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Protocol-Based Tobit Kalman Filter under Integral
Measurements and Probabilistic Sensor Failures

Hang Geng, Zidong Wang, Lei Zou, Alireza Mousavi and Yuhua Cheng

Abstract—This paper is concerned with the Tobit Kalman
filtering problem for a class of discrete time-varying systems
subject to censored observations, integral measurements and
probabilistic sensor failures under the Round-Robin protocol
(RRP). The censored observations are characterized by the Tobit
observation model, the integral measurements are described as
functions of system states over a certain time interval required
for data acquisition, and the sensor failures are governed by a
set of uncorrelated random variables. The RRP is employed to
decide the transmission sequence of sensors in order to alleviate
undesirable data collisions. By resorting to the augmentation
technique and the orthogonality projection principle, a protocol-
based Tobit Kalman filter (TKF) is developed with the coexistence
of integral measurements and sensor failures that lead to a couple
of augmentation-induced terms. Moreover, the performance of
the proposed filter is analyzed through examining the statistical
property of the error covariance of the state estimation. Further
analysis shows the existence of self-propagating upper and lower
bounds on the estimation error covariance. A case study on
ballistic roll rate estimation is presented to illustrate the efficacy
of the developed filter.

Index Terms—Censored observations, integral measurements,
Round-Robin protocol, sensor failures, Tobit Kalman filtering.

I. I NTRODUCTION

Measurement censoring is a particular form of measurement
nonlinearity, in which the sensor output is a continuous func-
tion of the system state within a certain dynamic range and is
constant outside this range [2], [25]. The phenomenon of mea-
surement censoring is often caused by the saturation of sensor
outputs as a result of dynamic changes or interferences [4],
[42]. Many estimation applications, especially those massively
using low-cost commercial off-the-shelf sensors (e.g. pose esti-
mation [1], decentralized detection [4] and optical transmission
[18]), are ubiquitously confronted by censored observations,
and this has triggered persistent research interest on state
estimation problems with measurement censoring in the last
few years.

In case of censored observations, the conventional Kalman
filter (KF) becomes futile since the measurement noises n-
earing the censoring region turn out to be non-Gaussian with
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unknown statistics [2], [7]. As such, direct employment of
the standard KF would lead to biased estimates or even de-
graded performances because of the violation of the Gaussian
noise assumption [5], [11], [26], [28]. To handle this issue,
enormous endeavors have been made in the literature, where
the overwhelming majority build themselves on the existing
estimation techniques. Among various filters proposed so far,
we highlight the iterative KF [39], particle filter [24] and TKF
[2] that have proven to be rather popular.

Since the pioneering work in [2], the so-called TKF has
proven to be a powerful approach of practical significance
in dealing with censored observations. By introducing new
definitions (of the measurement expectation, residual as well as
variance) and exploiting a local approximation in calculating
censoring probabilities, the TKF is capable of formalizing
a fully recursive state estimation paradigm to handle the
measurement nonlinearity caused by censored observations.
Due to its succinct structure and recursive form, much research
enthusiasm has recently been attracted towards the TKF and a
number of excellent results have been acquired with successful
applications in cooperative localization, fault detection, tar-
get tracking, and so forth [12], [21], [23]. Within the TKF
framework, the state estimation problem has been tackled
in [23] with both censored observations and time-correlated
multiplicative noises. Later, TKFs under modelling uncer-
tainties, non-Gaussian noises, redundant channel transmission
and packet delays have been developed, respectively, in [12],
[14]–[16] with applications to ballistic roll rate tracking and
maneuvering target tracking problems. In addition, the fault
detection problem has been solved in [21] via a variant TKF
approach for discrete-time linear systems with dead-zone-like
censoring.

In the context of state estimation problems, the overwhelm-
ing majority of the existing work has implicitly assumed that
the sensor observation relies only on thecurrent system state
[19], [31]–[35]. This assumption is, unfortunately, sometimes
unreasonable in certain applications such as the chemical
reaction, nuclear fusion and synchrotron radiation [6], [36],
[43]. In these applications, the sensor observation is actually
proportional to so-calledintegral measurements[13], that is,
the integral of system states within a prescribed time interval
due presumably to delayed data acquisition and analysis.
In [17], a novel characterization in relation to the integral
measurements has been proposed where the measurement
output has been described as a function of the system states
over a given period in response to the time slot required for the
sample collection. Then, a modified unscented KF has been
developed to accomplish the task of state estimation for the
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concerned nonlinear systems. Taking use of such a novel char-
acterization, the simultaneous state and fault reconstruction
problem with integral measurements and ambient disturbances
has been addressed in [30] by referencing to the augmentation
technique and the unknown input observer approach.

Another underlying assumption behind the conventional
estimation schemes is that the sensors are equipped with the
capability to provide accurate observations to the designed
estimator. This assumption, however, does not always hold in
reality. More often than not, sensors working in real-world
circumstances are ineluctably confronted with all sorts of
failures due mainly to abrupt environment changes, unexpected
exogenous disturbances, internal component ageing and so
forth (see [22], [29], [37], [45] and the references therein).
Basically speaking, sensor failures usually happen in a proba-
bilistic way which result in the phenomenon of measurement
missing/degradation. The seminal work on filtering problems
with measurement missing/degradation can be dated back
to 1969 in reference [37], where an optimal recursive filter
has been put forward for systems suffering from missing
measurements [37]. In [45], the variance-constrained state
estimation problem has been coped with for multi-rate systems
susceptible to quantized and degraded observations in terms
of stochastic analysis techniques. Recently, regarding the con-
strained network resource, an event-triggered resilient filter has
been designed in [27] for systems subject to the simultaneous
presence of measurement quantization and sensor failures,
where the variation of the filter gain has also been taken into
account.

In the past few decades, the networked system has gained a
surge of research attention due largely to its broad applications
in industrial fabrication, environmental monitoring and target
localization, see e.g. [27], [40], [41], [47], [48]. In an ideal
situation,all system components (e.g. actuators, controllers,
filters and sensors) are supposed to have privileges for in-
formation propagation via shared communication networks.
This supposition, however, is often impractical as limited-
bandwidth-induced data collisions are likely to happen when
the information exchanges take place simultaneously by more
than one component [9], [46]. In this respect, communication
protocols have been leveraged to orchestrate the transmission
sequence of system components by giving the transmission
permission to a single component at each time instant so as
to avoid possible data collisions (see [41], [48], [49] and the
references therein). Among the various communication proto-
cols, the Round-Robin protocol (RRP) has drawn particular
research attention because of its succinct execution manner,
where the information propagation among system components
is conducted in afixed circular order [44]. Recently, the
distributed set-membership filtering problem has been solved
in [29] for a class of multi-rate systems in sensor networks
under the RRP scheduling, where the desired filter gains have
been obtained by minimizing a certain ellipsoid in the sense
of the minimum traces of weighted matrices.

To conclude the above discussions, we make the following
observations: 1) although much work has been done hitherto
on the design of TKFs under different circumstances, there
has been a lack of analysis results on the corresponding

filtering performance within a holistic Tobit Kalman filtering
framework; 2) due to unreliable working conditions and de-
layed data acquisition and analysis, sensors are inclined to
experience probabilistic failures and integral measurements,
and the negligence of such phenomena would result in deterio-
rated filtering performances; 3) communication protocols have
proven to be beneficial in boosting transmission scheduling
and circumventing data collisions, but the investigation into
TKFs under communication protocols has been still in its
infancy due mainly to the difficulty of appropriately describing
TKF-embedded protocol characteristics.

Following the observations made previously, a seemingly
natural research topic is to devise a protocol-based TKF, in the
presence of sensor outputs undergoing integral measurements
and sensor failures, to achieve the optimal state estimation and
also evaluate the associated filtering performance. This topic,
though theoretically important and practically significant, is
quite challenging for three reasons: 1) it is unclear as how to
derive a protocol-based Tobit regression model in conjunction
with integral measurements and sensor failures; 2) it is fairly
difficult to conduct the performance analysis on the developed
filter due to its time-varying and stochastic nature; 3) it is
mathematically hard to examine the joint impacts from the
communication protocol, integral measurements and sensor
failures on the design and performance analysis of the filter.
Therefore, the main purpose of this paper is to overcome the
identified challenges.

In this paper, we endeavor to deal with the protocol-
based Tobit Kalman filter under integral measurements and
probabilistic sensor failures. To be more specific, a protocol-
based Tobit regression model is first built that accommodates
the integral measurements and randomly occurring sensor
failures. By resorting to the orthogonality projection principle,
an optimal protocol-based TKF is designed in the sense of
linear minimum mean-squared error (LMMSE), where most
of its computation can be carried out recursively or off-line.
In addition, the performance of the desired filter is statistically
assessed, and sufficient conditions are established for the
existence of self-propagating upper and lower bounds on the
estimation error covariance.

The main contributions are highlighted as follows.i) To our
knowledge, this paper presents one of the first few attempts
to look into the Tobit Kalman filtering problem with integral
measurements and sensor failures under the communication
protocol, where the system model is both holistic and compre-
hensive in catering for engineering practice. ii) Compared with
the TKF in [2], a couple of new terms emerge in the newly
designed filter, which is seen as an envisioned reflection of
the addressed communication protocol, integral measurements
and sensor failures. iii) The performance of the developed filter
is evaluated via analyzing the estimation error covariance
with its upper and lower bounds that are found to be self-
propagating.

The remainder of the paper is organized as follows. In
Section II, the problem under consideration is formulated.
In Section III, an optimal protocol-based TKF is designed.
In Section IV, the performance of the developed filter is
evaluated. In Section V, a numerical example is provided to
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Fig. 1: Schematic diagram for the concerned Tobit Kalman
filtering problem.

show the usefulness of the filter, and some conclusions are
drawn in Section VI.

Notation The notation used here is fairly standard ex-
cept where otherwise stated.Rn denotes then-dimensional
Euclidean space. “I” and “0” represent identity and zero
matrices with proper dimensions, respectively. Superscripts
“−1” and “T ” represent inverse and transpose operations,
respectively.E{x} andE{x|y} denote the expectation ofx and
the expectation ofx conditional ony, respectively. var{X}
stands for the variance ofX . tr{X} represents the trace of
matrix X . δ(·) ∈ {0, 1} is the Dirac delta function.

II. PROBLEM FORMULATION

Consider the Tobit Kalman filtering problem for a net-
worked system as shown in Fig. 1. In this framework, the
sensor is susceptible to probabilistic failures, the sampling is
subject to delays, the signal transmission between the filter and
the sensor is implemented through a communication network
under the RRP, and the measurement arriving at the filter is
inclined to censoring. In what follows, let us introduce the
plant, the communication network, and the degraded, integral
and censored measurement in a mathematical way.

Consider the following linear discrete time-varying system
subject to integral measurements [17], [30] and probabilistic
sensor failures [27], [45]:

xk+1 = Akxk + ωk, (1)

zm,k = Λm,kCm,k

ℓ
∑

s=0

xk−s + υm,k, m = 1, 2, . . . , p, (2)

where xk ∈ R
nx is the state vector andzm,k ∈ R is the

uncensored observation of themth sensor.Ak and Cm,k

are known time-varying matrices with compatible dimensions.
Λm,k ∈ R is the sensor failure coefficient,ℓ is the time length
required for the data collection, andp is the number of sensors.
ωk ∈ R

nx andυm,k ∈ R are zero-mean white Gaussian noises
with covariancesQk andRm,k, respectively.

In the current investigation, the sensor measurementszm,k

(m = 1, 2, . . . , p) are transmitted to the remote estimator via
a shared communication network. Due to limited communi-
cation bandwidth, it is assumed that at each communication
time instant, only one single sensor is granted the access
to the shared channel to transmit its output through the
network. Accordingly, the RRP is leveraged to orchestrate the
transmission order of the sensors with a view to avoiding data
collisions.

Define ~k , mod(k − 1, p) + 1 ∈ {1, 2, . . . , p} as the
selected sensor that has access to the network at timek where
mod(k−1, p) is the unique non-negative remainder on division
of k − 1 by p, andΓm,~k

, δ(~k −m) as the measurement
update matrix that regulates the token-dependent scheduling
of themth sensor. Under the RRP and the zero-input strategy,
the actual measurement that is sent to the estimator at timek
is [29], [48]:

ȳk =

p
∑

m=1

Γm,~k
zm,k. (3)

At the input terminal of the estimator, let an additional
detection device be equipped to check whether the received
ȳk is censored or not, and this gives rise to the following
Tobit observation model [2]:

yk =

{

ȳk, ȳk > τ,

τ , ȳk ≤ τ,
(4)

where yk ∈ R is the censored observation with a constant
thresholdτ .

Based on the above Tobit observation model (4), let us
define a Bernoulli random variableγk to regulate the censoring
phenomenon ofyk as follows:

γk =

{

1, ȳk > τ,

0, ȳk ≤ τ,
(5)

with the following probability distribution:

Prob{γk = 1} = γ̄k,Prob{γk = 0} = 1− γ̄k. (6)

Here,γ̄k is a known non-negative constant. It is supposed that
γk is uncorrelated with other noise signals. Taking advantage
of γk, yk in (4) can be rewritten as follows:

yk = γkȳk + (1− γk)τ. (7)

Let

y1:k , {y1, y2, . . . , yk}, γ1:k , {γ1, γ2, . . . , γk}

be the measurement and censoring sequences up till timek,
respectively. Furthermore, we denote

x̂−
k , E{xk|y1:k−1, γ1:k−1}, x̃−

k , xk − x̂−
k ,

x̂k , E{xk|y1:k, γ1:k}, x̃k , xk − x̂k,

ŷ−k , E{yk|y1:k−1, γ1:k−1}, ỹ−k , yk − ŷ−k ,

Px̃
k
, E{x̃kx̃

T
k |y1:k, γ1:k},

P
ỹ
−

k

, E{ỹ−k (ỹ−k )T |y1:k−1, γ1:k−1},
P
x̃
−

k

, E{x̃−
k (x̃

−
k )

T |y1:k−1, γ1:k−1},
P
x̃
−

k
ỹ
−

k

, E{x̃−
k (ỹ

−
k )

T |y1:k−1, γ1:k−1}.

Assumption 1:The initial statex0 has the mean̄x0 and
covarianceP0. The random variablesx0, Λm,k, ωk andυm,k

are mutually independent.
Assumption 2:The sensor failure coefficientsΛm,k (m =

1, 2 . . . , p) are mutually independent random variables inm
and k, and are also uncorrelated withγk and other noise
signals.Λm,k regulate the probabilistic failure phenomena of
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themth sensor at timek and take values on the interval[0, 1]
with certain probability density functions (PDFs) of means
Λ̄m,k and variances̆Λm,k.

Remark 1: It is noteworthy that the measurement sequence
y1:k relies on the random censoring sequenceγ1:k, implying
thaty1:k contains information ofγ1:k, andy1:k will be different
for different realizations ofγ1:k. As a result, all expectations
defined above areconditional expectationsin regard toγ1:k.
Thus, in this paper, we are interested in the statistical property
of the error covariancePx̃

−

k
.

When designing filtering algorithms, a widely accepted
assumption is that the current sensor observation depends
merely on the current state, whereas past states do exert
influence on the current observation in the event that a time
interval is required for data acquisition and analysis. Hence,
the observation in (2) is modeled as the integral of states
over a prescribed time slot to characterize such influence. A
typical example of the integral measurement can be found in
distillation columns [17], where lab analysis is often required
for measurements of the distillate and bottom compositions
as the use of online analyzers is often infeasible due to
economic considerations or technological difficulties. In order
to analyze the composition, a sufficient amount of samples
must be collected and the sample collection process cannot be
completed instantaneously but in a time interval. Accordingly,
the measurement model for the sampled distillate and bottom
compositions can be written as (2), wherexk is the state
of distillate and bottom compositions,ℓ is the time interval
required to complete the sample collection,Cm,k are the
known measurement matrices of the lab analysis, andυm,k

are the lab analysis errors which are assumed to be zero-mean
white Gaussian noises with covariancesRm,k.

Remark 2: It is worth noting that, model (2) is compre-
hensive as it accounts for several frequently encountered
measurement uncertainties (e.g. the packet dropout, time delay
and measurement degradation). Specifically, at timek, if
Λm,k = 0, it is implied that themth sensor suffers from
the entire failure and its output signa is completely missing;
if Λm,k = 1 and ℓ = 0, it is implied that themth sensor
works in a good condition and no delayed sample collections
exist; if Λm,k = 1 and ℓ > 0, it is implied that though the
mth sensor functions well, its sample collection is delayed
by a time intervalℓ; if 0 < Λm,k < 1 and ℓ = 0, it is
implied that themth sensor undergoes partial failures and
its output signal is measured with reduced gains that lead to
degraded measurements; if0 < Λm,k < 1 and ℓ > 0, it is
implied that themth sensor is susceptible to both failures and
delayed sample collections, yielding the integral and degraded
observations.

As an efficient tool for handling censored observations, the
TKF has stirred much research interest during the last few
years. By bringing in new definitions (of the measurement
expectation, residual as well as variance), the TKF is capable
of formalizing a fully recursive state estimation paradigm to
process the uncertainty caused by censored observations. Apart
from the measurement censoring, sensor outputs are easily
prone to uncertainties ranging from integral measurements to
probabilistic sensor failures as shown in (2), and the corre-

sponding Tobit Kalman filtering problem has not yet been fully
investigated, let alone the case where the RRP is employed to
reinforce the reliability of network communication. As such,
there is a practical need to establish a holistic protocol-based
Tobit Kalman filtering framework to fill in such a gap.

It is observed from (4) that, the random variableγk is
employed to describe the censoring phenomenon ofyk. In
accordance with (4), if no censoring occurs foryk, i.e.
γk = 1, the measurement becomesyk = ȳk, which means
that the output observation is equivalent to the latent one. If
the censoring occurs foryk, i.e. γk = 0, the measurement
becomesyk = τ , which means that the censoring threshold is
allocated to the output observation. Here, we suppose that the
censoring probabilitȳγk is knowna priori via some statistical
experiments. Alternatively, inspired by [2],̄γk can also be
approximated by

γ̄k ≈ Φ





∑p

m=1

∑ℓ

s=0 Γm,~k
Λ̄m,kCm,kςk−s − τ

√

∑p

m=1 Γ
2
m,~k

Rm,k



 , (8)

where ςk−s = x̂−
k−s for s = 0 and ςk−s = x̂k−s for

s = 1, 2, . . . , ℓ. Φ(·) is the cumulative distribution function
(CDF) of the random variable “·” obeying the standard normal
distribution.

The objectives of this paper are to i) design an optimal
protocol-based TKF for system (1)–(6) in the LMMSE sense
under the RRP; and ii) analyze the performance of the obtained
filter via the evaluation indexE{P−

x̃
k
}.

III. PROTOCOL-BASED TKF WITH INTEGRAL

MEASUREMENTS ANDPROBABILISTIC SENSORFAILURES

In this section, we aim to formalize an ameliorated Tobit
Kalman filtering paradigm to surmount the challenges brought
by the coexistence of sensor failures, integral observations and
measurement censoring under the RRP. The formulation pro-
cedure differentiates itself from [2] in the following aspects: 1)
a protocol-based Tobit regression model where impacts from
the integral measurements, sensor failures and RRP are taken
into consideration; and 2) extra computations of the gain and
covariance matrices (resulting from the integral measurements
and sensor failures) which comprise the augmentation of
states, derivation with respect to the augmented state as well
as calculations in terms of failure coefficients.

As integral measurements are often caused by the delayed
sample collection and signal processing, the augmentation
technique is first applied to system (1)–(6) to accommodate
such integral effects. Letting

ξk ,
[

xT
k xT

k−1 · · · xT
k−ℓ

]T
,

we have

ξk =Akξk−1 + Bkωk, (9)

yk =γk

p
∑

m=1

Γm,~k
(Λm,kCm,kξk + υm,k) + (1− γk)τ, (10)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSP.2020.3048245, IEEE Transactions on Signal Processing



FINAL VERSION 5

where

Ak =











Ak 0 · · · 0
I 0 · · · 0
...

. . .
. . .

...
0 · · · I 0











,Bk =











I
0
...
0











,

Cm,k =
[

Cm,k Cm,k · · · Cm,k

]

.

By means of augmentation, system (1)–(6) with integral
measurements is converted into the integral-free one in (9)–
(10) at the cost of extra computations pertinent to the aug-
mented state.

Let

ξ̂−k , E{ξk|y1:k−1, γ1:k−1}, ξ̃−k , ξk − ξ̂−k ,

ξ̂k , E{ξk|y1:k, γ1:k}, ξ̃k , ξk − ξ̂k,

P
ξ̃
−

k

, E{ξ̃−k (ξ̃−k )T |y1:k−1, γ1:k−1},

P
ξ̃k

, E{ξ̃k ξ̃Tk |y1:k, γ1:k}, ζk ,

p
∑

m=1

Γm,~k
Λm,kCm,kξk,

Rk ,

p
∑

m=1

Γ2
m,~k

Rm,k, ϑk ,
I−ζk
Rk

.

Before embarking on the filter design, the protocol-based
Tobit regression model entailing the integral measurements
and sensor failures is first derived.

Lemma 1:The expectation and variance ofyk conditional
on the observation sequencey1:k−1 and censoring sequence
γ1:k are

E {yk|y1:k−1, γ1:k} =γk

[

ζk +
√

Rkλ (ϑk)
]

+ (1− γk) τ,

(11)

var{yk|y1:k−1, γ1:k} =Rk [1− ϕ (ϑk)] , (12)

where

λ (ϑk) =
φ (ϑk)

1− Φ (ϑk)
, (13)

ϕ (ϑk) =λ (ϑk) [λ (ϑk)− ϑk] . (14)

Here,φ (ϑk) andΦ (ϑk) are, respectively, the PDF and CDF
of the Gaussian random variableϑk of following structures:

φ (ϑk) =
1√
2π

e
− (τ−ζk)

2

2Rk , (15)

Φ (ϑk) =

∫ τ

−∞

1√
2πRk

e
− (yk−ζk)

2

2Rk dyk
. (16)

Proof: See Appendix A.
The protocol-based Tobit regression model given by Lemma

1 embodies the expectation and variance ofyk conditional on
sequencesy1:k−1 and γ1:k. In contrast with its counterpart
in [2] which barely cares about the measurement censoring
in case of unknownγ1:k, two noteworthy distinctions of
model (11)–(12) can be encapsulated. The first distinction is
the substitution of the censoring probabilitȳγk by the true
censoring variableγk owing to the exact acknowledgement
of γ1:k. The second distinction is the replacement ofCkxk

(the product of the original measurement matrixCk and state
xk) and Rm,k (the original noise covariance), respectively,

by ζk =
∑p

m=1 Γm,~k
Λm,kCm,kξk (the sum ofp products

with respect to the update coefficientΓm,~k
, failure coefficient

Λm,k, augmented measurement matrixCm,k and augmented
stateξk) andRk =

∑p
m=1 Γ

2
m,~k

Rm,k (the sum ofp products
with regard to the update coefficientΓm,~k

and original noise
covarianceRm,k) due to the involvement of the RRP, integral
measurements and sensor failures. If these phenomena are
disregarded, (11) and (12) would degrade to (8) and (11) in
[2], respectively.

Remark 3:Thanks to (11)–(16), the Tobit regression model
in [2] (without the acknowledgement of the measurement
censoring) has been modified to the protocol-based one with
integral measurements, sensor failures and acknowledged mea-
surement censoring. Be aware that such a modification brings
on board 1) the substitution of̄γ

k
by γ

k
, Ckxk by ζk andRm,k

by Rk throughout all measurement-related terms; and 2) the
emergence of a suite of new terms that further sophisticate the
subsequent algorithm design.

Denote

Cm,k , Γm,~k
Λ̄m,kCm,k, ζ̂−k ,

p
∑

m=1

Cm,kξ̂
−
k ,

ϑ̄k ,
τ−ζ̂−k
Rk

, Λ̃m,k , Λ̄2
m,k + Λ̆m,k.

The following theorem presents the optimal protocol-based
TKF in the LMMSE sense subject to integral measurements
and sensor failures.

Theorem 1:The optimal protocol-based TKF for the aug-
mented system (9)–(10) is

ξ̂−k = Ak ξ̂k−1, (17)

Pξ̃
−

k
= Ak−1Pξ̃

k−1

AT
k−1 + Bk−1Qk−1BT

k−1, (18)

ξ̂k = ξ̂−k +Kk(yk − ŷ−k ), (19)

Pξ̃
k
= Pξ̃

−

k
−KkP

T

ξ̃
−

k
ỹ
−

k

. (20)

The one-step measurement prediction and filtering gain are

ŷ−k =γk

[

ζ̂−k +
√

Rkλ
(

ϑ̄k

)

]

+ (1− γk)τ, (21)

Kk =P
ξ̃
−

k
ỹ−

k

P−1
ỹ−

k

, (22)

where

P
ξ̃
−

k
ỹ−

k

=Pξ̃
−

k

(

γk

p
∑

m=1

Cm,k

)T

, (23)

Pỹ−

k
=γk

p
∑

m=1

p
∑

n=1

Cm,kPξ̃
−

k

(γkCn,k)
T

+ γk

p
∑

m=1

p
∑

n=1

Γm,~k
Λ̃m,kCm,kPξ

k
(γkΓn,~k

Cn,k)T

+Rk

[

1− ϕ
(

ϑ̄k

)]

. (24)

Here, λ
(

ϑ̄~k,k

)

and ϕ
(

ϑ̄~k,k

)

can be calculated via (13)–
(14) by replacingζk with ζ̂−k ; andPξ

k
= Ak−1Pξ

k−1

AT
k−1 +

Bk−1Qk−1BT
k−1.

Proof: See Appendix B.
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TABLE I: The Pseudocode of the Protocol-Based TKF

Algorithm: Protocol-Based TKF
Input: x̄0, P0, y1:k
Output: x̂k, Px̃

k

1: let x̂0 = x̄0, Px̃
0
= P0.

2: for k = 1 : N do
3: compute the predicted valuêξ−

k
and associate covariance

P
ξ̃
−

k

by (17)–(18);

4: compute the predicted valuêx−

k
and associate covariance

P
x̃
−

k

by (25);

5: compute the gain matrixKk by (22)–(24);
6: compute the updated estimateξ̂k and associate covariance

P
ξ̃
k

by (19)–(20);

7: compute the updated estimatex̂k and associate covariance
Px̃

k
by (25);

8: end for

Two exceptional features can be spotted when comparing
the proposed protocol-based TKF in Theorem 1 with its coun-
terpart in [2]. One is the substitution of the term̄γkCk (which
is the product of the censoring probability and the original
measurement coefficient) by the termγk

∑p
m=1 Cm,k (which is

the sum ofp products in relation to the known censoring vari-
ableγk and the equivalent measurement coefficientCm,k) in
all prediction-related equations. The other is the emergence of
the termγk

∑p

m=1

∑p

n=1 Γm,~k
Λ̃m,kCm,kPξ

k
(γkΓn,~k

Cn,k)T
in the calculation ofPỹ

−

k
. The first feature originates from the

concurrence of the RRP, sensor failures, integral measurements
and exact acknowledgement of the censoring phenomenon,
whilst the second feature stems from the presence of sensor
failures.

Let Π ,
[

I 0 · · · 0
]

. On the basis of Theorem 1, the
following theorem presents the optimal protocol-based TKF
for the original system (1)–(7).

Theorem 2:The optimal protocol-based TKF for system
(1)–(7) is



























x̂−
k = Πξ̂−k ,

x̂k = Πξ̂k,

P
x̃−

k

= ΠP
ξ̃−
k

ΠT ,

Px̃
k
= ΠPξ̃

k
ΠT .

(25)

Proof: Theorem 2 follows readily from Theorem 1 by
noting the correlation between system (1)–(7) and system (9)–
(10).

Theorems 1–2, together with Lemma 1, constitute the
protocol-based Tobit Kalman filtering algorithm with its pseu-
docode outlined in Table I.

It can be seen from Lemma 1 and Theorems 1–2 that, when
implementing the presented protocol-based Tobit Kalman fil-
tering algorithm with integral measurements and probabilistic
sensor failures, the computational complexity mainly involves
the matrix multiplication and inversion. In the matrix mul-
tiplication, the multiplication of matrices with dimensions
nx(ℓ + 1) × nx(ℓ + 1) needs to be calculated, wherenx is
the dimension of the system state andℓ is the time length
required for the data collection. As to the matrix inversion,
the inverse of matrices with dimensionsny × ny needs to be

calculated, whereny is the dimension of the measurementyk.
Hence, the proposed filtering algorithm has the computational
complexity ofO

[

(nx(ℓ+ 1))
3
+ (ny)

3
]

.

Remark 4:The specifically tailored Tobit Kalman filtering
architecture is composed of Lemma 1 and Theorems 1–2, and
exhibits two extraordinary advantages. On one hand, system
(1)–(7) under investigation is comprehensive for its inclusion
of the RRP and multiple measurement uncertainties (e.g.
measurement censoring, integral measurements and sensor
failures) which are prevalently confronted in a myriad of
application ranges and are elegantly settled in a holistic yet
valid framework. On the other hand, in comparison with
the filter in [2], the protocol-induced measurement update
coefficient Γm,~k

and a bank of new terms arise in the
development of our TKF, which transparently reveals the im-
pacts from the RRP and measurement uncertainties. Explicitly,
the term γk throughout the paper manifests the influence
of measurement censoring, the termRk in Lemma 1 and
Theorem 1 reveals the impact of the RRP, the termΠ in
Theorem 2 reflects the effect of the integral measurements,
the termγk

∑p
m=1

∑p
n=1 Γm,~k

Λ̃m,kCm,kPξ
k
(γkΓn,~k

Cn,k)T
in Theorem 1 sketches the influence of sensor failures, and
terms ζk and ζ̂−k characterize the simultaneous influence of
the RRP, integral measurements and sensor failures.

It should also be noted that, the protocol-based Tobit
Kalman filtering paradigm proposed in Theorems 1–2 is
stochastic due to its dependence on the random censoring
variableγk. This indicates that the state estimates and associate
error covariances are now functions ofγk. Given such a
stochastic filtering paradigm, a viable way to analyze its
performance is to investigate the statistical property of the
filtering error covariancePx̃

−

k
as shown in the later section.

IV. PERFORMANCEANALYSIS

In this section, we aim to come up with a holistic analysis
of the filtering performance in relation to the proposed optimal
protocol-based TKF. The analysis is performed by taking
advantage of the mean estimation error covarianceE

{

Px̃
−

k

}

.
Considering the time-varying nature of the filter, we show
that there exist self-propagating lower and upper bounds on
E

{

Px̃
−

k

}

. The pursuit of such bounds complies with two
principles: 1) the optimality of the filter motivates us to
construct a suboptimal filter whose mean estimation error
covariance is envisioned to be the upper bound onE

{

Px̃
−

k

}

;

2) the semi-positive definiteness ofPξ̃
−

k
, Pξ

k
, Λ̃m,k andRk

paves the way for us to envisage the lower bound onE

{

Px̃
−

k

}

via some subtle matrix manipulations.

For the sake of notation brevity, we defineMk , E

{

Pξ̃
−

k

}

,

Nk , E

{

Px̃
−

k

}

and ϕ̄k , ϕ
(

ϑ̄k

)

. To begin with, the error
covariancePξ̃

−

k+1

in (17) is rearranged into

Pξ̃
−

k+1

=AkPξ̃
−

k
AT

k + BkQkBT
k −AkPξ̃

−

k

(

γk

p
∑

s=1

Cs,k

)T
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×
{

γk

p
∑

m=1

p
∑

n=1

Cm,kPξ̃
−

k

(γkCn,k)
T

+ γk

p
∑

m=1

p
∑

n=1

Γm,kΛ̃m,kCm,kPξ
k
(γkΓn,~k

Cn,k)T

+Rk [1− ϕ̄k]

}−1

γk

p
∑

t=1

Ct,kPξ̃
−

k
AT

k . (26)

Taking expectation on both sides of (26) leads to

Mk+1 =AkMkAT
k + BkQkBT

k

−AkE

{

Pξ̃
−

k

(

γk

p
∑

s=1

Cs,k

)T

×
[

γk

p
∑

m=1

p
∑

n=1

Cm,kPξ̃
−

k

(γkCn,k)
T

+ γk

p
∑

m=1

p
∑

n=1

Γm,~k
Λ̃m,kCm,kPξ

k
(γkΓn,~k

Cn,k)T

+Rk [1− ϕ̄k]

]−1

γk

p
∑

t=1

Ct,kPξ̃
−

k

}

AT
k . (27)

It is apparent that the complex structure of the third term on
the right side of (27) prevents the self-propagation ofMk+1,
that is to say, the acknowledgement ofMk is not sufficient
for the determination ofMk+1, which further hinders us from
finding the self-propagating bound onMk. Nonetheless, it will
be shown later that such an upper bound is well-expected
through some subtle matrix manipulations.

Recalling that the optimal protocol-based TKF derived in
Theorem 2 has a random filtering gainKk, the following
theorem is dedicated to the derivation of a self-propagating
upper bound onMk via constructing a suboptimal protocol-
based TKF with a deterministic filtering gainKu

k .
Theorem 3:Let the initial conditionMu

0 > 0 be given.
Calculate the matrix sequence

{

Mu
k+1

}

k≥0
according to the

following difference equation:

Mu
k+1 =AkM

u
kAT

k + BkQkBT
k −AkM

u
k

(

γ̄u
k

p
∑

s=1

Cs,k

)T

×
{

γ̄u
k

p
∑

m=1

p
∑

n=1

Cm,kM
u
k (γ̄u

kCn,k)
T

+ γ̄u
k

p
∑

m=1

p
∑

n=1

Γm,~k
Λ̃m,kCm,kPξk (γ̄

u
kΓn,kCn,k)T

+Rk [1− ϕ̄u
k ]

}−1

γ̄u
k

p
∑

t=1

Ct,kM
u
kAT

k . (28)

Then, the calculated matrixMu
k+1 satisfies

Mk+1 ≤ Mu
k+1, (29)

i.e. Mu
k+1 is a self-propagating upper bound onMk+1, where

γ̄u
k and ϕ̄u

k are the suboptimal counterparts ofγ̄k and ϕ̄k,
respectively.

Proof: See Appendix C.

On account of the randomness of the gain matrixKk in
Theorem 1, a straightforward idea is to construct a suboptimal
protocol-based TKF by setting the gain matrix to be determin-
istic. Consequently, Theorem 3 presents an upper boundMu

k

onMk and the suboptimal gainKu
k is obtained via minimizing

the trace ofMu
k . Provided the initial condition, such an upper

bound holds for allk ≥ 0 due to the fact that, the filtering
performance of the optimal protocol-based TKF should be no
less than any of its suboptimal counterparts. It needs to be
pointed out that, the self-propagation ofMu

k holds regardless
of the fact thatMk is not self-propagating. This provides a
feasible way to the online recursive computation ofMu

k . In
addition, it can be observed from (28) that, the calculation of
Mu

k has close relationships with the augmented coefficients
Ak andCm,~k

, updated coefficientΓm,k, failure variancẽΛm,k

and censoring probabilitȳγu
k , which explicitly elucidates the

impacts from the integral measurements, RRP, sensor failures
and measurement censoring on.

Theorem 4:Let the initial conditionM l
0 > 0 be given.

Calculate the matrix sequence
{

M l
k+1

}

k≥0
according to the

following difference equation:

M l
k+1 = (1− γ̄k)AkM

l
kAT

k + BkQkBT
k , (30)

Then, the calculated matrixM l
k+1 satisfies

M l
k+1 ≤ Mk+1, (31)

i.e. M l
k+1 is a self-propagating lower bound onMk+1.

Proof: See Appendix D.
Making full use of some subtle matrix manipulations, a self-

propagating lower boundM l
k onMk is acquired in Theorem 4

based on the semi-positive definiteness ofPξ̃
−

k
, Pξ

k
, Λ̃m,k and

Rk. Casting insights into Theorem 4, a remarkable finding is
that, the calculation ofM l

k tightly hinges on the augmented
coefficientsAk andBk and censoring probabilitȳγk, which
noticeably characterizes the effects of the RRP, integral mea-
surements, sensor failures and measurement censoring.

Keeping in mind the relationship betweenPξ̃
−

k
andPx̃

−

k
as

shown in Theorem 2, we arrive at the following theorem.
Theorem 5:There exist an upper boundNu

k and a lower
boundN l

k on the mean error covarianceNk such that

N l
k ≤ Nk ≤ Nu

k , (32)

holds for all k ≥ 0, where Nu
k = ΠMu

kΠ
T and N l

k =
ΠM l

kΠ
T .

Proof: The result follows noticeably from Theorems 2-4.

Remark 5:Theorems 5 manifests the upper and lower
bounds on the mean estimation error covarianceNk under
the RRP and multiple measurement uncertainties (e.g. mea-
surement censoring, integral measurements and sensor fail-
ures). The concurrence of the RRP and uncertainties provokes
substantial difficulties in the assessment of the filtering per-
formance which can be encapsulated from the following two
aspects. 1) The exact acknowledgement of the censoring phe-
nomenon gives rise to a time-varying and stochastic protocol-
based TKF as shown in Theorems 1–2, which prevents us from
carrying out a rigorous convergence analysis on the proposed
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filter. As such, we turn to explore the self-propagating upper
and lower bounds on the mean error covarianceNk. The upper
bound is achieved by establishing a suboptimal protocol-based
TKF whose gain matrix is independent ofγk, and the lower
bound is acquired by resorting to subtle matrix manipulations
based on the semi-positive definiteness of matricesPξ̃

−

k
, Pξ

k
,

Λ̃m,k and Rk. 2) The conjunction of the RRP and mea-
surement uncertainties gives rise to a set of protocol-induced
and uncertainty-induced terms, significantly sophisticating the
design of the suboptimal filter and the implementation of the
involved matrix manipulations. To sum up, the simultaneous p-
resence of the RRP and measurement uncertainties ineluctably
results in distinctive filter design techniques and performance
analysis procedures which are elegantly orchestrated through
Theorems 1–5.

V. I LLUSTRATIVE EXAMPLE

In this section, we leverage an oscillator example (modified
from [2]) to elucidate the applicability of the presented filter
design strategy and performance analysis mechanism.

Denote the root mean-squared errors (RMSEs) ofx1
k andx2

k,

respectively, as RMSE1,

√

1
M

∑M
i=1

(

x
1(i)
k − x̂

1(i)
k

)2

and

RMSE2,

√

1
M

∑M

i=1

(

x
2(i)
k − x̂

2(i)
k

)2

, and the mean error

covariance trace (MECT) as MECT, (1/M)
∑M

i=1tr
(

P
(i)

x̃
−

k

)

whereM is the number of Monte Carlo trials.
Let the discrete time-varying system (1)–(6) have following

parameters:

Ak =

[

cos(w) − sin(w)
sin(w) cos(w)

]

, w = 0.052π,

R1,k =R2,k = 1, τ = 0, p = 2, ℓ = 2,

C1,k =
[

1 0
]

, C2,k =
[

0 1
]

, x̄0 =
[

5 0
]T

,

Qk =diag{0.0025, 0.0025}, P0 = I2,M0 = I6,

whereℓ is the interval required for the measurement integral.
The oscillator example concerns about the estimation of ballis-
tic roll rates in case of the noisy dynamic model and uncertain
magnetometer data. Sensor failure ratesΛm,k (m = 1, 2) can
be determined via statistical tests, and are supposed to be
regulated by the PDFp(s) = 0.05δ(s) + 0.10δ(s − 0.5) +
0.85δ(s− 1). Apparently, expectations and variances ofΛm,k

are computed as̄Λm,k = 0.90 and Λ̃m,k = 0.065. Note
that the dynamic model is corrupted by ambient disturbances
entering the system viaωk. The magnetometer sampling is
subject to sensor failures and integral measurements, and the
data transmission is scheduled by the RRP.

Fig. 2 depicts the true state values and associate estimates
generated by the protocol-based Tobit Kalman filter (which is
named as PBTKF and is capable of tackling censored obser-
vations under the RRP) and the protocol-based Tobit Kalman
filter with integral measurements and sensor failures (which
is named as PBTKF-IMSF and is capable of simultaneously
tackling integral measurements, sensor failures and censored
observations under the RRP). Fig. 3 plots the comparison
result in RMSE between the PBTKF and PBTKF-IMSF after
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Fig. 2: True values of the first and second dimensions of the
state and their estimates.
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Fig. 3: Performance comparison in RMSE1 and RMSE2.
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Fig. 4: Performance comparison in log10 (MECT).
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Fig. 6: RMSE1 and RMSE2 comparison of the PBTKF-IMSFs
with different censoring thresholds:τ = −5 andτ = 0.
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Fig. 7: RMSE1 and RMSE2 comparison of the PBTKF-IMSFs
with different integral intervals:ℓ = 2 andℓ = 5.

1000 independent Mote Carlo trials. It is witnessed from Fig. 2
that, the PBTKF-IMSF manages to track the true state values
precisely, whilst the PBTKF appears to have considerable
deviations from the true state values. Besides, it is sketched
in Fig. 3 that, the RMSE curve of the PBTKF-IMSF resides
lower than that of the PBTKF, indicating that issues of integral
measurements and sensor failures are suitably addressed in the
PBTKF-IMSF, whilst they are not settled in the PBTKF.

Next, letting Ak = 0.9

[

cos(w) − sin(w)
sin(w) cos(w)

]

and M =

1000, the comparison result between the PBTKF and PBTKF-
IMSF in MECT is manifested in Fig. 4. Besides, relationships
among the trace of the mean error covarianceNk, its upper
boundNu

k and lower boundN l
k (calculated by our PBTKF-

IMSF) are sketched in Fig. 5. Due to the impossibility of
analytically computingNk, log10 (tr{Nk}) is approximated
by log10(MECT). It can be spotted from Fig. 3 that, the
value of log10 (tr{Nk}) calculated by the PBTKF-IMSF is
always smaller than that calculated by the PBTKF, certify-
ing the superiority of our PBTKF-IMSF in simultaneously
handling integral measurements and sensor failures over the
PBTKF. Additionally, it is observed from Fig. 4 that, the
curve of log10 (tr{Nk}) always resides between those of
log10 (tr (Nu

k )) and log10
(

tr
(

N l
k

))

, which justifies the state-
ment in Theorem 5 thatNu

k and N l
k can be, respectively,

treated as reasonable upper and lower bounds onNk.
In addition, to further demonstrate the filtering performance

of our developed PBTKF-IMSF under different measurement
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Fig. 8: RMSE1 and RMSE2 comparison of the PBTKF-IMSFs
with different failure coefficients:Λ1,m,k andΛ2,m,k.

censoring, integral measurements and sensor failures, simula-
tion scenarios with different values of censoring thresholdsτ ,
integral intervalsℓ and failure coefficientsΛm,k are tested.
Let us consider two sets of censoring thresholds{−5, 0},
two sets of integral intervals{2, 5} and two sets of failure
coefficients{Λ1,m,k,Λ2,m,k} whereΛ1,m,k and Λ2,m,k are,
respectively, regulated by PDFsp1(s) = 0.35δ(s)+0.10δ(s−
0.5)+ 0.55δ(s− 1) andp2(s) = 0.05δ(s) + 0.10δ(s− 0.5)+
0.85δ(s−1). Apparently, expectations and variances ofΛ1,m,k

andΛ2,m,k are computed as̄Λ1,m,k = 0.6, Λ̃1,m,k = 0.215,
Λ̄2,m,k = 0.9 and Λ̃2,m,k = 0.065.

After 1000 independent Mote Carlo trials, RMSE results
of our PBTKF-IMSF under different censoring thresholds,
integral intervals and failure coefficients are, respectively,
sketched in Figs. 6–8. It is witnessed from Fig. 6 that,
the RMSE curve generated in case ofτ = −5 always
locates lower than that generated in case ofτ = 0. This is
reasonable as a smaller censoring thresholdτ indicates that,
less measurements are inclined to the censoring phenomenon
and more measurement information can be utilized in state
estimation. This undoubtedly leads to better filtering accuracy
of the PBTKF-IMSF.

One observes from Fig. 7 that, the RMSE curves generated
in cases ofℓ = 2 and ℓ = 5 are intertwined with each other,
indicating that no deterministic relationship exists between the
length of the integral interval and the filtering accuracy of our
PBTKF-IMSF. As a matter of fact, in case of the integral
measurement, the sensor observation is actually proportional
to the integral of system states within a prescribed time interval
ℓ, and hence the information from not only the current system
state, but also the past system states, can be utilized for the
estimation of the current system state. The variation of the
integral intervalℓ (from ℓ = 2 to ℓ = 5) implies that more
information on the past system states is introduced to the
sensor observation. Nevertheless, the extra information about
the past system states does not contain any knowledge about
the current system state and makes no contribution to the
estimation of the current system state. As a result, it can be
concluded that the variation of the integral intervalℓ has no
explicit influence on the filtering performance of our PBTKF-
IMSF, which coincides with the observation made from Fig. 7.

It can be spotted from Figs. 8 that, the RMSE curve gener-
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ated by our PBTKF-IMSF with the failure coefficientΛ1,m,k

always locates lower than that generated by our PBTKF-
IMSF with the failure coefficientΛ2,m,k. This is reasonable
as it can be observed from the expectations and variances of
Λ1,m,k andΛ2,m,k that, the sensor with the failure coefficient
Λ2,m,k is more likely to have failures than the sensor with the
failure coefficientΛ1,m,k. This indicates that the sensor with
the failure coefficientΛ1,m,k is capable of providing more
state information to the filter than the sensor with the failure
coefficientΛ2,m,k. As a result, the PBTKF-IMSF with the
failure coefficientΛ1,m,k outperforms the PBTKF-IMSF with
the failure coefficientΛ2,m,k in filtering accuracy.

VI. CONCLUSION

In this paper, we have settled the protocol-based Tobit
Kalman filtering problem susceptible to phenomena of integral
measurements and sensor failures. The integral measurements
have been described as functions of states over a time period,
the sensor failures have been characterized by random vari-
ables taking values on the interval[0, 1] according to certain
PDFs with known means and variances, and the data transmis-
sion in the network has been commanded by the RRP. These
phenomena have been elaborately addressed via bringing on
board a couple of new terms, which have provoked additional
calculations in measurement predictions, gain matrices as well
as error covariances. Fortunately, the increased calculations
are recursive or can be conducted off-line. Consequently,
the devised filter is propitious for online scenarios. Further
analysis has been performed to assess the filtering performance
and a sufficient condition has been pinned down to guarantee
the existence of self-propagating upper and lower bounds on
the mean estimation error covariance. Finally, an application
case study has been exploited to verify the efficacy of the
developed method.

In addition, related topics for further research work can be
listed as follows.

• Tobit Kalman filtering problems subject to multiple non-
linearities, e.g. the stochastic nonlinearity [19] and satu-
ration nonlinearity [10], [38].

• Tobit Kalman filtering problems under different commu-
nication protocols, e.g. the event-triggered protocol [27]
and try-once-discard protocol [41].

• Tobit Kalman filtering problems with various network-
induced phenomena, e.g. the signal quantization [20],
[50] and channel fading [8].

APPENDIX

A. Proof of Lemma 1

Proof: It follows from (2)-(3) that ȳk is a Gaussian
variable with the meanζk and varianceRk. Then, the PDF of
yk conditioned ony1:k−1 andγ1:k can be expressed as

f (yk|y1:k−1, γ1:k) =
1√
Rk

φ

(

yk − ζk√
Rk

)

u (yk − τ)

+ δ (τ−yk)Φ (ϑk) , (33)

whereφ
(

yk−ζk√
Rk

)

andΦ (ϑk) are calculated via (15)-(16), and

u (yk − τ) is the unit step function. Taking advantage of (4),
(33) is further translated into

f (yk|y1:k−1, γ1:k) =
γk√
Rk

φ
(

yk−ζk√
Rk

)

1− Φ (ϑk)
+ (1− γk) . (34)

In the light of (34), the conditional expectation ofyk is

E {yk|y1:k−1, γ1:k}

=

∫ +∞

−∞
ηkf (ηk|η1:k−1, γ1:k) dηk

=γk

∫ +∞

τ

ηk√
Rk

φ
(

ηk−ζk√
Rk

)

1− Φ (ϑk)
dηk

+ (1− γk) τ

=γk

[

ζk +
√

Rkλ (ϑk)
]

+ (1− γk) τ,

which is exactly the same as (11), whereλ (ϑk) is calculated
via (13). In line with (11), we get

E {yk|y1:k−1, γ1:k−1, γk = 1} = ζk +
√

Rkλ (ϑk) ,

E {yk|y1:k−1, γ1:k−1, γk = 0} = τ,

var{yk|y1:k−1, γ1:k−1, γk = 0} = 0.

As a result, we have

var{yk|y1:k−1, γ1:k} =var{yk|y1:k−1, γ1:k−1, γk = 1}
=E

{

y2k|y1:k−1, γ1:k−1, γk = 1
}

− (E {yk|y1:k−1, γ1:k−1, γk = 1})2

=Rk [1− ϕ (ϑk)] ,

which is exactly the same as (12), whereϕ (ϑk) is calculated
via (14). This completes the proof.

B. Proof of Theorem 1

Proof: A straightforward exploitation of the orthogonality
projection principle [3] to system (9)–(10) yields (17)–(20)
where the optimal gain matrix is computed by (22). The
combination of (10) and (11) generates

ỹ−k =γk

p
∑

m=1

Γm,~k
(Λm,kCm,kξk + υm,k)

− γk

[

p
∑

m=1

Γm,~k
Λ̄m,kCm,kξ̂

−
k +

√

Rkλ (ϑk)

]

=γk

p
∑

m=1

Γm,~k

(

Λ̄m,kCm,kξ̃
−
k +

(

Λm,k − Λ̄m,k

)

Cm,kξk

)

+ γk

(

p
∑

m=1

Γm,~k
υm,k −

√

Rkλ (ϑk)

)

, (35)

whereλ (ϑk) can be calculated via (13) by replacingζk with
ζ̂−k .

Putting (35) into the definitions ofP
ξ̃
−

k
ỹ
−

k

andP
ỹ
−

k

, respec-
tively, gives (23) and

P
ỹ
−

k

=E{ỹ−k (ỹ−k )T |y1:k−1, γ1:k}
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=γk

p
∑

m=1

p
∑

n=1

Cm,kPξ̃−
k

(γkCn,k)
T

+ γk

p
∑

m=1

p
∑

n=1

Γm,~k
Λ̃m,kCm,kPξ

k
(γkΓn,~k

Cn,k)T

+ var
{

y~k,k|y~1:k−1
, γ~1:k

}

=γk

p
∑

m=1

p
∑

n=1

Cm,kPξ̃
−

k

(γkCn,k)
T

+ γk

p
∑

m=1

p
∑

n=1

Γm,~k
Λ̃m,kCm,kPξ

k
(γkΓn,~k

Cn,k)T

+Rk

[

1− ϕ
(

ϑ̄k

)]

,

which is exactly the same as (24). This completes the proof.

C. Proof of Theorem 3

Proof: Now, let us concentrate on designing a suboptimal
protocol-based TKF whose gain matrixKu

k does not hinge on
γk. Let γ̄u

k , ξ̃u−k , ỹu−k , ϕ̄u
k , Pu

ξ̃
k

, Pu

ξ̃
−

k

, Ku
k , Pu

ξ̃
−

k
ỹ
−

k

, Pu

ỹ
−

k

and

Mu
k , respectively, be the suboptimal counterparts ofγ̄k, ξ̃−k ,

ỹ−k , ϕ̄k, Pξ̃
k
, Pξ̃

−

k
, Kk, Pξ̃

−

k
ỹ
−

k
, Pỹ

−

k
andMk. In this respect,

we have

Pu

ξ̃
k

=E

{

(

ξ̃u−k −Ku
k ỹ

u−
k

)(

ξ̃u−k −Ku
k ỹ

u−
k

)T ∣
∣

∣
y1:k, γ1:k

}

=Pu

ξ−
k

− Pu

ξ̃−
k
ỹ−

k

(Ku
k )

T −Ku
k

(

Pu

ξ̃−
k
ỹ−

k

)T

+Ku
kP

u

ỹ
−

k

(Ku
k )

T
, (36)

Pu

ξ̃
−

k+1

=E

{(

Ak ξ̃
u−
k + Bkωk −AkK

u
k ỹ

u−
k

)

×
(

Ak ξ̃
u−
k + Bkωk −AkK

u
k ỹ

u−
k

)T ∣
∣

∣
y1:k, γ1:k+1

}

=AkP
u

ξ̃
−

k

AT
k + BkQkBT

k −AkP
u

ξ̃
−

k
ỹ
−

k

(AkK
u
k )

T

−
[

AkP
u

ξ̃
−

k
ỹ
−

k

(AkK
u
k )

T
]T

+AkK
u
kP

u

ỹ
−

k

(AkK
u
k )

T .

(37)

Taking expectation on both sides of (36) yields

E

{

Pu

ξ̃
k

}

=E

{

Pu

ξ̃
−

k

}

− E

{

Pu

ξ̃
−

k
ỹ
−

k

}

(Ku
k )

T −Ku
k

× E

{

(

Pu

ξ̃
−

k
ỹ
−

k

)T
}

+Ku
kE

{

Pu

ỹ
−

k

}

(Ku
k )

T
.

(38)

In this regard, the suboptimal gainKu
k can be determined by

minimizing the trace ofE
{

Pu

ξ̃
k

}

. Taking the matrix trace and
derivative with respect toKu

k on both sides of (38), we have

∂tr
{

E

{

Pu

ξ̃
k

}}

∂Ku
k

=− 2tr
{

E

{

Pu

ξ̃
−

k
ỹ
−

k

}}

+ 2tr
{

Ku
kE

{

Pu

ỹ−

k

}}

. (39)

Letting (39) be equal to zero generates

Ku
k = E

{

Pu

ξ̃
−

k
ỹ
−

k

}

E
−1
{

Pu

ỹ
−

k

}

. (40)

Taking expectation on both sides of (37), we arrive at

Mu
k+1 =AkM

u
kAT

k + BkQkBT
k −AkE

{

Pu

ξ̃
−

k
ỹ
−

k

(Ku
k )

T
}

AT
k

−
[

AkE

{

Pu

ξ̃−
k
ỹ−

k

(Ku
k )

T
}

AT
k

]T

+AkE

{

Ku
kP

u

ξ̃
−

k
ỹ
−

k

(Ku
k )

T
}

AT
k . (41)

Bearing in mind the non-randomness ofKu
k and substituting

(40) into (41), we have

Mu
k+1 =AkM

u
kAT

k + BkQkBT
k −AkK

u
kE

T
{

Pu

ξ̃
−

k
ỹ
−

k

}

AT
k

=AkM
u
kAT

k + BkQkBT
k −AkM

u
k

(

γ̄u
k

p
∑

s=1

Cs,k

)T

×
{

γ̄u
k

p
∑

m=1

p
∑

n=1

Cm,kM
u
k (γ̄u

kCn,k)
T

+ γ̄u
k

p
∑

m=1

p
∑

n=1

Γm,~k
Λ̃m,kCm,kPξ

k
(γ̄u

kΓn,~k
Cn,k)T

+Rk [1− ϕ̄u
k ]

}−1

γ̄u
k

p
∑

t=1

Ct,kM
u
kAT

k ,

which is exactly the same as (28). Assuming that the initial
condition of (28) is independent of the realization in regard
to the censoring sequenceγ1:k, we setMu

0 = M0 > 0. For
k > 0, since the performance of the optimal protocol-based
TKF must be no less than any of its suboptimal counterparts,
it can be concluded thatMk ≤ Mu

k . As such,Mu
k is an upper

bound onMk for all k ≥ 0. This completes the proof.

D. Proof of Theorem 4

Proof: DenotingAk , Ak+γkKk

∑p
m=1 Cm,k andKk ,

−AkKk, we have

AkPξ̃
−

k

(

γk

p
∑

m=1

Cm,k

)T

+ Kk

{

γk

p
∑

m=1

p
∑

n=1

Γm,~k
Λ̃m,k

× Cm,kPξ
k
(γkΓn,~k

Cn,k)T +Rk [1− ϕ̄k]

}

=

(

Ak + γkKk

p
∑

m=1

Cm,k

)

Pξ̃
−

k

(

γk

p
∑

n=1

Cn,k

)T

+ Kk

{

γk

p
∑

m=1

p
∑

n=1

Γm,~k
Λ̃m,kCm,kPξ

k
(γkΓn,~k

Cn,k)T

+Rk [1− ϕ̄k]
}

=AkPξ̃
−

k

(

γk

p
∑

n=1

Cn,k

)T

+ KkPỹ−

k

=0. (42)

It follows from (26) that

Pξ̃
−

k+1

=(1− γk)
(

AkPξ̃
−

k
AT

k + BkQkBT
k

)

+ γk(AkPξ̃
−

k
AT

k + BkQkBT
k )−AkPξ̃

−

k
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×
(

γk

p
∑

m=1

Cm,k

)T

P−1
ỹ−

k

γk

p
∑

n=1

Cn,kPξ̃
−

k
AT

k

=(1− γk)
(

AkPξ̃
−

k
AT

k + BkQkBT
k

)

+ γk(AkPξ̃
−

k
AT

k + BkQkBT
k )

+ γkKk

p
∑

m=1

Cm,kPξ̃
−

k
AT

k

=(1− γk)
(

AkPξ̃−
k
AT

k + BkQkBT
k

)

+ γk

(

AkPξ̃
−

k
AT

k + BkQkBT
k

)

. (43)

Inserting (42) into (43) generates

Pξ̃
−

k+1

=(1− γk)
(

AkPξ̃
−

k
AT

k + BkQkBT
k

)

+ γk

(

AkPξ̃
−

k
AT

k + BkQkBT
k

)

+ γkAkPξ̃
−

k

(

γk

p
∑

m=1

Cm,k

)T

K
T
k

+ γkKk

{

γk

p
∑

m=1

p
∑

n=1

Γm,~k
Λ̃m,kCm,k

× Pξ
k
(γkΓn,~k

Cn,k)T +Rk [1− ϕ̄k]

}

K
T
k

=(1− γk)
(

AkPξ̃
−

k
AT

k + BkQkBT
k

)

+ γk(AkPξ̃
−

k
A

T
k + BkQkBT

k )

+ γkKk

{

γk

p
∑

m=1

p
∑

n=1

Γm,~k
Λ̃m,kCm,k

× Pξ
k
(γkΓn,~k

Cn,k)T +Rk [1− ϕ̄k]

}

K
T
k . (44)

Taking expectation on both sides of (44) and noting the
non-negative definiteness ofPξ̃

−

k
, Pξ

k
, Λ̃m,k andRk lead to

Mk+1 =E

{

(1− γk)
(

AkPξ̃
−

k
AT

k + BkQkBT
k

)}

+ E

{

γk(AkPξ̃
−

k
A

T
k + BkQkBT

k )
}

+ E

{

γkKk

{

γk

p
∑

m=1

p
∑

n=1

Γm,~k
Λ̃m,kCm,k

× Pξ
k
(γkΓn,~k

Cn,k)T +Rk [1− ϕ̄k]

}

K
T
k

}

≥E

{

(1− γk)
(

AkPξ̃
−

k
AT

k + BkQkBT
k

)}

+ E
{

γkBkQkBT
k

}

=(1− γ̄k)AkMkAT
k + γ̄kBkQkBT

k . (45)

Inspired by (45), let us define

M l
k+1 , (1− γ̄k)AkM

l
kAT

k + γ̄kBkQkBT
k ,

which is initialized atM l
0 = 0. Now, let us proveM l

k ≤ Mk

via mathematical induction. Noticeably, at the initial timek =

0, we haveM l
0 = 0 ≤ M0. Supposing thatM l

k ≤ Mk holds
at timek, we have

M l
k+1 =(1− γ̄k)AkM

l
kAT

k + γ̄kBkQkBT
k

≤(1− γ̄k)AkMkAT
k + γ̄kBkQkBT

k

≤Mk+1, (46)

where the last inequality holds from (45). As a result, it can
be concluded that,M l

k ≤ Mk holds for allk ≥ 0, i.e. M l
k is

a lower bound onMk. This completes the proof.
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