,
up to diameter 48: least-squares residual divided by the diameter

squared
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Above a threshold diameter of 8, the absolute value of the normalised residual term

lies below 0.07 for all diameters up to 48. Moreover, it appears that the range is not

increasing with diameter but remains relatively constant, as indicated by the parallel

red lines. If this remains true for all higher diameters, then we have the following

conjecture.

Conjecture 15.4. The extremal order of a directed circulant graph of directed degree

3 and diameter k, Extdircirc(3, k) is bounded below and above:

(1/12)k3 + 0.6k2 +O(k) ≤ Extdircirc(3, k) ≤ (1/12)k3 + 0.8k2 +O(k).

In particular, this implies that Extdircirc(3, k) =
1

12
k3 +O(k2).

15.3 Extremal mixed circulant graphs of dimension 3

Mixed circulant graphs of dimension 3 may have directed degree of 1, 2 or 3. It

emerges that the same chaotic behaviour displayed by the order of directed circulant

graphs of dimension 3 is apparent for mixed circulant graphs of all degree parameter

sets (z, d) with dimension f = 3. In each case, a polynomial in the diameter has been

fitted to the graph orders. The leading coefficient has been adjusted to the nearest

simple fraction with low denominator. In each case, the magnitude of the normalised

residuals appears to vary within a range that remains broadly constant with

increasing diameter, above a small diameter threshold. This mirrors what is observed

for directed graphs of dimension 3 above.
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We first consider graphs of directed degree z = 3 along with the involution (d = 1).

Largest-known circulant graphs that are conjectured to be extremal have been

discovered up to diameter 37 (see Appendix G). A least squares fit by a cubic in the

diameter k yields the following: n̂ = 0.16673k3 + 0.8308k2 + 5.147k − 3.139. The unit

fraction 1/6 is close to 0.16673 and closer than any other simple fraction with

denominator below 1409 (235/1409 is closer). With an additional total least-squares

residual of 0.01%, we may instead fit a cubic with leading coefficient of 1/6:

n̂ = (1/6)k3 + 0.8343k2 + 5.090k − 2.923. As before, above a threshold diameter of 5,

the normalised residuals appear to vary within a range that remains constant with

increasing diameter, bounded by ±0.06 with the exception of an outlier at diameter

33 that stretches the bound to ±0.12, see Figure 15.2.

Figure 15.2: Order of extremal mixed circulant graphs of directed degree 3 and
undirected degree 1, up to diameter 37: least-squares residual

divided by the diameter aquared
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This supports the following conjecture.

Conjecture 15.5. The extremal order of a mixed circulant graph of directed degree 3

and undirected degree 1, for diameter k ≥ 2, Extmixcirc (3, 1, k) is bounded below and

above:

(1/6)k3 + 0.7k2 +O(k) ≤ Extmixcirc (3, 1, k) ≤ (1/6)k3 + 1.0k2 +O(k)

implying that Extmixcirc (3, 1, k) =
1

6
k3 +O(k2).

For dimension 3 and directed degree z = 2, mixed circulant graphs have undirected

degree of either 2 or 3. For undirected degree d = 2, extremal and largest-known

graphs have been discovered up to diameter 45 (see Appendix G). A least-squares fit
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by a cubic in the diameter k yields the following:

n̂(k) = 0.1674k3 + 1.201k2 + 1.115k + 8.965. In this case, the unit fraction 1/6 is close

to 0.1674, and closer than any other simple fraction with denominator below 125.

With an additional total least-squares residual of 0.2%, we may instead fit a cubic

with leading coefficient of 1/6: n̂(k) = (1/6)k3 + 1.250k2 + 0.1724k + 13.21. Above a

threshold diameter of 13, the normalised residuals appear to vary within a range that

remains constant with increasing diameter, bounded by ±0.07, see Figure 15.3.

Figure 15.3: Order of extremal mixed circulant graphs of directed degree 2 and
undirected degree 2, up to diameter 45: least-squares residual

divided by the diameter squared
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This supports the following conjecture.

Conjecture 15.6. The extremal order of a mixed circulant graph of directed degree 2,

undirected degree 2, and diameter k ≥ 14, Extmixcirc (2, 2, k) is bounded below and above:

(1/6)k3 + 1.1k2 +O(k) ≤ Extmixcirc (2, 2, k) ≤ (1/6)k3 + 1.4k2 +O(k)

implying that Extmixcirc (2, 2, k) =
1

6
k3 +O(k2).

For directed degree 2 and undirected degree 3, extremal and largest-known graphs

have been discovered up to diameter 37 (see Appendix G). A least-squares fit by a

cubic in the diameter k gives the following:

n̂(k) = 0.3373k3 + 1.539k2 + 4.880k − 2.596. The unit fraction 1/3 is close to 0.3373,

and closer than any other simple fraction with denominator below 44. With an extra

total residual of 0.4%, we may instead fit a cubic with leading coefficient 1/3:

n̂(k) = (1/3)k3 + 1.773k2 + 1.088k + 11.95. Above a threshold diameter of 5, the
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normalised residuals vary within a range that remains constant with increasing

diameter, bounded by ±0.20, see Figure 15.4.

Figure 15.4: Order of extremal mixed circulant graphs of directed degree 2 and
undirected degree 3, up to diameter 37: least-squares residual

divided by the diameter squared
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This supports the following conjecture.

Conjecture 15.7. The extremal order of mixed circulant graphs of directed degree 2,

undirected degree 3, and diameter k ≥ 6, Extmixcirc (2, 3, k) is bounded below and above:

(1/3)k3 + 1.5k2 +O(k) ≤ Extmixcirc (2, 3, k) ≤ (1/3)k3 + 2.0k2 +O(k)

implying that Extmixcirc (2, 3, k) =
1

3
k3 +O(k2).

For dimension 3 and directed degree z = 1, mixed circulant graphs have undirected

degree of either 4 or 5. For undirected degree d = 4, extremal and largest-known

graphs have been discovered up to 49 (see Appendix G). A least squares fit by a cubic

in the diameter k yields the following: n̂(k) = 0.40735k3 + 1.817k2 + 1.103k + 3.579.

The simple fraction 11/27 is close to 0.40735 and closer than any other simple

fraction with denominator below 328. With an additional residual of less than 0.02%,

a cubic with leading coefficient 11/27 may be substituted:

n̂(k) = (11/27)k3 + 1.813k2 + 1.194k + 3.138. Dividing the residual term for each

diameter by k2 normalises the residual for comparison with the quadratic coefficient.

This is shown in Figure 15.5.
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Figure 15.5: Order of largest-known mixed circulant graphs of directed degree
1 and undirected degree 4, up to diameter 49: least-squares

residual divided by the diameter squared
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Above a threshold diameter of 8, the absolute value of the normalised residual term

remains below 0.03. If the residual remains within this bound for the extremal order

for all higher diameters, then we have the following conjecture.

Conjecture 15.8. The extremal order of a mixed circulant graph of directed degree 1,

undirected degree 4 and arbitrary diameter k ≥ 9, Extmixcirc (1, 4, k) is bounded below and

above:

(11/27)k3 + 1.7k2 +O(k) ≤ Extmixcirc (1, 4, k) ≤ (11/27)k3 + 1.9k2 +O(k).

In particular, this implies that Extmixcirc (1, 4, k) =
11

27
k3 +O(k2).

For directed degree 1 and undirected degree 5, extremal and largest-known graphs

have been discovered up to diameter 37 (see Appendix G). A least-squares fit by a

cubic in the diameter k gives the following:

n̂(k) = 0.8146k3 + 2.203k2 − 1.073k+ 9.582. The simple fraction 22/27 is very close to

0.8146 and closer than any other simple fraction with denominator below 96. With an

extra total residual of 0.02%, we may instead fit a cubic with leading coefficient

22/27: n̂(k) = (22/27)k3 + 2.192k2 − 0.8919k + 8.888. Above a threshold diameter of

14, the normalised residuals vary within a range of ±0.05, see Figure 15.6.
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Figure 15.6: Order of largest-known mixed circulant graphs of directed degree
1 and undirected degree 5, up to diameter 37: least-squares

residual divided by the diameter squared
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This supports the following conjecture:

Conjecture 15.9. The extremal order of mixed circulant graphs of directed degree 1,

undirected degree 5, and diameter k ≥ 15, Extmixcirc (1, 5, k) is bounded below and above:

(22/27)k3 + 2.1k2 +O(k) ≤ Extmixcirc (1, 5, k) ≤ (22/27)k3 + 2.3k2 +O(k)

implying that Extmixcirc (1, 5, k) =
22

27
k3 +O(k2).

15.4 Conjectured order of extremal directed & mixed circulant

graphs

In previous chapters, we have seen that extremal and largest-known undirected

circulant graphs of degree up to 20 and beyond, above low diameter thresholds, all

belong to families defined for a set of diameter classes. Also, as we have just seen, this

is true for the extremal directed and mixed circulant graphs of dimensions 1 and 2.

However, this fails for dimension 3, as far as checked.

For each of the various combinations of directed and undirected degrees discussed so

far in this chapter, the order of verified and conjectured extremal circulant graphs

increases with diameter according to a fitted polynomial in the diameter k of degree

equal to the dimension f with a residual of O(kf−1). Where the directed degree is 0

or the dimension is below 3, the residual displays a regularity with diameter

periodicity equal to the dimension. For these degree combinations, families of graphs
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can be defined for all diameter classes, with order and generating sets defined

precisely by polynomials in the diameter. On the other hand, when the directed

degree is at least 1 and the dimension is 3, the residual has no such periodic

regularity, but instead displays apparent chaotic behaviour, so that extremal graph

families cannot be defined. This is covered later by Conjecture 15.11.

Despite the distinction between these two categories of circulant graphs, regular and

chaotic, determined by the combination of directed and undirected degree, they share

the existence of a polynomial in the diameter of degree equal to the dimension as a

least-squares fit to the order of the extremal graphs for each combination. For

directed and mixed circulant graphs of dimension 3, the fitted cubics for each degree

combination are summarised in Table 15.4.

Table 15.4: Largest-known directed and mixed circulant graphs of dimension 3

Directed/ Inferred leading
undirected Largest Coefficients of coefficient
degree diameter least-squares fit (1) Maximum Extra
z d included k3 k2 k Constant residual (2) Coeff residual

3 0 48 0.08341 0.7065 2.058 1.796 0.07 1/12 0.01%
3 1 37 0.16673 0.8308 5.147 -3.139 0.12 1/6 0.01%
2 2 45 0.1674 1.201 1.115 8.965 0.07 1/6 0.2%
2 3 37 0.3373 1.539 4.880 -2.596 0.20 1/3 0.4%
1 4 49 0.40735 1.817 1.103 3.579 0.03 11/27 0.01%
1 5 37 0.8146 2.203 -1.073 9.583 0.05 22/27 0.02%

(1) to four significant figures

(2) normalised by dividing by the diameter squared,

maximum for diameters above some low threshold

In each case, the simple fraction inferred as the leading coefficient is very close to the

fitted value, and the extra total residual from substituting the inferred coefficients is

very low. This provides some confidence that these values are correct.

The leading coefficients of the general circulant upper bound for selected directed and

undirected degree combinations are presented in Table 15.5.

Table 15.5: General circulant graph upper bound Uppmix
circ(z, d, k):

leading coefficient, 2bd+1)/2c/f !, where dimension f = z + bd/2c

Directed Undirected degree d
degree z 0 1 2 3 4 5 6 7 8 9

0 - 2 2 4 2 4 4/3 8/3 2/3 4/3
1 1 2 1 2 2/3 4/3 1/3 2/3 2/15 4/15
2 1/2 1 1/3 2/3 1/6 1/3 1/15 2/15 1/45 2/45
3 1/6 1/3 1/12 1/6 1/30 1/15 1/90 1/45 1/315 2/315
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The inferred leading coefficients of least-squares fitted polynomials for the order of

extremal and largest-known circulant graphs are presented in Table 15.6 for the cases

considered above. The regular cases, where the graphs belong to families, are shown

in bold text. For the others, the residual is chaotic and so the coefficients have a

range of uncertainty.

Table 15.6: Extremal general circulant graphs, least-squares fitted polynomial:
leading coefficient

Directed Undirected degree d
degree z 0 1 2 3 4 5 6 7 8 9

0 - 2 2 4 2 4 32/27 64/27 1/2 1
1 1 2 2/3 4/3 11/27 22/27
2 1/3 2/3 1/6 1/3
3 1/12 1/6

Bold indicates exact fit for largest-known families in each diameter class

The second column in Table 15.5, d = 0, is for the directed circulant graphs. They are

defined by the formula 1/z! as established by Wong and Copperfield (see Section 2.5),

which is equal to 1/f ! in this case. By inspection of the first column in Table 15.6, it

emerges that all values may be described by a similar formula: 2/(f + 1)!. This

formula applies equally to the first two values, that describe the order of graph

families, and to the third of these values, that relates to a chaotic sequence of orders

of graphs that do not belong to families. Consistent with Theorem 15.2, the values in

both third columns, d = 1, are equal to twice the second.

The fourth columns are for degree combinations with undirected degree d = 2. For

the upper bound, their formula is 2/f !. For the extremal mixed circulant graphs with

undirected degree d = 2, we only have three data points, but they indicate a formula

of 4/(f + 1)!, again valid for graph families and for chaotic sequences. As expected,

the values in both fifth columns are double the fourth.

Considering the leading coefficients for all degree combinations with undirected degree

d ≤ 3, in all 13 cases they can be described by a single expression, 2b(d+3)/2c/(f + 1)!.

Moreover, this is a simple multiple, 2/(f + 1), of the upper bound leading coefficient.

The fact that this expression satisfies all 13 cases without exception lends weight to

the validity of the inferred leading coefficient for each individual chaotic case. This

also provides some confidence in extrapolating its applicability to all higher directed

degrees, for undirected degree d ≤ 3. This leads to the following conjecture.

Conjecture 15.10. Extremal Order Conjecture for directed circulant graphs and

some mixed graphs. For any dimension f and directed degree z with undirected degree

d ≤ 3, there exists a polynomial n̂(z, d, k) of degree f in the diameter k that is a
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least-squares fit to the order Extmixcirc (z, d, k) of the extremal circulant graphs of every

diameter with n̂(z, d, k) =
2b(d+3)/2c

(f + 1)!
kf +O(kf−1), such that

Extmixcirc (z, d, k)− n̂(z, d, k) = O(kf−1).

In Section 2.5, an upper bound was defined for all degree combinations that is also a

polynomial in the diameter k of degree equal to the dimension f and with leading

term (2b(d+1)/2c/f !)kf . The question is whether there exists a corresponding leading

term that is common to all least-squares fitted polynomials for extremal orders. From

the Extremal Order Conjecture 3.1, we already have a term for undirected graphs,

(2d−1/ff )kf . And from the Extremal Order Conjecture for directed and mixed

circulant graphs up to undirected degree 3, Conjecture 15.10, we have leading term

(2b(d+3)/2c/(f + 1)!. What remains to be addressed are extremal mixed circulant

graphs of undirected degree d ≥ 4.

In the fifth column of Table 15.6, d = 4, the value of 11/27 for directed degree z = 1,

undirected degree d = 4 (dimension f = 3) appears at first sight to be anomalous. In

particular, it is not consistent with Conjecture 15.10. However, 11/27 shares

denominator with the coefficient, 32/27, for the undirected case z = 0, d = 6, which

has the same dimension f = 3. The question therefore arises whether there exists a

relation between the leading coefficients of the polynomials fitted to extremal

circulant graphs of the same dimension f , valid equally for undirected, directed and

mixed graphs. We will consider only graphs with even undirected degree. Any result

can be directly translated to odd undirected degrees by invoking Theorem 15.2. For

undirected even-degree graphs, the leading coefficient simplifies to 2d/2+1/ff . For

directed and mixed even-degree graphs up to undirected degree 2 (so just d = 0 and

d = 2), the leading coefficient is 2d/2+1/(f + 1)!. Thus, a reasonable initial conjecture

would be that for circulant graphs of any degree combination (undirected, directed or

mixed) the leading coefficient of the fitted order polynmial in the diameter may be

expressed as an integer multiple of 2d/2+1/((f + 1)!ff−1). So for directed graphs, this

multiple is ff−1, and for undirected graphs, 2f−2(f + 1)(f − 1)!. The conjectured

multiples are shown in Table 15.7.

Reading up the skew diagonals of Table 15.7 for each dimension f gives the following

sequences: f = 1: 1 1; f = 2: 2 2 3; f = 3: 9 9 11 16; f = 4: 64 64 x y 120, for

unknown x, y. It is tempting to assume that, for higher dimensions, the multiple will

step monotonically from the directed degree value to the undirected degree. These

steps would be positive increments up to dimension 10. However, above dimension 10,

the directed degree multiple exceeds the undirected degree value, and so these steps

would be negative.
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Table 15.7: Conjectured leading coefficient of the fitted order polynomial as a
multiple of 2d/2+1/((f + 1)!ff−1) for dimension f and undirected

degree d

Directed Undirected degree d
degree z 0 2 4 6 8 10

0 1 3 16 120 1152
1 1 2 11
2 2 9
3 9 64
4 64 625
5 625 7776

Now we consider the sequence for dimension 4. The two steps from 9 to 16 for

dimension 3 are 2 and 5, the second being just over a doubling of the first. For

dimension 4, the sequence increases from 64 to 120, a total of 56 in three steps. In

this case, a doubling of each step fits nicely, as 56 is divisible by 7. Increases of 8, 16

and 32 would give a sequence of (64, 64, 72, 88, 120). There is no reason to believe

the values 72 and 88 are correct; they are just an initial hypothesis. This tentative

sequence corresponds to the leading coefficients shown in Table 15.8.

Table 15.8: Conjectured leading coefficients of extremal dimension 4 graph
families given by tentative multiples sequence (64, 64, 72, 88, 120)

Directed Undirected Multiple
Graph degree degree in Leading Corresponding
type z d sequence Divisor coefficient conjecture

Directed 4 0 64 3840 1/60 15.10
Mixed 3 2 64 1920 1/30 15.10
Mixed 2 4 72 960 3/40 -
Mixed 1 6 88 480 11/60 -
Undirected 0 8 120 240 1/2 3.1

15.5 Extremal directed & mixed circulant graphs above dimension 3

For dimensions 4 and 5, because of the greater number of generators and the larger

order of the graphs, it has only been possible to run computer searches for extremal

graphs up to much lower maximum diameters. Therefore, the fitted polynomials have

a much higher level of uncertainty, including reduced confidence in identifying the

most appropriate simple fraction for the leading coefficient. There are risks associated

with including these results in the data set used to try to establish a common

expression for the leading coefficient of polynomials for the order of extremal general

circulant graphs of any given directed and undirected degree. Instead, these results
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are used only to test the validity of Conjecture 15.10 and the tentative dimension 4

sequence presented in Table 15.8.

For directed circulant graphs of directed degree 4, the quartic coefficients of the lower

and upper bounds for the extremal order are 1/256 and 1/24. Extremal and

largest-known directed-degree 4 circulant graphs have been discovered by the author

up to diameter 22 (see Appendix G). All are conjectured to be extremal. As with the

dimension 3 case, they do not have order determined by polynomials defined for a set

of diameter classes, but instead display chaotic behaviour.

Conjecture 15.11. For dimension f ≥ 3, directed degree z ≥ 1, and undirected

degree d, there is no finite set of diameter classes {K1, . . . ,Kg} where for any

diameter k, k ∈ Ki for some i, and no set of directed or mixed circulant graph

families {F1, . . . , Fg} defined for each diameter class and with order n1(k), . . . , ng(k)

respectively, where ni(k) is a polynomial of degree f , such that for any i and any

k ∈ Ki, Ext
mix
circ (z, d, k) = ni(k) (or Extdircirc(z, k), in case d = 0).

Unfortunately, a dataset up to only diameter 22 is insufficient for the fitted order

polynomial to have stabilised. Every additional result causes the estimated quartic

coefficient to jump significantly, typically oscillating around the likely true value. So,

fitting a quartic to the full set of results up to diameter 22 gives a quartic coefficient

of 0.01865, about 1/54, whereas up to diameter 21 gives 0.00859, about 1/116. These

values span the value of 1/60 from Conjecture 15.10, providing some support for the

conjecture. The least-squares fit up to diameter 22 by a quartic with leading

coefficient 1/60 gives order polynomial:

n̂(k) = (1/60)k4 + 0.0941k3 + 3.390k2 − 8.147k + 15.07. Dividing the residual for each

diameter by k3 normalises the residual as an addition to the cubic coefficient. This is

shown in Figure 15.7.

Above diameter 8, the absolute value of the normalised residual lies below 0.007. On

the assumption this remains true for all higher diameters, then we have the following

conjecture.

Conjecture 15.12. The extremal order of a directed-degree 4 circulant graph of

diameter k, Extdircirc(4, k) is bounded below and above:

(1/60)k4 + 0.08k3 +O(k2) ≤ Extdircirc(4, k) ≤ (1/60)k4 + 0.11k3 +O(k2)

implying that Extdircirc(4, k) =
1

60
k4 +O(k3).
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Figure 15.7: Order of extremal and largest-known directed circulant graphs of
directed degree 4, up to diameter 22: least-squares residual

divided by the diameter cubed
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For dimension 5, the quintic coefficients of the lower and upper bounds for the

extremal order are 1/3125 and 1/120, a very wide range. If Conjecture 15.10 is

correct, then the best-fit quintic polynomial for the extremal order would have leading

coefficient 1/360. Extremal and largest-known circulant graphs have been discovered

only up to diameter 9 (see Appendix G). This is insufficient to confirm 1/360 with

any confidence, especially as the small magnitude of this coefficient limits the

contribution of the quintic term at low diameters. For the full set of results up to

diameter 9, the fitted polynomial has a quintic coefficient of 0.003205, about 1/312.

Whereas this lies relatively close to 1/360, this apparent accuracy may be spurious as

the polynomial fit up to diameter 8 has a negative quintic coefficient. The best that

can be inferred is that the available data does not contradict an assumption of 1/360.

Mixed circulant graphs of dimension 4 have only been investigated for three degree

combinations of directed degree z and undirected degree d: (z, d) = (3, 2), (2, 4), (1, 6).

For directed degree 3 and undirected degree 2, extremal and largest-known graphs

have been discovered up to diameter 17 (see Appendix G). According to Conjecture

15.10, the quartic coefficient of the fitted order polynomial is 1/30. The values

obtained by best fits up to diameters 16 and 17 are 0.01258 and 0.04801 respectively,

approximated by the unit fractions 1/79 and 1/21, which is consistent with the

conjecture. The least-squares fit up to diameter 17 by a quartic with leading

coefficient 1/30 gives order polynomial:

n̂(k) = (1/30)k4 + 0.1928k3 + 4.387k2 − 7.356k + 11.92. For dimension 4, the residual

Robert Roderick Lewis



226 15 Directed and mixed circulant graph families of given degree

terms are normalised by dividing them by k3. Above a threshold diameter of 3, the

normalised residuals vary within a range of ±0.03, see Figure 15.8.

Figure 15.8: Order of largest-known mixed circulant graphs of directed degree
3 and undirected degree 2, up to diameter 17: least-squares

residual divided by the diameter cubed
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For directed degree 2 and undirected degree 4, extremal and largest-known graphs

have been discovered up to diameter 15 (see Appendix G). According to the tentative

hypothesis shown in Table 15.8, the quartic coefficient of the fitted order polynomial

would be 72/960 or 3/40. The value obtained by best fit up to diameter 15 is 0.08023.

The closest simple fraction with denominator 960 is 77/960, lying close to the

Figure 15.9: Order of largest-known mixed circulant graphs of directed degree
2 and undirected degree 4, up to diameter 15: least-squares

residual divided by the diameter cubed
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conjectured value of 72/960. With an extra total squared residual of 0.3%, a quartic

may be fitted to the graph orders for diameters up to 15 with leading coefficient 3/40:

n̂(k) = (3/40)k4 + 0.4441k3 + 4.498k2− 4.336k+ 5.052. Above a threshold diameter of

6, the normalised residuals vary within a range of ±0.04, see Figure 15.9.

For directed degree 1 and undirected degree 6, extremal and largest-known graphs

have been discovered up to diameter 14 (see Appendix G). The tentative hypothesis

for the quartic coefficient of the fitted order polynomial, shown in Table 15.8, is

88/480 or 11/60. The value obtained by best fit up to diameter 14 is 0.08748. The

closest simple fraction with denominator 480 is 42/480. This is only half the

conjectured value. It is expected that higher diameters are required to stabilise the fit

in order to validate the conjecture. Nevertheless, accepting an extra total squared

residual of 21%, a quartic may be fitted with leading coefficient 11/60:

n̂ = (11/60)k4 + 0.5576k3 + 7.366k2 − 26.73k + 51.76. Above a threshold diameter of

4, the normalised residuals vary within a range of ±0.07, see Figure 15.10.

Figure 15.10: Order of largest-known mixed circulant graphs of directed degree
1 and undirected degree 6, up to diameter 14: least-squares

residual divided by the diameter cubed
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15.6 Extremal circulant graphs – a holistic perspective

In Section 2.5 we discussed the upper bound for the order of Abelian Cayley graphs of

any directed and undirected degree established by López, Pérez-Rosés and Pujolàs

[30], and determined the leading coefficient of the implied polynomial. For circulant

graphs, this coefficient is 2b(d+1)/2c/f !, where f is the dimension and d is the

undirected degree. An aspirational goal is to discover an equivalent expression for

extremal circulant graphs, covering directed, undirected and mixed graphs in all
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degree combinations. The Extremal Order Conjecture 3.1 covers undirected graphs of

arbitrary undirected degree. Conjecture 15.10 covers directed and mixed graphs up to

undirected degree 3 of arbitrary directed degree, equally valid for the regular families

of dimensions 1 and 2 and for the chaotic graph sets of dimension 3 and above. The

dimension 4 results lend support to Conjecture 15.10. But results for higher

dimensions are required in order to establish an evident pattern that can be

represented by a common expression. Alternatively, perhaps there is some

graph-theoretic approach that could enable such an expression to be derived

analytically.

An open question is: what happens for directed and mixed circulant graphs of

dimension 3 or more that causes the regular sequence of extremal orders to collapse

into apparent chaos? One avenue that might yield the answer is a possible connection

with chaos theory. There is a seminal paper on chaos theory by Li and Yorke from

1975 entitled Period three implies chaos [29]. They make the case that even very

simple models with a single variable, such as the generalised logistic equation

xn+1 = rxn(1− xn/K), can describe irregularities and chaotic oscillations of

complicated phenomena. A special case of their main result says that if there is a

periodic point in R with period 3, then for each integer n = 1, 2, 3, . . . , there is a

periodic point of period n and an uncountable number of points that are not even

asymptotically periodic. In their analysis, a point a has period 3 under an

endomorphism F if a < F (a) < F 2(a) and F 3(a) ≤ a (or the reverse ordering).

Perhaps there is some way in which this property or a similar one is shared by the

extremal directed and mixed circulant graphs of dimension 3 and above. And if so,

perhaps such an insight might be crucial in developing an analytical determination of

the polynomials (or at least their leading coefficients) representing the trend curves

fitted to the chaotic sequences, with increasing diameter, of extremal graph orders for

directed and mixed circulant graphs, and in this way achieve the ultimate goal of a

common expression for all categories of extremal Abelian Cayley graphs.
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Conclusion

The focus of this thesis has been the degree-diameter problem for Abelian Cayley

graphs, with emphasis on circulant graphs and on graphs that are members of infinite

families. Prior to this work, largest-known graph families conjectured to be extremal

had only been discovered up to degree 7, and there were no conjectures about how

close to the legacy Abelian Cayley upper bound extremal graphs of any higher degree

would be found. This thesis presents conjectures for the order of extremal graphs of

any degree and arbitrary diameter for graphs in the following categories: circulant,

Abelian Cayley, bipartite circulant, directed circulant and certain mixed circulant,

and also for diameter 2 circulant of arbitrary degree. In all cases the conjectures are

supported by largest-known graphs discovered by the author.

A most useful discovery was the format and properties of the canonical lattice

generator matrix associated with an Abelian Cayley graph family. It was entirely

unexpected to find that the LGM of an odd-degree quasimaximal family has

off-diagonal elements that are always antisymmetric with magnitude 0 or 1

(eccentricity 0). The restriction that this property imposes on candidate LGMs was

crucial in enabling successful computer searches for higher-degree graph families.

We now briefly review each chapter and indicate potential avenues for further

research.

Chapter 2 summarised the published work in this field, including extremal and

largest-known undirected and directed circulant graph families and the established

lower and upper bounds on extremal graph order.

In Chapter 3, the original version of the Extremal Order Conjecture for circulant and

Abelian Cayley graphs was presented. It was developed as a consequence of the degree

8 and 9 discoveries and their extension of the range of known results. This established

the definition of a quasimaximal graph family, which was a pivotal concept in refining

the search at higher degrees. More recent developments were reported in Chapter 13.

Chapter 4 presented largest-known circulant graph families up to degree 11 that were

discovered using more traditional search methods for individual graphs, without the

benefit of harnessing the structure of canonical quasimaximal LGMs. However, it was
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by analysis of these results that the structure and properties of such LGMs were

discovered.

Chapter 5 explored the number of maximal distance levels and the distance partition

profile by vertex type for quasimaximal circulant graphs. As expected, the maximum

levels are equivalent to non-overlapping Lee spheres in the corresponding lattice space

with radius less than the graph diameter. The relation was also explored between

quasimaximal defect and odd-girth defect, which is also explained by the associated

LGM. Two important relationships between graph families were also discussed:

conjugation and translation. We saw that conjugation is a property only of Abelian

Cayley graph families that are quasimaximal. It would be interesting to research

what property of quasimaximal families ensures that they alone admit conjugates.

Chapter 6 is probably the most important chapter for mathematical structures and

relationships. The format and properties of canonical LGMs are fundamental to an

understanding of quasimaximal graph families. A most useful consequence was the

establishment of the Existence Proof Theorem for Abelian Cayley graph families. The

equivalence of quasimaximal graph families, odd-girth-maximum families and

radius-maximal LGMs and their implication that the LGM has eccentricity 0 is a

powerful, unifying result. It would be an interesting research project to explore what

equivalent structures and relationships might exist for directed Abelian Cayley graphs

families, and even possibly the mixed case.

Chapter 7 explored the correspondence between all quasimaximal degree 7 circulant

graph families of a diameter class and a category of canonical LGMs. It emerged that

there exists a bijection between these two that enables a complete classification of all

such graph families (infinitely many) and also explains precisely why graph families

with some parameter sets exist and why others do not. This is conjectured to be

equally true for the other diameter classes and for degree 6. We know that for higher

degree, not all matrices in canonical quasimaximal LGM format have associated

graph families. It might be an interesting research project to attempt to classify

which of these matrices do represent families for degree 8 and above, and whether it is

possible to devise a simple test for such matrices.

Chapter 8 presented the results of the optimised search methodology using candidate

matrices in canonical quasimaximal LGM format to find complete graph families

rather than individual graphs. Even so, by degree 20 the searches were limited by

available computing power. Therefore, it is quite possible that some of these

higher-degree largest-known circulant graph families are not extremal. A relatively
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straightforward research project, given access to more powerful computers, would be

to make exhaustive searches of all admissible matrices.

Chapter 9 established some relationships between quasimaximal circulant graph

families and bipartite circulant graph families, and used these to generate

largest-known bipartite circulant graph families up to degree 11. The same approach

applied to the results of Chapter 8 would easily extend the range of largest-known

bipartites up to degree 20.

Chapter 10 presented the results of the optimised search method enhanced to find

Abelian Cayley graph families of any cyclic rank. Because of the extra complexity

induced by cyclic rank, these results only run to degree 15 and quite likely are not

extremal. Extending the scope to higher degree would be another potential research

project, given greater computing power. But such a search would not necessarily

reveal any interesting new mathematics.

Chapter 11 was a surprising diversion from the main flow of the thesis. The discovery

that Lucas polynomials could be used to construct order polynomials and generating

set polynomials for circulant graphs was serendipity. Moreover, they form an infinite

set of quasimaximal families, they are arc-transitive, and their associated LGMs have

a very simple format. The related research potential could be to investigate what

other LGM formats generate arc-transitive graph families, and whether similar sets to

these Lucas circulant graph families exist, perhaps for more diameter classes and with

higher order.

Chapter 12 presented two sequences of LGMs conjectured to generate circulant and

Abelian Cayley graph families of any dimension, similar to the Lucas circulant graph

sequence but with higher order. The families have order polynomials with third

coefficient that increases linearly with dimension. An interesting research project

would be to find a sequence of LGMs where the third coefficient increased with the

square of the dimension, in line with the revised Extremal Order Conjecture in the

following chapter.

Chapter 13 extended the Extremal Order Conjecture to the third coefficient. Noting

that with increasing degree the diameter threshold, below which extremal graphs are

not members of extremal families, also increases, the question arises whether all

graphs are members of families or if some graphs are sporadic. If some are sporadic,

then finding extremal families would not guarantee that extremal graph had been

found. A limited study of potentially sporadic extremal graphs found families of
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which they were members in all cases, supporting the conjecture that all graphs

belong to families.

Section 13.4 on higher asymptotic lower bounds probably offers the greatest

opportunity for significant advance in this field. Rogers’ theorem on the existence of

lattice coverings with asymptotically low density contradicts the Extremal Order

Conjecture 3.1. However, there are doubts about its validity and the conjecture is

considered to remain valid. It would be very satisfying to prove the matter one way or

the other.

Chapter 14 is an exception in exploring circulant and Abelian Cayley graphs of fixed

diameter 2 for arbitrary degree. It remains an open research question, for circulant

graphs, whether the leading coefficient of 3/8 is an upper bound, as well as the more

general conjectured upper bound of (k + 1)/(2(k + 2)k−1) for any diameter k.

Chapter 15 covered directed and mixed circulant graphs. The main finding is that

whereas extremal and largest-known directed and mixed circulant graphs of

dimensions 1 and 2 are members of families with order and generating sets defined by

polynomials in the diameter, this does not hold for dimension 3 and is conjectured

also not to hold for all higher dimensions. Instead, the series appears to be chaotic,

with no discernable pattern, although the order does approach a polynomial in the

diameter asymptotically for each directed/undirected degree combination studied.

This is another area with rich research possibilities. Important questions include:

� Why is the order of directed and mixed circulant graphs of dimension 3 and

above chaotic for increasing diameter?

� Despite being chaotic, is it true that their order asymptotically approaches a

polynomial in the diameter of degree equal to the dimension?

� If so, is there a common formula for the leading coefficient of this polynomial

across all directed/undirected degree combinations, as there is for the best

upper bound?
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[34] B. McKay, M. Miller and J. Širáň, A note on large graphs of diameter two and given
maximum degree, Journal of Combinatorial Theory, Series B 74 (1) (1998) 110-118.
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Appendix A

Extremal and largest-known
circulant graph families

This appendix documents extremal and largest-known circulant graph families up to degree

20. As a reminder, according to Definition 1.4, a graph family is an infinite set of graphs of

given degree d and dimension f = bd/2c, defined for each diameter k of a diameter class, with

order and generating set specified by polynomials in k of maximum degree f . Unless

otherwise stated, the diameter class is modulo f for odd dimension and modulo f/2 for even.

The graph families are identified by a code, such as F6:0B. In this example, F indicates that it

is a circulant graph family, 6 is the degree, 0 is the diameter class (mod 3), and B is the

isomorphism class (where there is more than one).

Of the largest-known circulant graph families presented in this appendix, the following have

been discovered by the author:

Degree 6 - F6:0B and F6:2B

Degree 7 - F7:1B and F7:2B

Degree 8 and above - all families

All these extremal and largest-known circulant graph families are quasimaximal. Above some

low diameter thresholds, the graphs are extremal or largest known and have maximum odd

girth. These thresholds are given in the tables. The graphs up to diameter 16 are included in

Appendix D, with reference to their families by isomorphism class. In addition, for each graph

family, the number of maximal levels in the distance partition of each graph is a linear

function of the diameter: 2k/f plus a small constant, for diameter k and dimension f . This is

also indicated in the tables.

A.1 Circulant graph families of degrees 4 and 5

Table A.1: Degree 4, all diameters k, a = k

LGM odd basis LGM Polynomial in 2a

Family F4 (self-transpose, self-conjugate). Graphs are extremal from k = 1.
odd-girth maximum from k = 1. Maximal levels: k from k = 1.(

2a+ 1 −1
1 2a+ 1

) (
a −a− 1

a+ 1 a

) Order (1 2 2) / 2
g1 (0 0 1)
g2 (0 1 1)
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238 A Extremal and largest-known circulant graph families

Table A.2: Degree 5, all diameters k, a = k

LGM Polynomial in 2a

Family F5 (self-transpose, self-conjugate). Graphs are extremal from k = 1.
odd-girth maximum from k = 1. Maximal levels: k − 1 from k = 1.(

2a+ 1 −1
1 2a− 1

) Order (1 0 0)
g1 (0 0 1)
g2 (0 1 -1)

A.2 Circulant graph families of degrees 6 and 7

Table A.3: Degree 6, diameter class k ≡ 0 (mod 3), a = 2k/3

LGM odd basis LGM Polynomial in 2a

Family F6:0A (self-transpose, conjugate of F6:2A, translate of F7:2A). Graphs are largest
known from k = 3. odd-girth maximum from k = 3. Maximal levels: 2k/3 from k = 3. 2a+ 1 −1 0

1 2a −1
0 1 2a+ 1

  a −a− 1 −a
a+ 1 a− 1 −a− 1
a −a a+ 1

 Order (1 2 3 2) / 2
g1 (0 0 0 1)
g2 (0 0 1 1)
g3 (0 1 1 1)

Family F6:0B (self-transpose, conjugate of F6:2B, translate of F7:2B). Graphs are largest
known from k = 3. odd-girth maximum from k = 3. Maximal levels: 2k/3 from k = 3. 2a+ 2 −1 −1

1 2a −1
1 1 2a

  a −a− 1 −a
a+ 1 a− 1 −a− 1
a+ 1 −a a

 Order (1 2 3 2) / 2
g1 (0 0 1 -1)
g2 (0 0 1 1)
g3 (0 1 0 1)

Table A.4: Degree 6, diameter class k ≡ 1 (mod 3), a = (2k + 1)/3

LGM odd basis LGM Polynomial in 2a

Family F6:1 (self-transpose, self-conjugate, translate of F7:0). Graphs are largest known
from k = 1. odd-girth maximum from k = 1. Maximal levels: (2k + 1)/3 from k = 1. 2a −1 −1

1 2a −1
1 1 2a

  a− 1 −a− 1 −a
a a− 1 −a− 1
a −a a

 Order (1 0 3 0) / 2
g1 (0 0 1 -1)
g2 (0 0 1 1)
g3 (0 1 0 1)
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Table A.5: Degree 6, diameter class k ≡ 2 (mod 3), a = (2k + 2)/3

LGM odd basis LGM Polynomial in 2a

Family F6:2A (self-transpose, conjugate of F6:0A, translate of F7:1A). Graphs are largest
known from k = 2. odd-girth maximum from k = 2. Maximal levels: (2k − 1)/3 from
k = 2. 2a− 1 −1 0

1 2a −1
0 1 2a− 1

  a− 1 −a− 1 −a+ 1
a a− 1 −a

a− 1 −a a

 Order (1 -2 3 -2) / 2
g1 (0 0 0 1)
g2 (0 0 1 -1)
g3 (0 1 -1 1)

Family F6:2B (self-transpose, conjugate of F6:0B, translate of F7:1B). Graphs are largest
known from k = 2. odd-girth maximum from k = 2. Maximal levels: (2k − 1)/3 from
k = 2. 2a− 2 −1 −1

1 2a −1
1 1 2a

  a− 2 −a− 1 −a
a− 1 a− 1 −a− 1
a− 1 −a a

 Order (1 -2 3 -2) / 2
g1 (0 0 1 -1)
g2 (0 0 1 1)
g3 (0 1 0 1)

Table A.6: Degree 7, diameter class k ≡ 0 (mod 3), a = 2k/3

LGM Polynomial in 2a

Family F7:0 (self-transpose, self-conjugate, translate of F6:1). Graphs are largest known
from k = 3. odd-girth maximum from k = 3. Maximal levels: 2k/3 from k = 3. 2a −1 −1

1 2a −1
1 1 2a

 Order (1 0 3 0)
g1 (0 1 2 1)
g2 (0 1 0 -1)
g3 (0 1 -2 1)

Table A.7: Degree 7, diameter class k ≡ 1 (mod 3), a = (2k + 1)/3

LGM Polynomial in 2a

Family F7:1A (self-transpose, conjugate of F7:2A, translate of F6:2A). Graphs are largest
known from k = 4. odd-girth maximum from k = 1. Maximal levels: (2k − 2)/3 from
k = 1. 2a− 1 −1 0

1 2a −1
0 1 2a− 1

 Order (1 -2 3 -2)
g1 (0 1 0 1)
g2 (0 1 -2 1)
g3 (0 1 -2 3)

Family F7:1B (self-transpose, conjugate of F7:2B, translate of F6:2B). Graphs are largest
known from k = 4. odd-girth maximum from k = 1. Maximal levels: (2k − 2)/3 from
k = 1. 2a− 2 −1 −1

1 2a −1
1 1 2a

 Order (1 -2 3 -2)
g1 (0 1 2 1)
g2 (0 1 -2 -3)
g3 (0 1 -4 3)
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Table A.8: Degree 7, diameter class k ≡ 2 (mod 3), a = (2k − 1)/3

LGM Polynomial in 2a

Family F7:2A (self-transpose, conjugate of F7:1A, translate of F6:0A). Graphs are largest
known from k = 5. odd-girth maximum from k = 2. Maximal levels: (2k − 1)/3 from
k = 2. 2a+ 1 −1 0

1 2a −1
0 1 2a+ 1

 Order (1 2 3 2)
g1 (0 1 2 3)
g2 (0 1 2 1)
g3 (0 1 0 1)

Family F7:2B (self-transpose, conjugate of F7:1B, translate of F6:0B). Graphs are largest
known from k = 5. odd-girth maximum from k = 2. Maximal levels: (2k − 1)/3 from
k = 2. 2a+ 2 −1 −1

1 2a −1
1 1 2a

 Order (1 2 3 2)
g1 (0 1 0 1)
g2 (0 0 1 1)
g3 (0 0 1 -1)

A.3 Circulant graph families of degrees 8 and 9

Table A.9: Degree 8, diameter class k ≡ 0 (mod 2), a = k/2

LGM odd basis Polynomial in 2a

Family F8:0 (self-transpose, conjugate of F8:1). Graphs are largest known from k = 4.
odd-girth maximum from k = 2. Maximal levels: k/2 from k = 2.

2a+ 1 −1 −1 −1
1 2a 0 −1
1 0 2a −1
1 1 1 2a+ 1


Order (1 2 6 4 0) / 2
g1 (0 0 0 4 0) / 2
g2 (0 0 1 0 -2) / 2
g3 (0 1 0 2 0) / 2
g4 (0 1 3 6 2) / 2

Table A.10: Degree 8, diameter class k ≡ 1 (mod 2), a = (k + 1)/2

LGM odd basis Polynomial in 2a

Family F8:1 (self-transpose, conjugate of F8:0). Graphs are largest known from k = 3.
odd-girth maximum from k = 3. Maximal levels: (k + 1)/2 from k = 3.

2a− 1 −1 −1 −1
1 2a 0 −1
1 0 2a −1
1 1 1 2a− 1


Order (1 -2 6 -4 0) / 2
g1 (0 0 0 2 0) / 2
g2 (0 0 1 -2 2) / 2
g3 (0 1 -2 4 0) / 2
g4 (0 1 -1 4 -2) / 2
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Table A.11: Degree 9, diameter class k ≡ 0 (mod 2), a = k/2

LGM Polynomial in 2a

Family F9:0 (self-transpose). Graphs are largest known from k = 6. odd-girth maximum
from k = 2. Maximal levels: k/2 from k = 2.

2a+ 1 0 0 −1
0 2a −1 −1
0 1 2a −1
1 1 1 2a− 1


Order (1 0 3 2 0)
g1 (0 1 0 2 1)
g2 (0 1 1 2 1)
g3 (0 0 0 2 1)
g4 (0 1 -1 1 1)

Table A.12: Degree 9, diameter class k ≡ 1 (mod 2), a = (k + 1)/2

LGM Polynomial in 2a

Family F9:1a (transpose of F9:1b). Graphs are largest known from k = 5. odd-girth
maximum from k = 3. Maximal levels: (k − 1)/2 from k = 3.

2a− 2 1 0 1
−1 2a− 1 1 1
0 −1 2a− 1 0
−1 −1 0 2a


Order (1 -4 9 -10 4)
g1 (0 1 -5 10 -7)
g2 (0 1 -3 1 1)
g3 (0 1 -2 4 -5)
g4 (0 0 2 -4 3)

Family F9:1b (transpose of F9:1a). Graphs are largest known from k = 5. odd-girth
maximum from k = 3. Maximal levels: (k − 1)/2 from k = 3.

2a− 2 −1 0 −1
1 2a− 1 −1 −1
0 1 2a− 1 0
1 1 0 2a


Order (1 -4 9 -10 4)
g1 (0 1 -3 7 -7)
g2 (0 0 1 -2 1)
g3 (0 1 -3 5 -3)
g4 (0 1 -3 5 -5)

A.4 Circulant graph families of degrees 10 and 11

Table A.13: Degree 10, diameter class k ≡ 0 (mod 5), a = 2k/5

LGM odd basis Polynomial in 2a

Family F10:0 (self-transpose, conjugate of F10:4, translate of F11:3). Graphs are largest
known from k = 5. odd-girth maximum from k = 5. Maximal levels: 2k/5 from k = 5.

2a+ 1 −1 −1 −1 0
1 2a+ 1 −1 0 −1
1 1 2a 1 −1
1 0 −1 2a 0
0 1 1 0 2a


Order (1 2 8 8 5 2) / 2
g1 (0 1 1 2 0 0) / 2
g2 (0 0 2 3 3 2) / 2
g3 (0 0 2 0 0 0) / 2
g4 (0 0 1 3 2 0) / 2
g5 (0 1 2 4 5 2) / 2
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Table A.14: Degree 10, diameter class k ≡ 1 (mod 5), a = (2k + 3)/5

LGM odd basis Polynomial in 2a

Family F10:1 (self-transpose, conjugate of F10:3). Graphs are largest known from k = 6.
odd-girth maximum from k = 6. Maximal levels: (2k + 3)/5 from k = 6.

2a −1 −1 0 0
1 2a− 1 0 −1 −1
1 0 2a− 1 −1 −1
0 1 1 2a− 1 −1
0 1 1 1 2a− 1


Order (1 -4 13 -20 14 -4) / 2
g1 (0 2 -7 25 -38 18) / 2
g2 (0 0 1 -4 0 2) / 2
g3 (0 1 -2 6 -10 6) / 2
g4 (0 2 -6 15 -13 2) / 2
g5 (0 1 -6 14 -23 14) / 2

Table A.15: Degree 10, diameter class k ≡ 2 (mod 5), a = (2k + 1)/5

LGM odd basis Polynomial in 2a

Family F10:2 (self-transpose, self-conjugate, translate of F11:0). Graphs are largest
known from k = 7. odd-girth maximum from k = 2. Maximal levels: (2k + 1)/5 from
k = 2.

2a −1 −1 −1 −1
1 2a −1 0 0
1 1 2a 0 0
1 0 0 2a −1
1 0 0 1 2a


Order (1 0 6 0 5 0) / 2
g1 (0 0 0 2 0 2) / 2
g2 (0 1 0 5 2 2) / 2
g3 (0 0 1 0 3 2) / 2
g4 (0 0 1 0 3 -2) / 2
g5 (0 1 0 5 -2 2) / 2

Table A.16: Degree 10, diameter class k ≡ 3 (mod 5), a = (2k − 1)/5

LGM odd basis Polynomial in 2a

Family F10:3 (self-transpose, conjugate of F10:1). Graphs are largest known from k = 8.
odd-girth maximum from k = 3. Maximal levels: (2k − 1)/5 from k = 3.

2a −1 −1 0 0
1 2a+ 1 0 −1 −1
1 0 2a+ 1 −1 −1
0 1 1 2a+ 1 −1
0 1 1 1 2a+ 1


Order (1 4 13 20 14 4) / 2
g1 (0 2 11 33 46 22) / 2
g2 (0 1 2 -2 -8 -6) / 2
g3 (0 2 5 8 2 -2) / 2
g4 (0 0 2 5 -7 -10) / 2
g5 (0 1 0 8 11 2) / 2

Table A.17: Degree 10, diameter class k ≡ 4 (mod 5), a = (2k + 2)/5

LGM odd basis Polynomial in 2a

Family F10:4 (self-transpose, conjugate of F10:0, translate of F11:2). Graphs are largest
known from k = 4. odd-girth maximum from k = 4. Maximal levels: (2k + 2)/5 from
k = 4.

2a− 1 −1 −1 −1 0
1 2a− 1 −1 0 −1
1 1 2a 1 −1
1 0 −1 2a 0
0 1 1 0 2a


Order (1 -2 8 -8 5 -2) /2
g1 (0 0 0 2 -2 1)
g2 (0 0 1 -3 1 -1)
g3 (0 0 1 0 1 -1)
g4 (0 0 1 1 0 1)
g5 (0 1 -1 4 -2 1)
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Table A.18: Degree 11, diameter class k ≡ 0 (mod 5), a = 2k/5

LGM Polynomial in 2a

Family F11:0 (self-transpose, self-conjugate, translate of F10:2). Graphs are largest
known from k = 5. odd-girth maximum from k = 5. Maximal levels: 2k/5 from k = 5.

2a −1 −1 −1 −1
1 2a −1 0 0
1 1 2a 0 0
1 0 0 2a −1
1 0 0 1 2a


Order (1 0 6 0 5 0)
g1 (0 1 0 2 0 1)
g2 (0 1 0 4 4 -1)
g3 (0 1 -2 6 -6 1)
g4 (0 1 2 6 6 1)
g5 (0 1 0 4 -4 -1)

Table A.19: Degree 11, diameter class k ≡ 1 (mod 5), a = (2k − 2)/5

LGM Polynomial in 2a

Family F11:1a (transpose of F11:1b). Graphs are largest known from k = 6. odd-girth
maximum from k = 6. Maximal levels: (2k − 2)/5 from k = 6.

2a −1 −1 −1 −1
1 2a −1 0 0
1 1 2a+ 1 1 0
1 0 −1 2a+ 1 −1
1 0 0 1 2a+ 2


Order (1 4 12 20 15 4)
g1 (0 1 4 12 16 7)
g2 (0 1 4 10 14 3)
g3 (0 1 2 6 4 3)
g4 (0 1 4 12 22 9)
g5 (0 1 2 8 4 1)

Family F11:1b (transpose of F11:1a). Graphs are largest known from k = 6. odd-girth
maximum from k = 6. Maximal levels: (2k − 2)/5 from k = 6.

2a 1 1 1 1
−1 2a 1 0 0
−1 −1 2a+ 1 −1 0
−1 0 1 2a+ 1 1
−1 0 0 −1 2a+ 2


Order (1 4 12 20 15 4)
g1 (0 1 6 18 26 13)
g2 (0 1 4 8 12 5)
g3 (0 1 2 10 16 9)
g4 (0 1 2 4 4 3)
g5 (0 1 2 4 -2 -3)

Table A.20: Degree 11, diameter class k ≡ 2 (mod 5), a = (2k + 1)/5

LGM Polynomial in 2a

Family F11:2 (self-transpose, conjugate of F11:3, translate of F10:4). Graphs are largest
known from k = 7. odd-girth maximum from k = 2. Maximal levels: (2k + 1)/5 from
k = 2.

2a− 1 −1 −1 −1 0
1 2a− 1 1 0 −1
1 −1 2a 1 −1
1 0 −1 2a 0
0 1 1 0 2a


Order (1 -2 8 -8 5 -2)
g1 (0 1 0 -2 2 -1)
g2 (0 1 -4 4 -2 1)
g3 (0 1 2 -2 2 -1)
g4 (0 1 -4 6 -4 1)
g5 (0 1 -2 2 -2 1)
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Table A.21: Degree 11, diameter class k ≡ 3 (mod 5), a = (2k − 1)/5

LGM Polynomial in 2a

Family F11:3 (self-transpose, conjugate of F11:2, translate of F10:0). Graphs are largest
known from k = 8. odd-girth maximum from k = 3. Maximal levels: (2k − 1)/5 from
k = 3.

2a+ 1 −1 −1 −1 0
1 2a+ 1 1 0 −1
1 −1 2a 1 −1
1 0 −1 2a 0
0 1 1 0 2a


Order (1 2 8 8 5 2)
g1 (0 1 4 8 6 3)
g2 (0 1 2 2 4 1)
g3 (0 1 0 0 0 1)
g4 (0 1 2 4 0 -1)
g5 (0 1 0 6 6 1)

Table A.22: Degree 11, diameter class k ≡ 4 (mod 5), a = (2k + 2)/5

LGM Polynomial in 2a

Family F11:4 (self-transpose). Graphs are largest known from k = 9. odd-girth maximum
from k = 4. Maximal levels: (2k + 2)/5 from k = 4.

2a+ 1 0 −1 0 −1
0 2a+ 1 0 −1 −1
1 0 2a −1 −1
0 1 1 2a 1
1 1 1 −1 2a− 1


Order (1 -4 12 -16 9 -4)
g1 (0 1 -4 8 -12 5)
g2 (0 1 -4 8 -4 -3)
g3 (0 1 -4 8 -4 5)
g4 (0 1 -4 16 -12 5)
g5 (0 1 0 4 0 1)

A.5 Circulant graph families of degrees 12 and 13

Table A.23: Degree 12, diameter class k ≡ 0 (mod 3), a = k/3

LGM odd basis Polynomial in 2a

Family F12:0 (self-transpose). Graphs are largest known from k = 6. odd-girth maximum
from k = 3. Maximal levels: k/3 from k = 3.

2a+ 1 −1 −1 −1 0 0
1 2a+ 1 −1 0 −1 0
1 1 2a 1 −1 0
1 0 −1 2a −1 −1
0 1 1 1 2a 1
0 0 0 1 −1 2a


Order (1 2 11 14 13 6 0) /2
g1 (0 2 4 24 16 13 0) /2
g2 (0 0 1 -3 -5 -9 0) /2
g3 (0 2 3 14 8 9 2) /2
g4 (0 0 2 1 0 1 -2) /2
g5 (0 1 -1 2 -6 -5 -2) /2
g6 (0 1 3 8 15 7 0) /2
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Table A.24: Degree 12, diameter class k ≡ 1 (mod 3), a = (k − 1)/3

LGM odd basis Polynomial in 2a

Family F12:1a (transpose of F12:1b). Graphs are largest known from k = 10. odd-girth
maximum from k = 4. Maximal levels: (k + 2)/3 from k = 4.

2a+ 2 −1 0 0 0 −1
1 2a+ 1 −1 −1 −1 −1
0 1 2a+ 1 −1 −1 0
0 1 1 2a+ 1 0 1
0 1 1 0 2a+ 1 1
1 1 0 −1 −1 2a


Order (1 6 24 58 75 46 10) /2
g1 (0 1 4 12 17 10 2) /2
g2 (0 0 2 10 20 16 4) /2
g3 (0 0 1 2 -3 -6 -2) /2
g4 (0 0 0 5 14 14 4) /2
g5 (0 1 5 14 25 22 6) /2
g6 (0 0 2 7 11 8 2) /2

Family F12:1b (transpose of F12:1a). Graphs are largest known from k = 10. odd-girth
maximum from k = 4. Maximal levels: (k + 2)/3 from k = 4.

2a+ 2 1 0 0 0 1
−1 2a+ 1 1 1 1 1
0 −1 2a+ 1 1 1 0
0 −1 −1 2a+ 1 0 −1
0 −1 −1 0 2a+ 1 −1
−1 −1 0 1 1 2a


Order (1 6 24 58 75 46 10) /2
g1 (0 1 2 10 15 4 -2) /2
g2 (0 0 2 16 36 38 16) /2
g3 (0 0 1 10 39 48 18) /2
g4 (0 0 2 7 6 -4 -4) /2
g5 (0 1 7 26 45 32 6) /2
g6 (0 2 12 39 77 78 12) /2

Table A.25: Degree 12, diameter class k ≡ 2 (mod 3), a = (k + 1)/3

LGM odd basis Polynomial in 2a

Family F12:2a (transpose of F12:2b). Graphs are largest known from k = 11. odd-girth
maximum from k = 2. Maximal levels: (k + 1)/3 from k = 2.

2a− 1 −1 −1 −1 −1 −1
1 2a− 1 0 −1 −1 0
1 0 2a− 1 −1 −1 0
1 1 1 2a 0 1
1 1 1 0 2a 1
1 0 0 −1 −1 2a+ 1


Order (1 -2 11 -12 -2 4 0) /2
g1 (0 2 2 14 -16 -2 0) /2
g2 (0 0 1 -13 -2 12 0) /2
g3 (0 1 0 -3 -4 8 0) /2
g4 (0 1 -5 7 5 -6 2) /2
g5 (0 2 -7 18 -7 -8 2) /2
g6 (0 0 1 -15 26 -12 0) /2

Family F12:2b (transpose of F12:2a). Graphs are largest known from k = 11. odd-girth
maximum from k = 2. Maximal levels: (k + 1)/3 from k = 2.

2a− 1 1 1 1 1 1
−1 2a− 1 0 1 1 0
−1 0 2a− 1 1 1 0
−1 −1 −1 2a 0 −1
−1 −1 −1 0 2a −1
−1 0 0 1 1 2a+ 1


Order (1 -2 11 -12 -2 4 0) /2
g1 (0 0 2 -2 0 0 0) /2
g2 (0 0 1 3 0 -2 0) /2
g3 (0 1 -2 7 -2 -2 0) /2
g4 (0 0 1 -6 5 2 -2) /2
g5 (0 1 -1 5 -7 0 2) /2
g6 (0 0 1 1 -4 2 0) /2
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Table A.26: Degree 13, diameter class k ≡ 0 (mod 3), a = k/3

LGM Polynomial in 2a

Family F13:0a (transpose of F13:0b). Graphs are largest known from k = 9. odd-girth
maximum from k = 3. Maximal levels: k/3 from k = 3.

2a+ 1 −1 −1 0 −1 0
1 2a+ 1 0 0 −1 −1
1 0 2a −1 −1 −1
0 0 1 2a 1 0
1 1 1 −1 2a− 1 −1
0 1 1 0 1 2a− 1


Order (1 0 8 2 -1 -4 0)
g1 (0 1 1 0 1 -2 -1)
g2 (0 1 -2 3 -1 -2 -1)
g3 (0 0 2 8 3 0 -1)
g4 (0 1 1 3 -2 0 -1)
g5 (0 1 -3 4 4 3 -1)
g6 (0 1 3 4 5 4 1)

Family F13:0b (transpose of F13:0a). Graphs are largest known from k = 9. odd-girth
maximum from k = 3. Maximal levels: k/3 from k = 3.

2a+ 1 1 1 0 1 0
−1 2a+ 1 0 0 1 1
−1 0 2a 1 1 1
0 0 −1 2a −1 0
−1 −1 −1 1 2a− 1 1
0 −1 1 0 −1 2a− 1


Order (1 0 8 2 -1 -4 0)
g1 (0 1 -2 2 -2 0 1)
g2 (0 1 2 1 5 -4 -1)
g3 (0 1 3 3 0 0 -1)
g4 (0 0 0 6 1 -4 -1)
g5 (0 1 -3 2 4 1 -1)
g6 (0 1 0 0 0 -2 -1)

Table A.27: Degree 13, diameter class k ≡ 1 (mod 3), a = (k − 1)/3

LGM Polynomial in 2a

Family F13:1a (transpose of F13:1b, conjugate of F13:2a). Graphs are largest known
from k = 7. odd-girth maximum from k = 4. Maximal levels: (k − 1)/3 from k = 4.

2a −1 −1 −1 −1 0
1 2a −1 0 0 0
1 1 2a+ 1 1 1 −1
1 0 −1 2a+ 1 0 −1
1 0 −1 0 2a+ 1 −1
0 0 1 1 1 2a+ 1


Order (1 4 16 30 29 16 4)
g1 (0 1 6 21 33 26 9)
g2 (0 1 4 11 13 2 -3)
g3 (0 1 1 4 6 7 5)
g4 (0 1 3 7 6 4 1)
g5 (0 1 3 19 28 20 7)
g6 (0 0 1 0 -8 -8 -1)

Family F13:1b (transpose of F13:1a, conjugate of F13:2b). Graphs are largest known
from k = 7. odd-girth maximum from k = 4. Maximal levels: (k − 1)/3 from k = 4.

2a 1 1 1 1 0
−1 2a 1 0 0 0
−1 −1 2a+ 1 −1 −1 1
−1 0 1 2a+ 1 0 1
−1 0 1 0 2a+ 1 1
0 0 −1 −1 −1 2a+ 1


Order (1 4 16 30 29 16 4)
g1 (0 1 5 14 11 -4 -5)
g2 (0 1 6 24 48 40 11)
g3 (0 1 3 4 0 -1 1)
g4 (0 0 1 6 1 -4 -1)
g5 (0 1 2 7 16 16 5)
g6 (0 1 1 11 14 0 -3)
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Table A.28: Degree 13, diameter class k ≡ 2 (mod 3), a = (k + 1)/3

LGM Polynomial in 2a

Family F13:2a (transpose of F13:2b, conjugate of F13:1a). Graphs are largest known
from k = 8. odd-girth maximum from k = 2. Maximal levels: (k + 1)/3 from k = 2.

2a −1 −1 −1 −1 0
1 2a −1 0 0 0
1 1 2a− 1 1 1 −1
1 0 −1 2a− 1 0 −1
1 0 −1 0 2a− 1 −1
0 0 1 1 1 2a− 1


Order (1 -4 16 -30 29 -16 4)
g1 (0 1 -4 11 -10 1 1)
g2 (0 1 -5 19 -33 25 -7)
g3 (0 0 1 -8 14 -10 3)
g4 (0 0 1 -3 -1 3 -1)
g5 (0 1 -2 10 -18 15 -5)
g6 (0 0 1 1 0 -5 3)

Family F13:2b (transpose of F13:2a, conjugate of F13:1b). Graphs are largest known
from k = 8. odd-girth maximum from k = 2. Maximal levels: (k + 1)/3 from k = 2.

2a 1 1 1 1 0
−1 2a 1 0 0 0
−1 −1 2a− 1 −1 −1 1
−1 0 1 2a− 1 0 1
−1 0 1 0 2a− 1 1
0 0 −1 −1 −1 2a− 1


Order (1 -4 16 -30 29 -16 4)
g1 (0 1 -6 21 -33 26 -9)
g2 (0 1 -4 11 -13 2 3)
g3 (0 1 -1 4 -6 7 -5)
g4 (0 1 -3 7 -6 4 -1)
g5 (0 1 -3 19 -28 20 -7)
g6 (0 0 1 0 -8 8 -1)

A.6 Circulant graph families of degrees 14 and 15

Table A.29: Degree 14, diameter class k ≡ 0 (mod 7), a = 2k/7

LGM odd basis Polynomial in 2a

Family F14:0a (transpose of F14:0b, conjugate of F14:6a). Graphs are largest known
from k = 7. odd-girth maximum from k = 7. Maximal levels: (2k + 7)/7 from k = 7.

2a+ 1 −1 −1 −1 −1 −1 0
1 2a+ 1 −1 0 0 0 −1
1 1 2a 0 1 1 0
1 0 0 2a 1 1 −1
1 0 −1 −1 2a 0 −1
1 0 −1 −1 0 2a −1
0 1 0 1 1 1 2a



Order (1 2 15 20 21 12 4 0) /2
g1 (0 0 1 3 -2 -1 -4 0) /2
g2 (0 0 1 -2 3 -2 -2 0) /2
g3 (0 0 1 6 14 15 8 0) /2
g4 (0 0 0 4 6 -1 0 0) /2
g5 (0 0 1 -1 -3 -5 -3 -2) /2
g6 (0 1 3 14 17 16 9 2) /2
g7 (0 1 1 10 13 10 2 0) /2

Family F14:0b (transpose of F14:0a, conjugate of F14:6b). Graphs are largest known
from k = 7. odd-girth maximum from k = 7. Maximal levels: (2k + 7)/7 from k = 7.

2a+ 1 1 1 1 1 1 0
−1 2a+ 1 1 0 0 0 1
−1 −1 2a 0 −1 −1 0
−1 0 0 2a −1 −1 1
−1 0 1 1 2a 0 1
−1 0 1 1 0 2a 1
0 −1 0 −1 −1 −1 2a



Order (1 2 15 20 21 12 4 0) /2
g1 (0 3 0 26 27 25 10 0) /2
g2 (0 0 1 -14 -12 -22 -4 0) /2
g3 (0 0 6 9 23 21 10 0) /2
g4 (0 0 4 1 -6 -5 2 0) /2
g5 (0 1 3 -2 -7 -7 -9 -2) /2
g6 (0 2 5 13 13 14 3 2) /2
g7 (0 2 7 43 38 30 4 0) /2
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Table A.30: Degree 14, diameter class k ≡ 1 (mod 7), a = (2k − 2)/7

LGM odd basis Polynomial in 2a

Family F14:1 (self-transpose, conjugate of F14:5, translate of F15:5). Graphs are largest
known from k = 8. odd-girth maximum from k = 8. Maximal levels: (2k + 5)/7 from
k = 7.

2a 0 0 −1 −1 −1 −1
0 2a+ 1 0 −1 −1 −1 0
0 0 2a+ 1 −1 −1 0 −1
1 1 1 2a+ 1 −1 −1 0
1 1 1 1 2a+ 1 0 1
1 1 0 1 0 2a+ 1 0
1 0 1 0 −1 0 2a+ 1



Order (1 6 28 76 127 126 67 14) /2
g1 (0 0 2 13 36 53 41 14) /2
g2 (0 0 2 10 25 34 22 4) /2
g3 (0 0 1 7 12 8 -1 -2) /2
g4 (0 0 2 3 -1 -12 -15 -6) /2
g5 (0 1 5 15 27 34 -24 8) /2
g6 (0 1 5 17 33 34 17 2) /2
g7 (0 0 1 1 -6 -15 -12 -4) /2

Table A.31: Degree 14, diameter class k ≡ 2 (mod 7), a = (2k + 3)/7

LGM odd basis Polynomial in 2a

Family F14:2a (transpose of F14:2b, conjugate of F14:4a). Graphs are largest known
from k = 9. odd-girth maximum from k = 2. Maximal levels: (2k + 3)/7 from k = 2.

2a− 1 −1 −1 −1 −1−1 0
1 2a− 1 −1 −1 0 0 0
1 1 2a− 1 0 1 1 −1
1 1 0 2a− 1 1 1 −1
1 0 −1 −1 2a 0 −1
1 0 −1 −1 0 2a −1
0 0 1 1 1 1 2a



Order (1 -4 21 -46 50 -30 8 0) /2
g1 (0 2 -4 30 -55 43 -16 0) /2
g2 (0 0 1 2 22 -41 16 0) /2
g3 (0 0 1 4 -18 18 -4 0) /2
g4 (0 1 -4 14 -10 4 -4 0) /2
g5 (0 0 1 -11 29 -38 23 -4) /2
g6 (0 1 -3 10 -17 12 -7 4) /2
g7 (0 2 -10 49 -101 80 -20 0) /2

Family F14:2b (transpose of F14:2a, conjugate of F14:4b). Graphs are largest known
from k = 9. odd-girth maximum from k = 2. Maximal levels: (2k + 3)/7 from k = 2.

2a− 1 1 1 1 1 −1 0
−1 2a− 1 1 1 0 0 0
−1 −1 2a− 1 0 −1−1 1
−1 −1 0 2a− 1−1−1 1
−1 0 1 1 2a 0 1
−1 0 1 1 0 2a 1
0 0 −1 −1 −1−1 2a



Order (1 -4 21 -46 50 -30 8 0) /2
g1 (0 1 -5 23 -38 27 -8 0) /2
g2 (0 0 0 4 -17 21 -8 0) /2
g3 (0 0 1 -8 14 -12 4 0) /2
g4 (0 1 -2 10 -14 10 -4 0) /2
g5 (0 0 1 2 -7 11 -11 4) /2
g6 (0 1 -5 19 -39 39 -19 4) /2
g7 (0 1 -2 14 -27 18 -4 0) /2

Table A.32: Degree 14, diameter class k ≡ 3 (mod 7), a = (2k + 1)/7

LGM odd basis Polynomial in 2a

Family F14:3 (arc-transitive, self-transpose, self-conjugate, translate of F15:0). Graphs
are largest known from k = 10. odd-girth maximum from k = 3. Maximal levels:
(2k + 8)/7 from k = 3.

2a 0 −1 −1 −1 −1 0
0 2a 0 −1 −1 −1 −1
1 0 2a 0 −1 −1 −1
1 1 0 2a 0 −1 −1
1 1 1 0 2a 0 −1
1 1 1 1 0 2a 0
0 1 1 1 1 0 2a



Order (1 0 14 0 21 0 7 0) /2
g1 (0 1 0 10 0 9 0 1)
g2 (0 0 0 3 -5 3 -4 1)
g3 (0 0 1 2 4 1 1 −1)
g4 (0 0 1 1 2 4 2 1)
g5 (0 0 1 -1 2 -4 2 −1)
g6 (0 0 1 -2 4 -1 1 1)
g7 (0 0 0 3 5 3 4 1)

Note: generator polynomials not divided by 2
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Table A.33: Degree 14, diameter class k ≡ 4 (mod 7), a = (2k − 1)/7

LGM odd basis Polynomial in 2a

Family F14:4a (transpose of F14:4b, conjugate of F14:2a). Graphs are largest known
from k = 11. odd-girth maximum from k = 11. Maximal levels: (2k + 6)/7 from k = 11.

2a+ 1 −1 −1 −1 −1 −1 0
1 2a+ 1 −1 −1 0 0 0
1 1 2a+ 1 0 1 1 −1
1 1 0 2a+ 1 1 1 −1
1 0 −1 −1 2a 0 −1
1 0 −1 −1 0 2a −1
0 0 1 1 1 1 2a



Order (1 4 21 46 50 30 8 0) /2
g1 (0 1 5 23 38 27 8 0) /2
g2 (0 0 0 4 17 21 8 0) /2
g3 (0 0 1 8 14 12 4 0) /2
g4 (0 1 2 10 14 10 4 0) /2
g5 (0 0 1 -2 -7 -11 -11 -4) /2
g6 (0 1 5 19 39 39 19 4) /2
g7 (0 1 2 14 27 18 4 0) /2

Family F14:4b (transpose of F14:4a, conjugate of F14:2b). Graphs are largest known
from k = 11. odd-girth maximum from k = 4. Maximal levels: (2k + 6)/7 from k = 11.

2a+ 1 1 1 1 1 1 0
−1 2a+ 1 1 1 0 0 0
−1 −1 2a+ 1 0 −1 −1 1
−1 −1 0 2a+ 1 −1 −1 1
−1 0 1 1 2a 0 1
−1 0 1 1 0 2a 1
0 0 −1 −1 −1 −1 2a



Order (1 4 21 46 50 30 8 0) /2
g1 (0 2 4 30 55 43 16 0) /2
g2 (0 0 1 -2 22 41 16 0) /2
g3 (0 0 1 -4 -18 -18 -4 0) /2
g4 (0 1 4 14 10 4 4 0) /2
g5 (0 0 1 11 29 38 23 4) /2
g6 (0 1 3 10 17 12 7 4) /2
g7 (0 2 10 49 101 80 20 0) /2

Table A.34: Degree 14, diameter class k ≡ 5 (mod 7), a = (2k + 4)/7

LGM odd basis Polynomial in 2a

Family F14:5 (self-transpose, conjugate of F14:1, translate of F15:2). Graphs are largest
known from k = 5. odd-girth maximum from k = 5. Maximal levels: (2k + 4)/7 from
k = 5.

2a 0 0 −1 −1 −1 −1
0 2a− 1 0 −1 −1 −1 0
0 0 2a− 1 −1 −1 0 −1
1 1 1 2a− 1 −1 −1 0
1 1 1 1 2a− 1 0 1
1 1 0 1 0 2a− 1 0
1 0 1 0 −1 0 2a− 1



Order (1 -6 28 -76 127 -126 67 -14) /2
g1 (0 0 2 -13 36 -53 41 -14) /2
g2 (0 0 2 -10 25 -34 22 -4) /2
g3 (0 0 1 -7 12 -8 -1 2) /2
g4 (0 0 2 -3 -1 12 -15 6) /2
g5 (0 1 -5 15 -27 34 -24 8) /2
g6 (0 1 -5 17 -33 34 -17 2) /2
g7 (0 0 1 -1 -6 15 -12 4) /2
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Table A.35: Degree 14, diameter class k ≡ 6 (mod 7), a = (2k + 2)/7

LGM odd basis Polynomial in 2a

Family F14:6a (transpose of F14:6b, conjugate of F14:0a). Graphs are largest known
from k = 6. odd-girth maximum from k = 6. Maximal levels: (2k + 2)/7 from k = 6.

2a− 1 −1 −1 −1 −1 −1 0
1 2a− 1 −1 0 0 0 −1
1 1 2a 0 1 1 0
1 0 0 2a 1 1 −1
1 0 −1 −1 2a 0 −1
1 0 −1 −1 0 2a −1
0 1 0 1 1 1 2a



Order (1 -2 15 -20 21 -12 4 0) /2
g1 (0 3 0 26 -27 25 -10 0) /2
g2 (0 0 1 14 -12 22 -4 0) /2
g3 (0 0 6 -9 23 -21 10 0) /2
g4 (0 0 4 -1 -6 5 2 0) /2
g5 (0 1 -3 -2 7 -7 9 -2) /2
g6 (0 2 -5 13 -13 14 -3 2) /2
g7 (0 2 -7 43 -38 30 -4 0) /2

Family F14:6b (transpose of F14:6a, conjugate of F14:0b). Graphs are largest known
from k = 6. odd-girth maximum from k = 13. Maximal levels: (2k + 2)/7 from k = 6.

2a− 1 1 1 1 1 1 0
−1 2a− 1 1 0 0 0 1
−1 −1 2a 0 −1 −1 0
−1 0 0 2a −1 −1 1
−1 0 1 1 2a 0 1
−1 0 1 1 0 2a 1
0 −1 0 −1 −1 −1 2a



Order (1 -2 15 -20 21 -12 4 0) /2
g1 (0 0 1 -3 -2 1 -4 0) /2
g2 (0 0 1 2 3 2 -2 0) /2
g3 (0 0 1 -6 14 -15 8 0) /2
g4 (0 0 0 4 -6 -1 0 0) /2
g5 (0 0 1 1 -3 5 -3 2) /2
g6 (0 1 -3 14 -17 16 -9 2) /2
g7 (0 1 -1 10 -13 10 -2 0) /2

Table A.36: Degree 15, diameter class k ≡ 0 (mod 7), a = 2k/7

LGM Polynomial in 2a

Family F15:0 (self-transpose, self-conjugate, translate of F14:3). Graphs are largest
known from k = 7. odd-girth maximum from k = 7. Maximal levels: (2k + 7)/7 from
k = 7.

2a 0 −1 −1 −1 −1 0
0 2a 0 −1 −1 −1 −1
1 0 2a 0 −1 −1 −1
1 1 0 2a 0 −1 −1
1 1 1 0 2a 0 −1
1 1 1 1 0 2a 0
0 1 1 1 1 0 2a



Order (1 0 14 0 21 0 7 0)
g1 (0 1 4 10 2 9 -2 1)
g2 (0 1 4 4 12 3 6 −1)
g3 (0 1 2 0 4 1 4 1)
g4 (0 1 0 -2 0 -7 0 −1)
g5 (0 1 -2 0 -4 1 -4 1)
g6 (0 1 -4 4 -12 3 -6 −1)
g7 (0 1 -4 10 -2 9 2 1)

Table A.37: Degree 15, diameter class k ≡ 1 (mod 7), a = (2k − 2)/7

LGM Polynomial in 2a

Family F15:1 (self-transpose, conjugate of F15:6). Graphs are largest known from k = 8.
odd-girth maximum from k = 8. Maximal levels: (2k + 5)/7 from k = 8.

2a −1 −1 0 0 −1 −1
1 2a −1 −1 −1 0 0
1 1 2a −1 0 0 1
0 1 1 2a+ 1 1 1 1
0 1 0 −1 2a+ 1 0 1
1 0 0 −1 0 2a+ 1 1
1 0 −1 −1 −1 −1 2a+ 1



Order (1 4 20 44 57 44 19 4)
g1 (0 1 6 31 60 61 32 5)
g2 (0 1 6 20 34 34 21 5)
g3 (0 1 3 6 1 -8 -12 −7)
g4 (0 1 0 6 13 17 10 3)
g5 (0 1 3 9 23 29 20 5)
g6 (0 0 0 8 15 16 6 −1)
g7 (0 0 2 -2 -16 -22 -17 −3)
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Table A.38: Degree 15, diameter class k ≡ 2 (mod 7), a = (2k + 3)/7

LGM Polynomial in 2a

Family F15:2 (self-transpose, conjugate of F15:5, translate of F14:5). Graphs are largest
known from k = 9. odd-girth maximum from k = 2. Maximal levels: (2k + 3)/7 from
k = 2.

2a 0 0 −1 −1 −1 −1
0 2a− 1 0 −1 −1 −1 0
0 0 2a− 1 −1 −1 0 −1
1 1 1 2a− 1 −1 −1 0
1 1 1 1 2a− 1 0 1
1 1 0 1 0 2a− 1 0
1 0 1 0 −1 0 2a− 1



Order (1 -6 28 -76 127 -126 67 −14)
g1 (0 1 -6 18 -40 59 -52 21)
g2 (0 1 -4 10 -8 -11 26 −11)
g3 (0 1 -4 12 -20 27 -16 1)
g4 (0 1 -8 28 -58 65 -38 5)
g5 (0 1 -8 38 -84 107 -70 19)
g6 (0 1 -2 8 -12 9 -4 −1)
g7 (0 1 -4 22 -62 89 -58 11)

Table A.39: Degree 15, diameter class k ≡ 3 (mod 7), a = (2k + 1)/7

LGM Polynomial in 2a

Family F15:3a (transpose of F15:3b). Graphs are largest known from k = 10. odd-girth
maximum from k = 3. Maximal levels: (2k + 1)/7 from k = 3.

2a− 1 −1 −1 −1 0 0 0
1 2a− 1 −1 −1 −1 0 −1
1 1 2a− 1 0 −1 −1 −1
1 1 0 2a −1 −1 0
0 1 1 1 2a −1 0
0 0 1 1 1 2a 1
0 1 1 0 0 −1 2a+ 1



Order (1 -2 14 -16 11 -6 3 −2)
g1 (0 1 2 16 0 -5 -4 −1)
g2 (0 1 2 4 -14 1 -2 3)
g3 (0 1 0 -4 2 3 0 1)
g4 (0 1 -2 0 -4 3 2 −1)
g5 (0 1 -4 8 8 -3 -6 −1)
g6 (0 1 6 24 -30 7 -4 5)
g7 (0 1 -4 10 -2 -5 2 −1)

Family F15:3b (transpose of F15:3a). Graphs are largest known from k = 10. odd-girth
maximum from k = 3. Maximal levels: (2k + 1)/7 from k = 3.

2a− 1 1 1 1 0 0 0
−1 2a− 1 1 1 1 0 1
−1 −1 2a− 1 0 1 1 1
−1 −1 0 2a 1 1 0
0 −1 −1 −1 2a 1 0
0 0 −1 −1 −1 2a −1
0 −1 −1 0 0 1 2a+ 1



Order (1 -2 14 -16 11 -6 3 −2)
g1 (0 1 -4 13 -11 -1 1 1)
g2 (0 1 -3 5 -4 5 -4 1)
g3 (0 1 0 2 -1 3 -5 1)
g4 (0 1 0 1 6 -16 12 −3)
g5 (0 0 3 -6 6 -5 1 1)
g6 (0 0 3 2 6 -9 2 −1)
g7 (0 1 -1 9 -20 20 -9 1)

Table A.40: Degree 15, diameter class k ≡ 4 (mod 7), a = (2k − 1)/7

LGM Polynomial in 2a

Family F15:4 (self-transpose). Graphs are largest known from k = 11. odd-girth
maximum from k = 4. Maximal levels: (2k + 6)/7 from k = 4.

2a+ 1 0 −1 −1 0 0 0
0 2a+ 1 −1 −1 0 −1 0
1 1 2a 0 −1 0 −1
1 1 0 2a 0 1 −1
0 0 1 0 2a 1 −1
0 1 0 −1 −1 2a −1
0 0 1 1 1 1 2a



Order (1 2 14 20 27 18 11 2)
g1 (0 1 4 12 14 11 6 3)
g2 (0 1 4 16 16 19 8 5)
g3 (0 1 2 4 2 7 6 5)
g4 (0 1 0 0 -8 -11 -10 −3)
g5 (0 1 0 2 4 3 2 −1)
g6 (0 1 4 8 14 13 6 1)
g7 (0 1 -2 8 6 15 6 7)
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Table A.41: Degree 15, diameter class k ≡ 5 (mod 7), a = (2k − 3)/7

LGM Polynomial in 2a

Family F15:5 (self-transpose, conjugate of F15:2, translate of F14:1). Graphs are largest
known from k = 5. odd-girth maximum from k = 12. Maximal levels: (2k + 4)/7 from
k = 5.

2a 0 0 −1 −1 −1 −1
0 2a+ 1 0 −1 −1 −1 0
0 0 2a+ 1 −1 −1 0 −1
1 1 1 2a+ 1 −1 −1 0
1 1 1 1 2a+ 1 0 1
1 1 0 1 0 2a+ 1 0
1 0 1 0 −1 0 2a+ 1



Order (1 6 28 76 127 126 67 14)
g1 (0 1 6 18 40 59 52 21)
g2 (0 1 4 10 8 -11 -26 −11)
g3 (0 1 4 12 20 27 16 1)
g4 (0 1 8 28 58 65 38 5)
g5 (0 1 8 38 84 107 70 19)
g6 (0 1 2 8 12 9 4 −1)
g7 (0 1 4 22 62 89 58 11)

Table A.42: Degree 15, diameter class k ≡ 6 (mod 7), a = (2k + 2)/7

LGM Polynomial in 2a

Family F15:6 (self-transpose, conjugate of F15:1). Graphs are largest known from k = 6.
odd-girth maximum from k = 6. Maximal levels: (2k + 2)/7 from k = 6.

2a −1 −1 0 0 −1 −1
1 2a −1 −1 −1 0 0
1 1 2a −1 0 0 1
0 1 1 2a− 1 1 1 1
0 1 0 −1 2a− 1 0 1
1 0 0 −1 0 2a− 1 1
1 0 −1 −1 −1 −1 2a− 1



Order (1 -4 20 -44 57 -44 19 −4)
g1 (0 1 -6 31 -60 61 -32 5)
g2 (0 1 -6 20 -34 34 -21 5)
g3 (0 1 -3 6 -1 -8 12 −7)
g4 (0 1 0 6 -13 17 -10 3)
g5 (0 1 -3 9 -23 29 -20 5)
g6 (0 0 0 8 -15 16 -6 −1)
g7 (0 0 2 2 -16 22 -17 3)
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A.7 Circulant graph families of degrees 16 and 17

Table A.43: Degree 16, diameter class k ≡ 0 (mod 4), a = k/4

LGM odd basis Polynomial in 2a

Family F16:0a (transpose of F16:0b, conjugate of F16:3a). Graphs are largest known
from k = 12. odd-girth maximum from k = 12. Maximal levels: (k + 4)/4 from k = 8.

2a+ 1 0 −1 −1 −1 −1 0 −1
0 2a+ 1 −1 −1 −1 −1 0 −1
1 1 2a+ 1 −1 −1 0 −1 0
1 1 1 2a 0 1 −1 1
1 1 1 0 2a 1 −1 1
1 1 0 −1 −1 2a 0 0
0 0 1 1 1 0 2a 1
1 1 0 −1 −1 0 −1 2a− 1



Order (1 2 20 28 11 2 -4 -4 0)/2
g1 (0 1 3 22 14 -3 -7 -6 0)/2
g2 (0 0 2 3 5 -5 -7 -2 0)/2
g3 (0 0 1 -6 -4 -8 -11 0 0)/2
g4 (0 0 1 10 18 12 7 2 -2)/2
g5 (0 1 1 10 10 -1 -5 -6 -2)/2
g6 (0 0 0 5 25 27 5 -2 0)/2
g7 (0 1 0 15 15 -14 -13 0 0)/2
g8 (0 1 4 19 37 36 19 4 0)/2

Family F16:0b (transpose of F16:0a, conjugate of F16:3b). Graphs are largest known
from k = 12. odd-girth maximum from k = 12. Maximal levels: (k + 4)/4 from k = 8.

2a+ 1 0 1 1 1 1 0 1
0 2a+ 1 1 1 1 1 0 1
−1 −1 2a+ 1 1 1 0 1 0
−1 −1 −1 2a 0 −1 1 −1
−1 −1 −1 0 2a −1 1 −1
−1 −1 0 1 1 2a 0 0
0 0 −1 −1 −1 0 2a −1
−1 −1 0 1 1 0 1 2a− 1



Order (1 2 20 28 11 2 -4 -4 0)/2
g1 (0 2 0 34 21 -8 -3 -2 0)/2
g2 (0 0 2 4 -3 12 3 -6 0)/2
g3 (0 0 1 11 12 11 1 -8 0)/2
g4 (0 0 1 -6 -22 -14 3 4 2)/2
g5 (0 1 3 14 6 -3 5 0 -2)/2
g6 (0 0 1 -6 22 40 -3 -14 0)/2
g7 (0 2 6 45 63 9 -21 -8 0)/2
g8 (0 1 2 10 15 3 -7 -4 0)/2
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Table A.44: Degree 16, diameter class k ≡ 1 (mod 4), a = (k − 1)/4

Family F16:1a (transpose of F16:1b, conjugate of F16:2a). Graphs are largest known
from k = 5. odd-girth maximum from k = 9. Maximal levels: (k + 3)/4 from k = 5.

LGM odd basis

2a+ 1 −1 −1 −1 −1 −1 0 0
1 2a+ 1 0 0 −1 −1 −1 −1
1 0 2a+ 1 −1 −1 −1 −1 0
1 0 1 2a+ 1 0 0 0 −1
1 1 1 0 2a+ 1 0 −1 −1
1 1 1 0 0 2a+ 1 −1 −1
0 1 1 0 1 1 2a 0
0 1 0 1 1 1 0 2a


Polynomial in 2a

Order (1 6 33 100 183 212 151 60 10)/2
g1 (0 1 7 39 100 151 137 65 12)/2
g2 (0 0 2 3 6 4 −8 −11 −4)/2
g3 (0 0 1 0 −16 −49 −63 −37 −8)/2
g4 (0 0 0 4 14 9 −6 −7 −2)/2
g5 (0 0 0 8 26 46 43 21 4)/2
g6 (0 2 10 48 118 176 159 79 16)/2
g7 (0 0 2 13 43 82 85 45 10)/2
g8 (0 1 4 21 61 99 87 37 6)/2

Family F16:1b (transpose of F16:1a, conjugate of F16:2b). Graphs are largest known
from k = 5. odd-girth maximum from k = 9. Maximal levels: (k + 3)/4 from k = 5.

LGM odd basis

2a+ 1 1 1 1 1 1 0 0
−1 2a+ 1 0 0 1 1 1 1
−1 0 2a+ 1 1 1 1 1 0
−1 0 −1 2a+ 1 0 0 0 1
−1 −1 −1 0 2a+ 1 0 1 1
−1 −1 −1 0 0 2a+ 1 1 1
0 −1 −1 0 −1 −1 2a 0
0 −1 0 −1 −1 −1 0 2a


Polynomial in 2a

Order (1 6 33 100 183 212 151 60 10)/2
g1 (0 2 9 56 157 251 236 115 22)/2
g2 (0 0 2 12 37 65 65 33 6)/2
g3 (0 0 0 1 −23 −71 −100 −71 −18)/2
g4 (0 0 0 4 8 0 −21 −25 −8)/2
g5 (0 0 1 12 46 90 103 65 16)/2
g6 (0 1 4 16 26 21 −2 −15 −6)/2
g7 (0 1 7 34 91 149 149 81 18)/2
g8 (0 2 13 67 188 301 290 153 32)/2

Robert Roderick Lewis
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Table A.45: Degree 16, diameter class k ≡ 2 (mod 4), a = (k + 2)/4

Family F16:2a (transpose of F16:2b, conjugate of F16:1a). Graphs are largest known
from k = 6. odd-girth maximum from k = 10. Maximal levels: (k + 2)/4 from k = 6.

LGM odd basis

2a− 1 −1 −1 −1 −1 −1 0 0
1 2a− 1 0 0 −1 −1 −1 −1
1 0 2a− 1 −1 −1 −1 −1 0
1 0 1 2a− 1 0 0 0 −1
1 1 1 0 2a− 1 0 −1 −1
1 1 1 0 0 2a− 1 −1 −1
0 1 1 0 1 1 2a 0
0 1 0 1 1 1 0 2a


Polynomial in 2a

Order (1 −6 33 −100 183 −212 151 −60 10)/2
g1 (0 2 −9 56 −157 251 −236 115 −22)/2
g2 (0 0 2 −12 37 −65 65 −33 6)/2
g3 (0 0 0 1 23 −71 100 −71 18)/2
g4 (0 0 0 4 −8 0 21 −25 8)/2
g5 (0 0 1 −12 46 −90 103 −65 16)/2
g6 (0 1 −4 16 −26 21 2 −15 6)/2
g7 (0 1 −7 34 −91 149 −149 81 −18)/2
g8 (0 2 −13 67 −188 301 −290 153 −32)/2

Family F16:2b (transpose of F16:2a, conjugate of F16:1b). Graphs are largest known
from k = 6. odd-girth maximum from k = 10. Maximal levels: (k + 2)/4 from k = 6.

LGM odd basis

2a− 1 1 1 1 1 1 0 0
−1 2a− 1 0 0 1 1 1 1
−1 0 2a− 1 1 1 1 1 0
−1 0 −1 2a− 1 0 0 0 1
−1 −1 −1 0 2a− 1 0 1 1
−1 −1 −1 0 0 2a− 1 1 1
0 −1 −1 0 −1 −1 2a 0
0 −1 0 −1 −1 −1 0 2a


Polynomial in 2a

Order (1 −6 33 −100 183 −212 151 −60 10)/2
g1 (0 1 −7 39 −100 151 −137 65 −12)/2
g2 (0 0 2 −3 6 −4 −8 11 −4)/2
g3 (0 0 1 0 −16 49 −63 37 −8)/2
g4 (0 0 0 4 −14 9 6 −7 2)/2
g5 (0 0 0 8 −26 46 −43 21 −4)/2
g6 (0 2 −10 48 −118 176 −159 79 −16)/2
g7 (0 0 2 −13 43 −82 85 −45 10)/2
g8 (0 1 −4 21 −61 99 −87 37 −6)/2

Robert Roderick Lewis
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Table A.46: Degree 16, diameter class k ≡ 3 (mod 4), a = (k + 1)/4

LGM odd basis Polynomial in 2a

Family F16:3a (transpose of F16:3b, conjugate of F16:0a). Graphs are largest known
from k = 11. odd-girth maximum from k = 11. Maximal levels: (k + 5)/4 from k = 11.

2a− 1 0 −1 −1 −1 −1 0 −1
0 2a− 1 −1 −1 −1 −1 0 −1
1 1 2a− 1 −1 −1 0 −1 0
1 1 1 2a 0 1 −1 1
1 1 1 0 2a 1 −1 1
1 1 0 −1 −1 2a 0 0
0 0 1 1 1 0 2a 1
1 1 0 −1 −1 0 −1 2a+ 1



Order (1 -2 20 -28 11 -2 -4 4 0)/2
g1 (0 2 0 34 -21 -8 3 -2 0)/2
g2 (0 0 2 -4 -3 -12 3 6 0)/2
g3 (0 0 1 -11 12 -11 1 8 0)/2
g4 (0 0 1 6 -22 14 3 -4 2)/2
g5 (0 1 -3 14 -6 -3 -5 0 2)/2
g6 (0 0 1 6 22 -40 -3 14 0)/2
g7 (0 2 -6 45 -63 9 21 -8 0)/2
g8 (0 1 -2 10 -15 3 7 -4 0)/2

Family F16:3b (transpose of F16:3a, conjugate of F16:0b). Graphs are largest known
from k = 11. odd-girth maximum from k = 11. Maximal levels: (k + 5)/4 from k = 11.

2a− 1 0 1 1 1 1 0 1
0 2a− 1 1 1 1 1 0 1
−1 −1 2a− 1 1 1 0 1 0
−1 −1 −1 2a 0 −1 1 −1
−1 −1 −1 0 2a −1 1 −1
−1 −1 0 1 1 2a 0 0
0 0 −1 −1 −1 0 2a −1
−1 −1 0 1 1 0 1 2a+ 1



Order (1 -2 20 -28 11 -2 -4 4 0)/2
g1 (0 1 -3 22 -14 -3 7 -6 0)/2
g2 (0 0 2 -3 5 5 -7 2 0)/2
g3 (0 0 1 6 -4 8 -11 0 0)/2
g4 (0 0 1 -10 18 -12 7 -2 -2)/2
g5 (0 1 -1 10 -10 -1 5 -6 2)/2
g6 (0 0 0 5 -25 27 -5 -2 0)/2
g7 (0 1 0 15 -15 -14 13 0 0)/2
g8 (0 1 -4 19 -37 36 -19 4 0)/2

Table A.47: Degree 17, diameter class k ≡ 0 (mod 4), a = k/4

LGM Polynomial in 2a

Family F17:0a (transpose of F17:0b). Graphs are largest known from k = 8. odd-girth
maximum from k = 12. Maximal levels: (k + 4)/4 from k = 8.

2a+ 1 −1 0 0 −1 −1 −1 −1
1 2a+ 1 −1 −1 −1 0 −1 0
0 1 a2 0 1 0 1 1
0 1 0 a2 1 1 0 1
1 1 −1 −1 2a 1 0 1
1 0 0 −1 −1 2a −1 0
1 1 −1 0 0 1 2a− 1 1
1 0 −1 −1 −1 0 −1 2a− 1



Order (1 0 17 0 4 6 -4 0 0)
g1 (0 1 -1 16 -15 1 -1 -10 1)
g2 (0 1 -1 17 -13 1 5 -11 1)
g3 (0 1 -1 18 -18 8 10 -11 1)
g4 (0 1 0 18 -1 7 0 -10 1)
g5 (0 1 0 16 -3 2 0 -9 1)
g6 (0 1 1 17 14 2 14 8 -1)
g7 (0 0 1 0 15 12 13 8 -1)
g8 (0 1 1 17 21 9 15 9 -1)

Family F17:0b (transpose of F17:0a). Graphs are largest known from k = 8. odd-girth
maximum from k = 12. Maximal levels: (k + 4)/4 from k = 8.

2a+ 1 1 0 0 1 1 1 1
−1 2a+ 1 1 1 1 0 1 0
0 −1 a2 0 −1 0 −1 −1
0 −1 0 a2 −1 −1 0 −1
−1 −1 1 1 2a −1 0 −1
−1 0 0 1 1 2a 1 0
−1 −1 1 0 0 −1 2a− 1 −1
−1 0 1 1 1 0 1 2a− 1



Order (1 0 17 0 4 6 -4 0 0)
g1 (0 1 -4 15 -13 10 4 -6 1)
g2 (0 1 -1 3 -2 -1 4 -5 1)
g3 (0 1 2 22 -6 -12 7 3 -1)
g4 (0 0 4 4 18 24 -5 -6 1)
g5 (0 1 3 8 -1 4 -5 -3 1)
g6 (0 1 1 4 23 -9 -9 6 -1)
g7 (0 1 -2 20 17 3 -4 -4 1)
g8 (0 1 1 3 4 1 4 3 -1)

Robert Roderick Lewis
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Table A.48: Degree 17, diameter class k ≡ 1 (mod 4), a = (k − 1)/4

LGM Polynomial in 2a

Family F17:1a (transpose of F17:1b, conjugate of F17:3a). Graphs are largest known
from k = 5. odd-girth maximum from k = 13. Maximal levels: (k + 3)/4 from k = 5.

2a+ 1 0 −1 −1 −1 −1 −1 0
0 2a+ 1 −1 −1 −1 −1 −1 0
1 1 2a+ 1 −1 −1 0 0 −1
1 1 1 2a+ 1 0 0 1 −1
1 1 1 0 2a 0 1 0
1 1 0 0 0 2a 1 −1
1 1 0 −1 −1 −1 2a −1
0 0 1 1 0 1 1 2a



Order (1 4 25 60 82 78 50 20 4)
g1 (0 1 7 30 53 62 49 25 7)
g2 (0 0 4 8 15 18 15 9 3)
g3 (0 1 4 10 14 11 7 2 -1)
g4 (0 1 1 4 6 6 5 2 1)
g5 (0 1 2 8 20 27 24 13 3)
g6 (0 1 3 9 20 26 22 14 5)
g7 (0 0 2 -8 -27 -37 -34 -19 -5)
g8 (0 0 3 10 15 13 6 0 -1)

Family F17:1b (transpose of F17:1a, conjugate of F17:3b). Graphs are largest known
from k = 5. odd-girth maximum from k = 13. Maximal levels: (k + 3)/4 from k = 5.

2a+ 1 0 1 1 1 1 1 0
0 2a+ 1 1 1 1 1 1 0
−1 −1 2a+ 1 1 1 0 0 1
−1 −1 −1 2a+ 1 0 0 −1 1
−1 −1 −1 0 2a 0 −1 0
−1 −1 0 0 0 2a −1 1
−1 −1 0 1 1 1 2a 1
0 0 −1 −1 0 −1 −1 2a



Order (1 4 25 60 82 78 50 20 4)
g1 (0 1 -2 0 0 0 2 2 1)
g2 (0 0 5 22 38 44 32 14 3)
g3 (0 1 3 1 1 7 11 9 3)
g4 (0 1 7 17 24 26 19 9 3)
g5 (0 1 7 24 36 26 9 0 -1)
g6 (0 1 7 21 40 49 38 17 3)
g7 (0 1 3 -3 -19 -32 -31 -18 -5)
g8 (0 1 0 5 24 36 28 13 3)

Robert Roderick Lewis



258 A Extremal and largest-known circulant graph families

Table A.49: Degree 17, diameter class k ≡ 2 (mod 4), a = (k − 2)/4

Family F17:2a (transpose of F17:2b). Graphs are largest known from k = 6.
odd-girth maximum from k = 14. Maximal levels: (k + 2)/4 from k = 6.

LGM

2a 0 −1 −1 −1 −1 −1 −1
0 2a+ 1 −1 −1 −1 −1 0 −1
1 1 2a+ 1 −1 −1 0 −1 0
1 1 1 2a+ 1 0 0 0 0
1 1 1 0 2a+ 1 1 0 1
1 1 0 0 −1 2a+ 1 0 0
1 0 1 0 0 0 2a+ 1 1
1 1 0 0 −1 0 −1 2a+ 2


Polynomial in 2a

Order (1 8 44 154 340 476 412 200 40)
g1 (0 0 2 24 95 190 212 124 29)
g2 (0 1 3 9 34 82 111 79 23)
g3 (0 1 4 12 26 37 30 10 1)
g4 (0 1 6 14 9 −23 −56 −50 −17)
g5 (0 1 6 19 42 64 62 33 7)
g6 (0 1 9 50 146 242 231 117 25)
g7 (0 1 11 50 134 222 224 123 25)
g8 (0 1 11 52 134 210 204 116 31)

Family F17:2b (transpose of F17:2a). Graphs are largest known from k = 6.
odd-girth maximum from k = 14. Maximal levels: (k + 2)/4 from k = 6.

LGM

2a 0 1 1 1 1 1 1
0 2a+ 1 1 1 1 1 0 1
−1 −1 2a+ 1 1 1 0 1 0
−1 −1 −1 2a+ 1 0 0 0 0
−1 −1 −1 0 2a+ 1 −1 0 −1
−1 −1 0 0 1 2a+ 1 0 0
−1 0 −1 0 0 0 2a+ 1 −1
−1 −1 0 0 1 0 1 2a+ 2


Polynomial in 2a

Order (1 8 44 154 340 476 412 200 40)
g1 (0 1 5 13 24 38 49 42 17)
g2 (0 1 4 11 24 35 29 9 −1)
g3 (0 1 7 24 41 31 −5 −26 −13)
g4 (0 1 10 50 152 277 303 182 43)
g5 (0 1 10 52 143 231 222 117 27)
g6 (0 0 1 −2 −26 −69 −89 −55 −11)
g7 (0 0 2 11 21 15 −4 −9 −1)
g8 (0 0 1 −5 −29 −58 −57 −26 −5)

Robert Roderick Lewis
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Table A.50: Degree 17, diameter class k ≡ 3 (mod 4), a = (k + 1)/4

LGM Polynomial in 2a

Family F17:3a (transpose of F17:3b, conjugate of F17:1a). Graphs are largest known
from k = 7. odd-girth maximum from k = 11. Maximal levels: (k + 5)/4 from k = 11.

2a− 1 0 −1 −1 −1 −1 −1 0
0 2a− 1 −1 −1 −1 −1 −1 0
1 1 2a− 1 −1 −1 0 0 −1
1 1 1 2a− 1 0 0 1 −1
1 1 1 0 2a 0 1 0
1 1 0 0 0 2a 1 −1
1 1 0 −1 −1 −1 2a −1
0 0 1 1 0 1 1 2a



Order (1 -4 25 -60 82 -78 50 -20 4)
g1 (0 1 2 0 0 0 -2 2 -1)
g2 (0 0 5 -22 38 -44 32 -14 3)
g3 (0 1 -3 1 -1 7 -11 9 -3)
g4 (0 1 -7 17 -24 26 -19 9 -3)
g5 (0 1 -7 24 -36 26 -9 0 1)
g6 (0 1 -7 21 -40 49 -38 17 -3)
g7 (0 1 -3 -3 19 -32 31 -18 5)
g8 (0 1 0 5 -24 36 -28 13 -3)

Family F17:3b (transpose of F17:3a, conjugate of F17:1b). Graphs are largest known
from k = 7. odd-girth maximum from k = 11. Maximal levels: (k + 5)/4 from k = 11.

2a− 1 0 1 1 1 1 1 0
0 2a− 1 1 1 1 1 1 0
−1 −1 2a− 1 1 1 0 0 1
−1 −1 −1 2a− 1 0 0 −1 1
−1 −1 −1 0 2a 0 −1 0
−1 −1 0 0 0 2a −1 1
−1 −1 0 1 1 1 2a 1
0 0 −1 −1 0 −1 −1 2a



Order (1 -4 25 -60 82 -78 50 -20 4)
g1 (0 1 -7 30 -53 62 -49 25 -7)
g2 (0 0 4 -8 15 -18 15 -9 3)
g3 (0 1 -4 10 -14 11 -7 2 1)
g4 (0 1 -1 4 -6 6 -5 2 -1)
g5 (0 1 -2 8 -20 27 -24 13 -3)
g6 (0 1 -3 9 -20 26 -22 14 -5)
g7 (0 0 2 8 -27 37 -34 19 -5)
g8 (0 0 3 -10 15 -13 6 0 -1)

Robert Roderick Lewis
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A.8 Circulant graph families of degrees 18 and 19

Table A.51: Degree 18, diameter class k ≡ 0 (mod 9), a = 2k/9

LGM odd basis Polynomial in 2a

Family F18:0a (transpose of F18:0b, conjugate of F18:8a). Graphs are largest known
from k = 9. odd-girth maximum from k = 9. Maximal levels: (2k + 9)/9 from k = 9.

2a+ 1 −1 −1 −1 −1 −1 0 0 0
1 2a+ 1 0 0 −1 −1 −1 −1 0
1 0 2a 0 −1 −1 −1 −1 −1
1 0 0 2a −1 −1 −1 0 0
1 1 1 1 2a 0 0 −1 −1
1 1 1 1 0 2a 0 −1 −1
0 1 1 1 0 0 2a 0 −1
0 1 1 0 1 1 0 2a 0
0 0 1 0 1 1 1 0 2a



Order (1 2 23 34 59 52 35 16 4 0)/2
g1 (0 0 1 7 16 11 12 5 0 0)/2
g2 (0 0 1 2 -6 -5 -8 -4 -2 0)/2
g3 (0 0 2 4 12 9 10 9 4 0)/2
g4 (0 0 1 4 3 8 11 3 0 0)/2
g5 (0 0 1 -5 -8 -24 -24 -19 -9 -2)/2
g6 (0 1 3 18 26 35 28 16 7 2)/2
g7 (0 0 1 -3 6 11 11 8 2 0)/2
g8 (0 0 1 7 19 24 15 6 2 0)/2
g9 (0 1 1 16 20 23 21 10 2 0) 2

Family F18:0b (transpose of F18:0a, conjugate of F18:8b). Graphs are largest known
from k = 9. odd-girth maximum from k = 18. Maximal levels: (2k + 9)/9 from k = 9.

2a+ 1 1 1 1 1 1 0 0 0
−1 2a+ 1 0 0 1 1 1 1 0
−1 0 2a 0 1 1 1 1 1
−1 0 0 2a 1 1 1 0 0
−1 −1 −1 −1 2a 0 0 1 1
−1 −1 −1 −1 0 2a 0 1 1
0 −1 −1 −1 0 0 2a 0 1
0 −1 −1 0 −1 −1 0 2a 0
0 0 −1 0 −1 −1 −1 0 2a



Order (1 2 23 34 59 52 35 16 4 0)/2
g1 (0 1 2 15 15 24 15 7 2 0)/2
g2 (0 0 2 1 6 4 2 4 0 0)/2
g3 (0 0 2 4 5 2 -2 -5 -2 0)/2
g4 (0 0 2 2 11 12 15 7 2 0)/2
g5 (0 0 1 10 16 27 25 18 9 2)/2
g6 (0 1 1 13 18 32 27 17 7 2)/2
g7 (0 0 0 7 5 14 10 4 0 0)/2
g8 (0 0 1 -4 -2 -9 -1 2 0 0)/2
g9 (0 0 1 -2 -8 -8 -11 -6 0 0)/2

Robert Roderick Lewis
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Table A.52: Degree 18, diameter class k ≡ 1 (mod 9), except k ≡ 1 (mod 4)5,
a = (2k − 2)/9

LGM odd basis Polynomial in 2a

Family F18:1a (transpose of F18:1b). Graphs are largest known from k = 10. odd-girth
maximum from k = 19. Maximal levels: (2k + 7)/9 from k = 10.

2a 0 −1 −1 −1 −1 −1 −1 0
0 2a−1 −1 −1 −1 −1 −1 0
1 1 2a −1 −1 −1 0 0 −1
1 1 1 2a+ 1 0 0 0 1 −1
1 1 1 0 2a+ 1 0 0 1 −1
1 1 1 0 0 2a+ 1 1 1 0
1 1 0 0 0 −1 2a+ 1 0 0
1 1 0 −1 −1 −1 0 2a+ 1 0
0 0 1 1 1 0 0 0 2a+ 1



Order (1 6 37 126 265 346 267 112 20 0)/2
g1 (0 1 9 42 117 210 243 169 63 10)/2
g2 (0 0 3 5 -9 -55 -103 -98 -49 -10)/2
g3 (0 0 0 17 71 149 167 90 18 0)/2
g4 (0 0 3 20 56 89 78 37 8 0)/2
g5 (0 1 2 12 38 82 97 55 12 0)/2
g6 (0 0 3 18 46 71 59 23 4 0)/2
g7 (0 0 1 14 51 103 123 76 18 0)/2
g8 (0 2 10 48 131 227 232 122 26 0)/2
g9 (0 0 1 -2 -23 -66 -90 -58 -14 0)/2

Family F18:1b (transpose of F18:1a). Graphs are largest known from k = 10. odd-girth
maximum from k = 19. Maximal levels: (2k + 7)/9 from k = 10.

2a 0 1 1 1 1 1 1 0
0 2a 1 1 1 1 1 1 0
−1−1 2a 1 1 1 0 0 1
−1−1−12a+ 1 0 0 0 −1 1
−1−1−1 0 2a+ 1 0 0 −1 1
−1−1−1 0 0 2a+ 1 −1 −1 0
−1−1 0 0 0 1 2a+ 1 0 0
−1−1 0 1 1 1 0 2a+ 1 0
0 0 −1 −1 −1 0 0 0 2a+ 1



Order (1 6 37 126 265 346 267 112 20 0)/2
g1 (0 1 5 34 117 234 285 201 73 10)/2
g2 (0 0 1 3 9 31 61 66 39 10)/2
g3 (0 0 2 11 51 127 179 134 40 0)/2
g4 (0 0 1 8 36 87 92 41 6 0)/2
g5 (0 1 4 24 58 84 83 51 14 0)/2
g6 (0 0 1 2 20 77 113 73 18 0)/2
g7 (0 0 1 2 27 61 65 46 16 0)/2
g8 (0 0 0 0 13 53 76 44 8 0)/2
g9 (0 2 11 64 193 308 254 92 8 0)/2

Robert Roderick Lewis
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Table A.53: Degree 18, diameter class k ≡ 1 (mod 9), a = (2k − 2)/9

LGM odd basis Polynomial in 2a

Family F18:1c (transpose of F18:1d, conjugate of F18:7a). Largest known from k = 46 for
k ≡ 1 (mod 4)5. odd-girth maximum from k = 19. Maximal levels: (2k + 7)/9 from k = 10.

2a−1−1 −1 −1 0 0 0 0
1 2a 0 0 −1 −1 −1 0 0
1 0 2a −1 −1 −1 −1 −1 0
1 0 1 2a+ 1 0 −1 −1 0 −1
1 1 1 0 2a+ 1 −1 −1 −1 −1
0 1 1 1 1 2a+ 1 0 0 −1
0 1 1 1 1 0 2a+ 1 0 −1
0 0 1 0 1 0 0 2a+ 1 −1
0 0 0 1 1 1 1 1 2a+ 1



Order (1 6 37 122 251 342 305 172 56 8)/2
g1 (0 1 6 41 144 281 334 238 91 14)/2
g2 (0 0 0 3 -6 -42 -71 -55 -19 -2)/2
g3 (0 0 1 10 27 43 39 10 -8 -4)/2
g4 (0 0 1 2 -7 -42 -77 -65 -26 -4)/2
g5 (0 0 2 7 16 33 42 29 11 2)/2
g6 (0 0 1 -2 -2 8 28 33 15 2)/2
g7 (0 1 6 30 88 169 209 157 63 10)/2
g8 (0 1 6 31 92 152 142 76 24 4)/2
g9 (0 1 3 18 36 28 -6 -33 -25 -6)/2

Family F18:1d (transpose of F18:1c, conjugate of F18:7b). Largest known from k = 46 for
k ≡ 1 (mod 4)5. odd-girth maximum from k = 19. Maximal levels: (2k + 7)/9 from k = 10.

2a 1 1 1 1 0 0 0 0
−1 2a 0 0 1 1 1 0 0
−1 0 2a 1 1 1 1 1 0
−1 0 −12a+ 1 0 1 1 0 1
−1−1−1 0 2a+ 1 1 1 1 1
0 −1−1 −1 −1 2a+ 1 0 0 1
0 −1−1 −1 −1 0 2a+ 1 0 1
0 0 −1 0 −1 0 0 2a+ 1 1
0 0 0 −1 −1 −1 −1 −1 2a+ 1



Order (1 6 37 122 251 342 305 172 56 8)/2
g1 (0 2 12 76 221 358 345 183 43 2)/2
g2 (0 0 1 13 69 177 231 156 51 6)/2
g3 (0 0 0 11 49 112 166 154 78 16)/2
g4 (0 0 1 0 -16 -12 34 53 26 4)/2
g5 (0 0 2 1 -10 -38 -64 -44 -7 2)/2
g6 (0 0 2 12 28 36 28 18 9 2)/2
g7 (0 1 3 20 62 125 153 106 39 6)/2
g8 (0 1 3 20 49 53 36 26 16 4)/2
g9 (0 2 12 63 208 403 473 328 121 18)/2

Robert Roderick Lewis
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Table A.54: Degree 18, diameter class k ≡ 2 (mod 9), a = (2k + 5)/9

Family F18:2a (transpose of F18:2b, conjugate of F18:6a, translate of F19:7a).
Graphs are largest known from k = 11. odd-girth maximum from k = 2.

Maximal levels: (2k + 5)/9 from k = 11.

LGM odd basis

2a −1 −1 −1 −1 0 0 0 0
1 2a 0 0 −1 −1 −1 −1 −1
1 0 2a− 1 0 −1 −1 −1 −1 0
1 0 0 2a− 1 −1 −1 −1 0 −1
1 1 1 1 2a− 1 −1 −1 0 −1
0 1 1 1 1 2a− 1 0 1 0
0 1 1 1 1 0 2a− 1 1 0
0 1 1 0 0 −1 −1 2a− 1 −1
0 1 0 1 1 0 0 1 2a− 2


Polynomial in 2a

Order (1 −8 50 −194 462 −698 672 −394 125 −16)/2
g1 (0 0 0 7 −36 79 −96 68 −26 4)/2
g2 (0 0 2 −9 18 −15 −4 19 −15 4)/2
g3 (0 0 1 −2 −14 57 −92 75 −29 4)/2
g4 (0 0 2 −9 23 −44 59 −49 22 −4)/2
g5 (0 0 2 −16 52 −94 105 −71 26 −4)/2
g6 (0 0 0 9 −41 90 −113 82 −30 4)/2
g7 (0 1 −7 34 −110 221 −274 203 −79 12)/2
g8 (0 0 2 −14 52 −107 127 −86 30 −4)/2
g9 (0 1 −6 30 −86 145 −148 89 −29 4)/2

Family F18:2b (transpose of F18:2a, conjugate of F18:6b, translate of F19:7b).
Graphs are largest known from k = 11. odd-girth maximum from k = 20.

Maximal levels: (2k + 5)/9 from k = 11.

LGM odd basis

2a 1 1 1 1 0 0 0 0
−1 2a 0 0 1 1 1 1 1
−1 0 2a− 1 0 1 1 1 1 0
−1 0 0 2a− 1 1 1 1 0 1
−1 −1 −1 −1 2a− 1 1 1 0 1
0 −1 −1 −1 −1 2a− 1 0 −1 0
0 −1 −1 −1 −1 0 2a− 1 −1 0
0 −1 −1 0 0 1 1 2a− 1 1
0 −1 0 −1 −1 0 0 −1 2a− 2


Polynomial in 2a

Order (1 −8 50 −194 462 −698 672 −394 125 −16)/2
g1 (0 1 −8 55 −211 453 −569 419 −168 28)/2
g2 (0 0 2 −12 34 −61 83 −84 50 −12)/2
g3 (0 0 1 −6 1 21 −34 29 −16 4)/2
g4 (0 0 1 −2 −16 95 −205 213 −106 20)/2
g5 (0 0 1 3 −28 74 −97 68 −25 4)/2
g6 (0 0 1 −13 52 −111 143 −106 37 −4)/2
g7 (0 1 −6 30 −99 200 −244 179 −72 12)/2
g8 (0 1 −9 48 −172 383 −502 369 −138 20)/2
g9 (0 1 −5 27 −81 138 −147 95 −32 4)/2

Robert Roderick Lewis
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Table A.55: Degree 18, diameter class k ≡ 3 (mod 9), except k ≡ 21 (mod 27),
a = (2k + 3)/9

Family F18:3a (transpose of F18:3b, conjugate of F18:5a). Graphs are largest known
from k = 12. odd-girth maximum from k = 30. Maximal levels: (2k + 12)/9 from k = 12.

LGM odd basis

2a− 1 −1 −1 0 0 0 −1 −1 −1
1 2a− 1 0 −1 −1 −1 −1 −1 −1
1 0 2a− 1 −1 −1 0 −1 −1 0
0 1 1 2a− 1 0 0 1 1 1
0 1 1 0 2a 0 1 1 0
0 1 0 0 0 2a 1 1 1
1 1 1 −1 −1 −1 2a 0 0
1 1 1 −1 −1 −1 0 2a 0
1 1 0 −1 0 −1 0 0 2a


Polynomial in 2a

Order (1 −4 29 −74 115 −122 81 −34 8 0)/2
g1 (0 3 −4 56 −109 142 −119 60 −20 0)/2
g2 (0 0 2 −36 88 −131 112 −51 16 0)/2
g3 (0 0 0 22 −25 −4 9 −6 4 0)/2
g4 (0 0 5 −22 35 −59 46 −18 4 0)/2
g5 (0 0 3 −16 7 25 −32 13 0 0)/2
g6 (0 0 5 −27 79 −119 101 −55 16 0)/2
g7 (0 1 −7 18 −7 −10 16 −18 11 −4)/2
g8 (0 2 −11 47 −81 105 −106 63 −23 4)/2
g9 (0 2 −11 50 −119 137 −77 22 −4 0)/2

Family F18:3b (transpose of F18:3a, conjugate of F18:5b). Graphs are largest known
from k = 12. odd-girth maximum from k = 30. Maximal levels: (2k + 12)/9 from k = 12.

LGM odd basis

2a− 1 1 1 0 0 0 1 1 1
−1 2a− 1 0 1 1 1 1 1 1
−1 0 2a− 1 1 1 0 1 1 0
0 −1 −1 2a− 1 0 0 −1 −1 −1
0 −1 −1 0 2a 0 −1 −1 0
0 −1 0 0 0 2a −1 −1 −1
−1 −1 −1 1 1 1 2a 0 0
−1 −1 −1 1 1 1 0 2a 0
−1 −1 0 1 0 1 0 0 2a


Polynomial in 2a

Order (1 −4 29 −74 115 −122 81 −34 8 0)/2
g1 (0 1 −6 34 −69 88 −67 32 −10 0)/2
g2 (0 0 2 6 −8 15 −20 7 −2 0)/2
g3 (0 0 0 8 −39 48 −17 −2 2 0)/2
g4 (0 0 3 −8 21 −21 12 −6 2 0)/2
g5 (0 0 1 −4 −15 59 −78 51 −14 0)/2
g6 (0 0 3 −11 37 −81 81 −35 6 0)/2
g7 (0 0 1 −15 43 −65 68 −45 17 −4)/2
g8 (0 1 −3 14 −31 50 −54 36 −17 4)/2
g9 (0 2 −7 44 −101 111 −69 22 −2 0)/2
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Table A.56: Degree 18, diameter class k ≡ 3 (mod 9), a = (2k + 3)/9

Family F18:3c (transpose of F18:3d). Largest known from k = 21 for k ≡ 21 (mod 2)7.
odd-girth maximum from k = 21. Maximal levels: (2k + 12)/9 from k = 12.

LGM odd basis

2a− 1 −1 −1 0 0 0 −1 −1 −1
1 2a− 1 −1 0 −1 −1 −1 −1 −1
1 1 2a− 1 −1 −1 −1 0 0 0
0 0 1 2a− 1 1 1 0 1 1
0 1 1 −1 2a 0 1 0 0
0 1 1 −1 0 2a 1 1 1
1 1 0 0 −1 −1 2a 0 0
1 1 0 −1 0 −1 0 2a 0
1 1 0 −1 0 −1 0 0 2a


Polynomial in 2a

Order (1 −4 28 −70 118 −132 96 −42 8 0)/2
g1 (0 0 2 −4 12 −10 3 2 −2 0)/2
g2 (0 0 2 −11 26 −40 37 −22 6 0)/2
g3 (0 0 0 8 −19 31 −32 20 −6 0)/2
g4 (0 0 1 −6 6 1 −6 6 −2 0)/2
g5 (0 0 1 −1 −4 2 4 −5 2 0)/2
g6 (0 0 2 −5 10 −16 14 −7 2 0)/2
g7 (0 1 −4 21 −49 74 −68 38 −10 0)/2
g8 (0 0 0 7 −26 54 −65 48 −21 4)/2
g9 (0 1 −4 21 −44 64 −67 48 −21 4)/2

Family F18:3d (transpose of F18:3c). Largest known from k = 21 for k ≡ 21 (mod 2)7.
odd-girth maximum from k = 21. Maximal levels: (2k + 12)/9 from k = 12.

LGM odd basis

2a− 1 1 1 0 0 0 1 1 1
−1 2a− 1 1 0 1 1 1 1 1
−1 −1 2a− 1 1 1 1 0 0 0
0 0 −1 2a− 1 −1 −1 0 −1 −1
0 −1 −1 1 2a 0 −1 0 0
0 −1 −1 1 0 2a −1 −1 −1
−1 −1 0 0 1 1 2a 0 0
−1 −1 0 1 0 1 0 2a 0
−1 −1 0 1 0 1 0 0 2a


Polynomial in 2a

Order (1 −4 28 −70 118 −132 96 −42 8 0)/2
g1 (0 0 2 −8 20 −34 29 −18 6 0)/2
g2 (0 0 2 −1 0 8 −9 6 −2 0)/2
g3 (0 0 0 8 −19 31 −30 12 −2 0)/2
g4 (0 0 1 0 −12 19 −20 18 −6 0)/2
g5 (0 0 1 −7 14 −12 −2 7 −2 0)/2
g6 (0 0 2 −11 28 −42 44 −27 6 0)/2
g7 (0 1 −4 21 −43 56 −52 34 −10 0)/2
g8 (0 0 0 7 −20 36 −49 44 −21 4)/2
g9 (0 1 −4 21 −50 82 −83 52 −21 4)/2
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Table A.57: Degree 18, diameter class k ≡ 4 (mod 9), a = (2k + 1)/9

LGM odd basis Polynomial in 2a

Family F18:4 (self-transpose, self-conjugate, translate of F19:0). Graphs are largest
known from k = 4. odd-girth maximum from k = 13. Maximal levels: (2k + 10)/9 from
k = 4.

2a −1 −1 −1 −1 0 0 0 0
1 2a 0 0 0 0 −1 −1 −1
1 0 2a −1 −1 0 −1 −1 −1
1 0 1 2a 0 −1 −1 0 0
1 0 1 0 2a 0 −1 −1 0
0 0 0 1 0 2a 1 1 1
0 1 1 1 1 −1 2a 0 1
0 1 1 0 1 −1 0 2a 0
0 1 1 0 0 −1 −1 0 2a



Order (1 0 20 0 58 0 43 0 9 0) /2
g1 (0 1 0 16 0 30 0 13 0 1)
g2 (0 0 1 0 7 -8 9 -7 2 -1)
g3 (0 0 1 2 5 8 9 5 4 1)
g4 (0 0 1 -1 9 6 10 6 2 1)
g5 (0 0 1 -1 7 -6 2 -4 0 -1)
g6 (0 0 0 1 -10 1 -15 3 -5 1)
g7 (0 0 0 4 -1 11 0 3 0 -1)
g8 (0 0 0 3 2 9 -5 5 -3 1)
g9 (0 0 0 2 7 1 12 3 4 1)

Note: generator polynomials not divided by 2

Table A.58: Degree 18, diameter class k ≡ 5 (mod 9), except k ≡ 5 (mod 27),
a = (2k − 1)/9

LGM odd basis Polynomial in 2a

Family F18:5a (transpose of F18:5b, conjugate of F18:3a). Graphs are largest known
from k = 14. odd-girth maximum from k = 14. Maximal levels: (2k + 8)/9 from k = 14.

2a+ 1 −1 −1 0 0 0 −1−1−1
1 2a+ 1 0 −1 −1−1−1−1−1
1 0 2a+ 1 −1 −1 0 −1−1 0
0 1 1 2a+ 1 0 0 1 1 1
0 1 1 0 2a 0 1 1 0
0 1 0 0 0 2a 1 1 1
1 1 1 −1 −1−1 2a 0 0
1 1 1 −1 −1−1 0 2a 0
1 1 0 −1 0 −1 0 0 2a



Order (1 4 29 74 115 122 81 34 8 0)/2
g1 (0 1 6 34 69 88 67 32 10 0)/2
g2 (0 0 2 -6 -8 -15 -20 -7 -2 0)/2
g3 (0 0 0 8 39 48 17 -2 -2 0)/2
g4 (0 0 3 8 21 21 12 6 2 0)/2
g5 (0 0 1 4 -15 -59 -78 -51 -14 0)/2
g6 (0 0 3 11 37 81 81 35 6 0)/2
g7 (0 0 1 15 43 65 68 45 17 4)/2
g8 (0 1 3 14 31 50 54 36 17 4)/2
g9 (0 2 7 44 101 111 69 22 2 0)/2

Family F18:5b (transpose of F18:5a, conjugate of F18:3b). Graphs are largest known
from k = 14. odd-girth maximum from k = 14. Maximal levels: (2k + 8)/9 from k = 14.

2a+ 1 1 1 0 0 0 1 1 1
−1 2a+ 1 0 1 1 1 1 1 1
−1 0 2a+ 1 1 1 0 1 1 0
0 −1 −1 2a+ 1 0 0 −1−1−1
0 −1 −1 0 2a 0 −1−1 0
0 −1 0 0 0 2a−1−1−1
−1 −1 −1 1 1 1 2a 0 0
−1 −1 −1 1 1 1 0 2a 0
−1 −1 0 1 0 1 0 0 2a



Order (1 4 29 74 115 122 81 34 8 0)/2
g1 (0 1 4 22 39 48 37 16 4 0)/2
g2 (0 0 2 6 8 7 4 1 0 0)/2
g3 (0 0 2 6 17 28 25 14 4 0)/2
g4 (0 0 1 -4 -9 -19 -18 -10 -4 0)/2
g5 (0 0 1 -2 -5 -5 -6 -3 0 0)/2
g6 (0 0 1 -1 -7 -11 -9 -3 0 0)/2
g7 (0 0 1 11 27 43 48 33 15 4)/2
g8 (0 1 3 18 47 72 74 48 19 4)/2
g9 (0 0 1 8 23 31 25 14 4 0)/2
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Table A.59: Degree 18, diameter class k ≡ 5 (mod 9), a = (2k − 1)/9

LGM odd basis Polynomial in 2a

Family F18:5c (transpose of F18:5d). Largest known from k = 32 for k ≡ 5 (mod 2)7.
odd-girth maximum from k = 14. Maximal levels: (2k + 8)/9 from k = 14.

2a+ 1 0 −1 −1 −1−1−1−1−1
0 2a+ 1 0 −1 −1−1−1−1 0
1 0 2a+ 1 0 −1−1 0 0 0
1 1 0 2a+ 1−1−1−1 0 0
1 1 1 1 2a 0 0 1 1
1 1 1 1 0 2a 0 1 1
1 1 0 1 0 0 2a 0 1
1 1 0 0 −1−1 0 2a 0
1 0 0 0 −1−1−1 0 2a



Order (1 4 28 72 117 122 89 42 8 0)/2
g1 (0 2 10 44 80 101 77 43 8 0)/2
g2 (0 0 2 -10 -31 -51 -49 -20 -4 0)/2
g3 (0 0 1 15 41 55 51 34 12 0)/2
g4 (0 0 1 21 43 71 60 44 12 0)/2
g5 (0 0 5 20 44 61 65 46 23 4)/2
g6 (0 1 -1 8 28 56 57 43 19 4)/2
g7 (0 0 4 18 49 76 68 30 4 0)/2
g8 (0 1 3 10 26 52 67 53 16 0)/2
g9 (0 2 7 36 70 89 62 25 8 0)/2

Family F18:5d (transpose of F18:5c).Largest known from k = 32 for k ≡ 5 (mod 2)7.
odd-girth maximum from k = 14. Maximal levels: (2k + 8)/9 from k = 14.

2a+ 1 0 1 1 1 1 1 1 1
0 2a+ 1 0 1 1 1 1 1 0
−1 0 2a+ 1 0 1 1 0 0 0
−1 −1 0 2a+ 1 1 1 1 0 0
−1 −1 −1 −1 2a 0 0 −1−1
−1 −1 −1 −1 0 2a 0 −1−1
−1 −1 0 −1 0 0 2a 0 −1
−1 −1 0 0 1 1 0 2a 0
−1 0 0 0 1 1 1 0 2a



Order (1 4 28 72 117 122 89 42 8 0)/2
g1 (0 0 2 0 -5 -9 -6 -5 -2 0)/2
g2 (0 0 2 3 7 10 11 8 2 0)/2
g3 (0 0 1 5 3 -8 -14 -8 -2 0)/2
g4 (0 0 2 10 21 30 24 12 2 0)/2
g5 (0 0 0 10 36 65 69 47 21 4)/2
g6 (0 1 4 18 36 52 53 42 21 4)/2
g7 (0 1 4 20 49 66 47 16 2 0)/2
g8 (0 0 1 8 11 2 -12 -11 -2 0)/2
g9 (0 0 2 10 28 44 44 25 6 0)/2
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Table A.60: Degree 18, diameter class k ≡ 6 (mod 9), a = (2k − 3)/9

Family F18:6a (transpose of F18:6b, conjugate of F18:2a, translate of F19:2a).
Graphs are largest known from k = 6. odd-girth maximum from k = 15.

Maximal levels: (2k + 6)/9 from k = 6.

LGM odd basis

2a −1 −1 −1 −1 0 0 0 0
1 2a 0 0 −1 −1 −1 −1 −1
1 0 2a+ 1 0 −1 −1 −1 −1 0
1 0 0 2a+ 1 −1 −1 −1 0 −1
1 1 1 1 2a+ 1 −1 −1 0 −1
0 1 1 1 1 2a+ 1 0 1 0
0 1 1 1 1 0 2a+ 1 1 0
0 1 1 0 0 −1 −1 2a+ 1 −1
0 1 0 1 1 0 0 1 2a+ 2


Polynomial in 2a

Order (1 8 50 194 462 698 672 394 125 16)/2
g1 (0 2 16 104 395 857 1094 817 329 54)/2
g2 (0 0 2 11 27 39 52 67 50 14)/2
g3 (0 0 0 0 37 123 171 129 54 10)/2
g4 (0 0 1 0 −27 −144 −320 −346 −178 −34)/2
g5 (0 0 1 −4 −30 −74 −88 −51 −14 −2)/2
g6 (0 0 1 13 48 95 119 87 28 2)/2
g7 (0 1 6 30 103 216 268 198 81 14)/2
g8 (0 1 10 54 210 516 733 574 226 34)/2
g9 (0 2 11 64 199 346 367 233 78 10)/2

Family F18:6b (transpose of F18:6a, conjugate of F18:2b, translate of F19:2b)
Graphs are largest known from k = 6. odd-girth maximum from k = 15.

Maximal levels: (2k + 6)/9 from k = 6.

LGM odd basis

2a 1 1 1 1 0 0 0 0
−1 2a 0 0 1 1 1 1 1
−1 0 2a+ 1 0 1 1 1 1 0
−1 0 0 2a+ 1 1 1 1 0 1
−1 −1 −1 −1 2a+ 1 1 1 0 1
0 −1 −1 −1 −1 2a+ 1 0 −1 0
0 −1 −1 −1 −1 0 2a+ 1 −1 0
0 −1 −1 0 0 1 1 2a+ 1 1
0 −1 0 −1 −1 0 0 −1 2a+ 2


Polynomial in 2a

Order (1 8 50 194 462 698 672 394 125 16)/2
g1 (0 0 0 7 36 79 96 68 26 4)/2
g2 (0 0 2 9 18 15 −4 −19 −15 −4)/2
g3 (0 0 1 2 −14 −57 −92 −75 −29 −4)/2
g4 (0 0 2 9 23 44 59 49 22 4)/2
g5 (0 0 2 16 52 94 105 71 26 4)/2
g6 (0 0 0 9 41 90 113 82 30 4)/2
g7 (0 1 7 34 110 221 274 203 79 12)/2
g8 (0 0 2 14 52 107 127 86 30 4)/2
g9 (0 1 6 30 86 145 148 89 29 4)/2
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Table A.61: Degree 18, diameter class k ≡ 7 (mod 9), a = (2k + 4)/9

Family F18:7a (transpose of F18:7b, conjugate of F18:1c). Graphs are largest known
from k = 7. odd-girth maximum from k = 16. Maximal levels: (2k + 4)/9 from k = 7.

LGM odd basis

2a −1 −1 −1 −1 0 0 0 0
1 2a 0 0 −1 −1 −1 0 0
1 0 2a −1 −1 −1 −1 −1 0
1 0 1 2a− 1 0 −1 −1 0 −1
1 1 1 0 2a− 1 −1 −1 −1 −1
0 1 1 1 1 2a− 1 0 0 −1
0 1 1 1 1 0 2a− 1 0 −1
0 0 1 0 1 0 0 2a− 1 −1
0 0 0 1 1 1 1 1 2a− 1


Polynomial in 2a

Order (1 −6 37 −122 251 −342 305 −172 56 −8)/2
g1 (0 2 −12 76 −221 358 −345 183 −43 2)/2
g2 (0 0 1 −13 69 −177 231 −156 51 −6)/2
g3 (0 0 0 11 −49 112 −166 154 −78 16)/2
g4 (0 0 1 0 −16 12 34 −53 26 −4)/2
g5 (0 0 2 −1 −10 38 −64 44 −7 −2)/2
g6 (0 0 2 −12 28 −36 28 −18 9 −2)/2
g7 (0 1 −3 20 −62 125 −153 106 −39 6)/2
g8 (0 1 −3 20 −49 53 −36 26 −16 4)/2
g9 (0 2 −12 63 −208 403 −473 328 −121 18)/2

Family F18:7b (transpose of F18:7a, conjugate of F18:1d). Graphs are largest known
from k = 7. odd-girth maximum from k = 16. Maximal levels: (2k + 4)/9 from k = 7.

LGM odd basis

2a 1 1 1 1 0 0 0 0
−1 2a 0 0 1 1 1 0 0
−1 0 2a 1 1 1 1 1 0
−1 0 −1 2a− 1 0 1 1 0 1
−1 −1 −1 0 2a− 1 1 1 1 1
0 −1 −1 −1 −1 2a− 1 0 0 1
0 −1 −1 −1 −1 0 2a− 1 0 1
0 0 −1 0 −1 0 0 2a− 1 1
0 0 0 −1 −1 −1 −1 −1 2a− 1


Polynomial in 2a

Order (1 −6 37 −122 251 −342 305 −172 56 −8)/2
g1 (0 2 −12 76 −265 522 −627 449 −171 26)/2
g2 (0 0 1 −1 25 −101 163 −128 47 −6)/2
g3 (0 0 0 7 −15 14 6 −40 40 −12)/2
g4 (0 0 1 −4 0 40 −90 79 −30 4)/2
g5 (0 0 2 −11 30 −70 98 −74 31 −6)/2
g6 (0 0 2 −4 22 −64 110 −102 43 −6)/2
g7 (0 1 −7 36 −112 225 −291 226 −91 14)/2
g8 (0 1 −7 36 −115 197 −178 86 −24 4)/2
g9 (0 2 −8 47 −106 117 −51 −28 37 −10)/2
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Table A.62: Degree 18, diameter class k ≡ 8 (mod 9), a = (2k + 2)/9

LGM odd basis Polynomial in 2a

Family F18:8a (transpose of F18:8b, conjugate of F18:0a). Graphs are largest known
from k = 8. odd-girth maximum from k = 17. Maximal levels: (2k + 11)/9 from k = 8.

2a− 1 −1 −1 −1 −1 −1 0 0 0
1 2a− 1 0 0 −1 −1 −1 −1 0
1 0 2a 0 −1 −1 −1 −1 −1
1 0 0 2a −1 −1 −1 0 0
1 1 1 1 2a 0 0 −1 −1
1 1 1 1 0 2a 0 −1 −1
0 1 1 1 0 0 2a 0 −1
0 1 1 0 1 1 0 2a 0
0 0 1 0 1 1 1 0 2a



Order (1 -2 23 -34 59 -52 35 -16 4 0)/2
g1 (0 1 -2 15 -15 24 -15 7 -2 0)/2
g2 (0 0 2 -1 6 -4 2 -4 0 0)/2
g3 (0 0 2 -4 5 -2 -2 5 -2 0)/2
g4 (0 0 2 -2 11 -12 15 -7 2 0)/2
g5 (0 0 1 -10 16 -27 25 -18 9 -2)/2
g6 (0 1 -1 13 -18 32 -27 17 -7 2)/2
g7 (0 0 0 7 -5 14 -10 4 0 0)/2
g8 (0 0 1 4 -2 9 -1 -2 0 0)/2
g9 (0 0 1 2 -8 8 -11 6 0 0)/2

Family F18:8b (transpose of F18:8a, conjugate of F18:0b). Graphs are largest known
from k = 8. odd-girth maximum from k = 17. Maximal levels: (2k + 11)/9 from k = 8.

2a− 1 1 1 1 1 1 0 0 0
−1 2a− 1 0 0 1 1 1 1 0
−1 0 2a 0 1 1 1 1 1
−1 0 0 2a 1 1 1 0 0
−1 −1 −1 −1 2a 0 0 1 1
−1 −1 −1 −1 0 2a 0 1 1
0 −1 −1 −1 0 0 2a 0 1
0 −1 −1 0 −1 −1 0 2a 0
0 0 −1 0 −1 −1 −1 0 2a



Order (1 -2 23 -34 59 -52 35 -16 4 0)/2
g1 (0 1 0 13 -7 18 -7 3 0 0)/2
g2 (0 0 2 -1 4 2 -2 2 -2 0)/2
g3 (0 0 2 -2 -1 0 -8 3 0 0)/2
g4 (0 0 2 -4 13 -12 17 -11 4 0)/2
g5 (0 0 1 8 -8 21 -17 14 -7 2)/2
g6 (0 1 -3 15 -26 38 -35 21 -9 2)/2
g7 (0 0 0 7 -13 18 -14 6 -2 0)/2
g8 (0 0 1 -8 10 -21 15 -8 2 0)/2
g9 (0 0 1 -6 2 -4 -1 4 -2 0)/2

Table A.63: Degree 19, diameter class k ≡ 0 (mod 9), a = 2k/9

LGM Polynomial in 2a

Family F19:0 (self-transpose, self-conjugate, translate of F18:4). Graphs are largest
known from k = 9. odd-girth maximum from k = 18. Maximal levels: (2k + 9)/9 from
k = 9.

2a −1 −1 −1 −1 0 0 0 0
1 2a 0 0 0 0 −1 −1 −1
1 0 2a −1 −1 0 −1 −1 −1
1 0 1 2a 0 −1 −1 0 0
1 0 1 0 2a 0 −1 −1 0
0 0 0 1 0 2a 1 1 1
0 1 1 1 1 −1 2a 0 1
0 1 1 0 1 −1 0 2a 0
0 1 1 0 0 −1 −1 0 2a



Order (1 0 20 0 58 0 43 0 9 0)
g1 (0 1 4 15 45 30 57 13 17 1)
g2 (0 1 -2 11 -25 22 -23 9 -3 1)
g3 (0 1 0 8 1 18 -6 8 -3 -1)
g4 (0 1 -1 14 9 9 3 -4 -1 -1)
g5 (0 1 -2 12 -13 8 -4 4 -1 1)
g6 (0 1 0 26 -4 40 -16 17 -6 1)
g7 (0 0 2 -6 -1 -11 -20 -3 -10 1)
g8 (0 0 2 -4 5 -33 8 -17 4 -1)
g9 (0 1 1 20 -13 37 -11 10 -3 -1)
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Table A.64: Degree 19, diameter class k ≡ 1 (mod 9), a = (2k − 2)/9

LGM Polynomial in 2a

Family F19:1a (transpose of F19:1b). Graphs are largest known from k = 10. odd-girth
maximum from k = 19. Maximal levels: (2k + 7)/9 from k = 10.

2a+ 1 0 −1 −1 −1−1−1−1−1
0 2a+ 1 −1 −1 −1−1−1 0 0
1 1 2a+ 1 0 −1−1 0 −1 0
1 1 0 2a+ 1−1 0 0 0 0
1 1 1 1 2a 0 1 0 1
1 1 1 0 0 2a 0 0 1
1 1 0 0 −1 0 2a −1 0
1 0 1 0 0 0 1 2a 1
1 0 0 0 −1−1 0 −1 2a



Order (1 4 27 68 122 146 119 66 23 4)
g1 (0 1 8 30 64 97 92 60 25 5)
g2 (0 1 7 27 59 64 49 26 10 3)
g3 (0 1 4 11 23 34 34 17 7 1)
g4 (0 1 2 10 5 2 1 2 -4 -3)
g5 (0 1 0 4 8 18 25 18 5 1)
g6 (0 1 1 6 5 -17 -43 -42 -18 -3)
g7 (0 0 0 13 40 70 61 25 0 -3)
g8 (0 1 2 13 45 82 91 68 33 7)
g9 (0 0 2 -5 -7 -6 -14 -19 -16 -5)

Family F19:1b (transpose of F19:1a). Graphs are largest known from k = 10. odd-girth
maximum from k = 19. Maximal levels: (2k + 7)/9 from k = 10.

2a+ 1 0 1 1 1 1 1 1 1
0 2a+ 1 1 1 1 1 1 0 0
−1 −1 2a+ 1 0 1 1 0 1 0
−1 −1 0 2a+ 1 1 0 0 0 0
−1 −1 −1 −1 2a 0 −1 0 −1
−1 −1 −1 0 0 2a 0 0 −1
−1 −1 0 0 1 0 2a 1 0
−1 0 −1 0 0 0 −1 2a−1
−1 0 0 0 1 1 0 1 2a



Order (1 4 27 68 122 146 119 66 23 4)
g1 (0 1 -2 -7 -12 -10 -4 3 0 1)
g2 (0 1 -2 -3 -24 -48 -54 -41 -16 -3)
g3 (0 1 4 1 0 -14 -20 -21 -12 -3)
g4 (0 1 4 9 8 -10 -32 -33 -18 -5)
g5 (0 1 10 41 88 130 126 79 30 7)
g6 (0 1 8 31 66 90 84 55 20 3)
g7 (0 1 6 13 32 52 56 43 22 5)
g8 (0 1 0 15 54 98 108 73 28 5)
g9 (0 1 4 7 4 10 14 13 8 1)
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Table A.65: Degree 19, diameter class k ≡ 2 (mod 9), a = (2k − 4)/9

Family F19:2a (transpose of F19:2b, conjugate of F19:7a, translate of F18:6a).
Graphs are largest known from k = 11. odd-girth maximum from k = 20.

Maximal levels: (2k + 5)/9 from k = 11.

LGM

2a −1 −1 −1 −1 0 0 0 0
1 2a 0 0 −1 −1 −1 −1 −1
1 0 2a+ 1 0 −1 −1 −1 −1 0
1 0 0 2a+ 1 −1 −1 −1 0 −1
1 1 1 1 2a+ 1 −1 −1 0 −1
0 1 1 1 1 2a+ 1 0 1 0
0 1 1 1 1 0 2a+ 1 1 0
0 1 1 0 0 −1 −1 2a+ 1 −1
0 1 0 1 1 0 0 1 2a+ 2


Polynomial in 2a

Order (1 8 50 194 462 698 672 394 125 16)
g1 (0 1 12 81 298 639 824 626 254 41)
g2 (0 1 10 41 90 115 88 45 19 5)
g3 (0 1 9 36 74 87 70 41 13 1)
g4 (0 1 8 27 45 12 −89 −149 −92 −19)
g5 (0 1 4 0 −32 −88 −115 −77 −24 −3)
g6 (0 1 2 11 61 166 241 194 80 13)
g7 (0 0 5 32 90 145 146 91 29 3)
g8 (0 1 6 18 58 165 283 260 116 19)
g9 (0 0 4 20 46 69 66 35 9 1)

Family F19:2b (transpose of F19:2a, conjugate of F19:7b, translate of F18:6b).
Graphs are largest known from k = 11. odd-girth maximum from k = 20.

Maximal levels: (2k + 5)/9 from k = 11.

LGM

2a 1 1 1 1 0 0 0 0
−1 2a 0 0 1 1 1 1 1
−1 0 2a+ 1 0 1 1 1 1 0
−1 0 0 2a+ 1 1 1 1 0 1
−1 −1 −1 −1 2a+ 1 1 1 0 1
0 −1 −1 −1 −1 2a+ 1 0 −1 0
0 −1 −1 −1 −1 0 2a+ 1 −1 0
0 −1 −1 0 0 1 1 2a+ 1 1
0 −1 0 −1 −1 0 0 −1 2a+ 2


Polynomial in 2a

Order (1 8 50 194 462 698 672 394 125 16)
g1 (0 1 4 23 108 281 410 336 142 23)
g2 (0 1 6 15 20 19 26 41 35 11)
g3 (0 1 5 14 28 51 74 63 25 3)
g4 (0 1 6 17 35 50 33 −9 −22 −7)
g5 (0 1 10 40 98 168 203 157 64 9)
g6 (0 1 12 73 239 470 573 418 162 25)
g7 (0 0 5 30 88 159 186 133 53 9)
g8 (0 1 8 32 66 57 −17 −66 −40 −7)
g9 (0 0 4 22 60 99 96 53 17 3)
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Table A.66: Degree 19, diameter class k ≡ 3 (mod 9), a = (2k + 3)/9

Family F19:3a (transpose of F19:3b). Graphs are largest known from k = 12.
odd-girth maximum from k = 21. Maximal levels: (2k + 3)/9 from k = 2.

LGM

2a 0 0 0 0 −1 −1 −1 −1
0 2a 0 0 −1 −1 −1 −1 0
0 0 2a −1 −1 −1 −1 −1 −1
0 0 1 2a− 1 −1 −1 0 0 0
0 1 1 1 2a− 1 0 1 1 0
1 1 1 1 0 2a− 1 1 1 1
1 1 1 0 −1 −1 2a− 1 0 0
1 1 1 0 −1 −1 0 2a− 1 0
1 0 1 0 0 −1 0 0 2a− 1


Polynomial in 2a

Order (1 −6 36 −118 245 −338 313 −190 67 −10)
g1 (0 1 −6 30 −105 214 −265 199 −81 13)
g2 (0 1 −5 24 −67 107 −105 54 −8 −1)
g3 (0 1 −4 19 −45 72 −80 65 −37 9)
g4 (0 1 −4 21 −32 13 30 −48 22 −3)
g5 (0 1 −7 39 −110 172 −164 92 −26 3)
g6 (0 1 −8 45 −135 255 −307 233 −103 19)
g7 (0 0 1 1 −10 18 −16 5 −2 1)
g8 (0 1 −4 32 −97 176 −196 138 −59 11)
g9 (0 0 1 −1 3 −12 19 −19 12 −3)

Family F19:3b (transpose of F19:3a). Graphs are largest known from k = 12.
odd-girth maximum from k = 21. Maximal levels: (2k + 3)/9 from k = 2.

LGM

2a 0 0 0 0 1 1 1 1
0 2a 0 0 1 1 1 1 0
0 0 2a 1 1 1 1 1 1
0 0 −1 2a− 1 1 1 0 0 0
0 −1 −1 −1 2a− 1 0 −1 −1 0
−1 −1 −1 −1 0 2a− 1 −1 −1 −1
−1 −1 −1 0 1 1 2a− 1 0 0
−1 −1 −1 0 1 1 0 2a− 1 0
−1 0 −1 0 0 1 0 0 2a− 1


Polynomial in 2a

Order (1 −6 36 −118 245 −338 313 −190 67 −10)
g1 (0 1 −8 38 −83 96 −53 −3 19 −7)
g2 (0 1 −9 40 −107 185 −209 148 −60 11)
g3 (0 1 −10 45 −111 180 −196 145 −69 15)
g4 (0 1 −6 21 −60 107 −120 80 −24 1)
g5 (0 1 −1 7 −24 36 −28 8 2 −1)
g6 (0 1 0 1 −9 33 −55 51 −29 7)
g7 (0 1 −4 6 3 −20 34 −28 13 −3)
g8 (0 0 1 −25 90 −178 214 −161 70 −13)
g9 (0 0 1 −17 65 −120 123 −71 20 −1)
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Table A.67: Degree 19, diameter class k ≡ 4 (mod 9), a = (2k + 1)/9

Family F19:4 (self-transpose, conjugate of F19:5). Graphs are largest known from
k = 13. odd-girth maximum from k = 13. Maximal levels: (2k + 10)/9 from k = 13.

LGM

2a− 1 −1 −1 −1 −1 −1 0 0 0
1 2a− 1 0 0 0 −1 −1 −1 −1
1 0 2a −1 0 −1 −1 −1 −1
1 0 1 2a 0 0 −1 −1 0
1 0 0 0 2a 0 −1 −1 −1
1 1 1 0 0 2a −1 0 0
0 1 1 1 1 1 2a 0 1
0 1 1 1 1 0 0 2a 0
0 1 1 0 1 0 −1 0 2a


Polynomial in 2a

Order (1 −2 22 −32 62 −60 47 −26 9 −2)
g1 (0 1 −6 32 −34 66 −42 31 −12 3)
g2 (0 1 −4 6 −12 8 −6 −1 −2 −1)
g3 (0 1 −6 12 −22 20 −14 5 2 −1)
g4 (0 1 −2 4 0 0 0 −3 2 1)
g5 (0 1 −4 10 −16 32 −26 25 −10 3)
g6 (0 1 0 2 12 −12 20 −9 2 −1)
g7 (0 1 4 6 6 14 −6 7 −2 −1)
g8 (0 1 2 6 0 12 0 1 0 1)
g9 (0 1 0 4 −10 6 −14 7 −4 1)

Table A.68: Degree 19, diameter class k ≡ 5 (mod 9), a = (2k − 1)/9

LGM Polynomial in 2a

Family F19:5 (self-transpose, conjugate of F19:4). Graphs are largest known from k = 14.
odd-girth maximum from k = 14. Maximal levels: (2k + 8)/9 from k = 5.

1 2a+ 1 0 0 0 −1 −1 −1 −1
1 0 2a −1 0 −1 −1 −1 −1
1 0 1 2a 0 0 −1 −1 0
1 0 0 0 2a 0 −1 −1 −1
1 1 1 0 0 2a −1 0 0
0 1 1 1 1 1 2a 0 1
0 1 1 1 1 0 0 2a 0
0 1 1 0 1 0 −1 0 2a



Order (1 2 22 32 62 60 47 26 9 2)
g1 (0 1 6 32 34 66 42 31 12 3)
g2 (0 1 4 6 12 8 6 -1 2 -1)
g3 (0 1 6 12 22 20 14 5 -2 -1)
g4 (0 1 2 4 0 0 0 -3 -2 1)
g5 (0 1 4 10 16 32 26 25 10 3)
g6 (0 1 0 2 -12 -12 -20 -9 -2 -1)
g7 (0 1 -4 6 -6 14 6 7 2 -1)
g8 (0 1 -2 6 0 12 0 1 0 1)
g9 (0 1 0 4 10 6 14 7 4 1)
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Table A.69: Degree 19, diameter class k ≡ 6 (mod 9), a = (2k − 3)/9

Family F19:6a (transpose of F19:6b). Graphs are largest known from k = 6.
odd-girth maximum from k = 15. Maximal levels: (2k + 6)/9 from k = 6.

LGM

2a 0 −1 −1 −1 −1 −1 −1 0
0 2a −1 −1 −1 −1 0 0 0
1 1 2a −1 −1 0 −1 0 −1
1 1 1 2a− 1 0 0 0 1 −1
1 1 1 0 2a− 1 0 0 1 −1
1 1 0 0 0 2a− 1 0 0 −1
1 0 1 0 0 0 2a− 1 1 0
1 0 0 −1 −1 0 −1 2a− 1 −1
0 0 1 1 1 1 0 1 2a− 1


Polynomial in 2a

Order (1 6 36 120 253 350 317 184 63 10)
g1 (0 1 10 48 123 199 209 141 64 17)
g2 (0 1 9 45 125 226 260 176 61 7)
g3 (0 1 6 14 5 −42 −105 −117 −67 −17)
g4 (0 1 2 4 12 33 53 50 28 9)
g5 (0 0 3 27 77 131 133 81 25 1)
g6 (0 1 4 14 33 50 44 25 8 −1)
g7 (0 0 3 19 60 101 106 69 27 7)
g8 (0 1 6 17 33 50 71 72 37 7)
g9 (0 1 1 20 78 169 221 166 69 13)

Family F19:6b (transpose of F19:6a). Graphs are largest known from k = 6.
odd-girth maximum from k = 15. Maximal levels: (2k + 6)/9 from k = 6.

LGM

2a 0 1 1 1 1 1 1 0
0 2a 1 1 1 1 0 0 0
−1 −1 2a 1 1 0 1 0 1
−1 −1 −1 2a− 1 0 0 0 −1 1
−1 −1 −1 0 2a− 1 0 0 −1 1
−1 −1 0 0 0 2a− 1 0 0 1
−1 0 −1 0 0 0 2a− 1 −1 0
−1 0 0 1 1 0 1 2a− 1 1
0 0 −1 −1 −1 −1 0 −1 2a− 1


Polynomial in 2a

Order (1 6 36 120 253 350 317 184 63 10)
g1 (0 1 2 −4 −27 −59 −73 −55 −24 −5)
g2 (0 1 3 5 1 −12 −20 −14 −5 −1)
g3 (0 1 8 24 45 58 51 31 13 3)
g4 (0 1 10 46 112 173 171 108 40 7)
g5 (0 0 5 15 23 9 −15 −23 −13 −3)
g6 (0 1 8 34 85 130 124 73 24 3)
g7 (0 0 3 13 22 21 10 −1 −3 −1)
g8 (0 1 6 15 25 32 31 20 7 1)
g9 (0 1 1 −2 −12 −25 −27 −18 −7 −1)
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Table A.70: Degree 19, diameter class k ≡ 7 (mod 9), a = (2k + 4)/9

Family F19:7a (transpose of F19:7b, conjugate of F19:2a, translate of F18:2a).
Graphs are largest known from k = 16. odd-girth maximum from k = 16.

Maximal levels: (2k + 4)/9 from k = 7.

LGM

2a −1 −1 −1 −1 0 0 0 0
1 2a 0 0 −1 −1 −1 −1 −1
1 0 2a− 1 0 −1 −1 −1 −1 0
1 0 0 2a− 1 −1 −1 −1 0 −1
1 1 1 1 2a− 1 −1 −1 0 −1
0 1 1 1 1 2a− 1 0 1 0
0 1 1 1 1 0 2a− 1 1 0
0 1 1 0 0 −1 −1 2a− 1 −1
0 1 0 1 1 0 0 1 2a− 2


Polynomial in 2a

Order (1 −8 50 −194 462 −698 672 −394 125 −16)
g1 (0 1 −4 23 −108 281 −410 336 −142 23)
g2 (0 1 −6 15 −20 19 −26 41 −35 11)
g3 (0 1 −5 14 −28 51 −74 63 −25 3)
g4 (0 1 −6 17 −35 50 −33 −9 22 −7)
g5 (0 1 −10 40 −98 168 −203 157 −64 9)
g6 (0 1 −12 73 −239 470 −573 418 −162 25)
g7 (0 0 5 −30 88 −159 186 −133 53 −9)
g8 (0 1 −8 32 −66 57 17 −66 40 −7)
g9 (0 0 4 −22 60 −99 96 −53 17 −3)

Family F19:7b (transpose of F19:7a, conjugate of F19:2b, translate of F18:2b).
Graphs are largest known from k = 16. odd-girth maximum from k = 16.

Maximal levels: (2k + 4)/9 from k = 7.

LGM

2a 1 1 1 1 0 0 0 0
−1 2a 0 0 1 1 1 1 1
−1 0 2a− 1 0 1 1 1 1 0
−1 0 0 2a− 1 1 1 1 0 1
−1 −1 −1 −1 2a− 1 1 1 0 1
0 −1 −1 −1 −1 2a− 1 0 −1 0
0 −1 −1 −1 −1 0 2a− 1 −1 0
0 −1 −1 0 0 1 1 2a− 1 1
0 −1 0 −1 −1 0 0 −1 2a− 2


Polynomial in 2a

Order (1 −8 50 −194 462 −698 672 −394 125 −16)
g1 (0 1 −12 81 −298 639 −824 626 −254 41)
g2 (0 1 −10 41 −90 115 −88 45 −19 5)
g3 (0 1 −9 36 −74 87 −70 41 −13 1)
g4 (0 1 −8 27 −45 12 89 −149 92 −19)
g5 (0 1 −4 0 32 −88 115 −77 24 −3)
g6 (0 1 −2 11 −61 166 −241 194 −80 13)
g7 (0 0 5 −32 90 −145 146 −91 29 −3)
g8 (0 1 −6 18 −58 165 −283 260 −116 19)
g9 (0 0 4 −20 46 −69 66 −35 9 −1)
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Table A.71: Degree 19, diameter class k ≡ 8 (mod 9), a = (2k + 2)/9

Family F19:8a (transpose of F19:8b). Graphs are largest known from k = 17.
odd-girth maximum from k = 17. Maximal levels: (2k + 2)/9 from k = 8.

LGM

2a− 1 −1 −1 −1 0 0 0 −1 −1
1 2a− 1 0 −1 −1 −1 −1 −1 −1
1 0 2a− 1 −1 −1 −1 0 −1 0
1 1 1 2a− 1 −1 −1 0 0 0
0 1 1 1 2a 0 0 0 1
0 1 1 1 0 2a 1 1 1
0 1 0 0 0 −1 2a 0 0
1 1 1 0 0 −1 0 2a 0
1 1 0 0 −1 −1 0 0 2a


Polynomial in 2a

Order (1 −4 27 −66 109 −126 104 −62 23 −4)
g1 (0 1 2 17 −42 69 −72 50 −22 3)
g2 (0 1 2 −9 18 −13 8 0 −6 1)
g3 (0 1 0 −3 4 −15 18 −16 12 −3)
g4 (0 1 −4 1 6 −13 20 −14 8 −3)
g5 (0 1 −8 33 −60 79 −70 40 −16 3)
g6 (0 1 −10 43 −88 121 −114 78 −34 5)
g7 (0 1 −4 15 −14 3 8 −18 16 −5)
g8 (0 1 −6 13 −28 41 −46 36 −18 5)
g9 (0 1 −4 5 2 −15 18 −16 6 1)

Family F19:8b (transpose of F19:8a). Graphs are largest known from k = 17.
odd-girth maximum from k = 17. Maximal levels: (2k + 2)/9 from k = 8.

LGM

2a− 1 1 1 1 0 0 0 1 1
−1 2a− 1 0 1 1 1 1 1 1
−1 0 2a− 1 1 1 1 0 1 0
−1 −1 −1 2a− 1 1 1 0 0 0
0 −1 −1 −1 2a 0 0 0 −1
0 −1 −1 −1 0 2a −1 −1 −1
0 −1 0 0 0 1 2a 0 0
−1 −1 −1 0 0 1 0 2a 0
−1 −1 0 0 1 1 0 0 2a


Polynomial in 2a

Order (1 −4 27 −66 109 −126 104 −62 23 −4)
g1 (0 1 −8 41 −74 97 −84 50 −18 1)
g2 (0 1 −8 21 −42 57 −56 40 −20 5)
g3 (0 1 −6 15 −22 19 −14 2 4 −1)
g4 (0 1 −2 1 4 −5 4 0 −2 1)
g5 (0 1 0 7 −20 37 −42 28 −10 1)
g6 (0 1 2 1 0 1 −4 4 −4 1)
g7 (0 1 −4 17 −46 67 −70 52 −26 7)
g8 (0 1 −2 3 10 −29 46 −46 26 −7)
g9 (0 1 −4 9 −12 13 −10 10 −4 −1)
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A.9 Circulant graph families of degree 20

Table A.72: Degree 20, diameter class k ≡ 0 (mod 5), a = k/5

Family F20:0a (transpose of F20:0b). Graphs are largest known from k = 5.
odd-girth maximum from k = 5. Maximal levels: (k + 5)/5 from k = 10.

LGM odd basis

2a+ 1 0 −1 −1 −1 −1 −1 0 0 0
0 2a+ 1 0 0 0 −1 −1 −1 0 0
1 0 2a 0 0 −1 −1 −1 −1 −1
1 0 0 2a −1 −1 −1 −1 −1 0
1 0 0 1 2a 0 0 0 −1 −1
1 1 1 1 0 2a 0 0 −1 −1
1 1 1 1 0 0 2a 0 −1 −1
0 1 1 1 0 0 0 2a −1 0
0 0 1 1 1 1 1 1 2a 0
0 0 1 0 1 1 1 0 0 2a


Polynomial in 2a

Order (1 2 26 42 93 92 86 46 16 4 0)/2
g1 (0 1 0 17 11 42 19 26 4 2 0)/2
g2 (0 0 1 3 3 5 6 2 4 −2 0)/2
g3 (0 0 2 2 7 1 1 1 0 4 0)/2
g4 (0 0 2 4 10 8 14 6 6 2 0)/2
g5 (0 0 1 −4 −3 −17 −18 −21 −12 −4 0)/2
g6 (0 0 1 −7 −8 −27 −24 −28 −15 −8 −2)/2
g7 (0 1 3 19 34 66 68 58 31 8 2)/2
g8 (0 0 0 6 18 28 36 24 14 2 0)/2
g9 (0 0 1 9 8 22 3 5 −8 −4 0)/2
g10 (0 0 1 7 10 30 23 27 10 4 0)/2

Family F20:0b (transpose of F20:0a). Graphs are largest known from k = 5.
odd-girth maximum from k = 5. Maximal levels: (k + 5)/5 from k = 10.

LGM odd basis

2a+ 1 0 1 1 1 1 1 0 0 0
0 2a+ 1 0 0 0 1 1 1 0 0
−1 0 2a 0 0 1 1 1 1 1
−1 0 0 2a 1 1 1 1 1 0
−1 0 0 −1 2a 0 0 0 1 1
−1 −1 −1 −1 0 2a 0 0 1 1
−1 −1 −1 −1 0 0 2a 0 1 1
0 −1 −1 −1 0 0 0 2a 1 0
0 0 −1 −1 −1 −1 −1 −1 2a 0
0 0 −1 0 −1 −1 −1 0 0 2a


Polynomial in 2a

Order (1 2 26 42 93 92 86 46 16 4 0)/2
g1 (0 1 2 19 19 48 31 30 10 2 0)/2
g2 (0 0 1 −1 3 7 4 12 2 2 0)/2
g3 (0 0 2 4 13 17 17 11 6 0 0)/2
g4 (0 0 2 2 10 6 16 6 4 2 0)/2
g5 (0 0 1 6 13 17 12 11 −2 0 0)/2
g6 (0 0 1 9 16 33 36 32 21 8 2)/2
g7 (0 1 1 17 26 60 56 54 25 8 2)/2
g8 (0 0 0 6 0 16 4 8 0 −2 0)/2
g9 (0 0 1 −5 −10 −26 −29 −29 −14 −4 0)/2
g10 (0 0 1 −3 −2 −16 −7 −9 0 0 0)/2
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Table A.73: Degree 20, diameter class k ≡ 1 (mod 5), except k ≡ 1 (mod 35),
a = (k − 1)/5

Family F20:1a (transpose of F20:1b, conjugate of F20:3a). Graphs are largest known
from k = 11. odd-girth maximum from k = 16. Maximal levels: (k + 4)/5 from k = 11.

LGM odd basis

2a+ 1 0 0 −1 −1 −1 −1 −1 0 0
0 2a+ 1 0 0 −1 −1 −1 −1 −1 0
0 0 2a+ 1 −1 −1 −1 −1 −1 0 0
1 0 1 2a+ 1 −1 −1 −1 −1 −1 0
1 1 1 1 2a+ 1 0 0 0 −1 0
1 1 1 1 0 2a+ 1 0 0 0 −1
1 1 1 1 0 0 2a 0 −1 −1
1 1 1 1 0 0 0 2a −1 −1
0 1 0 1 1 0 1 1 2a −1
0 0 0 0 0 1 1 1 −1 2a


Polynomial in 2a

Order (1 6 42 150 337 512 526 352 142 28 0)/2
g1 (0 1 4 26 80 152 185 145 67 16 0)/2
g2 (0 0 1 8 13 4 −17 −32 −25 −8 0)/2
g3 (0 0 1 11 33 72 103 93 47 12 0)/2
g4 (0 0 2 10 26 38 29 4 −9 −4 0)/2
g5 (0 0 1 −2 −14 −40 −72 −74 −39 −8 0)/2
g6 (0 0 1 −2 −9 −6 13 30 27 10 0)/2
g7 (0 0 1 −2 −24 −77 −143 −173 −136 −64 −14)/2
g8 (0 1 7 40 126 260 369 353 216 78 14)/2
g9 (0 0 1 13 62 150 216 193 101 24 0)/2
g10 (0 0 1 8 23 31 27 23 17 6 0)/2

Family F20:1b (transpose of F20:1a, conjugate of F20:3b). Graphs are largest known
from k = 11. odd-girth maximum from k = 16. Maximal levels: (k + 4)/5 from k = 11.

LGM odd basis

2a+ 1 0 0 1 1 1 1 1 0 0
0 2a+ 1 0 0 1 1 1 1 1 0
0 0 2a+ 1 1 1 1 1 1 0 0
−1 0 −1 2a+ 1 1 1 1 1 1 0
−1 −1 −1 −1 2a+ 1 0 0 0 1 0
−1 −1 −1 −1 0 2a+ 1 0 0 0 1
−1 −1 −1 −1 0 0 2a 0 1 1
−1 −1 −1 −1 0 0 0 2a 1 1
0 −1 0 −1 −1 0 −1 −1 2a 1
0 0 0 0 0 −1 −1 −1 1 2a


Polynomial in 2a

Order (1 6 42 150 337 512 526 352 142 28 0)/2
g1 (0 2 9 70 224 411 478 363 165 38 0)/2
g2 (0 0 2 8 31 42 8 −28 −25 −6 0)/2
g3 (0 0 1 4 2 37 98 113 63 18 0)/2
g4 (0 0 0 2 −29 −120 −204 −196 −107 −26 0)/2
g5 (0 0 1 0 25 132 285 318 189 50 0)/2
g6 (0 0 0 8 29 90 180 186 87 12 0)/2
g7 (0 0 1 13 68 182 305 339 240 94 14)/2
g8 (0 1 5 29 82 155 207 187 112 48 14)/2
g9 (0 1 5 31 63 35 −27 −33 −5 2 0)/2
g10 (0 2 14 93 339 722 942 747 333 64 0)/2

Robert Roderick Lewis



280 A Extremal and largest-known circulant graph families

Table A.74: Degree 20, diameter class k ≡ 1 (mod 5), a = (k − 1)/5

Family F20:1c (transpose of F20:1d, conjugate of F20:3c). Largest known from k = 36 for
k ≡ 1 (mod 35). odd-girth maximum from k = 16. Maximal levels: (k + 4)/5 from k = 6.

LGM odd basis

2a+ 1 0 0 −1 −1 −1 −1 −1 0 0
0 2a+ 1 0 0 −1 −1 −1 −1 −1 0
0 0 2a+ 1 −1 −1 −1 −1 0 0 −1
1 0 1 2a+ 1 −1 −1 −1 −1 −1 0
1 1 1 1 2a+ 1 0 0 0 0 1
1 1 1 1 0 2a+ 1 0 0 0 1
1 1 1 1 0 0 2a 0 −1 1
1 1 0 1 0 0 0 2a 0 1
0 1 0 1 0 0 1 0 2a 1
0 0 1 0 −1 −1 −1 −1 1 2a


Polynomial in 2a

Order (1 6 41 144 325 500 535 398 198 60 8)/2
g1 (0 1 4 26 77 139 168 138 81 30 4)/2
g2 (0 0 1 8 18 34 50 48 29 10 2)/2
g3 (0 0 1 10 39 86 109 84 43 14 2)/2
g4 (0 0 2 10 32 58 79 78 53 24 4)/2
g5 (0 0 1 −2 −8 −20 −32 −36 −25 −12 −2)/2
g6 (0 1 6 34 100 197 251 216 121 40 6)/2
g7 (0 0 1 −1 −15 −53 −103 −120 −85 −32 −4)/2
g8 (0 0 1 0 0 11 34 41 23 6 0)/2
g9 (0 0 0 5 25 51 52 24 −5 −10 −2)/2
g10 (0 0 1 8 16 13 −2 −11 −7 −4 −2)/2

Family F20:1d (transpose of F20:1c, conjugate of F20:3d). Largest known from k = 36 for
k ≡ 1 (mod 35). odd-girth maximum from k = 16. Maximal levels: (k + 4)/5 from k = 6.

LGM odd basis

2a+ 1 0 0 1 1 1 1 1 0 0
0 2a+ 1 0 0 1 1 1 1 1 0
0 0 2a+ 1 1 1 1 1 0 0 1
−1 0 −1 2a+ 1 1 1 1 1 1 0
−1 −1 −1 −1 2a+ 1 0 0 0 0 −1
−1 −1 −1 −1 0 2a+ 1 0 0 0 −1
−1 −1 −1 −1 0 0 2a 0 1 −1
−1 −1 0 −1 0 0 0 2a 0 −1
0 −1 0 −1 0 0 −1 0 2a −1
0 0 −1 0 1 1 1 1 −1 2a


Polynomial in 2a

Order (1 6 41 144 325 500 535 398 198 60 8)/2
g1 (0 1 6 34 99 181 212 162 85 28 4)/2
g2 (0 0 1 0 −10 −38 −64 −62 −41 −16 −2)/2
g3 (0 0 1 −2 −1 10 25 34 27 12 2)/2
g4 (0 0 2 6 16 34 55 56 37 18 4)/2
g5 (0 0 1 10 30 62 76 60 29 10 2)/2
g6 (0 1 4 26 78 155 207 192 117 42 6)/2
g7 (0 0 1 11 35 73 109 116 81 30 4)/2
g8 (0 0 1 10 42 93 128 111 55 12 0)/2
g9 (0 0 0 5 19 29 20 8 9 8 2)/2
g10 (0 0 1 2 −12 −49 −92 −101 −69 −30 −6)/2
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Table A.75: Degree 20, diameter class k ≡ 2 (mod 5), a = (k − 2)/5

Family F20:2a (transpose of F20:2b). Graphs are largest known from k = 12.
odd-girth maximum from k = 17. Maximal levels: (k + 3)/5 from k = 7.

LGM odd basis

2a+ 2 0 0 0 0 0 −1 −1 −1 −1
0 2a+ 1 −1 −1 −1 −1 −1 0 0 0
0 1 2a+ 1 0 0 0 −1 −1 −1 −1
0 1 0 2a+ 1 −1 −1 −1 −1 −1 −1
0 1 0 1 2a+ 1 0 0 −1 −1 −1
0 1 0 1 0 2a+ 1 0 0 0 −1
1 1 1 1 0 0 2a+ 1 −1 −1 −1
1 0 1 1 1 0 1 2a+ 1 0 0
1 0 1 1 1 0 1 0 2a+ 1 0
1 0 1 1 1 1 1 0 0 2a


Polynomial in 2a

Order (1 10 70 322 976 1996 2776 2584 1533 518 74)/2
g1 (0 1 11 75 305 773 1263 1333 877 326 52)/2
g2 (0 0 0 12 70 196 334 368 260 110 22)/2
g3 (0 0 3 24 97 240 377 372 219 68 8)/2
g4 (0 0 3 28 117 290 473 522 379 164 32)/2
g5 (0 0 3 19 68 170 303 367 278 114 18)/2
g6 (0 0 1 5 2 −24 −57 −57 −22 6 6)/2
g7 (0 0 2 6 −18 −146 −394 −576 −484 −220 −42)/2
g8 (0 0 1 21 131 438 889 1133 885 384 68)/2
g9 (0 2 17 101 391 992 1673 1857 1293 504 80)/2
g10 (0 1 9 47 165 405 693 811 623 286 60)/2

Family F20:2b (transpose of F20:2a). Graphs are largest known from k = 12.
odd-girth maximum from k = 17. Maximal levels: (k + 3)/5 from k = 7.

LGM odd basis

2a+ 2 0 0 0 0 0 1 1 1 1
0 2a+ 1 1 1 1 1 1 0 0 0
0 −1 2a+ 1 0 0 0 1 1 1 1
0 −1 0 2a+ 1 1 1 1 1 1 1
0 −1 0 −1 2a+ 1 0 0 1 1 1
0 −1 0 −1 0 2a+ 1 0 0 0 1
−1 −1 −1 −1 0 0 2a+ 1 1 1 1
−1 0 −1 −1 −1 0 −1 2a+ 1 0 0
−1 0 −1 −1 −1 0 −1 0 2a+ 1 0
−1 0 −1 −1 −1 −1 −1 0 0 2a


Polynomial in 2a

Order (1 10 70 322 976 1996 2776 2584 1533 518 74)/2
g1 (0 1 6 37 142 330 478 422 203 34 −5)/2
g2 (0 0 0 8 80 318 701 936 760 348 69)/2
g3 (0 0 2 19 79 203 337 360 241 92 15)/2
g4 (0 0 2 16 48 59 −9 −131 −188 −126 −35)/2
g5 (0 0 2 22 111 315 551 609 408 145 19)/2
g6 (0 0 1 12 64 175 286 311 239 123 31)/2
g7 (0 0 1 19 96 267 472 547 408 183 39)/2
g8 (0 0 1 −2 −37 −155 −359 −514 −449 −217 −43)/2
g9 (0 1 10 59 224 560 922 981 640 227 31)/2
g10 (0 1 11 68 271 720 1307 1617 1310 628 135)/2
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Table A.76: Degree 20, diameter class k ≡ 3 (mod 5), except k ≡ 33 (mod 35),
a = (k + 2)/5

Family F20:3a (transpose of F20:3b, conjugate of F20:1a). Graphs are largest known
from k = 13. odd-girth maximum from k = 13. Maximal levels: (k + 7)/5 from k = 13.

LGM odd basis

2a− 1 0 0 −1 −1 −1 −1 −1 0 0
0 2a− 1 0 0 −1 −1 −1 −1 −1 0
0 0 2a− 1 −1 −1 −1 −1 −1 0 0
1 0 1 2a− 1 −1 −1 −1 −1 −1 0
1 1 1 1 2a− 1 0 0 0 −1 0
1 1 1 1 0 2a− 1 0 0 0 −1
1 1 1 1 0 0 2a 0 −1 −1
1 1 1 1 0 0 0 2a −1 −1
0 1 0 1 1 0 1 1 2a −1
0 0 0 0 0 1 1 1 −1 2a


Polynomial in 2a

Order (1 −6 42 −150 337 −512 526 −352 142 −28 0)/2
g1 (0 2 −9 70 −224 411 −478 363 −165 38 0)/2
g2 (0 0 2 −8 31 −42 8 28 −25 6 0)/2
g3 (0 0 1 −4 2 −37 98 −113 63 −18 0)/2
g4 (0 0 0 2 29 −120 204 −196 107 −26 0)/2
g5 (0 0 1 0 25 −132 285 −318 189 −50 0)/2
g6 (0 0 0 8 −29 90 −180 186 −87 12 0)/2
g7 (0 0 1 −13 68 −182 305 −339 240 −94 14)/2
g8 (0 1 −5 29 −82 155 −207 187 −112 48 −14)/2
g9 (0 1 −5 31 −63 35 27 −33 5 2 0)/2
g10 (0 2 −14 93 −339 722 −942 747 −333 64 0)/2

Family F20:3b (transpose of F20:3a, conjugate of F20:1b). Graphs are largest known
from k = 13. odd-girth maximum from k = 13. Maximal levels: (k + 7)/5 from k = 13.

LGM odd basis

2a− 1 0 0 1 1 1 1 1 0 0
0 2a− 1 0 0 1 1 1 1 1 0
0 0 2a− 1 1 1 1 1 1 0 0
−1 0 −1 2a− 1 1 1 1 1 1 0
−1 −1 −1 −1 2a− 1 0 0 0 1 0
−1 −1 −1 −1 0 2a− 1 0 0 0 1
−1 −1 −1 −1 0 0 2a 0 1 1
−1 −1 −1 −1 0 0 0 2a 1 1
0 −1 0 −1 −1 0 −1 −1 2a 1
0 0 0 0 0 −1 −1 −1 1 2a


Polynomial in 2a

Order (1 −6 42 −150 337 −512 526 −352 142 −28 0)/2
g1 (0 1 −4 26 −80 152 −185 145 −67 16 0)/2
g2 (0 0 1 −8 13 −4 −17 32 −25 8 0)/2
g3 (0 0 1 −11 33 −72 103 −93 47 −12 0)/2
g4 (0 0 2 −10 26 −38 29 −4 −9 4 0)/2
g5 (0 0 1 2 −14 40 −72 74 −39 8 0)/2
g6 (0 0 1 2 −9 6 13 −30 27 −10 0)/2
g7 (0 0 1 2 −24 77 −143 173 −136 64 −14)/2
g8 (0 1 −7 40 −126 260 −369 353 −216 78 −14)/2
g9 (0 0 1 −13 62 −150 216 −193 101 −24 0)/2
g10 (0 0 1 −8 23 −31 27 −23 17 −6 0)/2
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Table A.77: Degree 20, diameter class k ≡ 3 (mod 5), a = (k + 2)/5

Family F20:3c (transpose of F20:3d, conjugate of F20:1c). Largest known from k = 33 for
k ≡ 33 (mod 35). odd-girth maximum from k = 13. Maximal levels: (k + 7)/5 from k = 13.

LGM odd basis

2a− 1 0 0 −1 −1 −1 −1 −1 0 0
0 2a− 1 0 0 −1 −1 −1 −1 −1 0
0 0 2a− 1 −1 −1 −1 −1 0 0 −1
1 0 1 2a− 1 −1 −1 −1 −1 −1 0
1 1 1 1 2a− 1 0 0 0 0 1
1 1 1 1 0 2a− 1 0 0 0 1
1 1 1 1 0 0 2a 0 −1 1
1 1 0 1 0 0 0 2a 0 1
0 1 0 1 0 0 1 0 2a 1
0 0 1 0 −1 −1 −1 −1 1 2a


Polynomial in 2a

Order (1 −6 41 −144 325 −500 535 −398 198 −60 8)/2
g1 (0 1 −6 34 −99 181 −212 162 −85 28 −4)/2
g2 (0 0 1 0 −10 38 −64 62 −41 16 −2)/2
g3 (0 0 1 2 −1 −10 25 −34 27 −12 2)/2
g4 (0 0 2 −6 16 −34 55 −56 37 −18 4)/2
g5 (0 0 1 −10 30 −62 76 −60 29 −10 2)/2
g6 (0 1 −4 26 −78 155 −207 192 −117 42 −6)/2
g7 (0 0 1 −11 35 −73 109 −116 81 −30 4)/2
g8 (0 0 1 −10 42 −93 128 −111 55 −12 0)/2
g9 (0 0 0 5 −19 29 −20 8 −9 8 −2)/2
g10 (0 0 1 −2 −12 49 −92 101 −69 30 −6)/2

Family F20:3d (transpose of F20:3c, conjugate of F20:1d). Largest known from k = 33 for
k ≡ 33 (mod 35). odd-girth maximum from k = 13. Maximal levels: (k + 7)/5 from k = 13.

LGM odd basis

2a− 1 0 0 1 1 1 1 1 0 0
0 2a− 1 0 0 1 1 1 1 1 0
0 0 2a− 1 1 1 1 1 0 0 1
−1 0 −1 2a− 1 1 1 1 1 1 0
−1 −1 −1 −1 2a− 1 0 0 0 0 −1
−1 −1 −1 −1 0 2a− 1 0 0 0 −1
−1 −1 −1 −1 0 0 2a 0 1 −1
−1 −1 0 −1 0 0 0 2a 0 −1
0 −1 0 −1 0 0 −1 0 2a −1
0 0 −1 0 1 1 1 1 −1 2a


Polynomial in 2a

Order (1 −6 41 −144 325 −500 535 −398 198 −60 8)/2
g1 (0 1 −4 26 −77 139 −168 138 −81 30 −4)/2
g2 (0 0 1 −8 18 −34 50 −48 29 −10 2)/2
g3 (0 0 1 −10 39 −86 109 −84 43 −14 2)/2
g4 (0 0 2 −10 32 −58 79 −78 53 −24 4)/2
g5 (0 0 1 2 −8 20 −32 36 −25 12 −2)/2
g6 (0 1 −6 34 −100 197 −251 216 −121 40 −6)/2
g7 (0 0 1 1 −15 53 −103 120 −85 32 −4)/2
g8 (0 0 1 0 0 −11 34 −41 23 −6 0)/2
g9 (0 0 0 5 −25 51 −52 24 5 −10 2)/2
g10 (0 0 1 −8 16 −13 −2 11 −7 4 −2)/2

Robert Roderick Lewis



284 A Extremal and largest-known circulant graph families

Table A.78: Degree 20, diameter class k ≡ 4 (mod 5), a = (k + 1)/5

Family F20:4a (transpose of F20:4b). Graphs are largest known from k = 9.
odd-girth maximum from k = 14. Maximal levels: (k + 6)/5 from k = 9.

LGM odd basis

2a− 1 0 −1 −1 −1 −1 −1 0 0 0
0 2a− 1 0 −1 −1 −1 −1 −1 0 0
1 0 2a 0 0 −1 −1 −1 0 0
1 1 0 2a −1 −1 −1 −1 −1 −1
1 1 0 1 2a 0 0 0 −1 0
1 1 1 1 0 2a 0 0 −1 −1
1 1 1 1 0 0 2a 0 −1 −1
0 1 1 1 0 0 0 2a 0 −1
0 0 0 1 1 1 1 0 2a 0
0 0 0 1 0 1 1 1 0 2a


Polynomial in 2a

Order (1 −2 26 −40 89 −92 77 −44 18 −4 0)/2
g1 (0 2 −1 51 −30 93 −51 37 −12 2 0)/2
g2 (0 0 1 4 −7 36 −37 44 −18 12 0)/2
g3 (0 0 1 −3 50 −82 109 −75 36 −10 0)/2
g4 (0 0 2 −7 14 −44 48 −53 26 −10 0)/2
g5 (0 0 1 5 23 13 −9 10 −6 4 0)/2
g6 (0 0 1 −9 22 −37 39 −25 13 −4 2)/2
g7 (0 1 −1 17 −18 52 −53 52 −31 14 −2)/2
g8 (0 0 2 −7 48 −31 38 −26 16 −8 0)/2
g9 (0 1 −3 25 −36 94 −50 34 −8 4 0)/2
g10 (0 2 −5 48 −74 112 −124 82 −36 12 0)/2

Family F20:4b (transpose of F20:4a). Graphs are largest known from k = 9.
odd-girth maximum from k = 19. Maximal levels: (k + 6)/5 from k = 9.

LGM odd basis

2a− 1 0 1 1 1 1 1 0 0 0
0 2a− 1 0 1 1 1 1 1 0 0
−1 0 2a 0 0 1 1 1 0 0
−1 −1 0 2a 1 1 1 1 1 1
−1 −1 0 −1 2a 0 0 0 1 0
−1 −1 −1 −1 0 2a 0 0 1 1
−1 −1 −1 −1 0 0 2a 0 1 1
0 −1 −1 −1 0 0 0 2a 0 1
0 0 0 −1 −1 −1 −1 0 2a 0
0 0 0 −1 0 −1 −1 −1 0 2a


Polynomial in 2a

Order (1 −2 26 −40 89 −92 77 −44 18 −4 0)/2
g1 (0 0 1 −7 12 −31 23 −21 10 −4 0)/2
g2 (0 0 1 −6 5 −16 9 −8 2 −2 0)/2
g3 (0 0 1 −3 4 2 −11 7 −2 0 0)/2
g4 (0 0 2 −3 8 −6 4 9 −8 4 0)/2
g5 (0 0 1 3 3 1 −3 0 2 −2 0)/2
g6 (0 0 1 5 −6 19 −19 15 −11 6 −2)/2
g7 (0 1 −3 21 −34 70 −73 62 −33 12 −2)/2
g8 (0 0 0 5 −18 31 −38 28 −12 2 0)/2
g9 (0 1 −1 19 −24 50 −36 22 −6 2 0)/2
g10 (0 0 1 −6 14 −18 26 −20 10 −2 0)/2
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Appendix B

Extremal and largest-known
bipartite circulant graph families

This appendix documents extremal and largest-known bipartite graph families up to degree

11. As given by Definition 1.4, a graph family is an infinite set of graphs of given degree d and

dimension f = bd/2c, defined for each diameter k of a diameter class, with order and

generating set specified by polynomials in k of maximum degree f . Unless otherwise stated,

the diameter class is modulo f for odd dimension and modulo f/2 for even. The graph

families are identified by a code, such as D11:4a. In this example, D indicates that it is a

bipartite circulant graph family, 11 is the degree, 4 is the diameter class (mod 5), and a is the

isomorphism class (where there is more than one).

Of the largest-known bipartite circulant graph families presented in this appendix, the

following have been discovered by the author:

Degree 6 and above - all families

All extremal and largest-known bipartite circulant graph families are subquasimaximal with

quasimaximal defect 2. Below some low diameter threshold the graphs may not be bipartite

or extremal. The extremal graphs are included, up to diameter 16, in Appendix E, with

reference to their families by isomorphism class.

B.1 Bipartite circulant graph families of degrees 4 and 5

Table B.1: Degree 4, first two and parametrised families, for diameters k where
gcd(s, k) = 1, a = k.

Family LGM odd basis LGM Polynomial in 2a
D4:s

D4:1 (
2a+ 1 −1

1 2a− 1

) (
a −a

a+ 1 a− 1

) Order (1 0 0) /2
g1 (0 0 1)
g2 (0 1 -1)

D4:2 (
2a+ 2 −2

2 2a− 2

) (
a −a

a+ 2 a− 2

) Order (1 0 0) /2
g1 (0 1 -4) /2
g2 (0 1 4) /2

D4:s (
2a+ s −s
s 2a− s

) (
a −a

a+ s a− s

) Order (1 0 0) /2
s odd g1 (0 0 s)

g2 (0 1 -s)

D4:s (
2a+ s −s
s 2a− s

) (
a −a

a+ s a− s

) Order (1 0 0) /2
s even g1 (0 1 -2s)

g2 (0 1 2s)

All D4:s families are self-transpose and self-conjugate
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Table B.2: Degree 5, all diameters, a = k

LGM Polynomial in 2a

Family D5 (self-transpose, self-conjugate)(
2a− 1 −1

1 2a− 1

) Order (1 -2 2)
g1 (0 0 1)
g2 (0 1 -1)

B.2 Bipartite circulant graph families of degrees 6 and 7

Table B.3: Degree 6, diameter class 0 (mod 3), a = 2k/3

LGM odd basis LGM Polynomial in 2a

Family D6:0 (self-transpose, self-conjugate, translate of D7:2) 2a −1 −1
1 2a −1
1 1 2a

  a− 1 −a− 1 −a
a a− 1 −a− 1
a −a a

 Order (1 0 3 0) /2
g1 (0 0 0 1)
g2 (0 1 -1 2) /2
g3 (0 1 1 2) /2

Table B.4: Degree 6, diameter class 1 (mod 3), a = (2k + 1)/3

LGM odd basis LGM Polynomial in 2a

Family D6:1A (self-transpose, conjugate of D6:2A, translate of D7:0A) 2a− 1 −1 0
1 2a −1
0 1 2a− 1

  a− 1 −a− 1 −a+ 1
a a− 1 −a

a− 1 −a a

 Order (1 -2 3 -2) /2
g1 (0 0 0 1)
g2 (0 0 1 -1)
g3 (0 1 -1 1)

Family D6:1B (self-transpose, conjugate of D6:2B, translate of D7:0B) 2a− 2 −1 −1
1 2a −1
1 1 2a

  a− 2 −a− 1 −a
a− 1 a− 1 −a− 1
a− 1 −a a

 Order (1 -2 3 -2) /2
g1 (0 0 0 1)
g2 (0 1 -3 4) /2
g3 (0 1 -1 0) /2

Table B.5: Degree 6, diameter class 2 (mod 3), a = (2k − 1)/3

LGM odd basis LGM Polynomial in 2a

Family D6:2A (self-transpose, conjugate of D6:1A, translate of D7:1A) 2a+ 1 −1 0
1 2a −1
0 1 2a+ 1

  a −a− 1 −a
a+ 1 a− 1 −a− 1
a −a a+ 1

 Order (1 2 3 2) /2
g1 (0 0 0 1)
g2 (0 0 1 1)
g3 (0 1 1 1)

Family D6:2B (self-transpose, conjugate of D6:1B, translate of D7:1B) 2a+ 2 −1 −1
1 2a −1
1 1 2a

  a −a− 1 −a
a+ 1 a− 1 −a− 1
a+ 1 −a a

 Order (1 2 3 2) /2
g1 (0 0 0 1)
g2 (0 1 1 0) /2
g3 (0 1 3 4) /2
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Table B.6: Degree 7, diameter class 0 (mod 3), a = 2k/3

LGM Polynomial in 2a

Family D7:0A (self-transpose, conjugate of D7:1A, translate of D6:1A) 2a− 1 −1 0
1 2a −1
0 1 2a− 1

 Order (1 -2 3 -2)
g1 (0 0 0 1)
g2 (0 0 1 -1)
g3 (0 1 -1 1)

Family D7:0B (self-transpose, conjugate of D7:1B, translate of D6:1B) 2a− 2 −1 −1
1 2a −1
1 1 2a

 Order (1 -2 3 -2)
g1 (0 0 0 1)
g2 (1 -3 2 -4) /4
g3 (1 -3 6 -4) /4

Table B.7: Degree 7, diameter class 1 (mod 3), a = (2k − 2)/3

LGM Polynomial in 2a

Family D7:1A (self-transpose, conjugate of D7:0A, translate of D6:2A) 2a+ 1 −1 0
1 2a −1
0 1 2a+ 1

 Order (1 2 3 2)
g1 (0 0 0 1)
g2 (0 0 1 1)
g3 (0 1 1 1)

Family D7:1B (self-transpose, conjugate of D7:0B, translate of D6:2B) 2a+ 2 −1 −1
1 2a −1
1 1 2a

 Order (1 2 3 2)
g1 (0 0 0 1)
g2 (1 3 2 4) /4
g3 (1 3 6 4) /4

Table B.8: Degree 7, diameter class 2 (mod 3), a = (2k − 1)/3

LGM Polynomial in 2a

Family D7:2 (self-transpose, self-conjugate, translate of D6:0) 2a −1 −1
1 2a −1
1 1 2a

 Order (1 0 3 0)
g1 (0 0 0 1)
g2 (1 -1 2 -2) /2
g3 (1 -1 4 -2) /2
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B.3 Bipartite circulant graph families of degrees 8 and 9

Table B.9: Degree 8, diameter class 0 (mod 2), a = k/2

LGM odd basis Polynomial in 2a

Family D8:0 (self-transpose)
2a+ 1 0 0 −1

0 2a −1 −1
0 1 2a −1
1 1 1 2a− 1


Order (1 0 3 2 0) /2
g1 (0 0 0 0 1)
g2 (0 0 0 1 1)
g3 (0 1 -1 2 2) /2
g4 (0 1 1 2 2) /2

Table B.10: Degree 8, diameter class 1 (mod 2), a = (k + 1)/2

LGM odd basis Polynomial in 2a

Family D8:1 (self-transpose)
2a −1 −1 0
1 2a− 1 −1 −1
1 1 2a− 1 −1
0 1 1 2a− 2


Order (1 -4 10 -12 4) /2
g1 (0 0 0 0 1)
g2 (0 1 -4 10 -10) /2
g3 (0 1 -3 8 -6) /2
g4 (0 2 -7 16 -14) /2

Table B.11: Degree 9, diameter class 0 (mod 2), a = k/2

LGM Polynomial in 2a

Family D9:0 (self-transpose, conjugate of D9:1)
2a− 1 0 0 −1

0 2a −1 −1
0 1 2a −1
1 1 1 2a− 1


Order (1 -2 5 -4 2)
g1 (0 0 0 0 1)
g2 (0 0 0 1 -1)
g3 (1 -3 6 -6 2) /2
g4 (1 -3 8 -10 6) /2

Table B.12: Degree 9, diameter class 1 (mod 2), a = (k + 1)/2

LGM Polynomial in 2a

Family D9:1 (self-transpose, conjugate of D9:0)
2a− 1 0 0 −1

0 2a− 2 −1 −1
0 1 2a− 2 −1
1 1 1 2a− 1


Order (1 -6 17 -24 14)
g1 (0 0 0 0 1)
g2 (0 0 0 1 -1)
g3 (1 -7 20 -30 18) /2
g4 (1 -7 22 -34 22) /2

Robert Roderick Lewis



B.4 Bipartite circulant graph families of degrees 10 and 11 289

B.4 Bipartite circulant graph families of degrees 10 and 11

Table B.13: Degree 10, diameter class 0 (mod 5), a = 2k/5

LGM odd basis Polynomial in 2a

Family D10:0 (self-transpose, self-conjugate, translate of D11:3)
2a −1 −1 −1 −1
1 2a −1 0 0
1 1 2a 0 0
1 0 0 2a −1
1 0 0 1 2a


Order (1 0 6 0 5 0) /2
g1 (0 0 0 2 0 2) /2
g2 (0 1 0 5 2 2) /2
g3 (0 0 1 0 3 2) /2
g4 (0 0 1 0 3 -2) /2
g5 (0 1 0 5 -2 2) /2

Table B.14: Degree 10, diameter class 1 (mod 5), a = (2k − 2)/5

LGM odd basis Polynomial in 2a

Family D10:1 (self-transpose, conjugate of D10:4)
2a −1 −1 0 0
1 2a+ 1 0 −1 −1
1 0 2a+ 1 −1 −1
0 1 1 2a+ 1 −1
0 1 1 1 2a+ 1


Order (1 4 13 20 14 4) /2
g1 (0 2 11 33 46 22) /2
g2 (0 1 2 -2 -8 -6) /2
g3 (0 2 5 8 2 -2) /2
g4 (0 0 2 5 -7 -10) /2
g5 (0 1 0 8 11 2) /2

Table B.15: Degree 10, diameter class 2 (mod 5), a = (2k + 1)/5

LGM odd basis Polynomial in 2a

Family D10:2 (self-transpose, conjugate of D10:3, translate of D11:0)
2a− 1 −1 −1 −1 0

1 2a− 1 1 0 −1
1 −1 2a 1 −1
1 0 −1 2a 0
0 1 1 0 2a


Order (1 -2 8 -8 5 -2) /2
g1 (0 1 0 -2 2 -1)
g2 (0 1 -4 4 -2 1)
g3 (0 1 2 -2 2 -1)
g4 (0 1 -4 6 -4 1)
g5 (0 1 -2 2 -2 1)

Table B.16: Degree 10, diameter class 3 (mod 5), a = (2k − 1)/5

LGM odd basis Polynomial in 2a

Family D10:3 (self-transpose, conjugate of D10:2, translate of D11:1)
2a+ 1 −1 −1 −1 0

1 2a+ 1 1 0 −1
1 −1 2a 1 −1
1 0 −1 2a 0
0 1 1 0 2a


Order (1 2 8 8 5 2) /2
g1 (0 1 4 8 6 3)
g2 (0 1 2 2 4 1)
g3 (0 1 0 0 0 1)
g4 (0 1 2 4 0 -1)
g5 (0 1 0 6 6 1)
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Table B.17: Degree 10, diameter class 4 (mod 5), a = (2k + 2)/5

LGM odd basis Polynomial in 2a

Family D10:4 (self-transpose, conjugate of D10:1)
2a −1 −1 0 0
1 2a− 1 0 −1 −1
1 0 2a− 1 −1 −1
0 1 1 2a− 1 −1
0 1 1 1 2a− 1


Order (1 -4 13 -20 14 -4) /2
g1 (0 2 -7 25 -38 18) /2
g2 (0 0 1 -4 0 2) /2
g3 (0 1 -2 6 -10 6) /2
g4 (0 2 -6 15 -13 2) /2
g5 (0 1 -6 14 -23 14) /2

Table B.18: Degree 11, diameter class 0 (mod 5), a = 2k/5

LGM Polynomial in 2a

Family D11:0 (self-transpose, conjugate of D11:1, translate of D10:2)
2a− 1 −1 −1 −1 0

1 2a− 1 1 0 −1
1 −1 2a 1 −1
1 0 −1 2a 0
0 1 1 0 2a


Order (1 -2 8 -8 5 -2)
g1 (0 1 0 -2 2 -1)
g2 (0 1 -4 4 -2 1)
g3 (0 1 2 -2 2 -1)
g4 (0 1 -4 6 -4 1)
g5 (0 1 -2 2 -2 1)

Table B.19: Degree 11, diameter class 1 (mod 5), a = (2k − 2)/5

LGM Polynomial in 2a

Family D11:1 (self-transpose, conjugate of D11:0, translate of D10:3)
2a+ 1 −1 −1 −1 0

1 2a+ 1 1 0 −1
1 −1 2a 1 −1
1 0 −1 2a 0
0 1 1 0 2a


Order (1 2 8 8 5 2)
g1 (0 1 4 8 6 3)
g2 (0 1 2 2 4 1)
g3 (0 1 0 0 0 1)
g4 (0 1 2 4 0 -1)
g5 (0 1 0 6 6 1)

Table B.20: Degree 11, diameter class 2 (mod 5), a = (2k + 1)/5

LGM Polynomial in 2a

Family D11:2 (self-transpose)
2a+ 1 0 −1 0 −1

0 2a+ 1 0 −1 −1
1 0 2a −1 −1
0 1 1 2a 1
1 1 1 −1 2a− 1


Order (1 -4 12 -16 9 -4)
g1 (0 1 -4 8 -12 5)
g2 (0 1 -4 8 -4 -3)
g3 (0 1 -4 8 -4 5)
g4 (0 1 -4 16 -12 5)
g5 (0 1 0 4 0 1)
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Table B.21: Degree 11, diameter class 3 (mod 5), a = (2k − 1)/5

LGM Polynomial in 2a

Family D11:3 (self-transpose, self-conjugate, translate of D10:0)
2a −1 −1 −1 −1
1 2a −1 0 0
1 1 2a 0 0
1 0 0 2a −1
1 0 0 1 2a


Order (1 0 6 0 5 0)
g1 (0 1 0 2 0 1)
g2 (0 1 0 4 4 -1)
g3 (0 1 -2 6 -6 1)
g4 (0 1 2 6 6 1)
g5 (0 1 0 4 -4 -1)

Table B.22: Degree 11, diameter class 4 (mod 5), a = (2k − 3)/5

LGM Polynomial in 2a

Family D11:4a (transpose of D11:4b)
2a −1 −1 −1 −1
1 2a −1 0 0
1 1 2a+ 1 1 0
1 0 −1 2a+ 1 −1
1 0 0 1 2a+ 2


Order (1 4 12 20 15 4)
g1 (0 1 4 12 16 7)
g2 (0 1 4 10 14 3)
g3 (0 1 2 6 4 3)
g4 (0 1 4 12 22 9)
g5 (0 1 2 8 4 1)

Family D11:4b (transpose of D11:4a)
2a 1 1 1 1
−1 2a 1 0 0
−1 −1 2a+ 1 −1 0
−1 0 1 2a+ 1 1
−1 0 0 −1 2a+ 2


Order (1 4 12 20 15 4)
g1 (0 1 6 18 26 13)
g2 (0 1 4 8 12 5)
g3 (0 1 2 10 16 9)
g4 (0 1 2 4 4 3)
g5 (0 1 2 4 -2 -3)
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Appendix C

Largest-known Abelian Cayley graph
families (if non-circulant)

This appendix documents extremal and largest-known Abelian Cayley graphs that are not

circulant, up to degree 19. As given by Definition 1.4, a graph family is an infinite set of

graphs of given degree d and dimension f = bd/2c, defined for each diameter k of a diameter

class, with order and generating set specified by polynomials in k of maximum degree f .

Unless otherwise stated, the diameter class is modulo f for odd dimension and modulo f/2 for

even. The graph families are identified by a code, such as A14:5a. In this example, A

indicates that it is an Abelian Cayley graph family that is not circulant, 14 is the degree, 5 is

the diameter class (mod 7), and a is the isomorphism class (where there is more than one).

Of the largest-known Abelian Cayley graph families presented in this appendix, the following

have been discovered by the author:

Degree 6 and above - all families

All extremal and largest-known non-circulant Abelian Cayley graph families are

quasimaximal, with maximum odd girth above some low diameter threshold (often zero). The

extremal and largest-known graphs are included, up to diameter 16, in Appendix F, with

reference to their families by isomorphism class.

C.1 Abelian Cayley graph families of degree 5

Table C.1: Degree 5, all diameters k, a = k

LGM Polynomial in 2a

Family A5 (self-transpose, self-conjugate)
Cyclic rank 2 (suffices a and b)(

2a 0
0 2a

)
Order,n (1 0 0)

na (0 1 0)
nb (0 1 0)

g1a (0 0 0)
g1b (0 0 1)

g2a (0 0 1)
g2b (0 0 0)

gma (0 1 0) /2
gmb (0 1 0) /2
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C.2 Abelian Cayley graph families of degree 9

Table C.2: Degree 9, diameter class 0 (mod 2), a = k/2

LGM Polynomial in 2a

Family A9:0Aa0, for k ≡ 0 (mod 4) (transpose of A9:0Ab0, self-conjugate)
Cyclic rank 2 (suffices a and b) 2a −1 −1 0

1 2a+ 1 −1 −1
1 1 2a− 1 −1
0 1 1 2a

 Order, n (1 0 4 0 0)

na (0 1 0 4 0) /2
nb (0 0 0 2 0)

g1a (0 1 -2 4 4) /4
g1b (0 0 0 1 -1)

g2a (0 1 0 -2 0) /4
g2b (0 0 0 1 -1)

g3a (0 1 0 -2 0) /4
g3b (0 0 0 0 1)

g4a (0 1 -4 4 -4) /4
g4b (0 0 0 1 -1)

gma (0 1 0 4 0) /4
gmb (0 0 0 1 0)

Family A9:0Aa2, for k ≡ 2 (mod 4) (transpose of A9:0Ab2, self-conjugate)
Cyclic rank 2 (suffices a and b) 2a −1 −1 0

1 2a+ 1 −1 −1
1 1 2a− 1 −1
0 1 1 2a

 Order, n (1 0 4 0 0)

na (0 1 0 4 0) /2
nb (0 0 0 2 0)

g1a (0 1 -2 4 4) /4
g1b (0 0 0 1 -1)

g2a (0 1 0 -2 0) /4
g2b (0 0 0 1 -2)

g3a (0 1 0 -2 0) /4
g3b (0 0 0 0 2)

g4a (0 1 4 4 4) /4
g4b (0 0 0 0 3)

gma (0 1 0 4 0) /4
gmb (0 0 0 1 0)

Family A9:0Ab0, for k ≡ 0 (mod 4) (transpose of A9:0Aa0, self-conjugate)
Cyclic rank 2 (suffices a and b) 2a 1 1 0
−1 2a+ 1 1 1
−1 −1 2a− 1 1
0 −1 −1 2a

 Order, n (1 0 4 0 0)

na (0 1 0 4 0) /2
nb (0 0 0 2 0)

g1a (0 3 2 8 0) /8
g1b (0 0 0 3 2) /2

g2a (0 3 2 12 -8) /8
g2b (0 0 0 3 2) /2

g3a (0 3 2 20 8) /8
g3b (0 0 0 3 -2) /2

g4a (0 3 -2 16 0) /8
g4b (0 0 0 3 2) /2

gma (0 1 0 4 0) /4
gmb (0 0 0 1 0)

continued on next page
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Table C.2: (cont.) Degree 9, diameter class 0 (mod 2), a = k/2

LGM Polynomial in 2a

Family A9:0Ab2, for k ≡ 2 (mod 4) (transpose of A9:0Aa2, self-conjugate)
Cyclic rank 2 (suffices a and b) 2a 1 1 0
−1 2a+ 1 1 1
−1 −1 2a− 1 1
0 −1 −1 2a

 Order, n (1 0 4 0 0)

na (0 1 0 4 0) /2
nb (0 0 0 2 0)

g1a (0 3 0 16 0) /8
g1b (0 0 0 3 -2) /2

g2a (0 3 0 16 8) /8
g2b (0 0 0 3 0) /2

g3a (0 3 -4 8 -8) /8
g3b (0 0 0 1 0) /2

g4a (0 3 0 8 0) /8
g4b (0 0 0 1 -2) /2

gma (0 1 0 4 0) /4
gmb (0 0 0 0 0)

Family A9:0B0, for k ≡ 0 (mod 4) (self-transpose, self-conjugate)
Cyclic rank 2 (suffices a and b) 2a −1 −1 0

1 2a 0 −1
1 0 2a −1
0 1 1 2a

 Order, n (1 0 4 0 0)

na (0 1 0 4 0) /2
nb (0 0 0 2 0)

g1a (0 3 -2 12 8) /8
g1b (0 0 0 3 0) /2

g2a (0 3 0 20 0) /8
g2b (0 0 0 3 2) /2

g3a (0 3 0 20 0) /8
g3b (0 0 0 1 -2) /2

g4a (0 3 6 12 8) /8
g4b (0 0 0 1 0) /2

gma (0 1 0 4 0) /4
gmb (0 0 0 1 0)

Family A9:0B2, for k ≡ 2 (mod 4) (self-transpose, self-conjugate)
Cyclic rank 2 (suffices a and b) 2a −1 −1 0

1 2a 0 −1
1 0 2a −1
0 1 1 2a

 Order, n (1 0 4 0 0)

na (0 1 0 4 0) /2
nb (0 0 0 2 0)

g1a (0 3 -4 12 -8) /8
g1b (0 0 0 3 -2) /2

g2a (0 3 -2 16 -8) /8
g2b (0 0 0 3 0) /2

g3a (0 3 2 16 8) /8
g3b (0 0 0 1 0) /2

g4a (0 3 0 12 -8) /8
g4b (0 0 0 1 -2) /2

gma (0 1 0 4 0) /4
gmb (0 0 0 0 0)
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Table C.3: Degree 9, diameter class 1 (mod 2), a = (k + 1)/2

LGM Polynomial in 2a

Family A9:1 (self-transpose, self-conjugate)
Cyclic rank 2 (suffices a and b)

2a −1 −1 0
1 2a− 1 −1 −1
1 1 2a− 1 −1
0 1 1 2a− 2


Order, n (1 4 10 12 4)

na (1 4 10 12 4) /2
nb (0 0 0 0 2)

g1a (1 2 4 8 4) /4
g1b (0 0 0 0 1)

g2a (1 2 8 16 8) /4
g2b (0 0 0 0 1)

g3a (1 4 16 24 8) /4
g3b (0 0 0 0 1)

g4a (1 6 20 28 12) /4
g4b (0 0 0 0 1)

gma (1 4 10 12 4) /4
gmb (0 0 0 0 0)

C.3 Abelian Cayley graph families of degrees 10 and 11

Table C.4: Degree 10, diameter class 1 (mod 5), a = (2k + 3)/5

LGM odd basis Polynomial in 2a

Family A10:1 (self-transpose, conjugate of A10:3, translate of A11:4)
Cyclic rank 2 (suffices a and b)

2a− 1 −1 −1 0 −1
1 2a− 1 0 −1 −1
1 0 2a− 1 −1 −1
0 1 1 2a− 1 1
1 1 1 −1 2a


Order, n (1 -4 14 -24 17 -4) /2

na (0 1 -3 11 -13 4) /2
nb (0 0 0 0 1 -1)

g1a (0 0 1 -2 6 -3)
g1b (0 0 0 0 0 1)

g2a (0 0 0 1 -2 1)
g2b (0 0 0 0 1 -2)

g3a (0 0 0 1 -2 1)
g3b (0 0 0 0 0 1)

g4a (0 0 0 0 3 -1)
g4b (0 0 0 0 0 1)

g5a (0 0 0 1 0 -1)
g5b (0 0 0 0 0 0)
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Table C.5: Degree 10, diameter class 2 (mod 5), a = (2k + 1)/5

LGM odd basis Polynomial in 2a

Family A10:2 (self-transpose, self-conjugate, translate of A11:0)
Cyclic rank 3 (suffices a, b and c)

2a −1 −1 −1 −1
1 2a 0 0 −1
1 0 2a 0 −1
1 0 0 2a −1
1 1 1 1 2a


Order, n (1 0 7 0 0 0) /2

na (0 0 1 0 7 0)
nb (0 0 0 0 1 0)
nc (0 0 0 0 1 0) /2

g1a (0 0 1 0 17 10) /2
g1b (0 0 0 0 1 -2) /2
g1c (0 0 0 0 1 -2) /4

g2a (0 0 0 1 5 -8) /2
g2b (0 0 0 0 0 0)
g2c (0 0 0 0 0 0)

g3a (0 0 0 1 5 -8) /2
g3b (0 0 0 0 0 1)
g3c (0 0 0 0 0 0)

g4a (0 0 0 3 5 6) /2
g4b (0 0 0 0 1 0) /2
g4c (0 0 0 0 1 2) /4

g5a (0 0 0 5 -5 10) /2
g5b (0 0 0 0 1 -2) /2
g5c (0 0 0 0 1 -2) /4

Table C.6: Degree 10, diameter class 3 (mod 5), a = (2k − 1)/5

LGM odd basis Polynomial in 2a

Family A10:3 (self-transpose, conjugate of A10:1, translate of A11:1)
Cyclic rank 2 (suffices a and b)

2a+ 1 −1 −1 0 −1
1 2a+ 1 0 −1 −1
1 0 2a+ 1 −1 −1
0 1 1 2a+ 1 1
1 1 1 −1 2a


Order, n (1 4 14 24 17 4) /2

na (0 1 3 11 13 4) /2
nb (0 0 0 0 1 1)

g1a (0 0 1 2 6 3)
g1b (0 0 0 0 0 1)

g2a (0 0 0 1 2 1)
g2b (0 0 0 0 1 0)

g3a (0 0 0 1 2 1)
g3b (0 0 0 0 0 1)

g4a (0 0 0 0 3 1)
g4b (0 0 0 0 0 1)

g5a (0 0 0 1 0 -1)
g5b (0 0 0 0 0 0)
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Table C.7: Degree 11, diameter class 0 (mod 5), a = 2k/5

LGM Polynomial in 2a

Family A11:0 (self-transpose, self-conjugate, translate of A10:2)
Cyclic rank 3 (suffices a, b and c)

2a −1 −1 −1 −1
1 2a 0 0 −1
1 0 2a 0 −1
1 0 0 2a −1
1 1 1 1 2a


Order, n (1 0 7 0 0 0)

na (0 0 1 0 7 0)
nb (0 0 0 0 1 0)
nc (0 0 0 0 1 0)

g1a (0 0 0 1 4 3)
g1b (0 0 0 0 1 -1)
g1c (0 0 0 0 1 -1)

g2a (0 0 0 1 2 -3)
g2b (0 0 0 0 0 1)
g2c (0 0 0 0 0 1)

g3a (0 0 0 1 -2 1)
g3b (0 0 0 0 1 -1)
g3c (0 0 0 0 0 0)

g4a (0 0 0 1 -2 1)
g4b (0 0 0 0 0 0)
g4c (0 0 0 0 1 -1)

g5a (0 0 0 1 -2 1)
g5b (0 0 0 0 0 0)
g5c (0 0 0 0 0 0)

gma (0 0 1 0 7 0) /2
gmb (0 0 0 0 1 0) /2
gmc (0 0 0 0 1 0) /2

Table C.8: Degree 11, diameter class 1 (mod 5), a = (2k − 2)/5

LGM Polynomial in 2a

Family A11:1 (self-transpose, conjugate of A11:4, translate of A10:3)
Cyclic rank 2 (suffices a and b)

2a+ 1 −1 −1 0 −1
1 2a+ 1 0 −1 −1
1 0 2a+ 1 −1 −1
0 1 1 2a+ 1 1
1 1 1 −1 2a


Order, n (1 4 14 24 17 4)

na (0 1 3 11 13 4)
nb (0 0 0 0 1 1)

g1a (0 0 1 5 13 5)
g1b (0 0 0 0 1 0)

g2a (0 0 1 3 3 1)
g2b (0 0 0 0 1 0)

g3a (0 0 1 3 3 1)
g3b (0 0 0 0 0 1)

g4a (0 0 1 -1 5 3)
g4b (0 0 0 0 1 0)

g5a (0 0 1 1 -1 -1)
g5b (0 0 0 0 0 0)

gma (0 1 3 11 13 4) /2
gmb (0 0 0 0 0 0)
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Table C.9: Degree 11, diameter class 4 (mod 5), a = (2k + 2)/5

LGM Polynomial in 2a

Family A11:4 (self-transpose, conjugate of A11:1, translate of A10:1)
Cyclic rank 2 (suffices a and b)

2a− 1 −1 −1 0 −1
1 2a− 1 0 −1 −1
1 0 2a− 1 −1 −1
0 1 1 2a− 1 1
1 1 1 −1 2a


Order, n (1 -4 14 -24 17 -4)

na (0 1 -3 11 -13 4)
nb (0 0 0 0 1 -1)

g1a (0 0 1 1 5 -3)
g1b (0 0 0 0 0 1)

g2a (0 0 1 -1 -1 1)
g2b (0 0 0 0 0 1)

g3a (0 0 1 -1 -1 1)
g3b (0 0 0 0 1 -2)

g4a (0 0 1 -5 13 -5)
g4b (0 0 0 0 0 1)

g5a (0 0 1 -5 7 -3)
g5b (0 0 0 0 0 0)

gma (0 1 -3 11 -13 4) /2
gmb (0 0 0 0 0 0)

C.4 Abelian Cayley graph families of degrees 12 and 13

Table C.10: Degree 12, diameter class 0 (mod 3), a = k/3

LGM odd basis Polynomial in 2a

Family A12:0 (self-transpose, conjugate of A12:2)
Cyclic rank 2 (suffices a and b)

2a+ 1 0 −1 −1 −1 0
0 2a −1 −1 −1 −1
1 1 2a 0 −1 −1
1 1 0 2a −1 −1
1 1 1 1 2a 0
0 1 1 1 0 2a+ 1


Order, n (1 2 12 16 10 0 0) /2

na (0 1 2 12 16 10 0) /2
nb (0 0 0 0 0 1 0)

g1a (0 0 0 1 2 -5 0) /2
g1b (0 0 0 0 0 0 0)

g2a (0 0 0 2 3 3 -2) /2
g2b (0 0 0 0 0 0 0)

g3a (0 0 0 1 -4 -6 -4) /2
g3b (0 0 0 0 0 1 -1)

g4a (0 0 1 3 8 10 6) /2
g4b (0 0 0 0 0 0 1)

g5a (0 0 0 1 7 9 2) /2
g5b (0 0 0 0 0 0 0)

g6a (0 0 1 0 6 3 0) /2
g6b (0 0 0 0 0 0 0)
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Table C.11: Degree 12, diameter class 1 (mod 3), a = (k − 1)/3

LGM odd basis Polynomial in 2a

Family A12:1a (transpose of A12:1b, self-conjugate)
Cyclic rank 2 (suffices a and b)

2a+ 2 0 −1 −1 −1 −1
0 2a −1 −1 −1 −1
1 1 2a+ 1 −1 −1 −1
1 1 1 2a+ 1 0 0
1 1 1 0 2a+ 1 0
1 1 1 0 0 2a+ 1


Order, n (1 6 25 60 72 40 8) /2

na (0 1 5 20 40 32 8) /2
nb (0 0 0 0 0 1 1)

g1a (0 0 1 6 11 10 4) /2
g1b (0 0 0 0 0 0 0)

g2a (0 0 0 3 3 -8 -8) /2
g2b (0 0 0 0 0 0 0)

g3a (0 0 1 4 9 11 5)
g3b (0 0 0 0 0 0 0)

g4a (0 0 0 3 14 18 6) /2
g4b (0 0 0 0 0 0 1)

g5a (0 0 0 3 14 18 6) /2
g5b (0 0 0 0 0 0 0)

g6a (0 0 1 1 2 6 2) /2
g6b (0 0 0 0 0 0 1)

Family A12:1b (transpose of A12:1a, self-conjugate)
Cyclic rank 2 (suffices a and b)

2a+ 2 0 1 1 1 1
0 2a 1 1 1 1
−1 −1 2a+ 1 1 1 1
−1 −1 −1 2a+ 1 0 0
−1 −1 −1 0 2a+ 1 0
−1 −1 −1 0 0 2a+ 1


Order, n (1 6 25 60 72 40 8) /2

na (0 1 5 20 40 32 8) /2
nb (0 0 0 0 0 1 1)

g1a (0 0 3 4 21 32 12) /2
g1b (0 0 0 0 0 0 0)

g2a (0 0 0 5 31 46 20) /2
g2b (0 0 0 0 0 0 0)

g3a (0 0 1 3 -12 -16 -2) /2
g3b (0 0 0 0 0 0 0)

g4a (0 0 0 2 -1 -10 -5)
g4b (0 0 0 0 0 1 0)

g5a (0 0 1 6 15 14 3)
g5b (0 0 0 0 0 0 0)

g6a (0 0 1 6 15 14 3)
g6b (0 0 0 0 0 0 1)
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Table C.12: Degree 12, diameter class 2 (mod 3), a = (k + 1)/3

LGM odd basis Polynomial in 2a

Family A12:2 (self-transpose, conjugate of A12:0)
Cyclic rank 2 (suffices a and b)

2a− 1 0 −1 −1 −1 0
0 2a −1 −1 −1 −1
1 1 2a 0 −1 −1
1 1 0 2a −1 −1
1 1 1 1 2a 0
0 1 1 1 0 2a− 1


Order, n (1 -2 12 -16 10 0 0) /2

na (0 1 -2 12 -16 10 0) /2
nb (0 0 0 0 0 1 0)

g1a (0 0 2 0 19 -17 0) /2
g1b (0 0 0 0 0 0 0)

g2a (0 0 0 4 -8 13 2) /2
g2b (0 0 0 0 0 0 0)

g3a (0 0 0 1 -12 14 -6) /2
g3b (0 0 0 0 0 1 -1)

g4a (0 0 1 -1 0 -2 4) /2
g4b (0 0 0 0 0 0 1)

g5a (0 0 1 -5 8 -15 2) /2
g5b (0 0 0 0 0 0 0)

g6a (0 0 2 -3 17 5 0) /2
g6b (0 0 0 0 0 0 0)

Table C.13: Degree 13, diameter class 0 (mod 3), a = k/3

LGM Polynomial in 2a

Family A13:0a (transpose of A13:0b, self-conjugate)
For diameter k ≡ 0 (mod 3), except k ≡ 138 (mod 669) (gcd 223)
Cyclic rank 3 (suffices a, b and c)

2a+ 1 −1 −1 −1 0 0
1 2a −1 −1 −1 0
1 1 2a 0 −1 −1
1 1 0 2a −1 −1
0 1 1 1 2a −1
0 0 1 1 1 2a− 1


Order, n (1 0 10 0 0 0 0)

na (0 0 1 0 10 0 0)
nb (0 0 0 0 0 1 0)
nc (0 0 0 0 0 1 0)

g1a (0 0 0 1 2 3 -5)
g1b (0 0 0 0 0 0 1)
g1c (0 0 0 0 0 1 -1)

g2a (0 0 0 1 1 -2 -1)
g2b (0 0 0 0 0 0 1)
g2c (0 0 0 0 0 0 0)

g3a (0 0 0 1 -3 0 -2)
g3b (0 0 0 0 0 0 1)
g3c (0 0 0 0 0 0 0)

g4a (0 0 0 1 -3 0 -2)
g4b (0 0 0 0 0 1 -1)
g4c (0 0 0 0 0 1 -1)

g5a (0 0 0 0 4 -2 1)
g5b (0 0 0 0 0 1 -1)
g5c (0 0 0 0 0 0 0)

g6a (0 0 0 1 3 3 5)
g6b (0 0 0 0 0 1 -1)
g6c (0 0 0 0 0 0 1)

gma (0 0 1 0 10 0 0) /2
gmb (0 0 0 0 0 0 0)
gmc (0 0 0 0 0 1 0) /2

continued on next page
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Table C.13: (cont.) Degree 13, diameter class 0 (mod 3), a = k/3

LGM Polynomial in 2a

Family A13:0b (transpose of A13:0a, self-conjugate)
For diameter k ≡ 0 (mod 3), except k ≡ 99 (mod 111) (gcd 37)
Cyclic rank 3 (suffices a, b and c)

2a+ 1 1 1 1 0 0
−1 2a 1 1 1 0
−1 −1 2a 0 1 1
−1 −1 0 2a 1 1
0 −1 −1 −1 2a 1
0 0 −1 −1 −1 2a− 1


Order, n (1 0 10 0 0 0 0)

na (0 0 1 0 10 0 0)
nb (0 0 0 0 0 1 0)
nc (0 0 0 0 0 1 0)

g1a (0 0 0 1 1 4 -1)
g1b (0 0 0 0 0 0 1)
g1c (0 0 0 0 0 0 0)

g2a (0 0 0 1 -3 9 -1)
g2b (0 0 0 0 0 0 1)
g2c (0 0 0 0 0 1 -1)

g3a (0 0 0 0 1 8 0)
g3b (0 0 0 0 0 1 -1)
g3c (0 0 0 0 0 0 0)

g4a (0 0 0 1 -1 2 0)
g4b (0 0 0 0 0 1 -1)
g4c (0 0 0 0 0 0 1)

g5a (0 0 0 1 2 3 1)
g5b (0 0 0 0 0 1 -1)
g5c (0 0 0 0 0 1 -1)

g6a (0 0 0 0 2 2 -1)
g6b (0 0 0 0 0 0 1)
g6c (0 0 0 0 0 0 0)

gma (0 0 0 0 0 0 0)
gmb (0 0 0 0 0 0 0)
gmc (0 0 0 0 0 1 0) /2

Family A13:0c (self-transpose, self-conjugate)
For diameter k ≡ 0 (mod 6)
Cyclic rank 4 (suffices a, b, c and d)

2a −1 −1 −1 −1 0
1 2a −1 −1 0 −1
1 1 2a 0 1 −1
1 1 0 2a 1 −1
1 0 −1 −1 2a −1
0 1 1 1 1 2a


Order, n (1 0 12 0 0 0 0)

na (0 0 0 1 0 12 0) /2
nb (0 0 0 0 0 2 0)
nc (0 0 0 0 0 1 0)
nd (0 0 0 0 0 1 0)

No formulae discovered yet for a
generating set

Family A13:0d (self-transpose, self-conjugate)
For diameter k ≡ 3 (mod 6)
Cyclic rank 4 (suffices a, b, c and d)

2a −1 −1 −1 −1 0
1 2a −1 −1 0 −1
1 1 2a 0 1 −1
1 1 0 2a 1 −1
1 0 −1 −1 2a −1
0 1 1 1 1 2a


Order, n (1 0 12 0 0 0 0)

na (0 0 0 1 0 12 0) /4
nb (0 0 0 0 0 4 0)
nc (0 0 0 0 0 1 0)
nd (0 0 0 0 0 1 0)

No formulae discovered yet for a
generating set
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Table C.14: Degree 13, diameter class 1 (mod 3), a = (k − 1)/3

LGM Polynomial in 2a

A13:1a1 (transpose of A13:1b1, conjugate of A13:2a)
For diameter k ≡ 1 (mod 6), except k ≡ 487 (mod 606) (gcd 101)
Cyclic rank 2 (suffices a and b)

2a 0 −1 −1 −1 −1
0 2a −1 −1 −1 −1
1 1 2a+ 1 −1 −1 −1
1 1 1 2a+ 1 0 0
1 1 1 0 2a+ 1 0
1 1 1 0 0 2a+ 1


Order, n (1 4 17 34 28 8 0)

na (0 1 3 14 20 8 0) /4
nb (0 0 0 0 0 4 4)

g1a (0 1 7 10 12 24 16) /16
g1b (0 0 0 0 0 1 1)

g2a (0 1 3 -2 -44 -56 -16) /16
g2b (0 0 0 0 0 1 1)

g3a (0 1 3 -6 16 24 0) /16
g3b (0 0 0 0 0 3 3)

g4a (0 1 -1 2 16 8 0) /16
g4b (0 0 0 0 0 1 -1)

g5a (0 1 -1 2 16 8 0) /16
g5b (0 0 0 0 0 1 -5)

g6a (0 1 -5 -6 -32 -24 0) /16
g6b (0 0 0 0 0 3 11)

gma (0 0 0 0 0 0 0)
gmb (0 0 0 0 0 2 2)

Family A13:1a4 (transpose of A13:1b4, conjugate of A13:2a)
For diameter k ≡ 4 (mod 6), except k ≡ 106 (mod 186) (gcd 31)
Cyclic rank 2 (suffices a and b

2a 0 −1 −1 −1 −1
0 2a −1 −1 −1 −1
1 1 2a+ 1 −1 −1 −1
1 1 1 2a+ 1 0 0
1 1 1 0 2a+ 1 0
1 1 1 0 0 2a+ 1


Order, n (1 4 17 34 28 8 0)

na (0 1 3 14 20 8 0) /4
nb (0 0 0 0 0 4 4)

g1a (0 1 9 24 40 40 16) /16
g1b (0 0 0 0 0 1 1)

g2a (0 1 5 12 -16 -40 -16) /16
g2b (0 0 0 0 0 1 1)

g3a (0 1 5 0 4 8 0) /16
g3b (0 0 0 0 0 0 0)

g4a (0 1 1 0 12 8 0) /16
g4b (0 0 0 0 0 0 2)

g5a (0 1 1 0 12 8 0) /16
g5b (0 0 0 0 0 3 4)

g6a (0 1 -3 -8 -36 -24 0) /16
g6b (0 0 0 0 0 3 0)

gma (0 0 0 0 0 0 0)
gmb (0 0 0 0 0 2 2)

continued on next page
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Table C.14: (cont.) Degree 13, diameter class 1 (mod 3), a = (k − 1)/3

LGM Polynomial in 2a

Family A13:1b1 (transpose of A13:1a1, conjugate of A13:2b)
For diameter k ≡ 1 (mod 6), except k ≡ 349 (mod 402) (gcd 67)
Cyclic rank 2 (suffices a and b

2a 0 1 1 1 1
0 2a 1 1 1 1
−1 −1 2a+ 1 1 1 1
−1 −1 −1 2a+ 1 0 0
−1 −1 −1 0 2a+ 1 0
−1 −1 −1 0 0 2a+ 1


Order, n (1 4 17 34 28 8 0)

na (0 1 3 14 20 8 0) /4
nb (0 0 0 0 0 4 4)

g1a (0 1 -1 6 24 32 16) /16
g1b (0 0 0 0 0 1 1)

g2a (0 1 -5 -6 -32 -48 -16) /16
g2b (0 0 0 0 0 3 3)

g3a (0 1 1 0 24 24 0) /16
g3b (0 0 0 0 0 1 1)

g4a (0 1 5 4 16 8 0) /16
g4b (0 0 0 0 0 1 -11)

g5a (0 1 5 4 16 8 0) /16
g5b (0 0 0 0 0 3 13)

g6a (0 1 -3 -12 -80 -56 0) /16
g6b (0 0 0 0 0 3 5)

gma (0 1 3 14 20 8 0) /8
gmb (0 0 0 0 0 2 2)

Family A13:1b4 (transpose of A13:1a4, conjugate of A13:2b)
For diameter k ≡ 4 (mod 6), except k ≡ 118 (mod 174) (gcd 29)
Cyclic rank 2 (suffices a and b

2a 0 1 1 1 1
0 2a 1 1 1 1
−1 −1 2a+ 1 1 1 1
−1 −1 −1 2a+ 1 0 0
−1 −1 −1 0 2a+ 1 0
−1 −1 −1 0 0 2a+ 1


Order, n (1 4 17 34 28 8 0)

na (0 1 3 14 20 8 0) /4
nb (0 0 0 0 0 4 4)

g1a (0 1 1 4 20 32 16) /16
g1b (0 0 0 0 0 1 1)

g2a (0 1 -3 -8 -36 -48 -16) /16
g2b (0 0 0 0 0 3 3)

g3a (0 1 3 2 16 16 0) /16
g3b (0 0 0 0 0 1 1)

g4a (0 1 7 14 32 16 0) /16
g4b (0 0 0 0 0 1 3)

g5a (0 1 7 14 32 16 0) /16
g5b (0 0 0 0 0 1 -1)

g6a (0 1 -1 -2 -64 -48 0) /16
g6b (0 0 0 0 0 3 3)

gma (0 1 3 14 20 8 0) /8
gmb (0 0 0 0 0 0 0)
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Table C.15: Degree 13, diameter class 2 (mod 3), a = (k + 1)/3

LGM Polynomial in 2a

Family A13:2a2 (transpose of A13:2b2, conjugate of A13:1a)
For diameter k ≡ 2 (mod 6), except k ≡ 170 (mod 222) (gcd 37)
Cyclic rank 2 (suffices a and b)

2a 0 −1 −1 −1 −1
0 2a −1 −1 −1 −1
1 1 2a− 1 −1 −1 −1
1 1 1 2a− 1 0 0
1 1 1 0 2a− 1 0
1 1 1 0 0 2a− 1


Order, n (1 -4 17 -34 28 -8 0)

na (0 1 -3 14 -20 8 0) /4
nb (0 0 0 0 0 4 -4)

g1a (0 1 3 -8 20 -32 16) /16
g1b (0 0 0 0 0 1 -1)

g2a (0 1 -1 4 -36 48 -16) /16
g2b (0 0 0 0 0 3 -3)

g3a (0 1 1 -10 24 -16 0) /16
g3b (0 0 0 0 0 1 -1)

g4a (0 1 -3 2 24 -16 0) /16
g4b (0 0 0 0 0 3 1)

g5a (0 1 -3 2 24 -16 0) /16
g5b (0 0 0 0 0 3 -3)

g6a (0 1 -11 18 -72 48 0) /16
g6b (0 0 0 0 0 3 -7)

gma (0 1 -3 14 -20 8 0) /8
gmb (0 0 0 0 0 0 0)

Family A13:2a5 (transpose of A13:2b5, conjugate of A13:1a)
For diameter k ≡ 5 (mod 6), except k ≡ 47 (mod 78) (gcd 13)
Cyclic rank 2 (suffices a and b)

2a 0 −1 −1 −1 −1
0 2a −1 −1 −1 −1
1 1 2a+ 1 −1 −1 −1
1 1 1 2a+ 1 0 0
1 1 1 0 2a+ 1 0
1 1 1 0 0 2a+ 1


Order, n (1 -4 17 -34 28 -8 0)

na (0 1 -3 14 -20 8 0) /4
nb (0 0 0 0 0 4 -4)

g1a (0 1 1 -6 20 -32 16) /16
g1b (0 0 0 0 0 1 -1)

g2a (0 1 -3 6 -36 48 -16) /16
g2b (0 0 0 0 0 3 -3)

g3a (0 1 -1 -4 20 -16 0) /16
g3b (0 0 0 0 0 1 -1)

g4a (0 1 -5 12 -4 0 0) /16
g4b (0 0 0 0 0 1 -1)

g5a (0 1 -5 12 -4 0 0) /16
g5b (0 0 0 0 0 3 -1)

g6a (0 1 -9 20 -52 32 0) /16
g6b (0 0 0 0 0 3 -5)

gma (0 0 0 0 0 0 0) /8
gmb (0 0 0 0 0 2 -2)

continued on next page
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Table C.15: (cont.) Degree 13, diameter class 2 (mod 3), a = (k + 1)/3

LGM Polynomial in 2a

Family A13:2b2 (transpose of A13:2a2, conjugate of A13:1b)
For diameter k ≡ 2 (mod 6), except k ≡ 80 (mod 186) (gcd 31)
Cyclic rank 2 (suffices a and b)

2a 0 1 1 1 1
0 2a 1 1 1 1
−1 −1 2a− 1 1 1 1
−1 −1 −1 2a− 1 0 0
−1 −1 −1 0 2a− 1 0
−1 −1 −1 0 0 2a− 1


Order, n (1 -4 17 -34 28 -8 0)

na (0 1 -3 14 -20 8 0) /4
nb (0 0 0 0 0 4 -4)

g1a (0 1 -9 24 -40 40 -16) /16
g1b (0 0 0 0 0 1 -1)

g2a (0 1 -5 12 16 -40 16) /16
g2b (0 0 0 0 0 1 -1)

g3a (0 1 -5 0 -4 8 0) /16
g3b (0 0 0 0 0 0 0)

g4a (0 1 -1 0 -12 8 0) /16
g4b (0 0 0 0 0 4 -6)

g5a (0 1 -1 0 -12 8 0) /16
g5b (0 0 0 0 0 3 -4)

g6a (0 1 3 -8 36 -24 0) /16
g6b (0 0 0 0 0 3 0)

gma (0 0 0 0 0 0 0)
gmb (0 0 0 0 0 2 -2)

Family A13:2b5 (transpose of A13:2a5, conjugate of A13:1b)
For diameter k ≡ 5 (mod 6), except k ≡ 119 (mod 606) (gcd 101)
Cyclic rank 2 (suffices a and b)

2a 0 1 1 1 1
0 2a 1 1 1 1
−1 −1 2a− 1 1 1 1
−1 −1 −1 2a− 1 0 0
−1 −1 −1 0 2a− 1 0
−1 −1 −1 0 0 2a− 1


Order, n (1 -4 17 -34 28 -8 0)

na (0 1 -3 14 -20 8 0) /4
nb (0 0 0 0 0 4 -4)

g1a (0 1 -7 10 -12 24 -16) /16
g1b (0 0 0 0 0 1 -1)

g2a (0 1 -3 -2 44 -56 16) /16
g2b (0 0 0 0 0 1 -1)

g3a (0 1 -3 -6 -16 24 0) /16
g3b (0 0 0 0 0 3 -3)

g4a (0 1 1 2 -16 8 0) /16
g4b (0 0 0 0 0 1 1)

g5a (0 1 1 2 -16 8 0) /16
g5b (0 0 0 0 0 1 5)

g6a (0 1 5 -6 32 -24 0) /16
g6b (0 0 0 0 0 3 -11)

gma (0 0 0 0 0 0 0)
gmb (0 0 0 0 0 2 -2)
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C.5 Abelian Cayley graph families of degrees 14 and 15

Table C.16: Degree 14, diameter class 0 (mod 7), except k ≡ 1064 (mod 1211)
(gcd 173), a = 2k/7

LGM odd basis Polynomial in 2a

Family A14:0 (self-transpose, conjugate of A14:6, translate of A15:4)
Cyclic rank 2 (suffices a and b)

2a+ 1 0 −1 −1 −1 −1 −1
0 2a 0 −1 −1 −1 −1
1 0 2a 0 −1 −1 −1
1 1 0 2a+ 1 −1 −1 −1
1 1 1 1 2a 0 0
1 1 1 1 0 2a 0
1 1 1 1 0 0 2a



Order, n (1 2 16 20 13 6 0 0) /2

na (0 1 2 16 20 13 6 0) /2
nb (0 0 0 0 0 0 1 0)

g1a (0 0 1 0 7 5 2 0) /2
g1b (0 0 0 0 0 0 0 0)

g2a (0 0 0 2 2 -1 2 0) /2
g2b (0 0 0 0 0 0 0 0)

g3a (0 0 0 1 -5 -7 -5 -2) /2
g3b (0 0 0 0 0 0 1 -1)

g4a (0 0 0 1 -5 -7 -5 -2) /2
g4b (0 0 0 0 0 0 0 0)

g5a (0 0 1 3 11 13 8 4) /2
g5b (0 0 0 0 0 0 0 1)

g6a (0 0 0 2 5 8 4 0) /2
g6b (0 0 0 0 0 0 0 0)

g7a (0 0 0 1 7 3 -2 0) /2
g7b (0 0 0 0 0 0 0 0)
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Table C.17: Degree 14, diameter class 1 (mod 7), a = (2k − 2)/7

Family A14:1a (transpose of A14:1b, conjugate of A14:5a, translate of A15:5a)
Cyclic rank 2 (suffices a and b)

LGM odd basis

2a+ 1 −1 −1 −1 −1 0 −1
1 2a+ 1 −1 −1 0 −1 −1
1 1 2a+ 1 0 0 −1 0
1 1 0 2a+ 1 0 −1 0
1 0 0 0 2a+ 1 −1 −1
0 1 1 1 1 2a+ 1 1
1 1 0 0 1 −1 2a


Polynomial in 2a

Order, n (1 6 29 80 125 112 53 10) /2

na (0 1 5 24 56 69 43 10) /2
nb (0 0 0 0 0 0 1 1)

g1a (0 0 1 4 15 25 22 7)
g1b (0 0 0 0 0 0 0 1)

g2a (0 0 0 1 0 −4 −6 −3)
g2b (0 0 0 0 0 0 0 0)

g3a (0 0 0 1 4 6 4 1)
g3b (0 0 0 0 0 0 0 1)

g4a (0 0 0 1 4 6 4 1)
g4b (0 0 0 0 0 0 1 0)

g5a (0 0 0 1 2 2 0 −1)
g5b (0 0 0 0 0 0 0 0)

g6a (0 0 0 0 5 11 11 3)
g6b (0 0 0 0 0 0 0 1)

g7a (0 0 0 1 6 12 12 5)
g7b (0 0 0 0 0 0 0 0)

continued on next page
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Table C.17: (cont.) Degree 14, diameter class 1 (mod 7), a = (2k − 2)/7

Family A14:1b (transpose of A14:1a, conjugate of A14:5b, translate of A15:5b)
Cyclic rank 2 (suffices a and b)

LGM odd basis

2a+ 1 1 1 1 1 0 1
−1 2a+ 1 1 1 0 1 1
−1 −1 2a+ 1 0 0 1 0
−1 −1 0 2a+ 1 0 1 0
−1 0 0 0 2a+ 1 1 1
0 −1 −1 −1 −1 2a+ 1 −1
−1 −1 0 0 −1 1 2a


Polynomial in 2a

Order, n (1 6 29 80 125 112 53 10) /2

na (0 1 5 24 56 69 43 10) /2
nb (0 0 0 0 0 0 1 1)

g1a (0 0 1 6 21 31 24 7)
g1b (0 0 0 0 0 0 1 0)

g2a (0 0 1 5 14 30 27 7)
g2b (0 0 0 0 0 0 0 0)

g3a (0 0 1 2 9 11 2 −1)
g3b (0 0 0 0 0 0 1 0)

g4a (0 0 1 2 9 11 2 −1)
g4b (0 0 0 0 0 0 0 1)

g5a (0 0 1 5 28 58 45 11)
g5b (0 0 0 0 0 0 0 0)

g6a (0 0 0 2 1 −5 −9 −3)
g6b (0 0 0 0 0 0 0 1)

g7a (0 0 0 1 8 8 −2 −3)
g7b (0 0 0 0 0 0 0 0)

Family A14:1c (self-transpose, conjugate of A14:5c, translate of A15:5c)
Cyclic rank 2 (suffices a and b)

LGM odd basis

2a+ 2 0 0 −1 −1 −1 −1
0 2a 0 −1 −1 −1 −1
0 0 2a −1 −1 −1 −1
1 1 1 2a+ 1 0 −1 −1
1 1 1 0 2a+ 1 −1 −1
1 1 1 1 1 2a+ 1 0
1 1 1 1 1 0 2a+ 1


Polynomial in 2a

Order, n (1 6 30 84 113 70 16 0 ) /2

na (0 1 5 25 59 54 16 0 ) /8
nb (0 0 0 0 0 0 4 4 )

No formulae discovered yet for a generating set
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Table C.18: Degree 14, diameter class 2 (mod 7), a = (2k + 3)/7

LGM odd basis Polynomial in 2a

Family A14:2 (self-transpose, conjugate of A14:4, translate of A15:6)
Cyclic rank 2 (suffices a and b)

2a− 1 0 −1 −1 −1−1−1
0 2a− 1 −1 −1 −1−1−1
1 1 2a− 1 0 −1−1−1
1 1 0 2a− 1−1−1−1
1 1 1 1 2a 0 0
1 1 1 1 0 2a 0
1 1 1 1 0 0 2a



Order, n (1 -4 22 -48 41 -12 0 0) /2

na (0 0 1 -3 19 -29 12 0) /2
nb (0 0 0 0 0 1 -1 0)

g1a (0 0 0 1 -3 12 -8 0) /2
g1b (0 0 0 0 0 0 0 0)

g2a (0 0 0 0 1 5 -4 0) /2
g2b (0 0 0 0 0 0 0 0)

g3a (0 0 0 0 1 -1 0 0)
g3b (0 0 0 0 0 1 -2 0)

g4a (0 0 0 0 1 -1 0 0)
g4b (0 0 0 0 0 0 1 0)

g5a (0 0 0 0 1 -8 11 -4) /2
g5b (0 0 0 0 0 1 -2 1)

g6a (0 0 0 0 1 -8 11 -4) /2
g6b (0 0 0 0 0 0 0 0)

g7a (0 0 0 1 -2 11 -18 8) /2
g7b (0 0 0 0 0 0 1 -1)

Table C.19: Degree 14, diameter class 3 (mod 7), except k ≡ 283 (mod 511)
(gcd 73), a = (2k + 1)/7

LGM odd basis Polynomial in 2a

Family A14:3 (self-transpose?)
Cyclic rank 2 (suffices a and b)

2a− 1 0 −1 −1 −1 −1 −1
0 2a 0 −1 −1 −1 −1
1 0 2a 0 −1 −1 −1
1 1 0 2a −1 −1 0
1 1 1 1 2a 0 0
1 1 1 1 0 2a 0
1 1 1 0 0 0 2a+ 1



Order, n (1 0 13 2 7 -2 0 0) /2

na (0 1 0 13 2 7 -2 0)
nb (0 0 0 0 0 0 1 0) /2

g1a (0 0 1 -3 0 -2 1 0)
g1b (0 0 0 0 0 0 1 -2) /2

g2a (0 0 1 -3 2 -2 0 0)
g2b (0 0 0 0 0 0 0 1)

g3a (0 0 1 1 -1 3 -1 0)
g3b (0 0 0 0 0 0 0 1)

g4a (0 0 1 4 7 3 3 -1)
g4b (0 0 0 0 0 0 1 -2) /2

g5a (0 0 0 4 -6 1 -4 1)
g5b (0 0 0 0 0 0 0 1)

g6a (0 0 1 -1 0 -3 1 0)
g6b (0 0 0 0 0 0 1 -2) /2

g7a (0 0 1 2 4 0 0 0)
g7b (0 0 0 0 0 0 1 -2) /2
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Table C.20: Degree 14, diameter class 4 (mod 7), a = (2k − 1)/7

LGM odd basis Polynomial in 2a

Family A14:4 (self-transpose, conjugate of A14:2, translate of A15:1)
Cyclic rank 2 (suffices a and b)

2a+ 1 0 −1 −1 −1 −1 −1
0 2a+ 1 −1 −1 −1 −1 −1
1 1 2a+ 1 0 −1 −1 −1
1 1 0 2a+ 1 −1 −1 −1
1 1 1 1 2a 0 0
1 1 1 1 0 2a 0
1 1 1 1 0 0 2a



Order, n (1 4 22 48 41 12 0 0) /2

na (0 0 1 3 19 29 12 0) /2
nb (0 0 0 0 0 1 1 0)

g1a (0 0 0 1 3 12 8 0) /2
g1b (0 0 0 0 0 0 0 0)

g2a (0 0 0 0 1 -5 -4 0) /2
g2b (0 0 0 0 0 0 0 0)

g3a (0 0 0 0 1 1 0 0)
g3b (0 0 0 0 0 1 0 0)

g4a (0 0 0 0 1 1 0 0)
g4b (0 0 0 0 0 0 1 0)

g5a (0 0 0 0 1 8 11 4) /2
g5b (0 0 0 0 0 0 1 1)

g6a (0 0 0 0 1 8 11 4) /2
g6b (0 0 0 0 0 0 0 0)

g7a (0 0 0 1 2 11 18 8) /2
g7b (0 0 0 0 0 0 1 1)
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Table C.21: Degree 14, diameter class 5 (mod 7), a = (2k + 4)/7

Family A14:5a (transpose of A14:5b, conjugate of A14:1a, translate of A15:2a)
Cyclic rank 2 (suffices a and b)

LGM odd basis

2a− 1 −1 −1 −1 −1 0 −1
1 2a− 1 −1 −1 0 −1 −1
1 1 2a− 1 0 0 −1 0
1 1 0 2a− 1 0 −1 0
1 0 0 0 2a− 1 −1 −1
0 1 1 1 1 2a− 1 1
1 1 0 0 1 −1 2a


Polynomial in 2a

Order, n (1 −6 29 −80 125 −112 53 −10) /2

na (0 1 −5 24 −56 69 −43 10) /2
nb (0 0 0 0 0 0 1 −1)

g1a (0 0 1 −4 15 −25 22 −7)
g1b (0 0 0 0 0 0 0 1)

g2a (0 0 0 1 0 −4 6 −3)
g2b (0 0 0 0 0 0 0 0)

g3a (0 0 0 1 −4 6 −4 1)
g3b (0 0 0 0 0 0 1 −2)

g4a (0 0 0 1 −4 6 −4 1)
g4b (0 0 0 0 0 0 0 1)

g5a (0 0 0 1 −2 2 0 −1)
g5b (0 0 0 0 0 0 0 0)

g6a (0 0 0 0 5 −11 11 −3)
g6b (0 0 0 0 0 0 0 1)

g7a (0 0 0 1 −6 12 −12 5)
g7b (0 0 0 0 0 0 0 0)

continued on next page
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Table C.21: (cont.) Degree 14, diameter class 5 (mod 7), a = (2k + 4)/7

Family A14:5b (transpose of A14:5a, conjugate of A14:1b, translate of A15:2b)
Cyclic rank 2 (suffices a and b)

LGM odd basis

2a− 1 1 1 1 1 0 1
−1 2a− 1 1 1 0 1 1
−1 −1 2a− 1 0 0 1 0
−1 −1 0 2a− 1 0 1 0
−1 0 0 0 2a− 1 1 1
0 −1 −1 −1 −1 2a− 1 −1
−1 −1 0 0 −1 1 2a


Polynomial in 2a

Order, n (1 −6 29 −80 125 −112 53 −10) /2

na (0 1 −5 24 −56 69 −43 10) /2
nb (0 0 0 0 0 0 1 −1)

g1a (0 0 1 −6 21 −31 24 −7)
g1b (0 0 0 0 0 0 0 1)

g2a (0 0 1 −5 14 −30 27 −7)
g2b (0 0 0 0 0 0 0 0)

g3a (0 0 1 −2 9 −11 2 1)
g3b (0 0 0 0 0 0 0 1)

g4a (0 0 1 −2 9 −11 2 1)
g4b (0 0 0 0 0 0 1 −2)

g5a (0 0 1 −5 28 −58 45 −11)
g5b (0 0 0 0 0 0 0 0)

g6a (0 0 0 2 −1 −5 9 −3)
g6b (0 0 0 0 0 0 0 1)

g7a (0 0 0 1 −8 8 2 −3)
g7b (0 0 0 0 0 0 0 0)

Family A14:5c (self-transpose, conjugate of A14:1c, translate of A15:2c)
Cyclic rank 2 (suffices a and b)

LGM odd basis

2a− 2 0 0 −1 −1 −1 −1
0 2a 0 −1 −1 −1 −1
0 0 2a −1 −1 −1 −1
1 1 1 2a− 1 0 −1 −1
1 1 1 0 2a− 1 −1 −1
1 1 1 1 1 2a− 1 0
1 1 1 1 1 0 2a− 1


Polynomial in 2a

Order, n (1 −6 30 −84 113 −70 16 0 ) /2

na (0 1 −5 25 −59 54 −16 0 ) /8
nb (0 0 0 0 0 0 4 −4 )

No formulae discovered yet for a generating set
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Table C.22: Degree 14, diameter class 6 (mod 7), a = (2k + 2)/7

LGM odd basis Polynomial in 2a

Family A14:6 (self-transpose, conjugate of A14:0, translate of A15:3)
Cyclic rank 2 (suffices a and b)

2a− 1 0 −1 −1 −1 −1 −1
0 2a 0 −1 −1 −1 −1
1 0 2a 0 −1 −1 −1
1 1 0 2a− 1 −1 −1 −1
1 1 1 1 2a 0 0
1 1 1 1 0 2a 0
1 1 1 1 0 0 2a



Order, n (1 -2 16 -20 13 -6 0 0) /2

na (0 1 -2 16 -20 13 -6 0) /2
nb (0 0 0 0 0 0 1 0)

g1a (0 0 1 0 7 -5 2 0) /2
g1b (0 0 0 0 0 0 0 0)

g2a (0 0 0 2 -2 -1 -2 0) /2
g2b (0 0 0 0 0 0 0 0)

g3a (0 0 0 1 5 -7 5 -2) /2
g3b (0 0 0 0 0 0 0 1)

g4a (0 0 0 1 5 -7 5 -2) /2
g4b (0 0 0 0 0 0 0 0)

g5a (0 0 1 -3 11 -13 8 -4) /2
g5b (0 0 0 0 0 0 0 1)

g6a (0 0 0 2 -5 8 -4 0) /2
g6b (0 0 0 0 0 0 0 0)

g7a (0 0 0 1 -7 3 2 0) /2
g7b (0 0 0 0 0 0 0 0)
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Table C.23: Degree 15, diameter class 0 (mod 7), except k ≡ 63 (mod 133)
(gcd 19), a = 2k/7

LGM Polynomial in 2a

Family A15:0 (self-transpose, self-conjugate)
Cyclic rank 5 (suffices a, b, c, d and e)

2a −1 −1 −1 −1 −1 −1
1 2a 0 0 −1 −1 −1
1 0 2a 0 −1 −1 −1
1 0 0 2a −1 −1 −1
1 1 1 1 2a 0 0
1 1 1 1 0 2a 0
1 1 1 1 0 0 2a



Order, n (1 0 15 0 0 0 0 0)

na (0 0 0 0 1 0 15 0)
nb (0 0 0 0 0 0 1 0)
nc (0 0 0 0 0 0 1 0)
nd (0 0 0 0 0 0 1 0)
ne (0 0 0 0 0 0 1 0)

g1a (0 0 0 0 0 1 5 6)
g1b (0 0 0 0 0 0 0 1)
g1c (0 0 0 0 0 0 0 1)
g1d (0 0 0 0 0 0 0 1)
g1e (0 0 0 0 0 0 0 1)

g2a (0 0 0 0 0 1 1 -2)
g2b (0 0 0 0 0 0 0 1)
g2c (0 0 0 0 0 0 0 1)
g2d (0 0 0 0 0 0 0 0)
g2e (0 0 0 0 0 0 0 0)

g3a (0 0 0 0 0 1 1 -2)
g3b (0 0 0 0 0 0 1 -1)
g3c (0 0 0 0 0 0 1 -1)
g3d (0 0 0 0 0 0 0 0)
g3e (0 0 0 0 0 0 1 -1)

g4a (0 0 0 0 0 1 1 -2)
g4b (0 0 0 0 0 0 1 -1)
g4c (0 0 0 0 0 0 1 -1)
g4d (0 0 0 0 0 0 1 -1)
g4e (0 0 0 0 0 0 0 0)

g5a (0 0 0 0 0 1 -4 7)
g5b (0 0 0 0 0 0 0 1)
g5c (0 0 0 0 0 0 0 1)
g5d (0 0 0 0 0 0 0 1)
g5e (0 0 0 0 0 0 0 1)

g6a (0 0 0 0 0 1 -4 7)
g6b (0 0 0 0 0 0 0 1)
g6c (0 0 0 0 0 0 0 0)
g6d (0 0 0 0 0 0 0 1)
g6e (0 0 0 0 0 0 0 1)

g7a (0 0 0 0 1 0 11 -8)
g7b (0 0 0 0 0 0 1 -1)
g7c (0 0 0 0 0 0 0 0)
g7d (0 0 0 0 0 0 1 -1)
g7e (0 0 0 0 0 0 1 -1)

gma (0 0 0 0 0 0 0 0)
gmb (0 0 0 0 0 0 1 0) /2
gmc (0 0 0 0 0 0 1 0) /2
gmd (0 0 0 0 0 0 1 0) /2
gme (0 0 0 0 0 0 1 0) /2

Robert Roderick Lewis



316 C Largest-known Abelian Cayley graph families (if non-circulant)

Table C.24: Degree 15, diameter class 1 (mod 7), a = (2k − 2)/7

LGM Polynomial in 2a

Family A15:1 (self-transpose?, conjugate of A15:6, translate of A14:4)
Cyclic rank 3 (suffices a, b and c)

2a+ 1 0 −1 −1 −1 −1 −1
0 2a+ 1 −1 −1 −1 −1 −1
1 1 2a+ 1 0 −1 −1 −1
1 1 0 2a+ 1 −1 −1 −1
1 1 1 1 2a 0 0
1 1 1 1 0 2a 0
1 1 1 1 0 0 2a



Order, n (1 4 22 48 41 12 0 0)

na (0 1 3 19 29 12 0 0) /16
nb (0 0 0 0 0 0 4 4)
nc (0 0 0 0 0 0 0 4)

No formulae discovered yet for a
generating set

Table C.25: Degree 15, diameter class 2 (mod 7), a = (2k + 3)/7

Family A15:2a (transpose of A15:2b, conjugate of A15:5a, translate of A14:5a)
Cyclic rank 2 (suffices a and b)

LGM

2a− 1 −1 −1 −1 −1 0 −1
1 2a− 1 −1 −1 0 −1 −1
1 1 2a− 1 0 0 −1 0
1 1 0 2a− 1 0 −1 0
1 0 0 0 2a− 1 −1 −1
0 1 1 1 1 2a− 1 1
1 1 0 0 1 −1 2a


Polynomial in 2a

Order, n (1 −6 29 −80 125 −112 53 −10)

na (0 1 −5 24 −56 69 −43 10)
nb (0 0 0 0 0 0 1 −1)

g1a (0 0 1 1 4 −14 19 −7)
g1b (0 0 0 0 0 0 0 1)

g2a (0 0 1 −1 −4 10 −9 3)
g2b (0 0 0 0 0 0 0 0)

g3a (0 0 1 −5 10 −10 5 −1)
g3b (0 0 0 0 0 0 0 1)

g4a (0 0 1 −5 10 −10 5 −1)
g4b (0 0 0 0 0 0 1 −2)

g5a (0 0 1 −3 4 −2 −1 1)
g5b (0 0 0 0 0 0 0 0)

g6a (0 0 1 −9 36 −58 47 −13)
g6b (0 0 0 0 0 0 0 1)

g7a (0 0 1 −7 18 −24 17 −5)
g7b (0 0 0 0 0 0 0 0)

gma (0 1 −5 24 −56 69 −43 10) /2
gmb (0 0 0 0 0 0 0 0)

continued on next page
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Table C.25: (cont.) Degree 15, diameter class 2 (mod 7), a = (2k + 3)/7

Family A15:2b (transpose of A15:2a, conjugate of A15:5b, translate of A14:5b)
Cyclic rank 2 (suffices a and b)

LGM

2a− 1 1 1 1 1 0 1
−1 2a− 1 1 1 0 1 1
−1 −1 2a− 1 0 0 1 0
−1 −1 0 2a− 1 0 1 0
−1 0 0 0 2a− 1 1 1
0 −1 −1 −1 −1 2a− 1 −1
−1 −1 0 0 −1 1 2a


Polynomial in 2a

Order, n (1 −6 29 −80 125 −112 53 −10)

na (0 1 −5 24 −56 69 −43 10)
nb (0 0 0 0 0 0 1 −1)

g1a (0 0 1 −6 21 −31 24 −7)
g1b (0 0 0 0 0 0 0 1)

g2a (0 0 1 −5 14 −30 27 −7)
g2b (0 0 0 0 0 0 0 0)

g3a (0 0 1 −2 9 −11 2 1)
g3b (0 0 0 0 0 0 0 1)

g4a (0 0 1 −2 9 −11 2 1)
g4b (0 0 0 0 0 0 1 −2)

g5a (0 0 1 −5 28 −58 45 −11)
g5b (0 0 0 0 0 0 0 0)

g6a (0 0 0 2 −1 −5 9 −3)
g6b (0 0 0 0 0 0 0 1)

g7a (0 0 0 1 −8 8 2 −3)
g7b (0 0 0 0 0 0 0 0)

gma (0 1 −5 24 −56 69 −43 10) /2
gmb (0 0 0 0 0 0 0 0)

continued on next page
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Table C.25: (cont.) Degree 15, diameter class 2 (mod 7), a = (2k + 3)/7

Family A15:2c (self-transpose, conjugate of A15:5c, translate of A14:5c)
Cyclic rank 3 (suffices a, b and c)

LGM

2a− 2 0 0 −1 −1 −1 −1
0 2a 0 −1 −1 −1 −1
0 0 2a −1 −1 −1 −1
1 1 1 2a− 1 0 −1 −1
1 1 1 0 2a− 1 −1 −1
1 1 1 1 1 2a− 1 0
1 1 1 1 1 0 2a− 1


Polynomial in 2a

Order, n (1 −6 30 −84 113 −70 16 0)

na (0 1 −5 25 −59 54 −16 0) /4
nb (0 0 0 0 0 0 2 −2)
nc (0 0 0 0 0 0 0 2)

g1a (0 1 −9 43 −87 68 −16 0) /8
g1b (0 0 0 0 0 0 1 −1)
g1c (0 0 0 0 0 0 0 1)

g2a (0 1 −9 29 −49 40 −8 0) /8
g2b (0 0 0 0 0 0 1 0)
g2c (0 0 0 0 0 0 0 1)

g3a (0 1 −5 7 −7 12 −8 0) /8
g3b (0 0 0 0 0 0 1 0)
g3c (0 0 0 0 0 0 0 1)

g4a (0 1 −5 7 −7 12 −8 0) /8
g4b (0 0 0 0 0 0 1 −2)
g4c (0 0 0 0 0 0 0 1)

g5a (0 1 −7 21 −7 −36 24 0) /8
g5b (0 0 0 0 0 0 1 −2)
g5c (0 0 0 0 0 0 0 1)

g6a (0 1 −3 9 −45 102 −96 32) /8
g6b (0 0 0 0 0 0 0 0)
g6c (0 0 0 0 0 0 0 1)

g7a (0 1 1 −11 55 −134 120 −32) /8
g7b (0 0 0 0 0 0 1 −1)
g7c (0 0 0 0 0 0 0 1)

gma (0 1 −5 25 −59 54 −16 0) /8
gmb (0 0 0 0 0 0 1 −1)
gmc (0 0 0 0 0 0 0 0)
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Table C.26: Degree 15, diameter class 3 (mod 7), a = (2k + 1)/7

LGM Polynomial in 2a

Family A15:3 (self-transpose, conjugate of A15:4, translate of A14:6)
Cyclic rank 3 (suffices a, b and c)

2a− 1 0 −1 −1 −1 −1 −1
0 2a 0 −1 −1 −1 −1
1 0 2a 0 −1 −1 −1
1 1 0 2a− 1 −1 −1 −1
1 1 1 1 2a 0 0
1 1 1 1 0 2a 0
1 1 1 1 0 0 2a



Order, n (1 -2 16 -20 13 -6 0 0)

na (0 1 -2 16 -20 13 -6 0) /2
nb (0 0 0 0 0 0 1 0)
nc (0 0 0 0 0 0 0 2)

g1a (0 1 -7 29 -41 26 -14 0) /4
g1b (0 0 0 0 0 0 1 0) /2
g1c (0 0 0 0 0 0 0 1)

g2a (0 1 -5 31 -39 26 -10 0) /4
g2b (0 0 0 0 0 0 1 0) /2
g2c (0 0 0 0 0 0 0 1)

g3a (0 1 -3 33 -39 22 -10 0) /4
g3b (0 0 0 0 0 0 1 0) /2
g3c (0 0 0 0 0 0 0 1)

g4a (0 1 -3 35 -35 26 -10 0) /4
g4b (0 0 0 0 0 0 1 0) /2
g4c (0 0 0 0 0 0 0 1)

g5a (0 1 2 18 -20 7 -2 -4) /4
g5b (0 0 0 0 0 0 1 0) /2
g5c (0 0 0 0 0 0 0 0)

g6a (0 1 2 18 -20 7 -2 -4) /4
g6b (0 0 0 0 0 0 1 2) /2
g6c (0 0 0 0 0 0 0 1)

g7a (0 0 1 3 -16 17 -11 4) /2
g7b (0 0 0 0 0 0 1 -2) /2
g7c (0 0 0 0 0 0 0 0)

gma (0 1 -2 16 -20 13 -6 0) /4
gmb (0 0 0 0 0 0 0 0)
gmc (0 0 0 0 0 0 0 0)
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Table C.27: Degree 15, diameter class 4 (mod 7), a = (2k − 1)/7

LGM Polynomial in 2a

Family A15:4 (self-transpose, conjugate of A15:3, translate of A14:0)
Cyclic rank 3 (suffices a, b and c)

2a+ 1 0 −1 −1 −1 −1 −1
0 2a 0 −1 −1 −1 −1
1 0 2a 0 −1 −1 −1
1 1 0 2a+ 1 −1 −1 −1
1 1 1 1 2a 0 0
1 1 1 1 0 2a 0
1 1 1 1 0 0 2a



Order, n (1 2 16 20 13 6 0 0)

na (0 1 2 16 20 13 6 0) /2
nb (0 0 0 0 0 0 1 0)
nc (0 0 0 0 0 0 0 2)

g1a (0 1 7 29 41 26 14 0) /4
g1b (0 0 0 0 0 0 1 0) /2
g1c (0 0 0 0 0 0 0 1)

g2a (0 1 5 31 39 26 10 0) /4
g2b (0 0 0 0 0 0 1 0) /2
g2c (0 0 0 0 0 0 0 1)

g3a (0 1 3 33 39 22 10 0) /4
g3b (0 0 0 0 0 0 1 0) /2
g3c (0 0 0 0 0 0 0 1)

g4a (0 1 3 35 35 26 10 0) /4
g4b (0 0 0 0 0 0 1 0) /2
g4c (0 0 0 0 0 0 0 1)

g5a (0 1 -2 18 20 7 2 -4) /4
g5b (0 0 0 0 0 0 1 0) /2
g5c (0 0 0 0 0 0 0 0)

g6a (0 1 -2 18 20 7 2 -4) /4
g6b (0 0 0 0 0 0 1 -2) /2
g6c (0 0 0 0 0 0 0 1)

g7a (0 0 1 -3 -16 -17 -11 -4) /2
g7b (0 0 0 0 0 0 1 -2) /2
g7c (0 0 0 0 0 0 0 0)

gma (0 1 2 16 20 13 6 0) /4
gmb (0 0 0 0 0 0 0 0) /2
gmc (0 0 0 0 0 0 0 0) /2
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Table C.28: Degree 15, diameter class 5 (mod 7), a = (2k − 3)/7

Family A15:5a (transpose of A15:5b, conjugate of A15:2a, translate of A14:1a)
Cyclic rank 2 (suffices a and b)

LGM

2a+ 1 −1 −1 −1 −1 0 −1
1 2a+ 1 −1 −1 0 −1 −1
1 1 2a+ 1 0 0 −1 0
1 1 0 2a+ 1 0 −1 0
1 0 0 0 2a+ 1 −1 −1
0 1 1 1 1 2a+ 1 1
1 1 0 0 1 −1 2a


Polynomial in 2a

Order, n (1 6 29 80 125 112 53 10)

na (0 1 5 24 56 69 43 10)
nb (0 0 0 0 0 0 1 1)

g1a (0 0 1 −1 4 14 19 7)
g1b (0 0 0 0 0 0 1 0)

g2a (0 0 1 1 −4 −10 −9 −3)
g2b (0 0 0 0 0 0 0 0)

g3a (0 0 1 5 10 10 5 1)
g3b (0 0 0 0 0 0 1 0)

g4a (0 0 1 5 10 10 5 1)
g4b (0 0 0 0 0 0 0 1)

g5a (0 0 1 3 4 2 −1 −1)
g5b (0 0 0 0 0 0 0 0)

g6a (0 0 1 9 36 58 47 13)
g6b (0 0 0 0 0 0 1 0)

g7a (0 0 1 7 18 24 17 5)
g7b (0 0 0 0 0 0 0 0)

gma (0 1 5 24 56 69 43 10) /2
gmb (0 0 0 0 0 0 0 0)

continued on next page
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Table C.28: (cont.) Degree 15, diameter class 5 (mod 7), a = (2k − 3)/7

Family A15:5b (transpose of A15:5a, conjugate of A15:2b, translate of A14:1b)
Cyclic rank 2 (suffices a and b)

LGM

2a+ 1 1 1 1 1 0 1
−1 2a+ 1 1 1 0 1 1
−1 −1 2a+ 1 0 0 1 0
−1 −1 0 2a+ 1 0 1 0
−1 0 0 0 2a+ 1 1 1
0 −1 −1 −1 −1 2a+ 1 −1
−1 −1 0 0 −1 1 2a


Polynomial in 2a

Order, n (1 6 29 80 125 112 53 10)

na (0 1 5 24 56 69 43 10)
nb (0 0 0 0 0 0 1 1)

g1a (0 0 1 6 21 31 24 7)
g1b (0 0 0 0 0 0 1 0)

g2a (0 0 1 5 14 30 27 7)
g2b (0 0 0 0 0 0 0 0)

g3a (0 0 1 2 9 11 2 −1)
g3b (0 0 0 0 0 0 1 0)

g4a (0 0 1 2 9 11 2 −1)
g4b (0 0 0 0 0 0 0 1)

g5a (0 0 1 5 28 58 45 11)
g5b (0 0 0 0 0 0 0 0)

g6a (0 0 0 2 1 −5 −9 −3)
g6b (0 0 0 0 0 0 0 1)

g7a (0 0 0 1 8 8 −2 −3)
g7b (0 0 0 0 0 0 0 0)

gma (0 1 5 24 56 69 43 10) /2
gmb (0 0 0 0 0 0 0 0)

continued on next page
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Table C.28: (cont.) Degree 15, diameter class 5 (mod 7), a = (2k − 3)/7

Family A15:5c (self-transpose, conjugate of A15:2c, translate of A14:1c)
Cyclic rank 3 (suffices a, b and c)

LGM

2a+ 2 0 0 −1 −1 −1 −1
0 2a 0 −1 −1 −1 −1
0 0 2a −1 −1 −1 −1
1 1 1 2a+ 1 0 −1 −1
1 1 1 0 2a+ 1 −1 −1
1 1 1 1 1 2a+ 1 0
1 1 1 1 1 0 2a+ 1


Polynomial in 2a

Order, n (1 6 30 84 113 70 16 0)

na (0 1 5 25 59 54 16 0) /4
nb (0 0 0 0 0 0 2 2)
nc (0 0 0 0 0 0 0 2)

g1a (0 1 9 43 87 68 16 0) /8
g1b (0 0 0 0 0 0 1 1)
g1c (0 0 0 0 0 0 0 1)

g2a (0 1 9 29 49 40 8 0) /8
g2b (0 0 0 0 0 0 1 0)
g2c (0 0 0 0 0 0 0 1)

g3a (0 1 5 7 7 12 8 0) /8
g3b (0 0 0 0 0 0 1 0)
g3c (0 0 0 0 0 0 0 1)

g4a (0 1 5 7 7 12 8 0) /8
g4b (0 0 0 0 0 0 1 2)
g4c (0 0 0 0 0 0 0 1)

g5a (0 1 7 21 7 −36 −24 0) /8
g5b (0 0 0 0 0 0 1 2)
g5c (0 0 0 0 0 0 0 1)

g6a (0 1 3 9 45 102 96 32) /8
g6b (0 0 0 0 0 0 0 0)
g6c (0 0 0 0 0 0 0 1)

g7a (0 1 −1 −11 −55 −134 −120 −32) /8
g7b (0 0 0 0 0 0 1 1)
g7c (0 0 0 0 0 0 0 1)

gma (0 1 5 25 59 54 16 0) /8
gmb (0 0 0 0 0 0 1 1)
gmc (0 0 0 0 0 0 0 0)
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Table C.29: Degree 15, diameter class 6 (mod 7), a = (2k + 2)/7

LGM Polynomial in 2a

Family A15:6 (self-transpose?, conjugate of A15:1, translate of A14:2)
Cyclic rank 3 (suffices a, b and c)

2a− 1 0 −1 −1 −1−1−1
0 2a− 1 −1 −1 −1−1−1
1 1 2a− 1 0 −1−1−1
1 1 0 2a− 1−1−1−1
1 1 1 1 2a 0 0
1 1 1 1 0 2a 0
1 1 1 1 0 0 2a



Order, n (1 -4 22 -48 41 -12 0 0)

na (0 1 -3 19 -29 12 0 0) /16
nb (0 0 0 0 0 0 4 -4)
nc (0 0 0 0 0 0 0 4)

No formulae discovered yet for a
generating set

Table C.30: Degree 19, diameter class 0 (mod 9), except k ≡ 0 (mod 27)
(gcd 9), a = 2k/9

Family A19:0 (self-transpose, self-conjugate)
Cyclic rank 7 (suffices a, b, c, d, e, f and g)

LGM

2a 0 0 −1 −1 −1 −1 −1 −1
0 2a 0 −1 −1 −1 −1 −1 −1
0 0 2a −1 −1 −1 −1 −1 −1
1 1 1 2a 0 0 −1 −1 −1
1 1 1 0 2a 0 −1 −1 −1
1 1 1 0 0 2a −1 −1 −1
1 1 1 1 1 1 2a 0 0
1 1 1 1 1 1 0 2a 0
1 1 1 1 1 1 0 0 2a


Polynomial in 2a

Order, n (1 0 27 0 0 0 0 0 0 0)

na (0 0 0 0 0 0 1 0 27 0)
nb (0 0 0 0 0 0 0 0 1 0)
nc (0 0 0 0 0 0 0 0 1 0)
nd (0 0 0 0 0 0 0 0 1 0)
ne (0 0 0 0 0 0 0 0 1 0)
nf (0 0 0 0 0 0 0 0 1 0)
ng (0 0 0 0 0 0 0 0 1 0)

g1a (0 0 0 0 0 0 0 1 6 9)
g1b (0 0 0 0 0 0 0 0 0 0)
g1c (0 0 0 0 0 0 0 0 0 0)
g1d (0 0 0 0 0 0 0 0 0 1)
g1e (0 0 0 0 0 0 0 0 0 1)
g1f (0 0 0 0 0 0 0 0 0 1)
g1g (0 0 0 0 0 0 0 0 0 1)

g2a (0 0 0 0 0 0 0 1 6 9)
g2b (0 0 0 0 0 0 0 0 0 0)
g2c (0 0 0 0 0 0 0 0 1 −1)
g2d (0 0 0 0 0 0 0 0 1 −1)
g2e (0 0 0 0 0 0 0 0 1 −1)
g2f (0 0 0 0 0 0 0 0 1 −1)
g2g (0 0 0 0 0 0 0 0 1 −1)

continued on next page
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Table C.30: (cont.) Degree 19, diameter class 0 (mod 9), except k ≡ 0
(mod 27) (gcd 9), a = 2k/9

g3a (0 0 0 0 0 0 0 1 6 9)
g3b (0 0 0 0 0 0 0 0 1 −1)
g3c (0 0 0 0 0 0 0 0 0 0)
g3d (0 0 0 0 0 0 0 0 1 −1)
g3e (0 0 0 0 0 0 0 0 1 −1)
g3f (0 0 0 0 0 0 0 0 1 −1)
g3g (0 0 0 0 0 0 0 0 1 −1)

g4a (0 0 0 0 0 0 0 1 0 −9)
g4b (0 0 0 0 0 0 0 0 1 −1)
g4c (0 0 0 0 0 0 0 0 1 −1)
g4d (0 0 0 0 0 0 0 0 0 0)
g4e (0 0 0 0 0 0 0 0 0 0)
g4f (0 0 0 0 0 0 0 0 1 −1)
g4g (0 0 0 0 0 0 0 0 1 −1)

g5a (0 0 0 0 0 0 0 1 0 −9)
g5b (0 0 0 0 0 0 0 0 0 1)
g5c (0 0 0 0 0 0 0 0 0 1)
g5d (0 0 0 0 0 0 0 0 0 0)
g5e (0 0 0 0 0 0 0 0 0 1)
g5f (0 0 0 0 0 0 0 0 0 1)
g5g (0 0 0 0 0 0 0 0 0 1)

g6a (0 0 0 0 0 0 0 1 0 −9)
g6b (0 0 0 0 0 0 0 0 0 1)
g6c (0 0 0 0 0 0 0 0 0 1)
g6d (0 0 0 0 0 0 0 0 0 1)
g6e (0 0 0 0 0 0 0 0 0 0)
g6f (0 0 0 0 0 0 0 0 0 1)
g6g (0 0 0 0 0 0 0 0 0 1)

g7a (0 0 0 0 0 0 0 1 −6 9)
g7b (0 0 0 0 0 0 0 0 0 1)
g7c (0 0 0 0 0 0 0 0 0 1)
g7d (0 0 0 0 0 0 0 0 0 1)
g7e (0 0 0 0 0 0 0 0 0 1)
g7f (0 0 0 0 0 0 0 0 0 0)
g7g (0 0 0 0 0 0 0 0 0 0)

g8a (0 0 0 0 0 0 0 1 −6 9)
g8b (0 0 0 0 0 0 0 0 1 −1)
g8c (0 0 0 0 0 0 0 0 1 −1)
g8d (0 0 0 0 0 0 0 0 1 −1)
g8e (0 0 0 0 0 0 0 0 1 −1)
g8f (0 0 0 0 0 0 0 0 0 0)
g8g (0 0 0 0 0 0 0 0 1 −1)

g9a (0 0 0 0 0 0 0 1 −6 9)
g9b (0 0 0 0 0 0 0 0 1 −1)
g9c (0 0 0 0 0 0 0 0 1 −1)
g9d (0 0 0 0 0 0 0 0 1 −1)
g9e (0 0 0 0 0 0 0 0 1 −1)
g9f (0 0 0 0 0 0 0 0 1 −1)
g9g (0 0 0 0 0 0 0 0 0 0)

gma (0 0 0 0 0 0 1 0 27 0) /2
gmb (0 0 0 0 0 0 0 0 1 0) /2
gmc (0 0 0 0 0 0 0 0 1 0) /2
gmd (0 0 0 0 0 0 0 0 1 0) /2
gme (0 0 0 0 0 0 0 0 1 0) /2
gmf (0 0 0 0 0 0 0 0 1 0) /2
gmg (0 0 0 0 0 0 0 0 1 0) /2
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Appendix D

Extremal and largest-known
circulant graphs

D.1 Circulant graphs up to degree 29

Of the extremal and largest-known circulant graphs presented in this appendix, the following

have been discovered by the author:

Diameter 2: degrees 24 and 25

Diameter 4: degree 16

Diameter 5: degree 9 and above

Diameter 6 and above: degree 8 and above

Also independently by R. Feria-Purón, H. Pérez-Rosés and J. Ryan [13]:

Degree 8: diameter 3 to 5

Degree 9: diameter 4

And jointly with Grahame Erskine [1]:

Diameter 2: degrees 17 to 23

For verified extremal graphs the order is shown in bold text. For small diameter, the

largest-known graph may have larger order than the member of the largest-known family.

Where a graph is a member of an identified largest-known family, the isomorphism class of the

family is identified by a code beginning with ‘F’; otherwise the isomorphism class is specific to

the graph and begins with ‘G’.

For each known isomorphism class just one generating set is defined: primitive if one exists,

otherwise imprimitive. For odd degree, the involutory generator is omitted.

The automorphism group dihedral index (Aut group DI) is the order of the graph’s

automorphism group expressed as a multiple of the order of the dihedral group on the same

number of vertices. Where a graph is arc-transitive, this is indicated by ‘arc’ after the DI. For

large graphs, where the index is conjectured on the basis of the structure of the generating

set, this is indicated by a question mark.
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Table D.1: Circulant graphs of degree 2 for diameter k ≤ 16

k Order Iso Generating set Odd Maximal Automorphism
class girth defect levels group DI

2 5 F2 1 0 2 1
3 7 F2 1 0 3 1
4 9 F2 1 0 4 1
5 11 F2 1 0 5 1
6 13 F2 1 0 6 1
7 15 F2 1 0 7 1
8 17 F2 1 0 8 1
9 19 F2 1 0 9 1
10 21 F2 1 0 10 1
11 23 F2 1 0 11 1
12 25 F2 1 0 12 1
13 27 F2 1 0 13 1
14 29 F2 1 0 14 1
15 31 F2 1 0 15 1
16 33 F2 1 0 16 1

Table D.2: Circulant graphs of degree 3 for diameter k ≤ 16

k Order Iso Generating set Odd Maximal Automorphism
class (plus the involution) girth defect levels group DI

2 8 F3 1 0 2 1
3 12 F3 1 0 3 1
4 16 F3 1 0 4 1
5 20 F3 1 0 5 1
6 24 F3 1 0 6 1
7 28 F3 1 0 7 1
8 32 F3 1 0 8 1
9 36 F3 1 0 9 1
10 40 F3 1 0 10 1
11 44 F3 1 0 11 1
12 48 F3 1 0 12 1
13 52 F3 1 0 13 1
14 56 F3 1 0 14 1
15 60 F3 1 0 15 1
16 64 F3 1 0 16 1
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Table D.3: Circulant graphs of degree 4 for diameter k ≤ 16

k Order Iso Generating set Odd Maximal Automorphism
class girth defect levels group DI

2 13 F4 1, 5 0 2 2 arc
3 25 F4 1, 7 0 3 2 arc
4 41 F4 1, 9 0 4 2 arc
5 61 F4 1, 11 0 5 2 arc
6 85 F4 1, 13 0 6 2 arc
7 113 F4 1, 15 0 7 2 arc
8 145 F4 1, 17 0 8 2 arc
9 181 F4 1, 19 0 9 2 arc
10 221 F4 1, 21 0 10 2 arc
11 265 F4 1, 23 0 11 2 arc
12 313 F4 1, 25 0 12 2 arc
13 365 F4 1, 27 0 13 2 arc
14 421 F4 1, 29 0 14 2 arc
15 481 F4 1, 31 0 15 2 arc
16 545 F4 1, 33 0 16 2 arc

Table D.4: Circulant graphs of degree 5 for diameter k ≤ 16

k Order Iso Generating set Odd Maximal Automorphism
class (plus the involution) girth defect levels group DI

2 16 F5 1, 3 0 1 1
3 36 F5 1, 5 0 2 1
4 64 F5 1, 7 0 3 1
5 100 F5 1, 9 0 4 1
6 144 F5 1, 11 0 5 1
7 196 F5 1, 13 0 6 1
8 256 F5 1, 15 0 7 1
9 324 F5 1, 17 0 8 1
10 400 F5 1, 19 0 9 1
11 484 F5 1, 21 0 10 1
12 576 F5 1, 23 0 11 1
13 676 F5 1, 25 0 12 1
14 784 F5 1, 27 0 13 1
15 900 F5 1, 29 0 14 1
16 1024 F5 1, 31 0 15 1
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Table D.5: Circulant graphs of degree 6 for diameter k ≤ 16

k Order Iso Generating set Odd Maximal Automorphism
class girth defect levels group DI

2 21 F6:2A 1, 3, 8 0 1 2
F6:2B 1, 4, 6 0 1 1
G6:2C 1, 2, 8 2 1 1

3 55 F6:0A 1, 5, 21 0 2 2
F6:0B 1, 10, 16 0 2 1

4 117 F6:1 1, 16, 22 0 3 3 arc

5 203 F6:2A 1, 7, 57 0 3 2
F6:2B 1, 22, 28 0 3 1

6 333 F6:0A 1, 9, 73 0 4 2
F6:0B 1, 36, 46 0 4 1

7 515 F6:1 1, 46, 56 0 5 3 arc

8 737 F6:2A 1, 11, 133 0 5 2
F6:2B 1, 56, 66 0 5 1

9 1027 F6:0A 1, 13, 157 0 6 2
F6:0B 1, 78, 92 0 6 1

10 1393 F6:1 1, 92, 106 0 7 3 arc

11 1815 F6:2A 1, 15, 241 0 7 2
F6:2B 1, 106, 120 0 7 1

12 2329 F6:0A 1, 17, 273 0 8 2
F6:0B 1, 136, 154 0 8 1

13 2943 F6:1 1, 154, 172 0 9 3 arc

14 3629 F6:2A 1, 19, 381 0 9 2
F6:2B 1, 172, 190 0 9 1

15 4431 F6:0A 1, 21, 421 0 10 2
F6:0B 1, 210, 232 0 10 1

16 5357 F6:1 1, 232, 254 0 11 3 arc
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Table D.6: Circulant graphs of degree 7 for diameter k ≤ 16

k Order Iso Generating set Odd Maximal Automorphism
class (plus the involution) girth defect levels group DI

2 26 G7:2A 1, 2, 8 2 1 1
G7:2B 1, 3, 8 0 1 1

3 76 F7:0 1, 27, 31 0 2 3 arc

4 160 F7:1A 1, 5, 31 0 2 2
F7:1B 1, 45, 51 0 2 1

5 308 F7:2A 1, 7, 43 0 3 2
F7:2B 1, 63, 69 0 3 1

6 536 F7:0 1, 231, 239 0 4 3 arc

7 828 F7:1A 1, 9, 91 0 4 2
F7:1B 1, 225, 235 0 4 1

8 1232 F7:2A 1, 11, 111 0 5 2
F7:2B 1, 275, 285 0 5 1

9 1764 F7:0 1, 803, 815 0 6 3 arc

10 2392 F7:1A 1, 13, 183 0 6 2
F7:1B 1, 637, 651 0 6 1

11 3180 F7:2A 1, 15, 211 0 7 2
F7:2B 1, 735, 749 0 7 1

12 4144 F7:0 1, 1935, 1951 0 8 3 arc

13 5236 F7:1A 1, 17, 307 0 8 2
F7:1B 1, 1377, 1395 0 8 1

14 6536 F7:2A 1, 19, 343 0 9 2
F7:2B 1, 1539, 1557 0 9 1

15 8060 F7:0 1, 3819, 3839 0 10 3 arc

16 9744 F7:1A 1, 21, 463 0 10 2
F7:1B 1, 2541, 2563 0 10 1

Table D.7: Circulant graphs of degree 8 for diameter k ≤ 16

k Order Iso Generating set Odd Maximal Automorphism
class girth defect levels group DI

2 35 G8:2A 1, 6, 7, 10 2 1 2
G8:2B 1, 7, 11, 16 0 1 3

3 104 F8:1 1, 16, 20, 27 0 2 2
4 248 F8:0 1, 61, 72, 76 0 2 2
5 528 F8:1 1, 89, 156, 162 0 3 2
6 984 F8:0 1, 163, 348, 354 0 3 2
7 1712 F8:1 1, 215, 608, 616 0 4 2
8 2768 F8:0 1, 345, 1072, 1080 0 4 2
9 4280 F8:1 1, 429, 1660, 1670 0 5 2
10 6320 F8:0 1, 631, 2580, 2590 0 5 2
11 9048 F8:1 1, 755, 3696, 3708 0 6 2
12 12552 F8:0 1, 1045, 5304, 5316 0 6 2
13 17024 F8:1 1, 1217, 7196, 7210 0 7 2
14 22568 F8:0 1, 1611, 9772, 9786 0 7 2
15 29408 F8:1 1, 1839, 12736, 12752 0 8 2
16 37664 F8:0 1, 2353, 16608, 16624 0 8 2
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Table D.8: Circulant graphs of degree 9 for diameter k ≤ 16

k Order Iso Generating set Odd Maximal Automorphism
class (plus the involution) girth defect levels group DI

2 42 G9:2A 1, 5, 14, 17 2 1 3
G9:2B 2, 7, 8, 10 2 1 9

3 130 G9:3A 1, 8, 14, 47 2 2 2
G9:3B 1, 8, 20, 35 2 2 1
G9:3C 1, 26, 49, 61 2 2 3
G9:3D 2, 8, 13, 32 2 2 3

4 320 G9:4 1, 15, 25, 83 2 3 1

5 700 F9:1a 1, 5, 197, 223 0 2 1
F9:1b 1, 45, 225, 231 0 2 1

6 1416 F9:0 1, 7, 575, 611 0 3 1

7 2548 F9:1a 1, 7, 521, 571 0 3 1
F9:1b 1, 581, 1021, 1029 0 3 1

8 4304 F9:0 1, 9, 1855, 1919 0 4 1

9 6804 F9:1a 1, 9, 1849, 1931 0 4 1
F9:1b 1, 1305, 1855, 1863 0 4 1

10 10320 F9:0 1, 11, 4599, 4699 0 5 1

11 15004 F9:1a 1, 11, 3349, 3471 0 5 1
F9:1b 1, 2299, 2309, 7029 0 5 1

12 21192 F9:0 1, 13, 9647, 9791 0 6 1

13 29068 F9:1a 1, 13, 7741, 7911 0 6 1
F9:1b 1, 3875, 3887, 11479 0 6 1

14 39032 F9:0 1, 15, 18031, 18227 0 7 1

15 51300 F9:1a 1, 15, 11857, 12083 0 7 1
F9:1b 1, 5835, 15075, 15089 0 7 1

16 66336 F9:0 1, 17, 30975, 31231 0 8 1

Table D.9: Circulant graphs of degree 10 for diameter k ≤ 16

k Order Iso Generating set Odd Maximal Automorphism
class girth defect levels group DI

2 51 G10:2 1, 2, 10, 16, 23 2 1 1
3 177 G10:3 1, 12, 19, 27, 87 2 2 1
4 457 F10:4 1, 20, 130, 147, 191 0 2 1
5 1099 F10:0 1, 53, 207, 272, 536 0 2 1
6 2380 F10:1 1, 555, 860, 951, 970 0 3 2
7 4551 F10:2 1, 739, 1178, 1295, 1301 0 3 2
8 8288 F10:3 1, 987, 2367, 2534, 3528 0 3 2
9 14099 F10:4 1, 1440, 3660, 3668, 6247 0 4 1
10 22805 F10:0 1, 218, 1970, 6819, 6827 0 4 1
11 35568 F10:1 1, 4347, 7470, 7903, 11808 0 5 2
12 53025 F10:2 1, 5251, 19281, 19291, 19806 0 5 2
13 77572 F10:3 1, 6347, 14103, 14740, 21098 0 5 2
14 110045 F10:4 1, 827, 9176, 9935, 18272 0 6 1
15 152671 F10:0 1, 973, 11663, 12716, 25364 0 6 1?
16 208052 F10:1 1, 17147, 30784, 32007, 47918 0 7 2?
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Table D.10: Circulant graphs of degree 11 for diameter k ≤ 16

k Order Iso Generating set Odd Maximal Automorphism
class (plus the involution) girth defect levels group DI

2 56 G11:2A 1, 2, 10, 15, 22 2 1 1
G11:2B 1, 4, 6, 15, 24 2 1 1
G11:2C 1, 6, 10, 15, 18 2 1 1
G11:2D 1, 9, 14, 21, 25 2 1 3
G11:2E 2, 6, 7, 18, 21 2 1 12

3 210 G11:3A 1, 49, 59, 84, 89 2 2 3
G11:3B 2, 32, 63, 92, 98 2 2 3

4 576 G11:4 1, 9, 75, 155, 179 2 3 1

5 1428 F11:0 1, 169, 285, 289, 387 0 2 2

6 3200 F11:1a 1, 101, 925, 1031, 1429 0 2 1
F11:1b 1, 265, 851, 1111, 1321 0 2 1

7 6652 F11:2 1, 107, 647, 2235, 2769 0 3 1

8 12416 F11:3 1, 145, 863, 4163, 5177 0 3 1

9 21572 F11:4 1, 189, 1517, 8113, 9435 0 4 1

10 35880 F11:0 1, 2209, 5127, 5135, 12537 0 4 2

11 56700 F11:1a 1, 1053, 1061, 10603, 17965 0 4 1
F11:1b 1, 4113, 4121, 13301, 23723 0 4 1

12 87248 F11:2 1, 479, 4799, 34947, 39257 0 5 1

13 128852 F11:3 1, 581, 5799, 51599, 57989 0 5 1

14 184424 F11:4 1, 693, 8325, 76901, 84523 0 6 1?

15 259260 F11:0 1, 10729, 39875, 39887, 90637 0 6 2?

16 355576 F11:1a 1, 22307, 131327, 136371, 153621 0 6 1?
F11:1b 1, 8579, 75569, 75583, 111513 0 6 1?
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Table D.11: Circulant graphs of degree 12 for diameter k ≤ 16

k Order Iso Generating set Odd Maxi- Aut
class girth mal group

defect levels DI

2 67 G12:2 1, 2, 3, 13, 21, 30 2 1 1

3 275 G12:3 1, 16, 19, 29, 86, 110 2 2 5

4 819 G12:4 7, 26, 119, 143, 377, 385 0 2 9

5 2120 G12:5 1, 488, 529, 704, 868, 940 0 2 2

6 5044 F12:0 1, 26, 99, 266, 1034, 1163 0 2 1

7 10777 G12:7 1, 703, 1533, 1981, 2241, 2410 0 3 6 arc

8 21384 G12:8 130, 333, 489, 1046, 2648, 3831 0 3 1

9 39996 F12:0 549, 699, 1456, 1688, 5235, 6898 0 3 1

10 69965 F12:1a 1, 4935, 14224, 19166, 19991, 23842 0 4 2
F12:1b 1, 7728, 19991, 25270, 28126, 34104 0 4 2

11 117712 F12:2a 1008, 1296, 8071, 15520, 22785, 39928 0 4 4
F12:2b 679, 2184, 2808, 3584, 14008, 15393 0 4 4

12 190392 F12:0 1, 871, 23908, 39652, 45740, 70527 0 4 1?

13 295965 F12:1a 1, 8613, 20367, 65771, 83682, 92304 0 5 2?
F12:1b 1, 65771, 68022, 75330, 93348, 134604 0 5 2?

14 448920 F12:2a 1260, 1540, 28719, 48340, 73611, 116190 0 5 4?
F12:2b 2259, 5310, 6490, 9000, 43390, 47151 0 5 4?

15 662680 F12:0 2315, 5345, 8426, 11694, 58145, 69536 0 5 1?

16 952985 F12:1a 1, 47498, 155243, 173271, 227766, 382998 0 6 2?
F12:1b 1, 118635, 134387, 173271, 293337, 411961 0 6 2?
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Table D.12: Circulant graphs of degree 13 for diameter k ≤ 16

k Order Iso Generating set Odd Maxi- Aut
class (plus the involution) girth mal group

defect levels DI

2 80 G13:2A 1, 3, 9, 20, 25, 33 2 1 1
G13:2B 1, 5, 7, 20, 23, 31 2 1 2
G13:2C 1, 5, 13, 20, 29, 37 2 1 1

3 312 G13:3A 1, 14, 74, 77, 130, 138 2 2 1
G13:3B 2, 9, 54, 69, 134, 146 2 2 1

4 970 G13:4 1, 23, 40, 76, 172, 395 2 3 1

5 2676 G13:5 1, 231, 333, 753, 893, 927 0 2 2

6 6256 G13:6 1, 157, 161, 197, 327, 1115 0 2 1

7 14740 F13:1a 1, 1095, 2949, 4385, 4605, 5755 0 2 2
F13:1b 1, 605, 1865, 2465, 2949, 6905 0 2 2

8 30760 F13:2a 1, 4135, 6151, 9565, 12105, 14525 0 3 2
F13:2b 1, 2005, 6151, 11925, 12575, 13935 0 3 2

9 57396 F13:0a 1, 665, 797, 3319, 19243, 24029 0 3 1
F13:0b 1, 1847, 19867, 21709, 24599, 28391 0 3 1

10 106120 F13:1a 1, 15161, 20153, 29967, 38731, 50113 0 3 2
F13:1b 1, 5495, 15161, 32977, 33761, 39389 0 3 2

11 182980 F13:2a 1, 19663, 26139, 51821, 71477, 89033 0 4 2?
F13:2b 1, 16709, 20783, 26139, 39879, 56595 0 4 2?

12 295840 F13:0a 1, 21999, 97841, 111809, 111817, 140767 0 4 1?
F13:0b 1, 12737, 13729, 58639, 100903, 123553 0 4 1?

13 476100 F13:1a 1, 52901, 66033, 105075, 171099, 229797 0 4 2?
F13:1b 2737, 42111, 51093, 55637, 56205, 68571 0 4 2?

14 732744 F13:2a 1, 65223, 81415, 161937, 227151, 299619 0 5 2?
F13:2b 1, 81415, 155241,168345, 217953, 359541 0 5 2?

15 1081860 F13:0a 1, 4869, 5409, 43811, 433231, 487329 0 5 1?
F13:0b 1, 14381, 143819, 159639, 196701, 303449 0 5 1?

16 1593064 F13:1a 1, 144825, 173657, 288343, 461989, 619861 0 5 2?
F13:1b 1, 20427, 59433, 144825, 594319, 614757 0 5 2?
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Table D.13: Circulant graphs of degree 14 for diameter k ≤ 16

k Order Iso Generating set Odd Maxi- Aut
class girth mal group

defect levels DI

2 90 G14:2A 1, 4, 10, 17, 26, 29, 41 0 1 1
G14:2B 1, 5, 8, 19, 25, 28, 40 2 1 2
G14:2C 1, 5, 11, 14, 32, 34, 41 0 1 1
G14:2D 3, 5, 9, 12, 25, 35, 36 2 1 18

3 381 G14:3 1, 11, 103, 120, 155, 161, 187 2 2 1

4 1229 G14:4 1, 8, 105, 148, 160, 379, 502 2 2 1

5 3695 F14:5 1, 38, 365, 1038, 1060, 1073, 1188 0 2 1

6 9800 F14:6a 441, 1772, 2088, 2508, 2891, 5032, 8788 0 2 2
F14:6b 1, 1472, 1756, 2451, 2928, 3216, 3756 2 2 2

7 23304 F14:0a 1, 5504, 5827, 6192, 6364, 7056, 10732 0 3 2
F14:0b 1, 1280, 1824, 3004, 5827, 9124, 9900 0 3 2

8 49757 F14:1 1, 845, 4192, 8267, 8468, 9266, 12491 0 3 1

9 103380 F14:2a 725, 4848, 6870, 15828, 16505, 30000, 45330 0 3 4
F14:2b 12, 1110, 4595, 12635, 15150, 20688, 22020 0 3 4

10 196689 F14:3 1, 5165, 24410, 35629, 54868, 72479, 77119 0 4 7? arc

11 350700 F14:4a 1603, 4830, 10812, 39288, 43428, 60053,
62286

0 4 4?

F14:4b 984, 5754, 14903, 43547, 49116, 88410,
129696

0 4 4?

12 593989 F14:5 1, 1764, 38857, 134389, 171474, 175261,
273764

0 4 1?

13 996240 F14:6a 1, 263656, 334656, 350120, 373591, 449488,
460296

0 4 2?

F14:6b 1, 67624, 130368, 371584, 373591, 426672,
487912

0 4 2?

14 1603216 F14:0a 1, 115856, 392096, 415688, 490840, 601207,
679584

0 5 2?

F14:0b 1, 313192, 321472, 412872, 601207, 677392,
777080

0 5 2?

15 2486227 F14:1 1, 99775, 175188, 332678, 477082, 722778,
1199869

0 5 1?

16 3843540 F14:2a 7713, 61880, 69030, 365180, 392067, 698400,
924570

0 5 4?

F14:2b 12510, 16420, 56997, 327357, 347310, 443480,
457380

0 5 4?
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Table D.14: Circulant graphs of degree 15 for diameter k ≤ 16

k Order Iso Generating set Odd Maxi- Aut
class (plus the involution) girth mal group

defect levels DI

2 96 G15:2A 1, 2, 3, 14, 21, 31, 39 2 1 1
G15:2B 1, 3, 5, 11, 24, 31, 39 2 1 1
G15:2C 1, 3, 5, 13, 24, 33, 41 2 1 1
G15:2D 1, 3, 5, 15, 24, 31, 37 2 1 2
G15:2E 1, 3, 7, 15, 24, 35, 43 2 1 1
G15:2F 1, 3, 11, 15, 17, 24, 43 2 1 1
G15:2G 1, 3, 11, 15, 24, 29, 31 2 1 1
G15:2H 1, 3, 13, 19, 24, 33, 41 2 1 1
G15:2I 1, 4, 6, 9, 20, 31, 42 2 1 1
G15:2J 1, 5, 9, 21, 24, 31, 37 2 1 2
G15:2K 1, 5, 11, 24, 31, 39, 45 2 1 1
G15:2L 1, 5, 13, 17, 24, 27, 33 2 1 1
G15:2M 1, 5, 24, 33, 35, 41, 45 2 1 1
G15:2N 1, 7, 11, 24, 27, 39, 43 2 1 1

3 448 G15:3 1, 10, 127, 150, 176, 189, 217 2 2 1

4 1420 G15:4 1, 20, 111, 196, 264, 340, 343 4 2 1

5 4292 F15:5 1, 49, 631, 721, 871, 1307, 1941 2 2 1

6 12232 F15:6 1, 25, 965, 987, 3039, 5357, 5411 0 2 1

7 32092 F15:0 1, 1949, 9409, 11745, 12547, 13609, 15949 0 3 7

8 68944 F15:1 1, 605, 3889, 13667, 25329, 26799, 29827 0 3 1

9 142516 F15:2 1, 4693, 20067, 38833, 43603, 48301, 52039 0 3 1

10 276928 F15:3a 1, 923, 18307, 76639, 78767, 91541, 122439 0 3 1?
F15:3b 1, 2023, 41295, 66071, 79691, 119029, 129137 0 3 1?

11 514580 F15:4 1, 15777, 38497, 44443, 71941, 200663,
223377

0 4 1?

12 908480 F15:5 1, 12585, 137279, 177161, 265263, 311571,
371535

0 4 1?

13 1550228 F15:6 1, 17363, 84027, 644541, 672223, 699419,
744457

0 4 1?

14 2566712 F15:0 1, 193103, 241127, 375311, 423327, 483801,
1069905

0 5 7?

15 4013468 F15:1 1, 31267, 536859, 639891, 895355, 1372563,
1464147

0 5 1?

16 6155056 F15:2 1, 142993, 1147423, 1178161, 2291357,
2465097, 2993591

0 5 1?
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Table D.15: Circulant graphs of degree 16 for diameter k ≤ 16

k Order Iso Generating set Odd Maxi- Aut
class girth mal group

defect levels DI

2 112 G16:2 1, 4, 10, 17, 29, 36, 45, 52 0 1 1

3 518 G16:3 1, 8, 36, 46, 75, 133, 183, 247 2 2 1

4 1788 G16:4 1, 16, 249, 288, 465, 585, 590, 799 2 2 1

5 5847 F16:1a 1, 720, 1053, 1188, 1311, 1581, 1948, 2742 2 2 2
F16:1b 1, 1041, 1083, 1560, 1948, 2214, 2628, 2835 2 2 2

6 17733 F16:2a 1, 1695, 2652, 2868, 5418, 5912, 6756, 8232 2 2 2
F16:2b 1, 1695, 1734, 3132, 3288, 5912, 8172, 8466 2 2 2

7 45900 G16:7 1, 4902, 6266, 12499, 14334, 18802, 19758,
21927

2 3 1

8 107748 G16:4 1, 4382, 16334, 19322, 20865, 26082, 43458,
47803

0 3 1

9 232245 F16:1a 1, 22915, 28645, 47680, 54755, 56760, 58630,
92899

0 3 2?

F16:1b 2850, 5655, 17645, 17922, 28527, 57715,
93745, 113650

0 3 2?

10 479255 F16:2a 1, 31900, 46575, 63990, 151740, 152040,
166220, 191701

0 3 2?

F16:2b 1, 19365, 82565, 119090, 139035, 191701,
194930, 232055

0 3 2?

11 924420 F16:3a 12810, 27936, 33955, 56580, 120115, 122910,
275430, 397704

0 4 4?

F16:3b 5065, 6060, 38652, 44730, 100110, 146232,
149005, 187290

0 4 4?

12 1702428 F16:0a 3654, 38640, 60888, 75299, 206262, 208439,
304092, 335370

0 4 4?

F16:0b 15701, 18480, 61596, 75054, 235410, 268037,
424812, 636258

0 4 4?

13 2982623 F16:1a 1, 22414, 217924, 845313, 852179, 862246,
1002218, 1237068

0 4 2?

F16:1b 1, 707126, 780465, 829864, 852179, 1003520,
1137402, 1238419

0 4 2?

14 5109237 F16:2a 8676, 48237, 49728, 126623, 535451, 738567,
1174292, 1570625

0 4 2?

F16:2b 1, 82208, 536753, 846349, 1459781, 1987895,
2145444, 2379706

0 4 2?

15 8476048 F16:3a 27328, 187512, 187985, 264152, 871521,
920528, 1921920, 2609240

0 5 4?

F16:3b 1239, 37464, 222880, 224296, 768432, 986568,
1060745, 1260448

0 5 4?

16 13588848 F16:0a 22176, 140184, 320024, 335079, 1321056,
1363527, 1829896, 1969776

0 5 4?

F16:0b 15759, 87912, 324680, 338688, 1505808,
1682847, 2695064, 3751488

0 5 4?
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Table D.16: Circulant graphs of degree 17 for diameter k ≤ 16

k Order Iso Generating set Odd Maxi- Aut
class (plus the involution) girth mal group

defect levels DI

2 130 G17:2A 1, 7, 26, 37, 47, 49, 52, 61 2 1 6
G17:2B 2, 8, 13, 14, 32, 36, 39, 56 0 1 30

3 570 G17:3 1, 26, 63, 72, 105, 218, 234, 266 2 2 1

4 1954 G17:4 1, 35, 80, 122, 144, 437, 634, 694 2 2 1

5 6468 F17:1a 1, 489, 981, 2007, 2155, 2199, 2325, 2973 2 2 2
F17:1b 1, 459, 1185, 1455, 1659, 1851, 2155, 2403 2 2 2

6 20360 F17:2a 1, 85, 259, 2541, 3941, 4719, 6199, 6227 2 2 1
F17:2b 1, 443, 695, 3055, 5137, 7081, 9353, 9609 2 2 1

7 57684 F17:3a 1, 1347, 5385, 5721, 7629, 8031, 10707, 19229 2 2 2
F17:3b 1, 1203, 14121, 16125, 16317, 16749, 16893,

19229
2 2 2

8 136512 F17:0a 1, 2569, 3427, 24561, 28077, 42005, 50073,
55291

2 3 1

F17:0b 1, 1993, 8519, 17475, 29125, 44777, 45323,
57109

2 3 1

9 321780 F17:1a 6875, 15835, 25257, 28965, 34445, 40165,
89613, 103405

2 3 2?

F17:1b 1, 28645, 31315, 91115, 113895, 114585,
121745, 128711

0 3 2?

10 659464 F17:2a 1, 22977, 31087, 105401, 128373, 187579,
214641, 247349

2 3 1?

F17:2b 1, 15657, 18675, 233371, 251261, 263339,
326751, 328979

2 3 1?

11 1350820 F17:3a 1, 9595, 57575, 59175, 199155, 323455,
405865, 540329

0 4 2?

F17:3b 1, 98935, 241625, 319325, 536205, 540329,
589425, 643445

0 4 2?

12 2479104 F17:0a 1, 13015, 224021, 348731, 976025, 991643,
1087727, 1181429

0 4 1?

F17:0b 1, 27395, 330677, 354157, 660977, 665585,
964693, 1156711

0 4 1?

13 4557364 F17:1a 1, 397397, 533267, 567105, 1585353, 1945391,
1953155, 2180745

0 4 2?

F17:1b 1, 143185, 934451, 1455475, 1698053,
1953155, 2075885, 2122939

0 4 2?

14 7729000 F17:2a 1, 44599, 172671, 312201, 1128809, 1164099,
2057343, 3394105

0 4 1?

F17:2b 1, 178557, 301355, 311615, 1061091, 2181313,
2298293, 2421099

0 4 1?

15 13275108 F17:3a 1, 738143, 2567453, 2672901, 3905909,
4866981, 5586539, 5689333

0 5 2?

F17:3b 513919, 692755, 839547, 1056897, 1324113,
1535723, 1765477, 1944271

0 5 2?

16 21252864 F17:0a 1, 58311, 466481, 2724247, 5605767, 6671679,
7602345, 9860367

0 5 1?

F17:0b 1, 155775, 1565119, 1741287, 4355481,
4667849, 7166801, 9179097

0 5 1?
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Table D.17: Circulant graphs of degree 18 for diameter k ≤ 19

k Order Iso Generating set Odd Maxi- Aut
class girth mal group

defect levels DI

2 138 G18:2A 1, 9, 12, 15, 22, 42, 47, 51, 68 2 1 8
G18:2B 1, 9, 22, 42, 47, 51, 54, 57, 68 2 1 8
G18:2C 1, 15, 21, 24, 28, 33, 36, 47, 64 2 1 2

3 655 G18:3 1, 5, 48, 75, 125, 142, 160, 189, 300 2 1 1

4 2645 F18:4 1, 16, 234, 275, 328, 585, 902, 1008, 1055 2 2 1

5 8425 G18:5A 1, 39, 626, 697, 1282, 1954, 2169, 3770, 4106 2 2 1
G18:5B 1, 28, 563, 867, 1123, 2270, 2722, 3882, 4169 2 2 1

6 27273 F18:6a 1, 1461, 2193, 4944, 6690, 8055, 9092, 12090,
13383

4 2 2

F18:6b 1, 3351, 3750, 6699, 8010, 9092, 9258, 9756,
12198

2 2 2

7 80940 F18:7a 483, 2250, 2305, 7548, 12369, 28599, 29285,
29874, 45891

2 2 2

F18:7b 1, 1389, 5934, 6663, 19194, 20709, 26981,
35766, 38805

2 2 2

8 208872 F18:8a 6879, 8912, 10468, 13280, 16464, 16812,
16928, 42068, 45339

2 3 2?

F18:8b 1, 6288, 20084, 44940, 46344, 52219, 85156,
85404, 100608

4 3 2?

9 492776 F18:0a 1, 3248, 13008, 68276, 112716, 123195,
136112, 216420, 230060

0 3 2?

F18:0b 1, 11936, 39880, 48020, 115524, 123195,
132400, 148084, 184408

2 3 2?

10 1078280 F18:1a 18985, 19500, 80740, 96160, 96340, 107248,
108408, 288555, 350340

2 3 2?

F18:1b 16240, 25475, 36400, 36620, 57428, 88160,
158228, 244095, 433840

2 3 2?

11 2202955 F18:2a 1, 243915, 343340, 560850, 774970, 809705,
829590, 834535, 881181

0 3 2?

F18:2b 1, 116575, 326310, 466295, 504675, 565515,
828570, 881181, 930200

2 3 2?

12 4388640 F18:3a 86850, 247675, 289128, 291390, 309990,
414300, 924540, 979115, 2922312

2 4 1?

F18:3b 19020, 64230, 78305, 262800, 302514, 396480,
575214, 653135, 1398450

2 4 4?

13 8068383 F18:4 1, 19229, 37961, 43597, 2658766, 2692582,
3462710, 3544262, 3709706

0 4 1?

14 14718984 F18:5a 96852, 127344, 371154, 703194, 707399,
882252, 1745765, 2805906, 4158294

0 4 4?

F18:5b 2784, 69930, 81270, 439068, 455994, 507108,
535241, 1917923, 2099928

0 4 4?

15 25609955 F18:6a 1, 409661, 477939, 2177616, 5934754,
6243342, 7317129, 10384150, 12544266

0 4 2?

F18:6b 1, 1523473, 2600318, 4242028, 7317129,
8746850, 10456264, 11517667, 12187777

0 4 2?

16 43068508 F18:7a 1, 2585681, 7655844, 11414949, 11589914,
12305287, 14902181, 18482926, 20685441

0 4 2?

F18:7b 1, 1150282, 1314607, 1442441, 8136562,
9159003, 10947433, 12305287, 12657414

0 4 2?

continued on next page
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Table D.17: (cont.) Circulant graphs of degree 18 for diameter k ≤ 19

k Order Iso Generating set Odd Maxi- Aut
class girth mal group

defect levels DI

17 70861072 F18:8a 1, 633504, 3514568, 4355944, 6960384,
15235032, 23682016, 26572903, 30413024

0 5 2?

F18:8b 1, 4047176, 8309856, 8999640, 24480496,
24602840, 26572903, 29361680, 30173816

0 5 2?

18 113542416 F18:0a 1, 28237632, 32426832, 34015968, 36424392,
42578407, 49137480, 50918248, 54158728

0 5 2?

F18:0b 472896, 635968, 1030784, 2335360, 2568168,
2683749, 2706776, 11509053, 12750824

0 5 2?

19 177875280 F18:1a 249480, 3511287, 3742344, 3964104, 6419952,
6888128, 12875792, 25745697, 36229032

0 5 2?

F18:1b 342432, 1670625, 1827432, 1896192, 2890040,
4684896, 16873880, 20563785, 40561056

0 5 2?

Table D.18: Circulant graphs of degree 19 for diameter k ≤ 17

k Order Iso Generating set Odd Maxi- Aut
class (plus the involution) girth mal group

defect levels DI

2 156 G19:2 1, 15, 21, 23, 26, 33, 52, 61, 65 2 1 3

3 722 G19:3 1, 10, 48, 101, 132, 135, 167, 171, 244 2 1 1

4 2696 G19:4 1, 5, 100, 322, 404, 570, 602, 1159, 1218 4 2 1

5 9652 G19:5A 1, 235, 247, 273, 3131, 3249, 3363, 3473, 4065 2 2 2
G19:5B 1, 475, 817, 1387, 1637, 2589, 3605, 4065,

4177
2 2 2

6 31440 F19:6a 1, 2055, 3219, 4503, 5727, 5997, 7071, 10481,
15501

4 2 2

F19:6b 1, 1587, 1995, 3369, 5559, 7569, 8175, 9609,
10481

2 2 2

7 99420 G19:7A 1, 243, 10173, 13725, 18393, 22785, 31245,
33139, 35961

2 2 2

G19:7B 1, 6717, 10287, 22995, 24285, 24819, 33139,
44841, 48039

2 2 2

8 258040 G19:8A 1, 6013, 61777, 77995, 92643, 98335, 110521,
112535, 122737

2 2 1?

G19:8B 1, 1591, 9215, 10803, 50135, 82225, 94361,
109103, 119407

2 2 1?

9 652004 F19:0 1, 1225, 7433, 116093, 123199, 159059,
190165, 203399, 318263

2 3 1?

10 1416256 F19:1a 1, 4967, 178527, 184735, 225221, 287225,
314983, 630623, 697185

2 3 1?

F19:1b 1, 8891, 127041, 158801, 172255, 226071,
436827, 627333, 670769

2 3 1?

11 3101860 F19:2a 1, 432795, 620371, 667265, 770075, 856635,
876395, 945355, 962595

4 3 2?

F19:2b 1, 74855, 299425, 307615, 620371, 873245,
1091555, 1145255, 1360055

2 3 2?

12 6100520 F19:3a 1, 144845, 199185, 533245, 711855, 1037895,
1589135, 2440209, 2509015

2 3 2?

continued on next page
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Table D.18: (cont.) Circulant graphs of degree 19 for diameter k ≤ 17

k Order Iso Generating set Odd Maxi- Aut
class (plus the involution) girth mal group

defect levels DI

F19:3b 1, 11375, 132565, 751375, 808255, 2316445,
2440209, 2686855, 2876295

2 3 2?

13 11797684 F19:4 1, 42157, 210791, 1179953, 2435871, 3911403,
4472967, 4549331, 4557761

0 4 1?

14 21659528 F19:5 1, 7207, 768141, 1317277, 2385367, 5376981,
7896461, 8707845, 10559115

0 4 1?

15 38328220 F19:6a 1, 2416211, 5806843, 12177585, 13814381,
15627619, 16426381, 17601101, 17768919

0 4 2?

F19:6b 1, 280721, 2634891, 9297617, 12009417,
14208005, 15026403, 16426381, 18101909

0 4 2?

16 66601304 F19:7a 1, 9514471, 13753159, 19092899, 19565399,
19936119, 23320591, 28684341, 30118501

0 4 2?

F19:7b 1, 3216227, 9514471, 13095649, 18301073,
19297355, 24338601, 29530235, 30163343

0 4 2?

17 109535540 F19:8a 1, 589431, 1921675, 13815509, 14974299,
15962839, 31211663, 43393371, 46760881

0 4 1?

F19:8b 1, 331711, 15268837, 23100849, 23301385,
24847989, 27342421, 43416841, 52186807

0 4 1?

Table D.19: Circulant graphs of degree 20 for diameter k ≤ 16

k Order Iso Generating set Odd Maxi- Aut
class girth mal group

defect levels DI

2 171 G20:2 1, 11, 31, 36, 37, 50, 54, 57, 65, 81 2 1 6

3 815 G20:3 1, 40, 65, 96, 109, 144, 155, 182, 202, 379 2 2 1

4 3175 G20:4 1, 18, 172, 274, 449, 644, 693, 784, 911, 1121 4 2 1

5 12396 F20:0a 1, 28, 1586, 1626, 2082, 3376, 4552, 4800,
5670, 6197

2 1 2

F20:0b 358, 476, 702, 962, 1308, 1336, 1392, 2211,
3494, 3987

2 1 2

6 42252 G20:6a 1, 3024, 3174, 9520, 10214, 10530, 12618,
14574, 19092, 21125

2 1 2

G20:6b 1, 1746, 4056, 10198, 11656, 15678, 17862,
18698, 19644, 21125

2 1 2

7 132720 G20:7A 825, 6195, 6663, 7092, 7918, 11832, 15285,
16554, 27009, 36322

2 2 2

G20:7B 6897, 7722, 11433, 11538, 16287, 16306,
21168, 25545, 27934, 33273

4 2 2

8 371400 G20:8A 1, 17652, 61064, 74640, 90924, 92849, 102240,
109920, 155588, 175664

4 2 2?

G20:8B 1, 21216, 30024, 40236, 67436, 76068, 92849,
143344, 146280, 174936

4 2 2?

9 930184 F20:4a 1, 66608, 117956, 179476, 232547, 273784,
303520, 313432, 445912, 461708

4 3 2?

F20:4b 1, 21648, 29652, 31536, 210428, 232547,
329040, 342668, 349436, 408956

2 3 2?

10 2232648 F20:0a 1, 118028, 133224, 189980, 477360, 558161,
724588, 740212, 783736, 1082712

2 3 2?

continued on next page
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Table D.19: (cont.) Circulant graphs of degree 20 for diameter k ≤ 16

k Order Iso Generating set Odd Maxi- Aut
class girth mal group

defect levels DI

F20:0b 1, 545916, 558161, 567476, 583176, 596988,
667932, 674272, 1098688, 1100272

2 3 2?

11 4947880 F20:1a 2260, 44680, 97255, 123560, 165620, 223920,
243888, 377720, 745688, 1139715

2 3 4?

F20:1b 105276, 137740, 199820, 200720, 215980,
423715, 691260, 813255, 1873876, 2253920

2 3 4?

12 10238745 F20:2a 1, 267020, 448155, 552080, 1032955, 1086360,
2190785, 2492930, 3119555, 4095499

4 3 2?

F20:2b 8875, 13430, 101335, 448870, 460262, 544300,
1728800, 8651258, 10114635, 10149065

4 3 2?

13 20452920 F20:3a 63985, 602760, 695070, 1063380, 1127520,
3472805, 3859260, 5700810, 8416284

0 4 4?

F20:3b 210, 4230, 151380, 152442, 756930, 783005,
909330, 938760, 2625815, 3938142

2 4 4?

14 38155632 F20:4a 1, 138846, 2971386, 6359273, 7552620,
10529382, 10964544, 13658208, 16023144,
16167372

0 4 2?

F20:4b 1, 2278728, 5457870, 5816946, 5829414,
6359273, 12307044, 15561006, 17509818,
17584632

2 4 2?

15 70612644 F20:0a 1, 11768773, 21044952, 22808862, 24062964,
25004334, 25038822, 27857124, 33070614,
34646424

0 4 2?

F20:0b 1, 6398412, 11768773, 14333250, 16580220,
17951334, 27036228, 27410724, 30696954,
35262918

0 4 2?

16 126967008 F20:1a 22386, 338772, 413371, 2263422, 2636928,
3506886, 3852618, 4851630, 14631258,
20747797

0 4 4?

F20:1b 1018500, 1667088, 2158800, 2284506,
3687516, 5192173, 15161496, 15968995,
34609200, 46264638

0 4 4?

Table D.20: Circulant graphs of degrees 21 to 29 for some diameters k

Degree k Order Iso Generating set Odd Maxi- Aut
class (plus the involution for odd degree) girth mal group

defect levels DI

21 2 192 G21:2 1, 3, 15, 23, 32, 51, 57, 64, 85, 91 2 1 1

5 8532 F21:0 1, 3, 5, 19, 33, 123, 213, 795, 1377,
2385

2 1 1

10 2069424 F21:0 1, 5, 182073, 413871, 413887, 579429,
652419, 662163, 678969, 850203

0 2 1?

15 83328852 F21:0 1, 7, 3263105, 5343719, 14234911,
15305275, 22350731, 27209599,
35712361, 35712397

0 3 1?

22 2 210 G22:2 2, 7, 12, 18, 32, 35, 63, 70, 78, 91, 92 2 1 3

5 13749 F22:5 1, 3, 310, 2218, 2389, 3001, 3356, 3358,
3677, 3685, 6483

0 1 1

continued on next page
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Table D.20: (cont.) Circulant graphs of degree 21 to 29 for some
diameters k

Degree k Order Iso Generating set Odd Maxi- Aut
class (plus the involution for odd degree) girth mal group

defect levels DI

16 285487743 F22:5 1, 558104, 21691418, 26156396,
59640662, 77911027, 77911033,
126700978, 129107465, 129108149,
129589720

0 3 1?

23 2 216 G23:2A 1, 3, 5, 17, 27, 36, 43, 57, 72, 83, 95 2 1 1
G23:2B 1, 3, 5, 17, 27, 36, 49, 61, 72, 87, 101 2 1 1
G23:2C 1, 3, 5, 19, 36, 45, 49, 51, 61, 72, 79 2 1 1
G23:2D 1, 3, 5, 21, 27, 36, 49, 61, 72, 89, 101 2 1 1
G23:2E 1, 3, 7, 17, 36, 49, 61, 72, 77, 87, 99 2 1 1
G23:2F 1, 3, 7, 19, 36, 47, 49, 57, 72, 77, 81 2 1 1
G23:2G 1, 3, 7, 25, 36, 45, 51, 55, 67, 72, 85 2 1 1
G23:2H 1, 3, 9, 23, 31, 36, 47, 51, 72, 89, 101 2 1 1
G23:2I 1, 3, 11, 19, 36, 45, 51, 72, 79, 85, 103 2 1 1
G23:2J 1, 3, 17, 29, 36, 47, 57, 59, 67, 72, 81 2 1 1
G23:2K 1, 5, 7, 23, 27, 36, 72, 75, 83, 87, 89 2 1 1
G23:2L 1, 5, 13, 19, 25, 33, 36, 65, 72, 81, 87 2 1 1
G23:2M 1, 5, 19, 25, 27, 36, 39, 72, 79, 87, 95 2 1 1
G23:2N 1, 5, 21, 23, 29, 36, 53, 61, 63, 72, 75 2 1 1
G23:2O 1, 5, 23, 36, 39, 45, 51, 53, 65, 72, 83 2 1 1
G23:2P 1, 7, 13, 17, 36, 57, 61, 72, 75, 81, 103 2 1 1
G23:2Q 1, 15, 36, 55, 61, 65, 69, 72, 81, 85, 103 2 1 1

11 10556484 F23:0 1, 20697, 51743, 134531, 610565,
633359, 693349, 1883443, 2183585,
4717021, 5267403

0 2 1?

24 2 231 G24:2A 1, 2, 9, 15, 35, 47, 57, 62, 76, 78, 90,
101

2 1 1

G24:2B 1, 7, 12, 28, 35, 42, 45, 49, 67, 100,
105, 111

2 1 3

G24:2C 1, 12, 28, 35, 42, 45, 49, 67, 100, 105,
111, 112

2 1 3

G24:2D 1, 28, 35, 42, 43, 49, 67, 89, 100, 105,
109, 112

2 1 6

G24:2E 1, 28, 35, 43, 49, 63, 67, 84, 89, 100,
109, 112

2 1 6

G24:2F 1, 28, 35, 43, 49, 67, 84, 89, 100, 105,
109, 112

2 1 6

25 2 242 G25:2A 1, 2, 3, 4, 5, 23, 34, 51, 63, 79, 92, 106 2 1 1
G25:2B 1, 2, 3, 4, 5, 23, 34, 51, 63, 79, 92, 107 2 1 1
G25:2C 1, 2, 3, 4, 21, 30, 46, 56, 70, 82, 97, 108 2 1 1
G25:2D 1, 2, 3, 4, 21, 30, 46, 56, 71, 82, 96, 108 2 1 1
G25:2E 1, 2, 3, 4, 21, 30, 46, 56, 71, 82, 96, 109 2 1 1
G25:2F 1, 2, 11, 16, 24, 37, 44, 50, 63, 91, 119,

120
2 1 1

G25:2G 1, 3, 5, 7, 9, 28, 43, 54, 65, 84, 97, 104 2 1 1

6 72296 F25:0 1, 3, 4909, 14377, 14385, 19303, 19305,
24259, 32503, 33457, 34069, 34411

0 1 1

12 46664672 F25:0 1, 357511, 2902945, 4638099, 5766395,
9515355, 10313947, 10338407,
12434831, 13091245, 18875539,
21811537

0 2 1?

continued on next page
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Table D.20: (cont.) Circulant graphs of degree 21 to 29 for some
diameters k

Degree k Order Iso Generating set Odd Maxi- Aut
class (plus the involution for odd degree) girth mal group

defect levels DI

26 6 78597 F26:6 1, 3, 5, 19, 33, 123, 213, 795, 1377,
5139, 8901, 21060, 33219

0 1 1

6 95024 A26:6 1, 6177, 12471, 15323, 22984, 23092,
24465, 26072, 28373, 30645, 32132,
40277, 41560

0 1 1

27 13 178311348 F27:0 1, 604449, 2176017, 18133357,
19913931, 26247231, 27465939,
45333395, 45333399, 47751195,
53408493, 56455263, 60444525

0 2 1?

29 7 499564 F29:0 1, 3, 10713, 31185, 55815, 74037,
83037, 83045, 108907, 137361, 138841,
138843, 193315, 194611

0 1 1?

14 911854768 F29:0 1, 4610563, 18116935, 18116969,
91638401, 145565885, 160099805,
178542057, 220564267, 279444447,
291663509, 309042283, 357495113,
366553605

0 2 1?

Robert Roderick Lewis



346 D Extremal and largest-known circulant graphs

Robert Roderick Lewis



Appendix E

Extremal and largest-known
bipartite circulant graphs

E.1 Bipartite circulant graphs up to degree 11

Of the extremal and largest-known bipartite circulant graphs presented in this appendix, the

following have been discovered by the author:

Degree 6 and above: diameter 2 and above

For verified extremal graphs the order is shown in bold text. For small diameter, the

largest-known graph may have larger order than the member of the largest-known family.

Where a graph is a member of an identified largest-known family, the isomorphism class of the

family is identified by a code beginning with ‘D’; otherwise the isomorphism class is specific to

the graph and begins with ‘E’.

For each known isomorphism class just one generating set is defined: primitive if one exists,

otherwise imprimitive. For odd degree, the involutory generator is omitted.

The automorphism group dihedral index (Aut group DI) is the order of the group expressed

as a multiple of the order of the dihedral group on the same number of vertices. For large

graphs, where the index is conjectured on the basis of the structure of the generating set, this

is indicated by a question mark.

Table E.1: Bipartite circulant graphs of degree 2 for diameter k ≤ 16

k Order Iso Generating set Maximal Aut
class levels group DI

2 4 D2 1 1 1
3 6 D2 1 2 1
4 8 D2 1 3 1
5 10 D2 1 4 1
6 12 D2 1 5 1
7 14 D2 1 6 1
8 16 D2 1 7 1
9 18 D2 1 8 1
10 20 D2 1 9 1
11 22 D2 1 10 1
12 24 D2 1 11 1
13 26 D2 1 12 1
14 28 D2 1 13 1
15 30 D2 1 14 1
16 32 D2 1 15 1
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Table E.2: Bipartite circulant graphs of degree 3 for diameter k ≤ 16

k Order Iso Generating set Maximal Aut
class (plus the involution) levels group DI

2 6 D3 1 1 6
3 10 D3 1 2 1
4 14 D3 1 3 1
5 18 D3 1 4 1
6 22 D3 1 5 1
7 26 D3 1 6 1
8 30 D3 1 7 1
9 34 D3 1 8 1
10 38 D3 1 9 1
11 42 D3 1 10 1
12 46 D3 1 11 1
13 50 D3 1 12 1
14 54 D3 1 13 1
15 58 D3 1 14 1
16 62 D3 1 15 1
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Table E.3: Bipartite circulant graphs of degree 4 for diameter k ≤ 16

k Order Families, Generating set Generating set Maximal Aut
D4:s parameter, t levels group DI

2 8 D4:1, D4:3, D4:5, . . . 1 1, 3 1 72

3 18 D4:1, D4:2, D4:4, . . . 1 1, 5 2 1

4 32 D4:1, D4:3, D4:5, . . . 1 1, 7 3 1

5 50 D4:1, D4:4, D4:6, . . . 1 1, 9 4 1
D4:2, D4:3, D4:7, . . . 2 1, 19 4 1

6 72 D4:1, D4:5, D4:7, . . . 1 1, 11 5 1

7 98 D4:1, D4:6, D4:8, . . . 1 1, 13 6 1
D4:3, D4:4, . . . 2 1, 27 6 1
D4:2, D4:5, . . . 3 1, 41 6 1

8 128 D4:1, D4:7, . . . 1 1, 15 7 1
D4:3, D4:5, . . . 3 1, 47 7 1

9 162 D4:1, D4:8, . . . 1 1, 17 8 1
D4:4, D4:5, . . . 2 1, 35 8 1
D4:2, D4:7, . . . 4 1, 71 8 1

10 200 D4:1, . . . 1 1, 19 9 1
D4:3, D4:7, . . . 3 1, 59 9 1

11 242 D4:1, . . . 1 1, 21 10 1
D4:5, D4:6, . . . 2 1, 43 10 1
D4:4, D4:7, . . . 3 1, 65 10 1
D4:3, D4:8, . . . 4 1, 87 10 1
D4:2, . . . 5 1, 109 10 1

12 288 D4:1, ... 1 1, 23 11 1
D4:5, D4:7, . . . 5 1, 119 11 1

13 338 D4:1, . . . 1 1, 25 12 1
D4:6, D4:7, . . . 2 1, 51 12 1
D4:4, . . . 3 1, 77 12 1
D4:3, . . . 4 1, 103 12 1
D4:5, D4:8, . . . 5 1, 129 12 1
D4:2, . . . 6 1, 155 12 1

14 392 D4:1, . . . 1 1, 27 13 1
D4:5, . . . 3 1, 83 13 1
D4:3, . . . 5 1, 139 13 1

15 450 D4:1, D4:8, . . . 1 1, 29 14 1
D4:7, . . . 2 1, 59 14 1
D4:4, . . . 4 1, 119 14 1
D4:2, . . . 7 1, 209 14 1

16 512 D4:1, . . . 1 1, 31 15 1
D4:5, . . . 3 1, 95 15 1
D4:3, . . . 5 1, 159 15 1
D4:7, . . . 7 1, 223 15 1
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Table E.4: Bipartite circulant graphs of degree 5 for diameter k ≤ 16

k Order Iso Generating set Maximal Aut
class (plus the involution) levels group DI

2 10 D5 1, 3 1 1440
3 26 D5 1, 5 2 2
4 50 D5 1, 7 3 2
5 82 D5 1, 9 4 2
6 122 D5 1, 11 5 2
7 170 D5 1, 13 6 2
8 226 D5 1, 15 7 2
9 290 D5 1, 17 8 2
10 362 D5 1, 19 9 2
11 442 D5 1, 21 10 2
12 530 D5 1, 23 11 2
13 626 D5 1, 25 12 2
14 730 D5 1, 27 13 2
15 842 D5 1, 29 14 2
16 962 D5 1, 31 15 2

Table E.5: Bipartite circulant graphs of degree 6 for diameter k ≤ 16

k Order Iso Generating set Maximal Aut
class levels group DI

2 12 D6:2A/B 1, 3, 5 1 43200

3 38 D6:0 1, 7, 11 2 3

4 80 D6:1A 1, 5, 31 2 2
D6:1B 1, 11, 15 2 1

5 154 D6:2A 1, 7, 43 3 2
D6:2B 1, 21, 29 3 1

6 268 D6:0 1, 29, 37 4 3

7 414 D6:1A 1, 9, 91 4 2
D6:1B 1, 37, 45 4 1

8 616 D6:2A 1, 11, 111 5 2
D6:2B 1, 55, 67 5 1

9 882 D6:0 1, 67, 79 6 3

10 1196 D6:1A 1, 13, 183 6 2
D6:1B 1, 79, 91 6 1

11 1590 D6:2A 1, 15, 211 7 2
D6:2B 1, 105, 121 7 1

12 2072 D6:0 1, 121, 137 8 3

13 2618 D6:1A 1, 17, 307 8 2
D6:1B 1, 137, 153 8 1

14 3268 D6:2A 1, 19, 343 9 2
D6:2B 1, 171, 191 9 1

15 4030 D6:0 1, 191, 211 10 3

16 4872 D6:1A 1, 21, 463 10 2
D6:1B 1, 211, 231 10 1
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Table E.6: Bipartite circulant graphs of degree 7 for diameter k ≤ 16

k Order Iso Generating set Maximal Aut
class (plus the involution) levels group DI

2 14 D7:2 1, 3, 5 1 1814400

3 42 D7:0A 1, 3, 13 1 2
D7:0B 1, 5, 9 1 1
E7:3 1, 5, 13 1 1

4 110 D7:1A 1, 5, 21 2 2
D7:1B 1, 31, 35 2 1

5 234 D7:2 1, 95, 101 3 3

6 406 D7:0A 1, 7, 57 3 2
D7:0B 1, 83, 91 3 1

7 666 D7:1A 1, 9, 73 4 2
D7:1B 1, 181, 189 4 1

8 1030 D7:2 1, 459, 469 5 3

9 1474 D7:0A 1, 11, 133 5 2
D7:0B 1, 329, 341 5 1

10 2054 D7:1A 1, 13, 153 6 2
D7:1B 1, 547, 559 6 1

11 2786 D7:2 1, 1287, 1301 7 3

12 3630 D7:0A 1, 15, 241 7 2
D7:0B 1, 839, 855 7 1

13 4658 D7:1A 1, 17, 273 8 2
D7:1B 1, 1225, 1241 8 1

14 5886 D7:2 1, 2771, 2789 9 3

15 7258 D7:0A 1, 19, 381 9 2
D7:0B 1, 1709, 1729 9 1

16 8862 D7:1A 1, 21, 421 10 2
D7:1B 1, 2311, 2331 10 1

Table E.7: Bipartite circulant graphs of degree 8 for diameter k ≤ 16

k Order Iso Generating set Maximal Aut
class levels group DI

2 16 D8:0 1, 3, 5, 7 1 101606400

3 58 D8:1 1, 7, 11, 27 1 1

4 160 E8:4A 1, 13, 33, 55 2 1
E8:4B 1, 15, 25, 77 2 1

5 362 D8:1 1, 61, 75, 131 2 1
6 708 D8:0 1, 7, 97, 133 3 1
7 1298 D8:1 1, 163, 189, 345 3 1
8 2152 D8:0 1, 9, 233, 297 4 1
9 3442 D8:1 1, 345, 387, 723 4 1
10 5160 D8:0 1, 11, 461, 561 5 1
11 7562 D8:1 1, 631, 693, 1313 5 1
12 10596 D8:0 1, 13, 805, 949 6 1
13 14618 D8:1 1, 1045, 1131, 2163 6 1
14 19516 D8:0 1, 15, 1289, 1485 7 1
15 25762 D8:1 1, 1611, 1725, 3321 7 1
16 33168 D8:0 1, 17, 2773, 3097 8 1
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Table E.8: Bipartite circulant graphs of degree 9 for diameter k ≤ 16

k Order Iso Generating set Maximal Aut
class (plus the involution) levels group DI

2 18 E9:2 1, 3, 5, 7 0 7315660800

3 70 E9:3A 1, 7, 11, 19 2 3
E9:3B 1, 7, 25, 29 2 2

4 198 E9:4 1, 39, 55, 75 1 1
5 482 D9:1 1, 5, 171, 197 2 1
6 1022 D9:0 1, 5, 415, 441 2 1
7 1934 D9:1 1, 7, 785, 835 3 1
8 3362 D9:0 1, 7, 1449, 1499 3 1
9 5474 D9:1 1, 9, 2359, 2441 4 1
10 8462 D9:0 1, 9, 3771, 3853 4 1
11 12542 D9:1 1, 11, 5589, 5711 5 1
12 17954 D9:0 1, 11, 8173, 8295 5 1
13 24962 D9:1 1, 13, 11363, 11533 6 1
14 33854 D9:0 1, 13, 15639, 15809 6 1
15 44942 D9:1 1, 15, 20761, 20987 7 1
16 58562 D9:0 1, 15, 27345, 27571 7 1

Table E.9: Bipartite circulant graphs of degree 10 for diameter k ≤ 16

k Order Iso Generating set Maximal Aut
class levels group DI

2 20 D10:2 1, 3, 5, 7, 9 1 658409472000

3 86 D10:3A 1, 7, 11, 19, 35 1 1
D10:3B 1, 7, 13, 23, 41 1 1

4 288 E10:4 1, 9, 75, 109, 133 2 1

5 714 D10:0 1, 169, 285, 289, 327 2 2
E10:5 1, 69, 81, 101, 279 3 1

6 1630 D10:1 1, 245, 651, 665, 715 2 2
7 3326 D10:2 1, 107, 557, 647, 1091 3 1
8 6208 D10:3 1, 145, 863, 1031, 2045 3 1
9 10934 D10:4 1, 1757, 2905, 3123, 4655 4 2
10 17940 D10:0 1, 2209, 5127, 5135, 5403 4 2
11 28602 D10:1 1, 2781, 6355, 6705, 9495 4 2
12 43624 D10:2 1, 479, 4367, 4799, 8677 5 1
13 64426 D10:3 1, 581, 5799, 6437, 12827 5 1
14 92818 D10:4 1, 9141, 16115, 16875, 25245 6 2
15 129630 D10:0 1, 10729, 38993, 39875, 39887 6 2
16 178646 D10:1 1, 12597, 27483, 28535, 41145 6 2
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Table E.10: Bipartite circulant graphs of degree 11 for diameter k ≤ 16

k Order Iso Generating set Maximal Aut
class (plus the involution) levels group DI

2 22 E11:2A 1, 3, 5, 7, 9 1 72425041920000

3 102 E11:3 1, 5, 13, 29, 41 2 1

4 354 E11:4 1, 19, 27, 87, 165 3 1

5 914 D11:0 1, 27, 31, 67, 205 2 1

6 2198 D11:1 1, 53, 207, 563, 827 2 1

7 4658 D11:2 1, 75, 453, 1565, 1939 3 1

8 9102 D11:3 1, 739, 1295, 1301, 3373 3 2

9 16366 D11:4a 1, 503, 4747, 7589, 7595 3 1
D11:4b 1, 533, 3205, 6077, 7091 3 1

10 28198 D11:0 1, 247, 1983, 10605, 12333 4 1

11 45610 D11:1 1, 313, 2495, 17143, 19959 4 1

12 70486 D11:2 1, 387, 3877, 28233, 31715 5 1

13 106050 D11:3 1, 5251, 19281, 19291, 33219 5 2

14 154154 D11:4a 1, 2287, 11131, 22859, 34001 5 1
D11:4b 1, 10065, 10077, 33241, 57331 5 1

15 220090 D11:0 1, 827, 9935, 91773, 100869 6 1?

16 305342 D11:1 1, 973, 11663, 127307, 139955 6 1?
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Appendix F

Extremal and largest-known Abelian
Cayley graphs

F.1 Abelian Cayley graphs up to degree 26

Of the extremal and largest-known Abelian Cayley graphs presented in this appendix, the

following have been discovered by the author:

Degree 8 and above: diameter 2 and above

Extremal and largest-known Abelian Cayley graphs that are circulant are presented in

Appendix D. This appendix only includes undirected extremal and largest-known Abelian

Cayley graphs that are non-circulant. In some cases, such as degree 5, non-circulant graphs

exist with the same order as the extremal circulant graphs. However, in most cases, the

graphs presented in this appendix have larger order than the corresponding circulant graphs.

For small diameter, the largest-known graph may have larger order than the member of the

largest-known family. Where a graph is a member of an identified largest-known family, the

isomorphism class of the family is identified by a code beginning with ‘A’; otherwise the

isomorphism class is specific to the graph and begins with ‘B’.

For each known isomorphism class just one generating set is defined. For odd degree, the

involutory generator is included as they are not unique for cyclic rank above 1.

The automorphism group dihedral index (Aut group DI) is the order of the graph’s

automorphism group expressed as a multiple of the order of the dihedral group on the same

number of vertices. For large graphs, where the index is conjectured on the basis of the

structure of the generating set, this is indicated by a question mark.
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356 F Extremal and largest-known Abelian Cayley graphs

Table F.1: Non-circulant largest-known Abelian Cayley graphs degree 5

Diameter Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

2 16 A5 2 4×4 (0 1) (1 0) (2 2) 0 1 60
3 36 A5 2 6×6 (0 1) (1 0) (3 3) 0 2 4
4 64 A5 2 8×8 (0 1) (1 0) (4 4) 0 3 4
5 100 A5 2 10×10 (0 1) (1 0) (5 5) 0 4 4
6 144 A5 2 12×12 (0 1) (1 0) (6 6) 0 5 4
7 196 A5 2 14×14 (0 1) (1 0) (7 7) 0 6 4
8 256 A5 2 16×16 (0 1) (1 0) (8 8) 0 7 4
9 324 A5 2 18×18 (0 1) (1 0) (9 9) 0 8 4
10 400 A5 2 20×20 (0 1) (1 0) (10 10) 0 9 4
11 484 A5 2 22×22 (0 1) (1 0) (11 11) 0 10 4
12 576 A5 2 24×24 (0 1) (1 0) (12 12) 0 11 4
13 676 A5 2 26×26 (0 1) (1 0) (13 13) 0 12 4
14 784 A5 2 28×28 (0 1) (1 0) (14 14) 0 13 4
15 900 A5 2 30×30 (0 1) (1 0) (15 15) 0 14 4
16 1024 A5 2 32×32 (0 1) (1 0) (16 16) 0 15 4

Table F.2: Non-circulant largest-known Abelian Cayley graphs degree 8

Diameter Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

2 36 B8:2 2 12×3 (0 1) (1 0) (3 1) (5 0) 2 1 8
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Table F.3: Non-circulant largest-known Abelian Cayley graphs degree 9

Diam Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

4 320 A9:0Aa0 2 40×8 (13 3) (14 3) (14 1) (3 3) (20 4) 0 2 2
A9:0Ab0 2 40×8 (32 7) (33 7) (39 5) (28 7) (20 4) 0 2 2
A9:0B0 2 40×8 (27 6) (34 7) (34 1) (43 2) (20 4) 0 2 8
B9:4A 2 40×8 (1 0) (11 2) (8 3) (8 5) (20 0) 2 3 2
B9:4B 2 40×8 (1 0) (11 0) (8 3) (8 1) (20 4) 2 3 8

5 724 A9:1 2 362×2 (121 1) (146 1) (218 1) (271 1)
(181 0)

0 2 1

6 1440 A9:0Aa2 2 120×12 (43 5) (51 4) (51 2) (97 3) (60 6) 0 3 2
A9:0Ab2 2 120×12 (93 80 (94 9) (68 3) (87 2) (60 0) 0 3 2
A9:0B2 2 120×12 (71 8) (83 9) (103 3) (89 2)

(60 0)
0 3 8

7 2596 A9:1 2 1298×2 (481 1) (530 1) (722 1) (873 1)
(649 0)

0 3 1

8 4352 A9:0Aa0 2 272×16 (105 7) (124 7) (124 1) (71 7)
(136 8)

0 4 2

A9:0Ab0 2 272×16 (216 13) (219 13) (229 11)
(192 13) (136 8)

0 4 2

A9:0B0 2 272×16 (189 12) (212 13) (212 3)
(253 4) (136 8)

0 4 8

9 6884 A9:1 2 3442×2 (1361 1) (1442 1) (1842 1)
(2171 1) (1721 0)

0 4 1

10 10400 A9:0Aa2 2 520×20 (211 9) (245 8) (245 2) (361 3)
(260 10)

0 5 2

A9:0Ab2 2 520×20 (395 14) (396 15) (334 5)
(385 4) (260 0)

0 5 2

A9:0B2 2 520×20 (339 14) (369 15) (421 5)
(389 4) (260 0)

0 5 8

11 15124 A9:1 2 7562×2 (3121 1) (3242 1) (3962 1)
(4573 1) (3781 0)

0 5 1

12 21312 A9:0Aa0 2 888×24 (373 11) (426 11) (426 1)
(299 11) (444 12)

0 6 2

A9:0Ab0 2 888×24 (696 19) (701 19) (715 17)
(636 19) (444 12)

0 6 2

A9:0B0 2 888×24 (631 18) (678 19) (678 5)
(775 6) (444 12)

0 6 8

13 29236 A9:1 2 14618×2 (6217 1) (6386 1) (7562 1)
(8583 1) (7309 0)

0 6 1

14 39200 A9:0Aa2 2 1400×28 (603 13) (679 12) (679 2)
(897 3) (700 14)

0 7 2

A9:0Ab2 2 1400×28 (1057 20) (1058 21) (944 7)
(1043 6) (700 0)

0 7 2

A9:0B2 2 1400×28 (951 20) (1007 21) (1107 7)
(1049 6) (700 0)

0 7 8

15 51524 A9:1 2 25762×2 (11201 1) (11426 1) (13218 1)
(14801 1) (12881 0)

0 7 1

16 66560 A9:0Aa0 2 2080×32 (913 15) (1016 15) (1016 1)
(783 15) (1040 16)

0 8 2

A9:0Ab0 2 2080×32 (1616 25) (1623 25) (1641 23)
(1504 25) (1040 16)

0 8 2

A9:0B0 2 2080×32 (1497 24) (1576 25) (1576 7)
(1753 8) (1040 16)

0 8 8
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Table F.4: Non-circulant largest-known Abelian Cayley graphs degree 10

Diam Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

6 2425 A10:1 2 485×5 (177 1) (25 4) (25 1) (17 1)
(35 0)

0 3 4

7 4644 A10:2 3 258×6×3 (164 2 1) (29 0 0) (29 1 0)
(72 3 2) (80 2 1)

0 3 6

8 8477 A10:3 2 1211×7 (327 1) (49 6) (49 1) (19 1)
(35 0)

0 4 4

11 35883 A10:1 2 3987×9 (857 1) (81 8) (81 1) (29 1)
(99 0)

0 5 4

12 53500 A10:2 3 1070×10×5 (590 4 2) (71 0 0) (71 1 0)
(178 5 3) (230 4 2)

0 5 6

13 78287 A10:3 2 7117×11 (1263 1) (121 10) (121 1)
(31 1) (99 0)

0 6 4

16 209053 A10:1 2 16081×13 (2433 1) (169 12) (169 1)
(41 1) (195 0)

0 7 4?

Table F.5: Non-circulant largest-known Abelian Cayley graphs degree 11

Diam Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

2 56 B11:2 2 28×2 (2 0) (4 1) (6 0) (7 0) (7 1)
(14 1)

2 1 4

4 576 A11:4 2 192×3 (97 1) (45 1) (45 2) (31 1)
(9 0) (96 0)

0 2 4

5 1472 A11:0 3 92×4×4 (35 3 3) (21 1 1) (9 3 0)
(9 0 3) (9 0 0) (46 2 2)

0 2 6

6 3400 A11:1 2 680×5 (479 4) (555 4) (555 1)
(609 4) (605 0) (340 0)

0 3 4

9 22148 A11:4 2 3164×7 (613 1) (441 1) (441 6)
(291 1) (245 0) (1582 0)

0 4 4

10 36352 A11:0 3 568×8×8 (99 7 7) (77 1 1) (49 7 0)
(49 0 7) (49 0 0) (284 4 4)

0 4 6

11 57996 A11:1 2 6444×9 (5503 8) (5715 8) (5715 1)
(5953 8) (5877 0) (3222 0)

0 5 4

14 186824 A11:4 2 16984×11 (1929 1) (1573 1) (1573 10)
(1159 1) (1089 0) (8492 0)

0 6 4?

15 260928 A11:0 3 1812 x12 x12 (195 11 11) (165 1 1)
(121 11 0) (121 0 11)
(121 0 0) (906 6 6)

0 6 6?

16 359632 A11:1 2 27664×13 (25055 12) (25467 12)
(25467 1) (26017 1)
(25805 0) (13832 0)

0 7 4?

Robert Roderick Lewis



F.1 Abelian Cayley graphs up to degree 26 359

Table F.6: Non-circulant largest-known Abelian Cayley graphs degree 12

Diam Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

2 72 B12:2A 2 12×6 (0 1) (2 0) (2 1) (3 0) (3 3)
(4 4)

2 1 24

B12:2B 36×2 (2 0) (4 1) (9 0) (9 1) (10 1)
(12 0)

2 1 12

5 2128 A12:2 2 532×4 (374 0) (91 0) (39 1) (94 1)
(3 0) (306 0)

0 2 2

6 5200 A12:0 2 1300×4 (38 0) (93 0) (14 1) (311 1)
(107 0) (182 0)

0 3 2

7 10900 A12:1a 2 2180×5 (430 0) (100 0) (705 0)
(247 1) (247 0) (189 1)

0 3 6

A12:1b 2 2180×5 (750 0) (510 0) (95 0) (67 4)
(939 0) (939 1)

0 3 6

8 21780 A12:2 2 3630×6 (1587 0) (328 0) (69 1)
(536 1) (208 0) (1293 0)

0 3 2

9 40788 A12:0 2 6798×6 (129 0) (278 0) (16 5)
(1149 1) (262 0) (765 0)

0 4 2

10 70756 A12:1a 2 10108×7 (1526 0) (350 0) (2555 0)
(633 1) (633 0) (811 1)

0 4 6

A12:1b 2 10108×7 (2856 0) (1246 0) (707 0)
(331 6) (3219 0) (3219 1)

0 4 6

11 119104 A12:2 2 14888×8 (4636 0) (821 0) (75 1)
(1786 1) (965 0) (3892 0)

0 4 2

12 192832 A12:0 2 24104×8 (300 0) (619 0) (102 7)
(3115 1) (517 0) (2252 0)

0 5 2?

13 298404 A12:1a 2 33156×9 (3978 0) (828 0) (6813 0)
(1291 1) (1291 0) (2393 1)

0 5 6?

A12:1b 2 33156×9 (7974 0) (2466 0) (2367 0)
(875 8) (8243 0) (8243 1)

0 5 6?

14 452500 A12:2 2 45250×10 (10865 0) (1666 0) (33 1)
(4492 1) (2826 0) (9375 0)

0 5 2?

15 668500 A12:0 2 66850×10 (575 0) (1164 0) (268 9)
(6953 1) (896 0) (5315 0)

0 6 2?

16 958804 A12:1a 2 87164×11 (8602 0) (1606 0) (15015 0)
(2293 1) (2293 0) (5631 1)

0 6 6?

A12:1b 2 87164×11 (18216 0) (4290 0) (5819 0)
(1795 10) (17643 0) (17643 1)

0 6 6?
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Table F.7: Non-circulant largest-known Abelian Cayley graphs degree 13

Diam Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

2 80 B13:2 2 40×2 (2 0) (5 0) (5 1) (6 1)
(14 1) (18 0) (20 1)

0 1 128

6 6656 A13:0a 3 416×4×4 (103 1 3) (71 1 0) (14 1 0)
(14 3 3) (57 3 0) (129 3 1)
(208 0 2)

0 2 2

A13:0b 3 416×4×4 (95 1 0) (51 1 3) (48 3 0)
(56 3 1) (109 3 3) (39 1 0)
(0 0 2)

0 2 2

6 7168 A13:0c 4 56×8×4×4 (36 5 3 3) (47 6 3 0)
(53 7 3 3) (53 7 1 0)
(47 0 1 1) (6 7 3 0)
(28 4 0 2)

0 3 24

7 15200 A13:1a1 2 760×20 (235 5) (45 5) (110 15)
(74 3) (74 19) (78 17)
(0 10)

0 3 12

A13:1b1 2 760×20 (105 5) (85 5) (110 5)
(178 13) (178 5) (126 3)
(380 10)

0 3 12

8 31200 A13:2a2 2 1560×20 (655 5) (395 15) (480 5)
(318 19) (318 15) (306 9)
(780 0)

0 3 12

A13:2b2 2 1560×20 (5 5) (265 5) (75 0)
(381 18) (381 14)
(693 18) (0 10)

0 3 12

9 59616 A13:0a 3 1656×6×6 (301 1 5) (239 1 0)
(106 1 0) (106 5 5)
(133 5 0) (347 5 1)
(828 0 3)

0 3 2

A13:0b 3 1656×6×6 (275 1 0) (161 1 5)
(84 5 0) (192 5 1)
(307 5 5) (83 1 0)
(0 0 3)

0 3 2

9 62208 A13:0d 4 72×24×6×6 (19 7 3 3) (38 13 4 4)
(55 18 4 5) (55 18 2 2)
(38 17 2 1) (65 1 3 2)
(36 12 0 3)

0 4 24

10 108192 A13:1a4 2 3864×28 (1645 7) (1001 7) (903 0)
(597 2) (597 22) (45 18)
(0 14)

0 4 12

A13:1b4 2 3864×28 (679 7) (35 21) (798 7)
(1320 9) (1320 5)
(216 21) (1932 0)

0 4 12

11 185024 A13:2a5 2 6608×28 (2177 7) (1351 21)
(1736 7) (1136 7)
(1136 23) (192 19) (0 14)

0 4 12?

A13:2b5 2 6608×28 (539 7) (1365 7)
(1036 21) (2308 9)
(2308 13) (3252 13)
(0 14)

0 4 12?

12 303104 A13:0a 3 4736×8×8 (659 1 7) (559 1 0)
(318 1 0) (318 7 7)
(241 7 0) (733 7 1)
(2368 0 4)

0 4 2?

continued on next page
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Table F.7: (cont.) Non-circulant largest-known Abelian Cayley graphs
degree 13

Diam Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

A13:0b 3 4736×8×8 (607 1 0) (391 1 7)
(128 7 0) (464 7 1)
(665 7 7) (143 1 0)
(0 0 4)

0 4 2?

12 311296 A13:0c 4 304×16×8×8 (144 9 4 5) (189 11 5 5)
(235 12 6 5) (235 14 7 3)
(189 3 6 3) (274 7 7 5)
(152 8 4 0)

0 5 24?

13 482112 A13:1a1 2 13392×36 (4221 9) (2547 9)
(2700 27) (1924 7)
(1924 3) (436 35) (0 18)

0 5 12?

A13:1b1 2 13392×36 (2097 9) (423 27)
(2412 9) (3524 33)
(3524 1) (548 29)
(6696 18)

0 5 12?

14 738720 A13:2a2 2 20520×36 (7731 9) (5679 27)
(6390 9) (4640 31)
(4640 27) (80 23)
(10260 0)

0 5 12?

A13:2b2 2 20520×36 (1899 9) (3951 9)
(3105 0) (5555 34)
(5555 26) (7835 30)
(0 18)

0 5 12?

15 1100000 A13:0a 3 11000×10×10 (1225 1 9) (1079 1 0)
(698 1 0) (698 9 9)
(381 9 0) (1335 9 1)
(5500 0 5)

0 5 2?

A13:0b 3 11000×10×10 (1139 1 0) (789 1 9)
(180 9 0) (920 9 1)
(1231 9 9) (219 1 0)
(0 0 5)

0 5 2?

15 1120000 A13:0d 4 280×40×10×10 (129 19 5 5) (163 24 6 6)
(202 29 8 8) (202 29 8 9)
(163 28 8 7) (235 1 9 8)
(140 0 0 5)

0 6 24?

16 1606880 A13:1a4 2 36520×44 (13651 11) (9999 11)
(9405 0) (6955 2)
(6955 34) (3635 30)
(0 22)

0 6 12?

A13:1b4 2 36520×44 (7271 11) (3619 33)
(8360 11) (11710 13)
(11710 9) (5070 33)
(18260 0)

0 6 12?

18 3234816 A13:0c 4 936×24×12×12 (734 19 10 10)
(775 20 10 1)
(821 21 11 10)
(821 21 1 11)
(775 22 2 2)
(904 1 10 1)
(468 12 0 6)

0 7 24?

continued on next page
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Table F.7: (cont.) Non-circulant largest-known Abelian Cayley graphs
degree 13

Diam Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

21 7990528 A13:0d 4 728×56×14×14 (597 47 12 12)
(620 49 12 13)
(647 50 13 12)
(647 2 1 1) (620 53 2 2)
(703 9 12 13) (364 28 0 7)

0 8 24?

Table F.8: Non-circulant largest-known Abelian Cayley graphs degree 14

Diam Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

2 90 B14:2 2 30×3 (1 0) (3 0) (4 0) (5 1) (5 2)
(12 0) (15 1)

2 1 18

5 3717 A14:5a 2 1239×3 (641 1) (213 0) (81 2) (81 1)
(159 0) (185 1) (21 0)

0 2 4

A14:5b 2 1239×3 (425 1) (261 0) (921 1)
(921 2) (777 0) (401 1)
(123 0)

0 2 4

6 10096 A14:6 2 2524×4 (700 0) (180 0) (241 1)
(241 0) (390 1) (152 0)
(68 0)

2 3 6

7 23504 A14:0 2 5876×4 (780 0) (316 0) (99 1) (99 0)
(1370 1) (488 0) (372 0)

0 3 6

8 50575 A14:1a 2 10115×5 (3503 1) (165 0) (625 1)
(625 4) (415 0) (543 1)
(885 0)

0 3 4

A14:1b 2 10115×5 (4503 4) (3795 0) (2295 4)
(2295 1) (5215 0) (457 1)
(885 0)

0 3 4

8 50800 A14:1c 2 2540×20 (2460 0) (2499 2) (55 2)
(55 18) (1991 18) (120 15)
(2025 15)

0 3 8

9 105300 A14:2 2 3510×30 (516 6) (3330 6) (3330 24)
(186 6) (5 5) (5 0) (2930 25)

0 4 24

11 354564 A14:4 2 8442×42 (1212 0) (6 0) (252 36)
(252 6) (287 7) (287 0)
(1120 7)

0 4 24?

12 602063 A14:5a 2 86009×7 (22633 1) (3885 0) (2401 6)
(2401 1) (3199 0) (1941 1)
(1701 0)

0 2 4?

A14:5b 2 86009×7 (17145 1) (17745 0) (28497 1)
(28497 6) (23261 0) (7429 1)
(525 0)

0 2 4?

12 608384 A14:5c 2 21728×28 (19684 14) (18562 5)
(20314 9) (20314 5)
(15458 9) (1533 0)
(20545 7)

0 4 8?

13 1010752 A14:6 2 126344×8 (18024 0) (3544 0) (3123 1)
(3123 0) (12670 1) (3056 0)
(360 0)

0 5 6?

continued on next page
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Table F.8: (cont.) Non-circulant largest-known Abelian Cayley graphs
degree 14

Diam Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

14 1617344 A14:0 2 202168×8 (18344 0) (4584 0) (523 7)
(523 0) (25794 1) (5648 0)
(3928 0)

0 5 6?

15 2509785 A14:1a 2 278865×9 (58615 1) (3789 0) (6561 1)
(6561 8) (5247 0) (3355 1)
(8037 0)

0 5 4?

A14:1b 2 278865×9 (70279 8) (62559 0)
(46287 8) (46287 1)
(71667 0) (8309 1) (8685 0)

0 5 4?

15 2529792 A14:1c 2 70272×36 (26244 18) (66526 1)
(68598 1) (68598 17)
(58718 17) (2331 27)
(63819 18)

0 5 8?

16 3879900 A14:2 2 43110×90 (4060 0) (730 0) (900 80)
(900 10) (153 81) (153 0)
(4464 9)

0 4 24?

22 31580016 A14:1c 2 607308×52 (251472 0) (583437 1)
(592917 1) (592917 25)
(536721 25) (10270 39)
(566969 0)

0 7 8?
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Table F.9: Non-circulant largest-known Abelian Cayley graphs degree 15

Diam Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

2 100 B15:2 2 20×5 (0 1) (0 2) (1 0) (3 1) (5 0) (7 3)
(9 4) (10 0)

2 1 4

6 12672 A15:6 3 264×12
×4

(139 2 0) (63 2 0) (63 10 0)
(37 2 0) (9 0 1) (9 9 0)
(9 9 3) (132 0 0)

0 2 24

7 31744 A15:0 5 124×4
×4×4×4

(42 1 1 1 1) (18 1 1 0 0)
(18 3 3 0 3) (18 3 3 3 0)
(7 1 1 1 1) (7 1 0 1 1)
(100 3 0 3 3) (0 2 2 2 2)

0 3 36

8 70400 A15:1 3 880×20
×4

(291 2 0) (175 2 0) (175 18 0)
(61 2 0) (75 0 1) (75 15 0)
(75 15 3) (440 0 0)

0 3 24

9 146400 A15:2 3 7320×10
×2

(3615 0 0) (5427 4 1) (2535 4 1)
(2535 6 1) (3963 6 1) (2470 5 0)
(1250 5 1) (0 0 1)

0 3 8

10 287712 A15:3 3 23976×6
×2

(5451 3 1) (10101 3 1)
(14601 3 1) (15501 3 1)
(20363 3 0) (20363 4 1)
(4379 2 0) (11988 0 0)

0 4 6?

11 526608 A15:4 3 43884×6
×2

(37137 3 1) (33783 3 1)
(30507 3 1) (30975 3 1)
(14753 3 0) (14753 2 1)
(125 4 0)(21942 0 0)

0 4 6?

12 929040 A15:5 3 33180
×14×2

(24507 7 1) (21543 6 1)
(12495 6 1) (12495 8 1)
(16803 8 1) (11564 0 1)
(6034 7 1) (0 7 0)

0 4 8?

13 1593088 A15:6 3 14224
×28×4

Not found

14 2588672 A15:0 5 632×8
×8×8×8

(121 1 1 1 1) (77 1 1 0 0)
(77 7 7 0 7) (77 7 7 7 0)
(35 1 0 1 1) (35 0 1 1 1)
(35 0 0 7 7) (316 4 4 4)

0 5 36?

15 4084992 A15:1 3 28368
×36×4

Not found

16 6266160 A15:2 3 174060
×18×2

(56205 9 1) (43115 10 1)
(70515 10 1) (70515 8 1)
(62455 8 1) (94284 0 1)
(129096 9 1) (87030 9 0)

0 5 8?

Table F.10: Non-circulant largest-known Abelian Cayley graphs degree 18

Diam Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

2 147 B18:2 2 21×7 (0 1) (1 0) (1 3) (4 1) (4 4)
(5 2) (5 6) (7 3) (7 4)

2 1 6
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Table F.11: Non-circulant largest-known Abelian Cayley graphs degree 19

Diam Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

9 704512 A19:0 7 172×4
×4×4
×4×4
×4

(49 0 0 1 1 1 1) (49 0 3 3 3 3 3)
(49 3 0 3 3 3 3) (7 3 3 0 0 3 3)
(7 1 1 0 1 1 1) (7 1 1 1 0 1 1)
(1 1 1 1 1 0 0) (1 3 3 3 3 0 3)
(1 3 3 3 3 3 0) (86 2 2 2 2 2 2)

0 3 9?

18 190840832 A19:0 7 728×8
×8×8
×8×8
×8

(121 0 0 1 1 1 1) (121 0 7 7 7 7 7)
(121 7 0 7 7 7 7) (55 7 7 0 0 7 7)
(55 1 1 0 1 1 1) (55 1 1 1 0 1 1)
(25 1 1 1 1 0 0) (25 7 7 7 7 0 7)
(25 7 7 7 7 7 0) (364 4 4 4 4 4 4)

0 6 9?

Table F.12: Non-circulant largest-known Abelian Cayley graphs degree 21

Diam Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

5 10464 A21:0 2 2616×4 (2189 3) (850 1) (912 1)
(1211 1) (1036 1) (532 3)
(1047 1) (2264 3) (1398 3)
(2093 3) (0 2)

0 1 1

10 2388096 A21:0 2 298512×8 (108235 2) (66708 1)
(67720 7) (75543 0)
(71768 7) (66320 1)
(65503 2) (48576 1)
(53012 7) (273115 0)
(149256 4)

0 2 1?

15 90549216 A21:0 2 7545768×12 (1648003 2) (1181712 1)
(1160538 11) (1213681 10)
(1033494 11) (1045074 1)
(7530109 2) (987510 1)
(997104 11) (5957371 10)
(3772884 6)

0 3 1?

Table F.13: Non-circulant largest-known Abelian Cayley graphs degree 26

Diam Order Iso Cyclic Cyclic Generating set Odd Maxi- Aut
class rank order girth mal group

defect levels DI

6 95024 A26:6 1* 95024×1* 1, 6177, 12471, 15323, 22984,
23092, 24465, 26072, 28373,
30645, 32132, 40277, 41560

0 1 1

* Cyclic rank of this family is generally 2, but is 1 for diameter 6

as the second cyclic order is 1 in this case
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Appendix G

Directed and mixed circulant graphs

Of the extremal and largest-known directed and mixed circulant graphs presented in this

appendix, the following have been discovered by the author:

Directed circulant graphs

Directed degree 3: diameter 44 to 48

Directed degree 4: diameter 2 to 22

Directed degree 5: diameter 2 to 9

Mixed circulant graphs of dimension 2

Directed degree 2, undirected degree 1: diameter 2 and above

(also independently by C. Dalfó, M.A. Fiol and N. López [8])

Directed degree 1, undirected degree 2: diameter 2 and above

Directed degree 1, undirected degree 3: diameter 2 and above

Mixed circulant graphs of dimension 3

Directed degree 3, undirected degree 1: diameter 2 to 37

Directed degree 2, undirected degree 2: diameter 2 to 45

Directed degree 2, undirected degree 3: diameter 2 to 37

Directed degree 1, undirected degree 4: diameter 2 to 49

Directed degree 1, undirected degree 5: diameter 2 to 37

Mixed circulant graphs of dimension 4

Directed degree 3, undirected degree 2: diameter 2 to 17

Directed degree 2, undirected degree 4: diameter 2 to 15

Directed degree 1, undirected degree 6: diameter 2 to 14

For verified extremal graphs the order is shown in bold text. Where existence has not been

checked up to the upper bound, the limit of checking is stated in the column Checked up to.

For small diameter, the largest-known graph may have larger order than the member of the

largest-known family. Where a graph is a member of an identified largest-known family, the

isomorphism class of the family is identified by a code beginning with ‘H’ for directed graphs

and with ‘M’ for mixed graphs. No code is given to other families or graphs. For each known

isomorphism class just one generating set is defined.

Directed and mixed circulant graphs have rotational symmetry, but, in contrast to undirected

graphs, have no reflexive symmetry. So their minimum possible automorphism group is the

cyclic group on the vertices instead of the dihedral group. It is therefore convenient to express

the size of the automorphism group as a multiple of the size of the cyclic group, called the

cyclic index (Aut group CI).
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G.1 Directed circulant graphs

Table G.1: Directed circulant graphs of directed degree 2

Diameter Isomorphism Generating set Odd Maximal Aut
k Order class Directed girth Girth levels group CI

2 5 H2:2B 1, 2 3 3 1 1

3 8 H2:0A 1, 6 3 3 2 1
H2:0B 1, 3 bipartite 4 2 2

4 11 H2:1A 1, 5 3 3 2 1
H2:1B 1, 8 5 4 2 1
H2:1C 1, 4 5 5 2 1

5 16 H2:2A 1, 7 bipartite 4 3 2
H2:2B 1, 10 5 5 3 1

6 21 H2:0A 1, 9 5 5 4 1
H2:0B 1, 13 9 6 4 2

7 26 H2:1A 1, 8 5 5 4 1
H2:1B 1, 11 bipartite 6 4 1
H2:1C 1, 16 7 7 4 1

8 33 H2:2A 1, 10 15 6 5 2
H2:2B 1, 24 7 7 5 1

9 40 H2:0A 1, 12 7 7 6 1
H2:0B 1, 29 bipartite 8 6 2

10 47 H2:1A 1, 11 7 7 6 1
H2:1B 1, 14 11 8 6 1
H2:1C 1, 34 9 9 6 1

11 56 H2:2A 1, 13 bipartite 8 7 2
H2:2B 1, 44 9 9 7 1

12 65 H2:0A 1, 15 9 9 8 1
H2:0B 1, 51 15 10 8 2

13 74 H2:1A 1, 14 9 9 8 1
H2:1B 1, 17 bipartite 10 8 1
H2:1C 1, 58 11 11 8 1

14 85 H2:2A 1, 16 25 10 9 2
H2:2B 1, 70 11 11 9 1

15 96 H2:0A 1, 18 11 11 10 1
H2:0B 1, 79 bipartite 12 10 2

16 107 H2:1A 1, 17 11 11 10 1
H2:1B 1, 20 17 12 10 1
H2:1C 1, 88 13 13 10 1

Table G.2: Directed circulant graphs of directed degree 3

Diameter Generating set Odd Maximal Aut Checked
k Order Directed girth Girth levels group CI up to

2 9 1, 3, 4 3 3 1 1 10
1, 4, 6 3 3 1 1

3 16 1, 4, 5 5 4 1 1 20
1, 5, 12 5 4 1 1

4 27 1, 4, 17 5 5 2 1 35
1, 5, 12 5 4 2 1
1, 6, 8 5 5 2 1

continued on next page
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Table G.2: (cont.) Directed circulant graphs of directed degree 3

Diameter Generating set Odd Maximal Aut Checked
k Order Directed girth Girth levels group CI up to

1, 16, 23 5 5 2 1

5 40 1, 6, 15 7 6 3 1 56
1, 6, 25 7 6 3 1
1, 16, 35 5 5 3 1
1, 26, 35 5 5 3 1

6 57 1, 13, 33 7 6 2 1 84
1, 16, 36 7 7 2 1

7 84 2, 9, 35 9 8 3 1 120

8 111 1, 31, 69 9 9 5 1 159

9 138 1, 11, 78 9 9 5 1 207
1, 17, 96 9 9 5 1
1, 19, 26 9 9 5 1
1, 43, 122 9 9 5 1

10 176 1, 17, 56 9 9 5 1 263
1, 24, 33 11 11 5 1
1, 32, 153 11 10 5 1
1, 41, 64 9 9 5 1
1, 81, 104 9 9 5 1
1, 121, 160 9 9 5 1

11 217 1, 13, 119 11 11 5 1 329
1, 18, 46 13 12 5 1
1, 34, 161 11 10 5 1
1, 51, 92 11 11 5 1

12 273 1, 14, 153 15 12 6 1 405
1, 49, 104 11 11 6 1
1, 53, 186 11 11 6 1
1, 88, 221 11 11 6 1

13 340 1, 90, 191 17 14 7 1 491

14 395 1, 35, 271 17 12 6 1 589
1, 125, 361 15 15 6 1

15 462 1, 29, 97 bipartite 16 7 1 699
1, 33, 254 13 13 7 1
1, 44, 56 15 15 8 1
1, 44, 408 17 12 8 1
1, 55, 419 bipartite 14 8 1
1, 89, 121 bipartite 12 8 1
1, 110, 254 15 12 8 1
1, 122, 165 13 12 7 1
1, 165, 188 17 12 7 1
1, 209, 430 19 16 7 1
1, 224, 380 15 15 7 1
1, 275, 298 13 13 7 1
1, 282, 296 15 15 7 1
1, 298, 341 13 13 7 1
1, 342, 374 15 12 8 1
1, 366, 434 13 13 7 1
2, 253, 354 13 13 8 1
6, 28, 143 13 13 8 1

16 560 1, 215, 326 15 15 9 1 823
1, 235, 346 21 16 9 1

17 648 1, 76, 237 21 18 7 1 960
1, 412, 573 15 14 7 1

continued on next page
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Table G.2: (cont.) Directed circulant graphs of directed degree 3

Diameter Generating set Odd Maximal Aut Checked
k Order Directed girth Girth levels group CI up to

18 748 1, 41, 147 bipartite 16 7 1 1111
1, 174, 362 17 17 7 1
1, 490, 676 21 18 7 1
1, 602, 708 15 15 7 1

19 861 1, 27, 463 17 17 8 1 1277
1, 84, 298 19 18 8 1
1, 84, 319 15 15 8 1
1, 543, 778 25 20 8 1

20 979 1, 22, 351 19 19 10 1 1460
1, 138, 787 17 17 10 1
1, 193, 842 17 17 10 1
1, 374, 637 23 16 10 1

21 1140 1, 45, 196 27 22 11 1 1658
1, 945, 1096 31 20 11 1

22 1305 1, 246, 1030 21 21 9 1 1875
1, 276, 1060 19 19 9 1

23 1440 1, 126, 415 21 21 9 1 2109
1, 1026, 1315 23 20 9 1

24 1616 1, 56, 257 23 23 10 1 2361
1, 416, 617 33 20 10 1

25 1788 1, 154, 1452 21 21 14 1 2634
1, 192, 1174 29 22 14 1
1, 337, 1635 bipartite 24 14 1
2, 267, 818 29 24 14 1

26 1963 1, 90, 780 27 22 12 1 2926
1, 142, 1014 23 23 12 1
1, 169, 1594 23 23 14 1
1, 222, 1657 25 25 14 1
1, 236, 768 21 21 12 1
1, 307, 1742 29 24 14 1
1, 341, 887 31 22 14 1
1, 397, 891 21 21 12 1

27 2224 1, 425, 704 25 25 15 1 3240
1, 1025, 1304 29 24 15 1

28 2442 1, 964, 1372 27 24 11 1 3574
1, 1071, 1479 bipartite 26 11 1
2, 285, 1752 23 23 11 1
2, 1185, 1590 25 25 11 1

29 2693 1, 39, 942 25 25 12 1 3932
1, 161, 1676 31 28 12 1
1, 373, 2259 23 23 12 1
1, 435, 2321 35 26 12 1

30 2920 1, 540, 831 27 27 12 1 4312
1, 890, 1181 25 25 12 1

31 3220 7, 30, 2277 27 27 13 1 4716

32 3591 1, 1519, 2031 29 29 13 1 5145
1, 1561, 2073 27 27 13 1

33 3850 2, 475, 1177 29 29 13 1 5598
2, 777, 1325 29 29 13 1
2, 2527, 3075 35 28 13 1
2, 2675, 3377 35 28 13 1

continued on next page
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Table G.2: (cont.) Directed circulant graphs of directed degree 3

Diameter Generating set Odd Maximal Aut Checked
k Order Directed girth Girth levels group CI up to

34 4191 1, 748, 2652 31 31 14 1 6078
1, 1540, 3444 39 28 14 1

35 4468 1, 353, 2789 bipartite 32 14 1 6584
1, 444, 2360 33 30 14 1
1, 480, 3772 39 28 14 1
1, 1680, 4116 37 30 14 1

36 4871 1, 238, 1113 33 33 20 1 7118
1, 781, 3437 47 30 20 1
1, 853, 2768 33 33 20 1
1, 1435, 4091 31 31 20 1

37 5328 1, 345, 2344 33 30 15 1 7680
1, 2985, 4984 39 34 15 1

38 5698 1, 1375, 2410 33 33 21 1 8270
1, 3289, 4324 45 34 21 1

39 6131 1, 51, 1589 33 33 16 1 8890
1, 277, 2575 37 34 16 1
1, 333, 2692 31 31 16 1
1, 1172, 1684 45 36 16 1

40 6513 1, 560, 5070 33 33 16 1 8890
1, 1444, 5954 35 35 16 1

41 6942 1, 793, 1860 41 38 17 1 8890
1, 5083, 6150 45 32 17 1

42 7533 1, 1612, 4961 45 36 17 1 8890
1, 1612, 5798 41 36 17 1
1, 1736, 5922 35 35 17 1
1, 2573, 5922 41 36 17 1

43 8064 1, 1377, 4960 41 36 17 1 8890
1, 3105, 6688 37 37 17 1

44 8567 1, 57, 6904 37 37 18 1 8890
1, 154, 6150 47 34 18 1
1, 1550, 3627 41 41 18 1
1, 1664, 8511 47 38 18 1

45 9070 1, 695, 5735 bipartite 38 18 1 9300
1, 3336, 8376 45 40 18 1
2, 780, 3425 59 36 18 1
2, 2730, 6615 47 38 18 1

46 9685 1, 2042, 6513 53 40 25 1 9900

47 10340 1, 1961, 7346 55 40 19 1 10520
1, 2995, 8380 41 41 19 1
1, 5200, 6235 39 39 19 1
2, 1105, 4205 39 39 19 1

48 10990 1, 4786, 5886 45 40 19 1 11120
1, 5105, 6205 bipartite 42 19 1
2, 5435, 8730 41 41 19 1
2, 9000, 9685 39 39 19 1
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Table G.3: Directed circulant graphs of directed degree 4

Diameter Generating set Odd Maximal Aut Checked
k Order Directed girth Girth levels group CI up to

2 13 1, 2, 6, 9 3 3 1 1 15

3 25 1, 2, 8, 19 5 4 1 1 35

4 49 1, 3, 12, 20 5 5 2 1 70
1, 3, 32, 37 5 5 2 1
1, 5, 13, 32 5 5 2 1
1, 13, 18, 47 3 3 2 1
1, 16, 20, 26 5 4 2 1

5 83 1, 4, 20, 50 7 6 2 1 126
1, 4, 62, 67 5 5 2 1
1, 5, 27, 63 5 5 2 1
1, 5, 34, 62 5 5 2 1
1, 17, 22, 80 7 4 2 1

6 130 1, 11, 46, 52 5 5 3 1 210
1, 60, 79, 115 5 5 3 2
1, 79, 85, 120 7 6 3 2
2, 28, 75, 115 9 4 3 2

7 196 1, 5, 87, 166 7 7 3 1 330
1, 7, 35, 114 7 7 4 1
1, 7, 40, 62 7 6 3 1
1, 7, 74, 84 7 6 4 1
1, 7, 79, 146 7 6 3 1
1, 10, 46, 123 7 7 3 1
1, 19, 120, 130 5 5 3 1
1, 51, 79, 86 7 7 4 1
1, 83, 162, 190 7 7 4 1
1, 112, 119, 130 5 5 4 1

8 277 1, 7, 40, 170 9 8 4 1 495
1, 7, 158, 175 9 6 4 1
1, 18, 80, 253 7 6 4 1
1, 29, 46, 257 7 7 4 1
1, 46, 145, 259 7 7 4 1

9 390 1, 34, 155, 217 7 7 4 1 715
1, 56, 159, 258 9 9 4 1
1, 153, 177, 206 9 9 4 1
1, 174, 236, 357 7 7 4 1
1, 185, 214, 238 7 7 4 1

10 536 1, 40, 149, 355 9 9 5 1 1001
1, 50, 190, 401 7 7 5 1
1, 56, 363, 437 9 9 5 1
1, 100, 174, 481 9 8 5 1
1, 177, 260, 290 13 6 5 1

11 710 1, 34, 219, 334 11 10 5 1 1365
1, 43, 566, 591 9 9 5 1
1, 120, 145, 668 11 10 5 1
1, 180, 495, 598 9 8 5 1
1, 202, 395, 445 13 10 5 1

12 922 1, 12, 247, 384 11 11 5 1 1820
1, 50, 504, 733 11 8 5 1
1, 66, 208, 607 11 11 5 1
1, 190, 419, 873 11 11 5 1
1, 311, 362, 533 13 10 5 1

13 1161 1, 15, 497, 734 11 11 6 1 2380

continued on next page
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Table G.3: (cont.) Directed circulant graphs of directed degree 4

Diameter Generating set Odd Maximal Aut Checked
k Order Directed girth Girth levels group CI up to

1, 65, 94, 608 13 12 6 1
1, 71, 644, 849 11 11 6 1
1, 79, 176, 1014 13 12 6 1
1, 84, 629, 695 11 11 6 1
1, 148, 986, 1083 11 11 6 1
1, 179, 205, 236 11 10 6 1
1, 201, 463, 1034 11 11 6 1
1, 221, 317, 573 17 10 6 1
1, 249, 437, 634 13 13 6 1

14 1451 1, 12, 795, 1143 13 13 6 1 2400
1, 109, 264, 1309 17 14 6 1
1, 116, 546, 828 13 13 7 1
1, 127, 721, 782 11 11 6 1
1, 140, 322, 733 11 11 6 1
1, 143, 1188, 1343 19 10 6 1

15 1800 1, 117, 331, 1054 17 14 7 1 2400
1, 459, 532, 1222 17 14 7 1
1, 579, 1269, 1342 13 13 7 1
1, 747, 1470, 1684 15 10 7 1
1, 1167, 1230, 1594 13 13 7 1

16 2255 1, 13, 202, 359 13 13 8 1 2400

17 2723 1, 23, 1548, 1782 15 15 7 1 2850
1, 140, 1269, 2035 13 13 7 1
1, 147, 636, 1488 17 17 7 1
1, 302, 1034, 1115 23 12 7 1
1, 636, 764, 857 17 12 7 1

18 3264 1, 267, 488, 921 17 17 8 1 3400
1, 595, 617, 2200 17 14 8 1
1, 1065, 2648, 2670 15 15 8 1
1, 1193, 2408, 2534 19 14 8 1
2, 391, 591, 3210 21 16 8 1

19 3924 1, 332, 627, 1392 17 17 8 1 4050
1, 370, 457, 1769 13 13 8 1
1, 614, 729, 2157 11 11 8 1
1, 1768, 3196, 3311 17 16 8 1
1, 2156, 3468, 3555 15 15 8 1

20 4602 1, 47, 2688, 3171 19 19 9 1 4750
1, 267, 2916, 3971 15 15 9 1
1, 632, 1687, 4336 27 14 9 1
1, 1394, 3025, 3772 19 19 9 1
2, 1114, 2679, 4431 17 14 9 1

21 5412 1, 83, 1338, 4644 17 17 9 1 5580
1, 83, 3714, 5142 19 18 9 1
1, 271, 1699, 5330 17 17 9 1
1, 373, 1886, 4615 19 19 9 1
1, 798, 3527, 5040 17 17 9 1

22 6416 1, 826, 1219, 2100 13 13 9 1 6450
1, 1082, 2246, 5039 17 17 9 1
1, 1173, 4611, 4838 17 17 9 1
1, 1378, 4171, 5335 21 21 9 1
1, 2260, 2595, 3082 19 19 9 1
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374 G Directed and mixed circulant graphs

Table G.4: Directed circulant graphs of directed degree 5

Diameter Generating set Odd Maximal Aut Checked
k Order Directed girth Girth levels group CI up to

2 19 1, 3, 12, 14, 15 3 3 1 1 21

3 40 1, 3, 7, 20, 29 5 4 1 2 56
1, 3, 16, 25, 38 3 3 1 1
1, 3, 19, 26, 32 5 4 2 1
1, 6, 7, 22, 25 5 4 1 1
1, 6, 8, 33, 35 3 3 1 1
1, 6, 9, 14, 15 5 4 1 2
1, 6, 19, 24, 25 5 4 1 1
1, 9, 15, 22, 38 3 3 2 2
1, 12, 14, 18, 21 3 3 1 2

4 88 1, 3, 49, 58, 72 5 5 2 1 126
1, 7, 57, 62, 80 3 3 2 1
1, 11, 14, 30, 65 7 4 2 2
1, 18, 26, 55, 65 7 4 2 2

5 168 1, 22, 119, 128, 135 5 5 3 1 252
1, 34, 41, 50, 147 9 4 3 2

6 273 1, 4, 68, 96, 119 5 5 3 1 462
1, 5, 17, 112, 204 7 6 3 1
1, 17, 81, 155, 262 7 4 3 1

7 447 1, 14, 171, 380, 426 5 5 3 1 792
1, 17, 259, 381, 424 11 6 3 1
1, 21, 34, 128, 205 11 6 3 1
1, 22, 68, 277, 434 7 7 3 1
1, 24, 67, 189, 431 5 5 3 1
1, 37, 90, 312, 371 5 5 3 1

8 689 1, 17, 26, 131, 433 7 7 3 1 792
1, 27, 43, 303, 611 7 6 3 1
1, 40, 82, 277, 624 11 8 3 1

9 1056 1, 65, 188, 604, 957 13 8 3 2 1080
1, 100, 453, 869, 992 7 7 3 1

G.2 Mixed circulant graphs of dimension 2

Table G.5: Mixed circulant graphs of directed degree 2, undirected degree 1

Diameter Isomorphism Generating set* Odd Maximal Aut
k Order class Directed girth Girth levels group CI

2 8 - 1, 3 3 3 1 2

3 12 - 1, 4 3 3 2 1
- 1, 10 3 3 2 1

4 18 - 1, 4 7 4 2 1
- 1, 16 3 3 2 1

5 24 - 1, 5 5 5 3 2
- 1, 10 7 4 2 1
- 1, 21 5 4 3 1
- 1, 22 3 3 2 1

6 32 M2-1:0A 1, 7 5 5 3 1
- 1, 5 5 5 3 1
- 1, 10 5 5 3 1

continued on next page
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G.2 Mixed circulant graphs of dimension 2 375

Table G.5: (cont.) Mixed circulant graphs of directed degree 2, undirected
degree 1

Diameter Isomorphism Generating set* Odd Maximal Aut
k Order class Directed girth Girth levels group CI

- 1, 21 9 4 3 1
- 1, 26 7 6 3 1

7 42 M2-1:1A 1, 9 bipartite 6 4 1
- 1, 13 bipartite 6 4 2
- 1, 30 7 6 4 1
- 1, 34 7 7 4 1
- 2, 18 5 5 4 1
- 2, 26 9 6 4 2
- 2, 39 5 5 4 1

8 52 M2-1:2A 1, 8 13 6 4 1
- 1, 11 7 7 4 1
- 1, 16 7 7 4 1
- 1, 34 5 5 4 1
- 1, 37 7 7 4 1
- 1, 42 11 8 4 1

9 66 M2-1:0A 1, 10 7 7 5 1
- 1, 24 11 8 5 1
- 1, 43 bipartite 6 5 2
- 1, 57 bipartite 8 5 1
- 2, 15 7 7 5 1
- 2, 20 15 6 5 2
- 2, 48 7 7 5 1

10 80 M2-1:1A 1, 12 11 8 6 1
- 1, 29 9 9 6 1
- 1, 52 7 7 6 1

11 94 M2-1:2A 1, 11 bipartite 8 6 1
- 1, 14 9 9 6 1
- 1, 18 9 9 6 1
- 1, 30 7 7 6 1
- 1, 34 13 10 6 1
- 1, 37 bipartite 8 6 1
- 1, 58 17 8 6 1
- 1, 65 bipartite 10 6 1
- 1, 84 9 9 6 1
- 2, 22 7 7 6 1
- 2, 28 11 8 6 1
- 2, 36 9 9 6 1

12 112 M2-1:0A 1, 13 9 9 7 1
- 1, 44 9 9 7 1
- 1, 100 13 10 7 1

13 130 M2-1:1A 1, 15 bipartite 10 8 1
- 1, 51 bipartite 10 8 2
- 1, 80 13 10 8 1
- 1, 116 11 11 8 1
- 2, 30 9 9 8 1
- 2, 95 9 9 8 1
- 2, 102 15 10 8 2

14 148 M2-1:2A 1, 14 23 10 8 1
- 1, 17 11 11 8 1
- 1, 58 11 11 8 1
- 1, 88 9 9 8 1
- 1, 91 11 11 8 1

continued on next page
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376 G Directed and mixed circulant graphs

Table G.5: (cont.) Mixed circulant graphs of directed degree 2, undirected
degree 1

Diameter Isomorphism Generating set* Odd Maximal Aut
k Order class Directed girth Girth levels group CI

- 1, 132 17 12 8 1

15 170 M2-1:0A 1, 16 11 11 9 1
- 1, 70 17 12 9 1
- 1, 101 bipartite 10 9 2
- 1, 155 bipartite 12 9 1
- 2, 32 25 10 9 2
- 2, 55 11 11 9 1
- 2, 140 11 11 9 1

16 192 M2-1:1A 1, 18 17 12 10 1
- 1, 79 13 13 10 1
- 1, 114 11 11 10 1

*plus the involution

Table G.6: Mixed circulant graphs of directed degree 1, undirected degree 2

Diameter Isomorphism Generating set Odd Maximal Aut
k Order class Directed Undirected girth levels group CI

2 7 - 1 2 3 1 1
- 1 3 3 1 1

3 13 M1-2:0 1 3 5 2 1

4 20 M1-2:1A 5 2 7 3 2

5 28 M1-2:2A 7 2 9 3 2

6 37 M1-2:0 1 5 9 4 1

7 48 M1-2:1A 8 3 11 5 2

8 60 M1-2:2A 10 3 13 5 2

9 73 M1-2:0 1 7 13 6 1

10 88 M1-2:1A 11 4 15 7 2

11 104 M1-2:2A 13 4 17 7 2

12 121 M1-2:0 1 9 17 8 1

13 140 M1-2:1A 14 5 19 9 2

14 160 M1-2:2A 16 5 21 9 2

15 181 M1-2:0 1 11 21 10 1

16 204 M1-2:1A 17 6 23 11 2
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G.3 Mixed circulant graphs of dimension 3 377

Table G.7: Mixed circulant graphs of directed degree 1, undirected degree 3

Diameter Isomorphism Generating set* Odd Maximal Aut
k Order class Directed Undirected girth levels group CI

2 10 - 1 2 3 1 1
- 2 1 3 1 1

3 20 M1-3:0 1 3 5 2 1

4 32 M1-3:1 1 3 7 2 1

5 44 M1-3:2A 1 3 9 2 1
M1-3:2B 1 5 7 3 1
- 1 4 5 3 1
- 1 18 7 3 1

6 64 M1-3:0 1 5 9 4 1

7 84 M1-3:1 1 5 11 4 1

8 104 M1-3:2A 1 5 13 4 1
M1-3:2B 1 7 11 5 1

9 132 M1-3:0 1 7 13 6 1

10 160 M1-3:1 1 7 15 6 1

11 188 M1-3:2A 1 7 17 6 1
M1-3:2B 1 9 15 7 1

12 224 M1-3:0 1 9 17 8 1

13 260 M1-3:1 1 9 19 8 1

14 296 M1-3:2A 1 9 21 8 1
M1-3:2B 1 11 19 9 1

15 340 M1-3:0 1 11 21 10 1

16 384 M1-3:1 1 11 23 10 1

*plus the involution

G.3 Mixed circulant graphs of dimension 3

Table G.8: Mixed circulant graphs of directed degree 3, undirected degree 1

Diameter Generating set* Odd Maximal Aut Checked
k Order Directed girth Girth levels group CI up to

2 12 1, 3, 5 3 3 1 2 14

3 24 1, 3, 17 5 4 2 2 30
1, 15, 17 5 4 2 2

4 40 1, 9, 15 5 4 2 2 54
1, 9, 35 5 4 2 2
1, 15, 17 5 5 2 1
1, 17, 35 5 5 2 1

5 62 1, 6, 14 5 5 3 1 90
1, 6, 45 5 5 3 1
1, 20, 27 5 5 3 1
1, 26, 54 5 5 3 1

6 92 1, 7, 29 7 7 3 1 140
1, 27, 29 7 7 2 1
1, 27, 51 9 6 3 1

7 132 1, 31, 47 7 7 3 1 204

8 176 1, 25, 55 9 8 4 1 284
1, 25, 143 9 8 4 1

continued on next page
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378 G Directed and mixed circulant graphs

Table G.8: (cont.) Mixed circulant graphs of directed degree 3, undirected
degree 1

Diameter Generating set* Odd Maximal Aut Checked
k Order Directed girth Girth levels group CI up to

1, 55, 81 9 9 4 1
1, 81, 143 9 9 4 1

9 234 1, 52, 226 9 9 4 1 384
1, 169, 190 9 9 4 1

10 300 1, 177, 235 11 11 5 1 506

11 380 1, 67, 165 11 11 6 1 650
1, 173, 235 13 10 6 1

12 462 1, 250, 280 9 9 5 1 818
1, 304, 343 15 10 5 1

13 576 1, 110, 455 13 13 6 1 1014
1, 119, 130 13 13 6 1

14 688 1, 13, 249 13 12 6 1 1240
1, 105, 333 13 12 6 1
1, 131, 199 13 13 7 1
1, 131, 543 13 13 7 1
1, 199, 475 13 13 7 1
1, 223, 661 13 13 7 1

15 822 1, 31, 484 15 15 7 1 1496
1, 109, 744 13 13 8 1
1, 220, 670 19 16 7 1
1, 267, 592 13 13 8 1
1, 520, 744 17 14 8 1
2, 123, 362 17 14 8 1

16 978 1, 188, 285 15 15 8 1784
1, 188, 774 15 15 8 1
1, 207, 476 15 15 8 1
1, 476, 696 15 15 8 1

17 1140 1, 219, 332 13 13 9 1 2108
1, 219, 902 17 14 9 1

18 1328 1, 53, 91 17 16 8 1 2470
1, 53, 755 17 16 8 1
1, 91, 717 17 16 8 1
1, 127, 213 17 16 8 1

19 1554 1, 127, 1216 15 15 10 1 2870
1, 187, 1450 15 15 10 1
1, 904, 1216 19 16 10 1
1, 1018, 1354 19 16 10 1

20 1776 1, 76, 1526 19 19 10 1 3310
1, 638, 964 19 19 10 1

21 1992 1, 371, 549 21 21 10 1 3794
1, 371, 1545 27 20 10 1
1, 549, 1367 21 21 10 1
1, 647, 1623 27 20 10 1

22 2286 1, 310, 973 19 19 11 1 4324
1, 316, 1948 19 19 11 1
1, 601, 700 19 19 11 1
1, 700, 1744 19 19 11 1

23 2610 1, 246, 1030 25 22 9 1 4900
1, 246, 2335 27 22 9 1
1, 276, 1060 19 19 9 1
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G.3 Mixed circulant graphs of dimension 3 379

Table G.8: (cont.) Mixed circulant graphs of directed degree 3, undirected
degree 1

Diameter Generating set* Odd Maximal Aut Checked
k Order Directed girth Girth levels group CI up to

1, 276, 2365 19 19 9 1
1, 1030, 1551 25 22 9 1
1, 1060, 1581 27 20 9 1
1, 1551, 2335 bipartite 22 9 1
1, 1581, 2365 bipartite 20 9 1
2, 492, 755 21 21 9 1
2, 492, 2060 21 21 9 1
2, 552, 815 19 19 9 1
2, 552, 2120 19 19 9 1
2, 755, 1797 21 21 9 1
2, 815, 1857 21 20 9 1
2, 1797, 2060 21 21 9 1
2, 1857, 2120 21 20 9 1

24 2892 1, 425, 570 23 18 12 1 5524
1, 425, 2016 23 18 12 1

25 3232 1, 56, 257 29 24 10 1 6200
1, 56, 1873 23 23 10 1
1, 257, 1672 23 23 10 1
1, 416, 617 21 21 10 1
1, 416, 2233 29 20 10 1
1, 617, 2032 21 21 10 1
1, 1000, 1201 25 24 10 1
1, 1360, 3177 29 20 10 1

26 3616 1, 171, 1339 25 25 12 1 6930
1, 171, 3147 29 24 12 1
1, 177, 2675 25 25 12 1
1, 1339, 1979 29 24 12 1

27 4040 1, 1076, 3691 31 26 13 1 7714
1, 1496, 2211 25 25 13 1

28 4464 1, 211, 1653 27 27 14 1 8554
1, 211, 3885 33 26 14 1
1, 1383, 1555 27 27 14 1
1, 1555, 3615 33 26 14 1

29 4884 1, 964, 1372 27 24 11 1 8554
1, 964, 3814 25 25 11 1
1, 1071, 1479 31 26 11 1
1, 1071, 3921 27 27 11 1
1, 1372, 3406 25 25 11 1
1, 1479, 3513 33 26 11 1
1, 3406, 3814 33 24 11 1
1, 3513, 3921 27 27 11 1
2, 285, 1752 29 24 11 1
2, 285, 4194 23 23 11 1
2, 1185, 1590 31 26 11 1
2, 1185, 4032 31 26 11 1
3, 1278, 1688 23 23 11 1
3, 1688, 3720 29 24 11 1
3, 2106, 3188 25 25 11 1
3, 3188, 4548 25 25 11 1

30 5386 1, 39, 942 35 26 12 1 8554
1, 39, 3635 bipartite 26 12 1
1, 161, 1676 29 29 12 1
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380 G Directed and mixed circulant graphs

Table G.8: (cont.) Mixed circulant graphs of directed degree 3, undirected
degree 1

Diameter Generating set* Odd Maximal Aut Checked
k Order Directed girth Girth levels group CI up to

1, 161, 4369 bipartite 28 12 1
1, 184, 1382 29 29 12 1
1, 184, 4075 31 28 12 1
1, 243, 1398 25 25 12 1
1, 373, 2259 bipartite 24 12 1
1, 373, 4952 23 23 12 1
1, 435, 2321 bipartite 26 12 1
1, 435, 5014 29 26 12 1
1, 638, 4008 29 29 15 1
1, 942, 2732 25 25 12 1
1, 1018, 2533 23 23 12 1
1, 1018, 5226 33 24 12 1
1, 1063, 4206 27 27 12 1
1, 1181, 4324 29 29 12 1
1, 1296, 2451 23 23 12 1
1, 1296, 5144 33 24 12 1
1, 1312, 2510 31 26 12 1
1, 1312, 5203 31 26 12 1
1, 1398, 2936 25 25 12 1
1, 1513, 3756 27 27 12 1
1, 1676, 2854 35 28 12 1
1, 1752, 5348 27 27 12 1
1, 1929, 2522 33 28 15 1
1, 2630, 5044 43 28 15 1
1, 3066, 4952 39 24 12 1
1, 3128, 5014 27 27 12 1
1, 3756, 4206 29 26 12 1
1, 3874, 4324 29 29 12 1
1, 4622, 5215 29 29 15 1
2, 78, 1884 25 25 12 1
2, 322, 3352 31 28 12 1
2, 746, 4518 23 23 12 1
2, 870, 4642 35 26 12 1

31 5874 1, 885, 2166 27 27 15 1 8554
1, 3822, 5103 33 28 15 1
2, 1395, 1770 37 28 15 1
2, 4332, 4707 27 27 15 1

32 6440 7, 30, 2277 31 28 13 1 8554
7, 30, 5497 37 28 13 1
7, 437, 1410 27 27 13 1
7, 897, 5090 27 27 13 1

33 7182 1, 1519, 2031 bipartite 30 13 1 8554
1, 1519, 5622 29 29 13 1
1, 1561, 2073 bipartite 28 13 1
1, 1561, 5664 37 28 13 1
1, 2031, 5110 37 30 13 1
1, 2073, 5152 31 28 13 1
1, 5110, 5622 29 29 13 1
1, 5152, 5664 31 28 13 1
2, 471, 3038 33 30 13 1
2, 471, 6629 33 30 13 1
2, 555, 3122 27 27 13 1
2, 555, 6713 27 27 13 1
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G.3 Mixed circulant graphs of dimension 3 381

Table G.8: (cont.) Mixed circulant graphs of directed degree 3, undirected
degree 1

Diameter Generating set* Odd Maximal Aut Checked
k Order Directed girth Girth levels group CI up to

2, 3038, 4062 29 29 13 1
2, 3122, 4146 27 27 13 1
2, 4062, 6629 29 29 13 1
2, 4146, 6713 27 27 13 1

34 7700 2, 475, 1177 29 29 13 1 8554
2, 475, 5027 29 29 13 1
2, 777, 1325 41 30 13 1
2, 777, 5175 37 30 13 1
2, 2527, 3075 29 29 13 1
2, 2527, 6925 33 28 13 1
2, 2675, 3377 29 29 13 1
2, 2675, 7227 35 28 13 1
4, 375, 3129 33 28 13 1
4, 375, 6979 29 29 13 1
4, 429, 2875 33 30 13 1
4, 429, 6725 33 30 13 1
4, 725, 3479 29 29 13 1
4, 725, 7329 29 29 13 1
4, 979, 3425 29 29 13 1
4, 979, 7275 39 28 13 1

35 8382 1, 748, 2652 31 31 14 1 8554
1, 748, 6843 35 32 14 1
1, 1540, 3444 47 28 14 1
1, 1540, 7635 29 29 14 1
1, 2652, 4939 31 31 14 1
1, 3444, 5731 29 29 14 1
1, 4939, 6843 bipartite 32 14 1
1, 5731, 7635 bipartite 28 14 1
2, 1113, 1496 35 32 14 1
2, 1113, 5687 39 32 14 1
2, 1496, 5304 31 31 14 1
2, 2697, 3080 29 29 14 1
2, 2697, 7271 39 28 14 1
2, 3080, 6888 39 28 14 1
2, 5304, 5687 31 31 14 1
2, 6888, 7271 29 29 14 1

36 9000 1, 2284, 3506 35 35 18 1 9150
1, 6784, 8006 35 35 18 1

37 9742 1, 238, 1113 33 33 20 1 9900
1, 238, 5984 33 33 20 1
1, 307, 721 bipartite 34 20 1
1, 307, 5592 45 34 20 1
1, 372, 858 33 33 20 1
1, 372, 5729 41 34 20 1
1, 781, 3437 bipartite 30 20 1
1, 781, 8308 41 30 20 1
1, 853, 2768 45 34 20 1
1, 853, 7639 bipartite 34 20 1
1, 1117, 3176 31 31 20 1
1, 1435, 4091 bipartite 32 20 1
1, 1435, 8962 41 32 20 1
1, 1696, 3755 33 33 20 1
1, 1696, 8626 33 33 20 1
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382 G Directed and mixed circulant graphs

Table G.8: (cont.) Mixed circulant graphs of directed degree 3, undirected
degree 1

Diameter Generating set* Odd Maximal Aut Checked
k Order Directed girth Girth levels group CI up to

1, 2104, 8890 41 32 20 1
1, 2768, 5724 41 34 20 1
1, 3176, 5988 41 30 20 1
1, 3437, 5652 31 31 20 1
1, 4014, 4500 33 33 20 1
1, 4091, 6306 31 31 20 1
1, 4151, 9436 49 32 20 1
1, 4500, 8885 41 34 20 1
1, 4634, 8630 31 31 20 1
1, 5178, 5592 41 34 20 1
1, 5652, 8308 31 31 20 1
1, 6306, 8962 31 31 20 1
1, 9022, 9436 31 31 20 1
2, 476, 2226 33 33 20 1
2, 1562, 6874 47 30 20 1
2, 1706, 5536 33 33 20 1
2, 2870, 8182 31 31 20 1

*plus the involution

Table G.9: Mixed circulant graphs of directed degree 2, undirected degree 2

Diameter Generating set Odd Maximal Aut Checked
k Order Directed Undirected girth levels group CI up to

2 13 1, 12 5 5 1 4 14

3 25 1, 24 7 7 1 4 30

4 41 1, 16 18 5 2 1 55

5 66 2, 55 7 9 2 1 91

6 95 1, 11 15 9 3 1 140
1, 56 35 11 3 2

7 136 1, 67 42 13 3 2 204

8 182 2, 65 77 9 3 1 285

9 241 1, 128 67 9 5 1 385

10 314 2, 218 65 11 5 1 506

11 391 1, 171 126 15 6 1 650

12 489 1, 80 192 11 6 1 819

13 609 1, 202 159 21 5 2 1015

14 717 1, 70 190 15 8 1 1240

15 855 1, 47 64 11 7 1 1496

16 1024 1, 818 28 11 7 1 1785

17 1206 1, 780 523 19 9 1 2109

18 1381 1, 664 536 17 9 1 2470
1, 938 84 17 9 1

19 1609 1, 417 709 21 8 1 2870
1, 1200 361 21 8 1

20 1836 1, 576 415 15 10 1 3311

21 2093 1, 842 463 15 9 1 3795
1, 1793 763 23 9 2
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G.3 Mixed circulant graphs of dimension 3 383

Table G.9: (cont.) Mixed circulant graphs of directed degree 2, undirected
degree 2

Diameter Generating set Odd Maximal Aut Checked
k Order Directed Undirected girth levels group CI up to

1, 1846 537 17 11 1

22 2395 1, 1436 775 33 9 2 4324

23 2709 1, 386 1001 33 13 2 4900

24 3056 1, 1145 520 27 10 2 5525

25 3380 1, 116 279 25 14 1 6201

26 3801 1, 474 258 17 11 1 6930

27 4203 1, 3807 1043 17 15 1 7714

28 4663 1, 447 613 29 15 1 8555

29 5135 1, 339 1736 31 12 1 8850

30 5603 1, 2311 626 43 12 1 8850

31 6193 1, 3073 225 21 13 1 8850

32 6769 1, 1933 406 47 13 2 8850

33 7441 1, 5314 406 49 13 2 8850

34 8041 1, 5116 2387 37 14 2 8850

35 8655 1, 88 711 51 14 1 8850

36 9432 3, 4284 232 23 15 1 9600

37 10192 1, 1273 152 57 15 2 10350

38 10938 1, 10536 4411 23 21 1 11160

39 11819 1, 4039 1205 41 16 1 12000

40 12631 1, 9320 1217 57 16 1 12900

41 13585 5, 969 1887 27 17 1 13800

42 14493 1, 2665 5673 43 17 1 14780

43 15705 1, 12214 5751 63 17 2 15800

44 16688 1, 1191 1442 47 18 2 16850

45 17693 1, 8165 1053 61 25 2 17950

Table G.10: Mixed circulant graphs of directed degree 2, undirected degree 3

Diameter Generating set* Odd Maximal Aut Checked
k Order Directed Undirected girth levels group CI up to

2 14 1, 2 3 3 1 1 18
1, 4 2 3 1 1
1, 10 2 3 1 1
1, 12 3 3 1 1

3 32 1, 3 5 5 1 1 44
1, 3 7 5 2 1
1, 4 9 5 2 1
1, 20 9 5 2 1
2, 12 3 5 2 1
2, 28 5 3 2 1

4 60 1, 3 7 7 2 1 84
1, 7 9 5 2 1
1, 11 7 5 2 1
1, 55 9 7 2 1

5 98 1, 22 45 9 2 1 146
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384 G Directed and mixed circulant graphs

Table G.10: (cont.) Mixed circulant graphs of directed degree 2, undirected
degree 3

Diameter Generating set* Odd Maximal Aut Checked
k Order Directed Undirected girth levels group CI up to

1, 78 18 5 2 1

6 160 1, 31 35 11 3 2 230

7 220 1, 11 15 11 3 1 344
1, 131 85 13 3 2

8 312 1, 299 23 11 4 1 488
4, 256 9 7 4 1

9 404 1, 31 95 13 4 1 670

10 544 1, 177 11 17 4 1 890

11 684 1, 379 45 11 5 2 1156

12 864 1, 155 105 11 6 1 1468

13 1068 2, 710 123 21 5 2 1834
4, 352 21 23 5 2

14 1320 5, 875 159 23 5 2 2254

15 1564 1, 1123 319 17 7 1 2736

16 1848 1, 549 901 21 8 1 3280
3, 195 223 17 8 1

17 2172 1, 427 17 25 7 1 3894

18 2560 1, 2007 227 17 9 1 4578

19 2940 1, 2387 967 17 9 1 5340

20 3392 1, 685 1617 17 10 1 6180

21 3864 1, 2167 945 31 8 1 7106

22 4480 1, 1791 545 35 9 2 8120

23 5080 2, 4062 605 35 9 2 8120
2, 4062 665 37 9 2

24 5760 1, 1151 1405 37 9 2 8120

25 6304 1, 1969 1544 17 11 1 8120

26 7048 1, 861 2799 29 13 1 8120

27 7806 1, 3414 2751 39 11 1 8120

28 8736 1, 4581 1926 29 12 1 8980
1, 4581 2442 19 12 1

29 9598 1, 3162 1900 29 16 1 9900

30 10560 5, 5885 441 29 14 1 10850

31 11640 3, 4615 2597 45 12 1 11900

32 12880 1, 9199 4739 49 13 2 13000

33 14084 2, 12070 3157 49 13 2 14200

34 15400 1, 2199 1351 51 13 2 15500

35 16440 1, 821 3190 21 19 1 16850

36 17856 1, 4969 4047 53 14 1 18300

37 19300 1, 12351 8025 45 19 2 19700

*plus the involution
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Table G.11: Mixed circulant graphs of directed degree 1, undirected degree 4

Diameter Generating set Odd Maximal Aut Checked
k Order Directed Undirected girth levels group CI up to

2 15 5 1, 4 3 1 2 19
2 1, 6 3 1 1
5 1, 6 3 1 1

3 32 14 1, 5 5 1 1 44

4 63 21 1, 8 3 2 2 85

5 106 16 1, 48 9 2 1 146

6 164 41 2, 18 11 3 4 231

7 244 61 2, 22 13 3 4 344

8 340 85 2, 26 15 3 4 489

9 458 136 1, 222 15 4 1 670

10 602 241 1, 188 17 4 1 891

11 779 320 1, 361 17 5 1 1156

12 981 156 1, 46 19 5 1 1469

13 1219 174 1, 64 21 6 1 1834

14 1491 354 1, 504 23 6 1 2255

15 1807 54 1, 433 23 7 1 2736

16 2157 766 1, 342 25 7 1 3281

17 2544 778 1, 630 27 8 1 3894

18 2984 663 1, 574 29 8 1 4579

19 3479 1706 1, 336 29 9 1 5340

20 4017 1886 1, 1224 31 9 1 6181

21 4595 1875 1, 369 33 9 1 7106

22 5237 191 1, 2101 35 10 1 8119

23 5951 1957 1, 321 35 11 1 9224

24 6717 3027 1, 2738 37 11 1 10425

25 7531 2121 1, 2858 39 11 1 11726

26 8401 3378 1, 3113 39 13 1 12000

27 9379 4158 1, 1939 41 13 1 12000

28 10413 4079 1, 5040 43 13 1 12000

29 11503 2490 1, 350 45 13 1 12000

30 12649 3577 1, 517 47 13 1 12800

31 13919 4165 1, 2954 47 15 1 14020

32 15261 5287 1, 6975 49 15 1 15360

33 16667 904 1, 2202 51 15 1 16770

34 18137 7873 1, 990 53 15 1 18240

35 19727 3268 1, 358 53 17 1 19840

36 21417 4467 1, 5261 55 17 1 21520

37 23179 9385 1, 6678 57 17 1 23300

38 25013 2916 1, 2461 59 17 1 25100

39 26959 11244 1, 9207 59 19 1 27060

40 29037 8171 1, 10803 61 19 1 29140

41 31195 13795 1, 4854 63 19 1 31300

42 33433 7896 1, 9246 65 19 1 33550

43 35771 13396 1, 8543 65 21 1 35900

44 38277 9847 1, 13029 67 21 1 38400

continued on next page
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Table G.11: (cont.) Mixed circulant graphs of directed degree 1, undirected
degree 4

Diameter Generating set Odd Maximal Aut Checked
k Order Directed Undirected girth levels group CI up to

45 40871 2355 1, 10938 69 21 1 41000

46 43553 4122 1, 3579 71 21 1 43650

47 46323 20182 1, 19227 73 21 1 46450

48 49293 5970 1, 4600 73 23 1 49400

49 52363 12864 1, 5441 75 23 1 52500

Robert Roderick Lewis
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Table G.12: Mixed circulant graphs of directed degree 1, undirected degree 5

Diameter Generating set* Odd Maximal Aut Checked
k Order Directed Undirected girth levels group CI up to

2 20 3 1, 4 3 1 1 24
3 1, 6 3 1 1

3 46 20 1, 14 5 2 1 62
15 1, 18 5 2 1

4 88 31 1, 5 7 2 1 128
27 1, 7 7 2 1

5 164 57 1, 7 9 2 1 230

6 264 91 1, 9 11 2 1 376

7 392 173 1, 91 11 3 1 574
55 1, 173 11 3 1

8 564 249 1, 131 13 3 1 832
79 1, 249 13 3 1

9 772 157 1, 13 15 4 1 1158

10 1040 211 1, 15 17 4 1 1560

11 1348 273 1, 17 19 4 1 2046

12 1724 529 1, 273 19 5 1 2624

13 2152 781 1, 381 21 5 1 3302

14 2648 381 1, 19 23 6 1 4088

15 3232 1545 1, 569 23 7 1 4990

16 3900 847 1, 1025 25 7 1 6016

17 4632 2013 1, 2207 27 7 1 7174

18 5456 203 1, 1827 29 8 1 8472

19 6372 1887 1, 2133 31 8 1 9918

20 7396 2887 1, 715 31 9 1 11520

21 8512 4153 1, 1031 33 9 1 13286

22 9708 3079 1, 1665 35 9 1 13300

23 11040 4705 1, 1261 35 11 1 13300

24 12524 425 1, 5101 37 11 1 13300

25 14104 2391 1, 485 39 11 1 14300

26 15780 3881 1, 769 41 11 1 16000

27 17604 8125 1, 1903 43 12 1 17720

28 19596 2767 1, 455 43 13 1 19700

29 21720 7851 1, 1315 45 13 1 21900

30 23956 8947 1, 5477 47 13 1 24100

31 26356 7165 1, 2053 47 14 1 26500

32 28924 5733 1, 4957 49 15 1 29100

33 31672 2523 1, 8695 51 15 1 31800

34 34548 611 1, 9777 53 15 1 34700

35 37552 10967 1, 12289 55 15 1 37700

36 40820 18019 5, 2223 55 17 1 40950

37 44272 17337 1, 2161 57 17 1 44400

*plus the involution

Robert Roderick Lewis



388 G Directed and mixed circulant graphs

G.4 Mixed circulant graphs of dimension 4

Table G.13: Mixed circulant graphs of directed degree 3, undirected degree 2

Diameter Generating set Odd Maximal Aut Checked
k Order Directed Undirected girth levels group CI up to

2 17 1, 4, 10 5 3 1 1 20

3 39 1, 12, 14 18 5 2 2 50

4 75 1, 24, 26 18 7 2 2 105

5 131 1, 40, 42 32 7 2 1 196

6 206 1, 24, 135 42 7 3 1 336

7 318 1, 162, 309 130 9 3 1 540

8 465 1, 50, 354 42 9 4 1 825

9 660 4, 36, 612 67 5 4 1 1210

10 902 1, 508, 696 153 13 5 1 1716

11 1198 1, 341, 792 152 13 5 1 1800

12 1611 1, 460, 600 772 9 6 1 1800

13 2043 1, 655, 990 389 17 6 1 2160

14 2575 1, 185, 232 407 13 6 1 2750

15 3212 1, 1182, 1589 990 17 7 1 3350

16 3959 1, 409, 3667 982 17 7 1 4120

17 4913 1, 338, 3814 414 13 7 1 5000

Table G.14: Mixed circulant graphs of directed degree 2, undirected degree 4

Diameter Generating set Odd Maximal Aut Checked
k Order Directed Undirected girth levels group CI up to

2 20 1, 3 4, 9 3 1 1 26
1, 10 2, 7 3 1 1
1, 10 7, 8 3 1 1
4, 8 3, 5 3 1 1

3 51 1, 5 7, 18 5 2 1 70
3, 17 21, 23 3 2 1

4 103 1, 27 5, 29 5 2 1 155

5 200 25, 75 4, 28 9 2 8 301

6 344 1, 171 76, 142 11 3 2 532

7 514 1, 228 7, 63 9 3 1 876

8 788 1, 393 58, 126 13 3 2 1365

9 1160 1, 579 46, 56 15 3 2 2035

10 1596 1, 797 360, 700 15 3 2 2926

11 2206 1, 1102 211, 323 19 3 1 3100
1, 1102 239, 899 19 3 1

12 2934 1, 1466 125, 1057 21 3 1 3100
1, 1466 473, 751 21 3 1

13 3778 1, 1888 161, 1361 23 3 1 4000
1, 1888 609, 967 23 3 1

14 4962 2, 1652 960, 2229 23 5 2 5100

15 6240 1, 4159 552, 3084 23 5 2 6400

Robert Roderick Lewis
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Table G.15: Mixed circulant graphs of directed degree 1, undirected degree 6

Diameter Generating set Odd Maximal Aut Checked
k Order Directed Undirected girth levels group CI up to

2 27 11 1, 4, 10 3 1 1 33

3 70 23 1, 7, 18 5 2 1 96

4 155 31 1, 36, 56 5 2 3 225

5 282 130 1, 30, 108 7 2 1 456

6 528 176 1, 144, 199 3 2 2 833

7 869 290 1, 40, 321 13 2 1 1408

8 1323 46 1, 138, 148 15 2 1 2241
639 1, 594, 602 15 2 1

9 2020 210 1, 118, 841 15 3 1 3400

10 2896 724 1, 49, 645 17 3 1 3400

11 4024 906 1, 401, 1696 19 3 1 4200

12 5627 1536 1, 751, 1301 19 4 1 5750

13 7433 3305 1, 54, 1714 21 4 1 7600

14 9663 4124 1, 742, 2035 23 4 1 9900

Robert Roderick Lewis
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