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A Novel Framework for Backstepping-Based
Control of Discrete-Time Strict-Feedback Nonlinear
Systems with Multiplicative Noises

Min Wang, Zidong Wang, Hongli Dong and Qing-Long Han

Abstract—This paper is concerned with the exponential mean- that, as a breakthrough technique in nonlinear control theory,
square stabilization problem for a class of discrete-time strict- the backstepping procedure [19] has become an extremely
feedback nonlinear systems subject to multiplicative noises. The powerful tool for solving control problems of SFNSs. By
state-dependent multiplicative noise is assumed to occur ran- IVi the backst - d ¢ fi ) trol
domly based on a stochastic variable obeying the Gaussian white app.ylng € Dackstepping procedure, a sys emf"‘ Ic cor! ro
distribution. To tackle the difficulties caused by the multiplicative design framework has been constructed for continuous-time
noise, a novel backstepping-based control framework is developed SFNSs and a large number of results have been reported in
to design both the virtual control laws and the actual control the literature, see e.g. [3], [8] and the references therein. For
law for the original nonlinear system, and such a framework geterministic SFNSs, the adaptive control strategies have been

is fundamentally different from the traditional n-step predictor | d to identif tain/unk t i
strategy. The proposed design scheme provides an effective waydeve oped 1o identity uncertain/unknown system parameters

in establishing the relationship between the system states and the[3], [17], [27]_- Also, by Combini.ng neural networks_ (NNs)

controlled errors, by which a noise-intensity-dependant stability and fuzzy logic systems, approximated-based adaptive control
condition is derived to ensure that the closed-loop system is schemes have been developed in [22], [39], [48] to handle
exponentially mean-square stable for exactly known systems. To hsnjinear uncertainties. These methods have been further

further cope with nonlinear modeling uncertainties, the radial . . . .
basis function neural network (NN) is employed as a function €Xt€nded to continuous-time SFNSs with different phenomena

approximator. In virtue of the proposed backstepping-based inCIUding, but are not limited to, partial immeasurable states
control framework, the ideal controller is characterized as a [26], [33], various time-delays [12], [37], [45], and state/output
function of all system states, which is independent of the virtual constraints [1], [4], [16], [32]. To deal with the control problem
control laws. Therefore, only one NN is employed in the final 4 3 more general class of nonlinear systems, a specific back-

step of the backstepping procedure and, subsequently, a novel . .
adaptive neural controller (with modified weight updating laws) St€PPINg procedure has been elegantly developed in [28] for

is presented to ensure that both the neural weight estimates and generalized trian.gular systems With. periodic dynamics. Based
the system states are uniformly bounded in the mean-square senseon the converse input-to-state stability Lyapunov theorems, the

under certain stability conditions. The control performance of the  result in [28] has been successfully extended to generalized

proposed scheme is illustrated through simulation results. triangular systems witlleterministic disturbances in [6], [7].
Index Terms—Nonlinear systems, discrete-time strict-feedback ~ For decades, stochastic control has proven to be an active

systems, backstepping-based control, adaptive control, neural grea of the mainstream research in control theory simply

networks, multiplicative noises because stochastic noises are often inevitable in system mod-
eling. Compared with the fruitful results odeterministic
. INTRODUCTION SFNSs, the corresponding results sinchastic SFNSs have

been relatively fewer. So far, some efforts have been made to

As a class of nonlinear systems in the triangular forrgl . .
. ; olve the control problem for the stochastic nonlinear systems
[15], [31], the strict-feedback nonlinear systems (SFNSs) hayg using the quaFr)tic Lyapunov function in combinationywith

atfracted a great deal of attention in the past two deca f%/é. Itd’s differentiation rule. For example, an interesting in-

since SFNSs are capable of modeling many practical syste\r/@se optimal control scheme [8] has been proposed to ensure

such as hyngersoglc fI|ght vefhlcles [41]|’ cgerIT[]!cal rﬁicuotﬂe asymptotic stability in probability for SFNSs with stochas-
processes [23] and marine surface vessels [3]. It is we NOWR disturbances. By applying the backstepping procedure and
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modeling nowadays popular communication-based networkisdnormally constructed based on the controlled error. In this
systems. In fact, many dedicated mathematical tools foase, it becomes fundamentally difficult to obtain a stability
continuous-time SFNSs cannot be directly exploited in theiterion (in probability) with both system states and controlled
discrete-time case [11], [44], [47]. For example, the stabilityrrors appeared in the difference of the Lyapunov function.
analysis based on traditional Lyapunov functions becom&s overcome such a difficulty, some dedicated techniques
extremely intractable for discrete-time SFNSs because thave to be developed to characterize the system states by the
difference of the Lyapunov function in the discrete-time settingpntrolled errors without inducing much conservatism. An-
is inherently nonlinear, which makes it very difficult to deother challenge stems from the unknown nonlinear modeling
sign an appropriate controller to compensate/eliminate systedgnamics that cannot be simply approximated by the neural
uncertainties. In particular, if we were to directly apply tha@etwork (NN) in each step of backstepping because of the
backstepping procedure to discrete-time SFNSs, the futuesursively accumulated approximation errors. Note that, as
state information is likely to appear in the controller, whiclsuch errors become larger, it is more difficult to represent the
would violate the local causality and lead to the infeasibilitgystem states by the controller errors which would invalidate
of the control scheme [11]. To resolve the causality contrthe backstepping-based design in the sense of multiplicative
diction issue, a seminal control scheme has been proposedaaises. As such, the main motivation of this paper is to tackle
[44] for discrete-time SFNSs with unknown parameters. Thie identified challenges by establishing a novel yet feasible
presented method [44] is suitable for those systems that carcbatrol framework.
transformed into the parametric strict-feedback form [47]. By Motivated by the discussions made above, we will launch
then-step-ahead predictor method and function approximatianmajor study on the stability analysis and controller design
technology, a systematic design framework [11], [13] hassues for a class of discrete-time SFNSs subject to the multi-
been proposed to solve the control problem for more genepdicative noises. The noises, which are dependent on all system
discrete-time SFNSs, where the basic idea is to convert thtates, are driven by the Gaussian white noise sequence. Such
discrete-time SFNSs into thestep-ahead predictor model andind of multiplicative noises is, for the first time, discussed in
then design the control scheme for such a transformed systéhe control issue of discrete-time SFNSs. By combining the
With help of the elegant-step-ahead predictor method, sombackstepping procedure with the Lyapunov stability theory, a
extensions have been developed for more general nonlineavel backstepping control scheme is developed to provide
systems with different phenomena including the non-affiree sufficient condition on the mean-square stability of the
form [34], [41], unknown control directions [42], and inputclosed-loop systems, and the corresponding results are further
nonlinearities [24]. extended to the systems with unknown modeling dynamics
Up to now, all the aforementioned results for discrete-timgpproximated by the radial basis function (RBF) NNs. The
SFNSs have been limited tdeterministic systems without main contributions of the paper are highlighted as follows.
consideration of stochastic noises. As a matter of fact, many) A novel backstepping-based control framework, which
practical systems are subject to stochastic disturbances due js essentially different from the-step-ahead predictor
to random abrupt variations such as sudden environmental method, is proposed to successfully establish the relation-
changes, component failures, and changing subsystem inter- ship between the system states and the controlled errors
connections [10], [14], [36]. As a consequence, it is of both  sg as to facilitate the stability analysis with respect to the
theoretical significance and practical importance to study the muyltiplicative noises.
control problem for discrete-time SFNSs under stochastic N0i) The proposed new framework is based on the original
es. From a methodological viewpoint, unlike the continuous- * stochastic controlled system (rather than the transformed
time case, there is a lack of appropriate mathematical tools ,_step-ahead predictor model), which effectively avoids
capable of analyzing how the stochastic phenomenon affect the effects on the closed-loop stability from the pre-
the dynamical behaviors of discrete-time stochastic SFNSs. diction errors. Meanwhile, the causality contradiction is
Recently, an initial effort has been made in [29] to address also overcome by using the new variable substitution
the stabilization problem for a class of discrete-time output-  technology to obtain the future information.
dependent nonlinear stochastic system vattitive noises  3) A novel adaptive neural control scheme is developed
(that is independent of states), and some interesting results py using only one neural approximator. Such a scheme
have been obtained under certain rather stringent assumptions not only avoids the delays of neural weight updating
(e.g. perfect system model and output-dependent nonlinear |aw caused by the classicatstep-ahead predictor model

functions). On the other hand, it is often the case in prac- pyt also simplifies the algorithm implementation, thereby
tice that the stochastic noises encountered exert influence on jmproving the transient-state performance and reducing

system states [25]. Such kind of noises is referred to as the the computational burden.
multiplicative noises (also called Itd-type noises) that not only
affect system stability but also complicate the corresponding 0
dynamic analysis [9], [10], [46]. ) _ i ) _ )
So far, there have been very few (if not none) available Consider the following discrete-time strict-feedback nonlin-
results on the control problem for discrete-time SFNSs subjé&@ system with multiplicative noise
to multiplicative noises due probably to the technical chaly = _ e . -~
lenges identified as follows. First, within the usual Lyapunov zilk+1) = gl(x_z(k))x”l(k) + fﬂ(ajl(M) )1 Sf sn-1
stability-based framework, the multiplicative noise enters int Zn(k +1) = gn(@n(k))u(k) + fn (Zn(k)) + h (Zn(k)) w (k)
the difference of a Lyapunov function that leads to an add y(k) = z1(k)
tional state-dependent term. Recall that a Lyapunov function (1)

. PROBLEM FORMULATION AND PRELIMINARIES
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where 7;(k) = [z1(k),x2(k),---,z;(k)]T € Rii = whereWW*is an optimal constant weight vectd(Z(k)) is the
1,---,n, y(k) € R andu(k) € R denote the state vector, theapproximation error and satisfi@$Z(k)) < e with ¢ being

system output and the control input, respectivelyk) € R  an arbitrarily small constant.
is a Gaussian white noise sequence with statistical propertie$n order to verify the stability of the closed-loop system with
E(w(k)) = 0 andE(w?(k)) = 1. ¢;(z:(k)) € R, fi(z:(k)) € multiplicative noise, a sufficient condition on the mean-square
R (¢ =1,2,---,n) andh(z,(k)) € R are smooth nonlinear stability [43] is recalled as follows.
functions with f;(0) = 0, h(0) = 0. Lemma 1: [43] Define n(k) = [m(k),n2(k), -,
For convenience, we introduces the following notations;;, (k)]? € R™ and letV (n(k)) be a Lyapunov function. If
C := D means thatD is denoted ag”, and||.|| denotes the there exist real scalars; > 0, Ao >0, p >0 and0 < ) < 1
Euclidean norm of a vector, namelyg; (k)|| = v/z! (k)z;(k). such that
Assumption 1: The nonlinear functionsf;(z;(k)) € R
(i=1,2,---,n—1) andh(z,(k)) € R satisfg/ tr(le))l_ipschitz Mln(k)|IP < V(n(k)) < Aelln(k)|? (4)
condition. and
Assumption 2: the smooth nonlinear functiony;(z;(k))
(i=1,2,---,n) satisfies the controllable conditidh< g, < E{V(n(k +1)|nk)} — V(n(k)) < =V (n(k))+p (5)

19:(-)| < g;, in which g, and g; are wo positive constants. ., e sequence(k) is EMS stable and satisfies

Without losing generalityg;(-) (i = 1,2,--- ,n) is assumed
to be positive in this paper. 9 Ao 9 k P
The primary objective of this paper is to design a E{lln(R)II7} < /\_1”77(0)” (1-¢)"+ Ar1p 6)

backstepping-based state-feedback controller for the system " . I "

(1) satisfying Assumption 1 such that, in the presence of tiere(0) € R™ is the given initial condition. _

multiplicative noises, all of the closed-loop states are expo-F10M Lemma 1, the sequengék) is EMS stable ifp = 0,

nentially mean-square (EMS) stable, and the non-causaftyd7(¥) is EMS bounded ifp > 0.

problem resulting from backstepping design is simultaneously

avoided. I11. BACKSTEPPINGBASED CONTROL FRAMEWORK FOR
Remark 1: It should be noticed that some elegant control EXACTLY KNOWN MODEL

schemes [11], [13], [24] have been developed for discrete-For clarity purposes, this section focuses on the case that
be deterministic. In practice, however, the disturbance oftegynamicsf;(z;(k)) € R andg;(z;(k)) € R in (1) are known
occurs randomly due to sudden environment changes that rgfy; — 1,2, ... . It should be pointed out that the presence
on system states, which gives rise to the multiplicative noisgt the multiplicative noiseh(z,(k))w(k) in (1) not only

It should be pointed out that, in the presence of multiplicativgfects the stability but also complicates the establishment of
noise h (z,(k)) w(k), the control system (1) is inherentlythe stability criteria for the closed-loop system. Furthermore,
stochastic and is therefore impossible to be transformed ik causality contradiction constitutes another major obstacle
then-step ahead predictor model for solving the non-causaligncountered in the controller design of discrete-time SFNSs
problem by the traditional predictor methods [11], [13], [24]ysing the backstepping procedure. To deal with the stability
As such, a novel control framework has to be sought ihd causality issues simultaneously, a novel control framework

noiseh (Zn (k) w(k). _ _ information by combining the backstepping strategy and the
Notice that nonlinear functions can be approximated Rysriaple substitution.

many function approximators such as polynomials, artificial 1q start with, let us first introduce the following coordinate
NNs and fuzzy logic systems, where the NN approximatofs;nsformations:
integrate well with the Lyapunov-stability-based nonlinear

control framework. In this paper, the following RBF NN is {Zl(k) =z1(k) @)
employed as a function approximator: zi(k) = (k) — a1 (k), i =2,3,---,n
fan(Z (k) = WTS(Z(k)) (2) where the functiony;_; (k) is the virtual control law to be

designed later. Based on the coordinate transformations (7), the
following n-step recursive design procedure is used to derive
the virtual control laws and the actual control law.

Sep 1: Taking the error variablez; (k) = x1(k) into
consideration, its difference along (k) = x2(k) — a1 (k) is
calculated as follows:

where Z(k) € Qz <c R™ is the input of RBF N-
N, Qz is a compact setW = [Wy, Wy, -, W,]T €
R? is the adjustable weight vector witly > 1 be-
ing the node number of hidden layer, a{Z(k)) =
[S1(Z(k)), S2(Z(k)), -+ ,Sq(Z(k))]T € R? is the basis
function vector. In this papers;(Z(k)) is selected as the

Gaussian functionS;(Z(k)) = exp| =M=l ZW0=s)| 2 (k+ 1) =gi(x1 (k)2 (k) + fi (21 (k)
wherei = 1,--- ,q, ¢; € R™ andr € R are the center and B J1(z1(k))
width of the Gaussian function, respectively. =g1(z1(k)) | 22(k) + aa (k) + g1(x1(K)) ®)
As shown in [30], the RBF NN (2) with sufficiently large , .
node numbeg can approximate any smooth functighz(k)), ~ constructing the virtual control law
R™ — R, to any accuracy over a compact $&t C R": x1(k
an(h) = LDy ©

F(Z() = WTS(Z(k)) + 6(Z(k)),VZ(K) € @z (3) T al@m®)
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we have e 7Gi72(5i72(k))zi71(k))/gi(jifl(k))
21k +1) = gi(m1 (1) 2 (k) = Gi(z1 (k)22 (k). (10) =Fica(Zioa(R) (18)

According to the Assumption 1 and Assumption 2, it is novyhere

difficult for one to figure out thaf’; (2, (k)) also satisfies the Zi_1(k) = [21(k), 22(k), -+, zic1 (B)]T € R,

Lipschitz condition.
Step 2: Noting zo(k) = z2(k) — a1 (k), its first difference
along (1) and (7) is

To this end, the termy;_;(k + 1) in (17) along (18) is
expressed as

ai_l(k + 1) =F,_4 (Ei_l(k + 1)) . (19)
2k+1) = gQ(xQ(k)){Z?’(k) +aa(k) (11) From (10) and (15), it can be recursively obtained that
f2 (.’Z‘g(/ﬂ)) — (k + 1) le_l(k + 1) = Gj_l(zj_l)zj(k), j = 2_,3, ST Therefo_re,
+ 72 (T2 (k) zZ;—1(k + 1) can be further characterized as the function of
2\42

z;(k). Based on the above analysis, the tefin ;(k + 1)
To overcome the causality contradiction causechbyk + including the future informatiorz;,_; (k + 1) can be rewrit-
1), the terma; (k + 1) is characterized along (9) and (10) asen using the current error variableg(k), which is shown

or(k+1) = F (z1(k+1)) = Fy (Gr(21(k))z2 (k) (12) Spedﬁca:y als f"";WS‘G .
Substituting (12) into (11) gives aim (k1) = Fior Gz (k) 22(R), Ga(Z2(k)) 23 (k).

+, Gic1(Zio1)zi(k)) (20)
2o(k + 1) = g2(Ta(k)) | 23(k) 4 az(k) (13) = Fi_1(Gi—1(Zi-1)zi(k)) (21)
fa (Z2(k)) — Fy (Gy(z1(K))za(k)) where Gi1(Zi1)zi(k) = [Gi(z1(k))z2(k), -,
e gz(lfz(l;)) — GiaGi-D)=k", Gi(z(k) = gj(za(k) z2(k) +
_ _ ar(k), -, zj(k) +aj (k) j=1,2,--- i — L.
Next, constructing the second virtual control Subsequently, constructing theh virtual control law
f2 (Z2(k)) — Fi (G1(a1(k))za (k) fi (@i(k) = Fiea (Gia (Zim1) 2:(K))
as(k) = — — 14 (k) = =L i i i i 29
0 PREAT) W el (@ (1) @)
yields we have
2ok +1) = ga(T (k)23 (k) zilk+ 1) = gi(@i(K)zip1 (k) 1= Gi(Zi(k))zia (B)  (23)
= g2(21(k), 22(k) + a1 (k))z3(k) ~ (15)  Similarly, noticingz; (k) = z;(k) + a1 (k) with a1 (k+1)
= Ga(Z2(k))z3(k). described by (20), it can be obtained that the virtual control
To facilitate the stability analysis, we will show that the virai(k) in (22) can be characterized as a function of error
tual controlas(k) can be characterized as a function of errogriablesz;(k), j =1,2,---,i. As a result, we rewritey; (k)

variablesz; (k) and z5(k). Firstly, notingz, (k) = 1 (k) and s follows:

according to (9), we have; (k) = F; (z1(k)). It then follows (E) = F (3

from l'g(k) = 22(/{)-1-041 (k) that$2(k) = Zz(k)'i‘Fl (2’1 (k)) Oéz(k) F (Zl(k)) (24)
Therefore,f> (z2(k)) as well asgs(Z2(k) can be regarded aswhere F; (z;(k)) denotes

a function of the variables, (k) and z2(k). Subsequently, the

virtual controlas (k) is rewritten as Fi (z:(k)) = = [fi(21(k), 22(k) + Fi(z1(k)), -+, zi(k)
o) — L2 10). (8) + Fi(a (k) — P (G (1 (k)23 (k) + Fic1(Zi-1(F)) = Fimt (Gima (Zim1)z(R)) |/
e g2(21(k), z2(k) + Fi(21(k))) gi(z1(k), z2(k) + Fi(21(k)), -+, (k)
= F (22(k)) (16) + Fio1(Zia(R))). (25)

wherezy(k) = [z1(k), 22(k)]" € R?. According to Assump-  Step n: For z, (k) = z,, (k) — an_1(k), its difference is
tion 1 and Assumption 2, it can be concluded that the function _
fo (@n (k) — o1 (k+1)

F, (z2(k)) satisfies the Lipschitz condition. 2k + 1) =gn(Tn (k) |u(k) +
Sep i (3 <i < n—1): Defining z; (k) = : (k) — a1 (k), gn(@n(k))
and using (1), we have + h (& (k) w(k). (26)

From (23) and (24), the term,,_1(k + 1) is expressed as

2k 4+ 1) = g7 (R)) [zzﬂ(k) (k) "
an-1(k+1) =F, 1 (Zn-1(k + 1))

e SRA@LE DA @D
. - o . where F,_;(z,-1(k)) is given in (25) with i =
Applying th_e similar analysis as in Step_2 and according tﬁ) ~ 1, and G 1(Ga)en(k) = [Gi(z1(k))z2(k), -,
(16), we obtainw; 1 (k) by a recursive design as follows: Gy 1(Zn_1)2n(k)]L. Substituting (27) into (26) gives
ai—1(k) = = fio1(Tio1(k))/9i(Zi-1 (k) fn (@0 (K))

zn(k+1) = gn(Tn(k)) |u(k) + (28)

+ Fioa (G1(21(k))22(k)), G2 (22(k)) 23 (k)), gn(Tn(F))
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Fo1(Gic1(Zio1)zi(k)) _ =t =t
- h(z,(k k). — 2 — 2
@) + 1 (Zn (k) w(k) 01 1+2;LF],, O 2+2;LF],,
For clarity, the ideal actual controller(k) is denoted as i=2,3,--,n—1 m=23,--,i

u*(k), that is, u(k) := wu*(k) when the system model (1) _ ) ) _ _
is exactly known. Subsequently, constructing the ideal actusith L, being a Lipschitz constant of the nonlinear function

controller as follows: F;(zi(k)). Consequently, the relationship betweestk) and
gn(@n (k) |2i(k)| = [2i(k) + i1 (k)|
we have < lzi(k)| + Lr,_, [|Zi-1 (K|
Za(k +1) = h(Zn () w(k). (30) Wwherei=2.3,---,n—1. n

Theorem 1: Consider the closed-loop system consisting of
Up to now, we have completed the backstepping-basttee discrete-time strict-feedback nonlinear systems (1) with
controller design. multiplicative noiseh(z,,(k))w(k), Assumptions 1-2, the vir-
Lemma 2: Consider the coordinate transformation (7), thtual control law (22) and the actual controller (29). For any
virtual control law (9), (16) and (24). Under the Assumptiogiven initial condition, the closed-loop system is EMS stable
1 and Assumption 2, we have if there exist constantgs; > 0 and0 < ¢ < 1 such that the
following conditions hold

h . Li hi fth i f i Di _pi—1§1271 _anz _plw Z 01 1= 1721 N (36)
where L, , is a Lipschitz constant of the nonlinear function .
F-(z-(k)?iﬁl (25) P wherepy = 0, go = 0, g,_; is the upper bound of the

ﬁnonlinear functiory;_1(z;-1(k)), andL; > 0 is to be defined
ater which relies on Lipschitz constants of nonlinear functions
h(Z,(k)) and f; (z;(k)) with ¢ =1,2,--- ,n — 1.

Proof: Construct the following Lyapunov function

|zi(k)| < |zi(k)| + Lri-allZica(R)l], i =2,3,---,n

Proof: From the coordinate transformation (7), it i
obtained thatxl(k) = Zl(k), Il(k) = Zl(k) + Oél',l(k).
The virtual control lawe; (k) is characterized a$;(z;(k)).
According to the equation (9), (16) and (24), it is easy to figure
out thatF;(0) =0 (i = 1,2,--- ,n — 1). For Fy(z1(k)), one i )
has the following property holds under the Assumption 1 and V(k) = Zpizi (k) 37)
Assumption 2. i=1

. . wherep; (1 =1,2,--- ,n) is a positive design constant.
|Fy (21 ()| = LGN ))‘ < hE®) < Ly, |z1(k)| By defining Ay = min{py,ps,---,pn} and Xy =
g1(z1(k)) g, max{p1,p2, -+ ,Pn}, it is easily obtained thak, ||z (k)|? <

(32) V(k) < Xo|z(k)||>, which means the chosen Lyapunov
. . . function (37) satisfies Lemma 1. Then, the difference of (37)
where Lp, = L_.f1/£ , Ly, is the Lipschitz constant of thealong (10), (15), (23) and (30) is given by
nonlinear functionf; (lzl(k)). It can be concluded from (9) and

(32) thatF} (2 (k)) satisfies the Lipschitz condition. Referring AV (k) =E{V (k +1)|z(k)} — V (k) (38)
to the definition ofF»(z2(k)), one has n ) )
= - Z (pz‘ - Pi—lgi—1(fi—1(k))) Zi (k)
1=1

Fa(5(k))| < |f2 (21(k), 22(k) + Fi(21(k))) |

% + E {pu [1(@0 (k) (k)]
i |F1 (g1(21(K))22(k)) | (33) { " }
9y <puh®(@a(K)) = > (pi — pic1G71) 22(k)  (39)
Since f»(-) and F(-) satisfy the Lipschitz condition, it is =l
finally obtained that. wherepo = 0.
It is seen from (38) that the non-zero unbounded func-
|F2(22(k))| < Lp,||Z2(k)|| (34) tion h(z,(k)) makes the stability analysis for (1) extremely

difficult. To overcome such a difficulty, the key issue is
where Ly, = maxqLy,/max{l+2L3 ,2},Lr g1 /g, to characterize the functions(z,(k)) by using the error

Ly, is the Lipschitz constant of,(-). Thus, Fy(z(k)) also Vvariablesz;(k) (i = 1,2,---,n). Noticing ~(0) = 0 and

satisfies the Lipschitz condition. Recursively, one has Assumption 1, there exists a positive constaptsuch that
(k)| < Lr |5 (8)] (35) S (40)
h Substituting (40) into (38) and referring to the Lemma 2,
where we have
Lp, = max {Lm1 max {gy,- -+, Gi_1} AV (k) <pn L3 Z (k) — Z (pi — pic197—1) 22 (k)
=1 =1

Ly, . _
gjl \/max {911 927 e 79i}}7 S - ’[/)V(k) - Z (p’L - piflgzg—l

12
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— pnl; — pizb)zf(k) (41) uniformly ultimately bounded) if the following conditions are
satisfied
where is a constant satisfying < ¢ < 1, L1 = L3 (1 + ,
223511%),@=2_L%(1+Z?;3L%j),z’=2,3,--- -1, Pi—PiaT —pith >0, i=1,2---.n  (44)
and L,, = 2L;. It is clearly shown from (41) that, if the wherepy = go = 0, pi > 0 (2,---,n), 0 < ¥ < 1, andg,_,

condition (36) holds, then (41) is rewritten as is the upper bound of the nonlinear functign , (z;_ (k)).

AV(k)=E{V(k+1)|z(k)} = V(k) < =9V (k). (42)
) IV. BACKSTEPPINGBASED ADAPTIVE NEURAL CONTROL
According to Lemma 1, we can conclude from (42) that the DesiGN FORNONLINEAR MODELING UNCERTAINTIES

closed-loop system is EMS stable. | . . . . . .
Remark 2: Theorem 1 provides a sufficient condition for In this section, we will extend the results obtained in Section

e mesn-square Sabiy of dscreeme SFHSs () will %, W nodeing icerantes witn e sane
multiplicative noiseh(z,,(k))w(k). It is worth pointing out g gp :

that the proposed method is quite different from the existirggq Assumption 3: The system dynamics;(z;(k)) € R and

ones used in [11], [13], [24] for systems without multiplicativ ?;)(xliig@zg)\r ?ur%:ti(én: 1,2,--+,n) are unknown and smooth
noises. In this paper, some specific efforts have been devo @rom Assumption 3, the virtual control laws (k) in (22)

to deal with the difficulties in stability analysis caused by thgnd the ideal actual control law* (k) in (29) cannot be

multiplicative noiseh(z,, (k))w(k). Firstly, the virtual control ° | ted si " tains th K g . £ th
law «; (k) is recursively designed based on the original syste'mp emented since 1t contains thé unknown dynamics ot the
stem. Notice that the proposed control scheme in Section

() rather than the traditional predictor model. By using thI | makes all functions be passed down and lumped in the
variable substitution, the virtual control law (k) is expressed actual ideal controlleru*(k) in (29). Based on such an

in (24) as a function of errors;(k), j = 1,2,---,i. By . .
combining the coordinate transformations (7), Assumption: alysis, we would only need one NN to approximate the

and Lemma 2, the system state (k)| is bounded by a linear ideal controller«”(k) consisting Ofﬂf" (@ (K)), g"(j.”(k))
combination of||z;(k)|l, j = 1,2,---,i. As a result, the and F_1 (g1(21(k))22(k), -, gn—1(Tn—1(k))2n(k)) if the
term L7 >°" | 2%(k) resulting from the multiplicative noise controlied error variables;(k) (¢ = 2,3,---,n) can be

_ = n 2 : characterized by a function of system stategk) (: =
h(z,(k))w(k) can be bounded by, L;z7(k) in (41). NotCiNG thate (k) — ook i d
Based on these dedicated efforts mentioned above, the stabflitg: ™) Noticing thatzy (k) = a2 (k) — au (k) an
condition (36) is derived to ensure that the discrete-time a1 (k) = —f1 (21 (k) /g1 (21(k))
SFNSs (1) subject to multiplicative noises is EMS stable. It B
should be noticed that the key idea of our developed approakd havez;(k) = 22 (k) + f1 (#1(k)) /g1(x1(k)). To facilitate
is to make the system state(k) bounded by the errors; (k), the construction of a recursive formula betwegifk) and
=12, i z;(k), let

Notice that the stability condition (36) can be simplified _ _
and Assumption 1 can be simultaneously relaxed if the multi- $2(72(k)) = w2 (k) + f1 (1.(k)) /g1(x1 (k)
plicative noise in system 1) i§ (eplgced vyith the followingyhich meansz (k) = ¢o(Z2(k)). Since z3(k) = x3(k) —
three cases: the special multiplicative noisgr:(k))w(k), ay(k) with ay(k) given in (14), it can be derived that
the additive noisev(k), or the deterministic bounded external - -
disturbancel(t). Based on the proof of Theorem 1, it is €8Sy ., (1) — 4, (k) + [f2(x2(F)) = F1 (g1(z1(k))¢2(Z2(K)))]
to obtain the following two corollaries. g2(Z2(k))
_ C_:orqllary 1:_ Consider the system (1) sub{ect to the m“'SimiIarIy, it follows from (7) and (22) that
tiplicative noise h(x(k))w(k), in which f;(z;(k)) (¢ =
1,2,---,n) are not required to satisfy the Lipschitz condition. z; (k) =z;(k) + fi—1(Zi—1(k))/gi—1(ZTi—1(k))

By designing the same virtual control laws (22) and the — Fi_a (g1 (1 (K))da(22(K)), g2 (T2 (k)3 (T3 (k)),
actual controller (29) as in Theorem 1, for any bounded R _ _

initial condition, the closed-loop system is EMS stable if o Gim2(Tima (k) dim1 (Ti—1(k))) [ gim1 (Tim1 (K))
h(z,(k)) satisfies the Lipschitz condition and the constants  :=¢i(z:(k)) (45)

are appropriately chosen such that wherei = 2,--- ,n, and Fy(.) = 0,

P1—pnl? —pith >0, pi—pi1ge , —pib >0 (43) From (45), the ideal controller* (k) in (29) is rewritten as
the function of all system states as follows:
wherei = 2,3,--- n,p; > 0,0 < ¢ <1, L > 0is the
Lipschitz constant of the functioh(z: (k)), g,_, is the upper ¢ (k) = = fu(Zn(k))/gn(Zn (k)
bound I(l)f the nonline(;;lr fur?ctiogi,l(f(i,)lék)). | A | + Foo1(91 (21 (k) d2(Z2(k)), g2(T2(k)) ¢3 (5 (k)),
Corollary 2: Consider the system (1) by replacing the mul- — - -
tiplicative noiseh(z,(k))w(k) with the additive noiseu(k) 901 (Fn1)0n (Zn (K))) g (n (k). (46)
(or bounded external disturbandkt)), in which f;(z;(k)) Itis easily seen from (46) that the ideal controlié(k) in (29)
(t = 1,2,---,n) are not required to satisfy the Lipschitzcan be regarded as a function of state§:) (i = 1,2,--- ,n)
condition. By designing the same virtual control laws (22) anghich does not rely on the virtual control law(k). Moreover,
the actual controller (29) as in Theorem 1, for any boundeatcording to the definition of},_;(.) in (25) and Assumption
initial condition, the closed-loop system is EMS stable (d8, we know that.* (k) is a smooth function. As a result; (k)
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in (29) can be approximated to arbitrarily accuracy overwahose first difference along the weight estimate error dynam-

compact sef2 ¢ R” by RBF NN (3) as follows: ics (51) is given by
u* (k) = W (E)S(Zn (k) + 6(Zn(k)), Vin(k)€Q (47) AVW(k):E{VW(k+1)|W(k) Virr (k)
whereWW* € R? is an ideal constant weight vectoiz,, (k)) = ]E{zVWT(k)_S(i”(kQ))fl(k) 20W 7T (k)W ()
is the approximation error and satisfié&r,, (k)) < ¢, ande 1J2”5(fc"(k))”2 Zg(k)
is an arbitrarily small constant. YNS@ntWIT2i () ooy
Substituting (47) into (28), we have [1+ [[S(@n (k) [223 (k)]
- T o 290 W' (K)S(En(k)) 21 (k)
2 (k + 1) =gn(Zn (k) [u(k) = W'S(2, (k) — 0(Zn (k)] T+ 502 (0) 222 (8) } (53)

+ h (Zn (k) w(k). _ .
Using W (k) = W (k) — W*, we have

By designing the following adaptive neural controller R .
2WT (k)W (k) = W ()W (k) + W (k)2 — [W*|%. (54)

u(k) = W7 (k)S(z, (k)) (48)
It follows that the first difference oA\Vj; (k) along the above
we have equation is
. o7 _ ~ o [2WTR)S@a (k)2 (K)o
zn(k+1) _gn(;:n(k)i[w ]Ek)S(xn(k)) —(zn (k)| (49) AV, (k) = ]E{ . + HS(f N2 () oW (k)W (k)
+ 7"7/ n 2 2 7 2

where W (k) is the estimate of the ideal neural weight* o o
and W (k) = W (k) — W* is the estimate error. _2yoW(k)S(@n )) 1(k) +a||W*|2}. (55)

In order to verify the mean-square boundedness of the L4 (1S (@n () |227 (k)
neural weight estimate errd# (k), the neural weight update _
law is chosen as By observing

. B A VS (o (k)21 () 1S (@n (K))||* 2 (k)

Wkt 1) =0-Wk+ 1 5m meam OO T+ [[S@n ()22 (R) —

wherey > 0 is the design parameter and > 0 is the 2"d using the following inequalities

modification coefficient. By using (50) and taking (k) = 29WT(k)S (T (k)21 (k) WT (k)W (k) 9
W (k)—W* into account, we derive the neural weight estimate 1+ [[1S(@n (k)22 (k) < 0 T oy
error dynamics as follows:
2 - 2,2 2
. . vS(Z (k)21 (k) ) VIS@(R)IZ(R) 27
W(k+1)=W(k)+ —oW(k). _ =
(40 = W)+ T ) P ®) U(én 1+ 18ER)IP=0E ~ 4

290 W (k)S (@ (k)21 (k)

21115 9 7_2
T+ 1S@E P22tk = IWRIT+

Remark 3: From (46), the ideal controllar* (k) in (29) has 1

been transformed into a function of all system statgék)
by recursively characterizing the errer(k) as ¢;(z;(k)) in we have
(45). As a result, the controller* (k) in (46) is independent ’ )
of the virtual control lawsa;(k) in (22). Therefore, only — AVyy (k) < — (U - 4—) W (k)W (k) + o[ W]
one RBF NN in (47) is applied to approximate the ideal e/ 2 )
controller u*(k) in (46) since the virtual control laws; (k) —o(l=20)[|[W(k)["+ (054 0)y". (56)
are just used in the intermediate design process which doegy selecting the design parameters to satisfy the following
not need to be implemented in practice. Compared WiHlynditions
existing methods with multiple neural approximators [11], 1
[13], [24], the developed controller (48) and (50) can be easily — <o<05, 0<y<1, o>1 (57)
implemented with significantly reduced computational burden. 40

Next, we first show that the neural weight estimate error @€ has

EMS bounded via the Lyapunov stability analysis. AV (k) < —BWT (k)W (k 58
Theorem 2: Consider the neural weight estimate error dy- w (k) AW R)W (k) + pu (58)
namics (51). Suppose that the neural weidh) is initialized wherep,, = o||[W*||? + (0.5 + )72, B = o — 4. It follows

in a compact sef) and updated by (50). Then, the neuratasily from (57) that < g < 1. According to Lemma 1, the
weight estimate errof¥/ (k) is EMS bounded provided thatweight estimate errof// (k) is EMS bounded and satisfies
design parameters satisfy < v < 1, 4% < o < 0.5, and ~ Ay - P

o> 1. E{IW(})]*} < A—lHW(O)IIQ(l—B)’“rﬁ

Proof: Choose the following Lyapunov function )
s where W (0) is the given initial weight vecto) < A\; < 1,
Vipr (k) = W7 (k)W (k) (52) 1. .

=&,
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Now, we are in the position to state the main result, whidnansformations (7), we have (k) = z2(k) — a1 (k). Noting
shows the uniform boundedness in probability of all closethat oy (k) = —f1 (z1(k)) /g1(z1(k)) with fq (21(k)) and
loop signals by using the proposed adaptive neural controllgr(z; (k)) being smooth functionseq; (k) is bounded and,
(48) with weight update law (50). furthermore, we know that. (k) is also bounded. Using the

Theorem 3: Consider the closed-loop system consisting afimilar analysis, it can be concluded thatk) (3 < i < n)
the discrete-time strict-feedback nonlinear system (1) undandu(k) are bounded in probability. Therefore, all the signals
Assumptions 1 and 3, the actual controller (48), and the weightthe closed-loop system are EMS bounded. [ ]
update law (50) with design parameters satisfying (57). ForRemark 4: In this paper, we develop a new backstepping-
any given initial condition, the closed-loop system in theased control framework for a class of discrete-time SFNSs
presence of multiplicative noise is EMS bounded if there exigt) with the multiplicative noise. Such a framework is fun-
positive constantp; > 0, 0 < ¥ < < 1 andp > 1 such damentally different from the traditional ones using predictor
that the following conditions hold: methods proposed in [11], [13], [24]. By using the variable

5 5 o substitution technology and building the relationship between
Pi = Pi-1Gi1 — 2PnLi = pith > 0, 48 — Apngps™ — pp > 0 yhe system states; (k) and the controlled errors; (k), the
(59) proposed framework overcomes the difficulty in the stability

wherei =1,2,--- ,n, po =0, L; > 0 and 8 are respectively analysis caused by the multiplicative noises, avoids time delays
defined in (41) and (58). in the neural weight updating law, and reduces the computa-
Proof: Construct the Lyapunov function as follows:  tional burden by employing one RBF neural approximator.
Veuw(k) = V2 (k) + nViy () (60) V. SIMULATION RESULTS
whereV, (k) = 31 Pizz?_(/?)' Vi (k) is given in (52), anc; In this section, two examples are given to show the validity
andy are constant coefficients. The differencel@fk) along  5ng applicability of the proposed schemes, respectively, on a
(10), (23) and (49) is given by second-order SFNS and a direct-current motor.
AV, (k) = E{Vi(k + 1)|2(k)} — Vi (k)
<Apgoa W (k)W (k)||S (20 (K))|1* + 4pngine” A. Numerical Example
) n ) ) To illustrate the effectiveness of the proposed schemes, we
+2pph? (T (k) = > (pi = pi1Ti 1) 22 (). first consider a class of discrete-time SFNSs with multiplica-
i=1 (61) tive noises as follows:

Along the similar line for (40)-(41) and noticing
IS(zn (k)| < s (s is a bounded value) given in [21],
we have

AV, (k) < 4p,g2s*WT (k)W (k) + 4p,gae”

{Cfl(k +1) = g1 (z1(k)) 22(k) + f1 (21 (K))
za(k +1) = g2 (Z2(k)) u(k) + f2 (Z2(k)) + h (Z2(k)) w(k)
(65)
where z, (k) and z2(k) are the system states,(k) is the
. . system inputw(k) is a Gaussian white noise sequence sat-
1203 L2 (k) = 3 (pr - piagiy) 3Gy (SVNG Blw®) = 0 and B k) = 1, /i (7:(k)) and
i=1

} gi (Z;(k)), i = 1,2, represent nonlinear dynamics chosen
. = ?Os gl (&1)(@36: gc%)()/%u + (f)(k))é(g;)(fz(éf))(5)$2(§)5+
_ . 1—2_ o L; 22 2T —0.6x2 +x7 +x5 , 91 (1 = 0.5+
;(pz Pi-1; = 2pnLi) 2 (k) 0.2sin(z1 (k)), g2 (z2(k)) = 1+0.8 cos(z1 (k)), andh (z2(k))

2 2 T T i NtE 9 9 is a randomly occurring nonlinearity. In the simulation, we
+4p, g2 W (k)W (k) + 4pngac®. (62)  selecth (2, (k) = Laa(k) cos(x1 (k) where is a Lipschitz
By combining (58) and (62), the first difference &f, (k) constant which is regarded as the intensity of the multiplicative

in (60) is derived as follows: noiseh (z2(k)) w(k), andzz (k) = [z1(k), z2(k)]". Itis easily
checked that Assumption 1 is satisfied.
AV (k) = E{AV.(k)} + E{AVy (k)} Case 1: Backstepping-Based Contiokhis case, the func-
n tions f; (z;(k)) and g; (z;(k)), ¢ = 1,2, are exactly known
< —Z (i = Pic1G—1 — 2pnLi) 27 (k) + ppu and can be used to construct the ideal controller. For given
i=1 initial statesz;(0) = 0.2 and z2(0) = 0.5, the simulation

— (B — Apns*G)WT ()W (k) + 4p,g2e2. (63) is performed by using the backstepping-based idea controller
- . 9). WhenL = 1, the closed-loop state curves are depicted
If the constant coefficients are appropriately chosen su Fig. 1. Fig. 1 clearly illustrates that the proposed strategy
that the conditions (59) hold, then we have achieves a satisfactory control performance. To evaluate how
AV, (k) < —0Ven (k) + paw (64) the intensityL of h(Z(k))w(k) affects the control perfor-
mance, the simulation is performed by selectihg= 0.3,
where p,, = ppw + 4pngae®. According to Lemma 1, the L = 1 and L = 1.5, respectively. The corresponding results
closed-loop signals; (k) andW (k) are EMS bounded. Sinceare shown in Figs. 2-4. Fig. 2 and Fig. 3 display the responses
W (k) =W(k)— W*, itis clear thatiV (k) is also uniformly of =1 (k) andzz(k). The control input signal* (k) is shown
ultimately bounded in probability. Since (k) = x1(k), we in Fig. 4. From Figs. 2-4, the intensily of the multiplicative
know thatz; (k) is bounded in probability. From the coordinatenoise i (z2(k)) w(k) affects the control performance of the
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closed-loop system to a certain extent. Specifically, the con- 03
vergence rate of system states becomes faster as the value ¢
L reduces.

0.2r¢
1

—o—x,(K)
- X, 1]

i 5 10 15 20 25 30 35 40
V! Time(k)

-0.6F 4 Fig. 4. Control input signal.* (k) for Case 1 in Section V-A.

0 é 1‘0 1‘5 Ti rﬁg(k) 2‘5 3‘0 55 40
W(0) € R3! is chosen as a vector with each element being
Fig. 1. State curves of the closed-loop system for Section. V-A a standard uniform distributed random value divided 1oy

For different given Lipschitz constants = 0.3, L = 1,

and L = 1.5, simulation results are shown in Figs. 5-7.

From Figs. 5-7, all the closed-loop signals are EMS bounded.
—o-L=03 Moreover, it can be seen from Figs. 5-7 that the smaller
intensity of the multiplicative noisé: (z2(k))w(k) reaches
a better control performance, which is consistent with the
stability criteria (36), (59). In terms of computing time, we
remove the noise termy(zq(k))w(k) in (69) and compare
the control scheme proposed by this paper with the classical
n-step-ahead predictor method [11]. In the same computing
capacity environment, for the same 10000 steps simulation, it
takes 1.06 seconds to adopt this paper method and 8.67 sec-
onds to adopt the classicaistep-ahead predictor method [11].

0.4

. . 1 . . 1 1
5 10 15 20 25 30 35 40

Time() This comparison shows that the proposed scheme with only
one NN approximator can extremely reduce the computational
Fig. 2. State curves; (k) for Case 1 in Section V-A. burden.
0.5
——L=0.3
0.4r -+ L=1
---L=15
-0.1
-0.2
-0.3
-0.4
-0.5 . ’ . v v .
0 5 10 15 20 25 30 35 40
Time(k)

5 10 15 20 25 30 35 40
Time(k)

Fig. 5. State curves (k) for Case 2 of Section V-A.

Fig. 3. State curvesa (k) for Case 1 in Section V-A.

Case 2: Adaptive Neural Controh this case, we consid- B- A DC Motor System
er that the system (65) contains the modeling uncertaintiesTo demonstrate that the proposed approach can be applied
f1(z1(k)) and f (z2(k)). To handle the modeling uncertain-to practical systems, we consider a DC motor system [20] sub-
ties, the adaptive neural controller (48), (50) is employed ject to multiplicative noises. The continuous-time dynamical
guarantee the closed-loop stability. In the simulation, desiggstem of the DC motor driven by white noise is described as
parameters are chosen as = 0.1 and ¢ = 0.45, the follows:
Gaussian RBF NNWT'(k)S(z2(k)) is constructed with neural
nodesq = 81, the width0.12 and the centers evenly spaced i i
on [—0.1,0.7] x [<0.1,0.7], the initial conditions are set as dgy = | L9122 — 92(¢2) df — h(‘p)dw
21(0) = 0.2 andz5(0) = 0.5, and the initial weight vector J J

dg1 = qo0lt
(66)
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;xl(k)
)

=4

|
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i

-1F)
|

5 10 15 25 30 35 40 o 5 10 15 20 25 30 35 40

20
Time(k) Time(k)
Fig. 6. State curvesa(k) for Case 2 of Section V-A. Fig. 9. Motor state curves for the unknown dynamics.

0.25

w

a standard Gaussian white noise sequence. In the simulation,
system parameters and nonlinear functions are selectéd-as
0.5, 91 = 0.1, ga(Ta(k)) = 02a1(k)/(1 + 23 (k) + 23 (k)),

and h(Zz(k)) = Laxo(k)cos(xzi(k)) with L = 4. From the
definition of f2(z2(k)) and h(z2(k)), the DC motor system

in a discrete-time form satisfies Assumption 1.

The simulations are performed for both the exact model and
the unknown model. Choose the initial states0) = 0.1
and z2(0) = 0.2. For the exact model, Fig. 8 shows that
. . the proposed method (29) ensures the mean-square asymptotic
25 30 35 40 e .

convergence of the motor angular position and velocity. For
the model with unmodeled dynamigs(z2(k)), the adaptive
Fig. 7. Control input signali(k) for Case 2 of Section V-A. neural control scheme (48), (50) is used for the DC motor
system (66). In the simulation, we choose design parameters
v = 0.1 ando = 0.45, construct the Gaussian RBF NN
whereq; andg, denote respectively the motor angular positiof/ 7' (1) S (z, (k)) with W (0) = 0.01, neural nodeg; = 105,
and velocity,u is the motor torquew is a standard Wiener the neural width0.15 and the centers evenly spaced on
process,gz = [g1.¢2]", J denotes a known moments of_( 1, 0.3] x [~1.5,0.5]. Fig. 9 illustrates the fact that the pro-
inertia, g, is a viscous friction, and(q2) andh(g2) denote posed adaptive neural control scheme obtains a good control
respectively a nonlinear friction and a randomly occurringerformance even though the considered system (66) contains
nonlinear function, while satisfying,(0) = 0 and2(0) = 0.  unmodeled dynamicg, (2 (k)).

Subsequently, by defining; = ¢;, i = 1,2, and using  Remark 5: It can be seen from (57) that the mean-square
the first-order Taylor expansion, the DC motor system (66) fpunds of state estimate errors depend on design parameters
discretized as follows: v, o as well as the node number of RBF NN. In the

z1(k+1) = z1(k) + Tao(k) simulation studies, two principles are taken to achieve good

T control performance. First of all, the design parameters satisfy
wa(k +1) = 22(k) + — [u(k) + f2(22(k)) = h(z2(k)w(k)] 7 < o < 0.5,0 < v < 1. Secondly, the node number of
. o RBF NN is chosen large enough to obtain good approximation
where the sampling period is chosenZas- 0.1, f2(z2(k))

912 (k) — ga(@2 (1), 22(k) = 21 (), w2 (k)T andu(k) is Poro oo

|
[l
I

=4

w

0 5 10 15

20
Time(k)

V1. CONCLUSION

In this paper, a novel backstepping-based control framework
o=,k has been proposed for a class of discrete-time SFNSs subject
to the multiplicative noise. By effectively building the relation-
ship between system states and controlled errors, the proposed
framework has simultaneously dealt with the non-causality

o4 1 problem resulting from backstepping design and the difficulty

08y 1 in stability analysis caused by the multiplicative noises. With

08| 1 the help of the proposed framework and exact model informa-

by 1 tion, two kinds of sufficient conditions have been derived to
P | guarantee that the closed-loop system with respect to different

14 ‘ ‘ ‘ ‘ ‘ ‘ ‘ multiplicative noises is asymptotically stable in the mean-

0 5 10 15 20 25 30 35 40 . . -

Time (¥ square sense. When the system under consideration is not

exactly modeled, an RBF NN has been employed to approx-
Fig. 8. Motor state curves for the known dynamics. imate the ideal controller, and then a novel adaptive neural
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control scheme has been developed to derive the stability] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ:
criteria in probability. Such a control scheme not only ensures ~Prentice hall, 2002.
h P by ded f th id d y E]\'I%ghM' Krstic, I. Kanellakopoulos, and P. V. Kokotovidyonlinear and
the mean-square boundedness of the considered systems Withagaptive Control Design. New York: Wiley, 1995.
modeling uncertainties, but also reduces the computatiofml R. Krishnan,Electronic Motor Drives: Modeling, Analysis and Control.
burden as well as facilitates the implementation using only ope ~ Upper Saddle River, NJ: Prentice hall, 2001.

| . Th . P | | d gDC y %?L] A. J. Kurdila, F. J. Narcowich, and J. D. Ward, “Persistency of excitation
neura appr_OX|mat0r. ! e_ nu_mence_‘ example an A MOtOT™ iy jgentification using radial basis function approximan8AM Journal
system subject to multiplicative noises have been simulated, on Control and Optimization, vol. 32, no. 2, pp. 625-642, 1995.
respectively, to demonstrate the vaIidity and applicability @%2] F. L. Lewis, A. Yesildirek, and K. Liu, “Robust backstepping control of

S induction motors using neural network$EEE Transactions on Neural
the proposed scheme. Furthermore, it is expected that the g &

Networks, vol. 11, no. 5, pp. 1178-1187, 2000.

proposed results can be extended to more general DTSFN85 X. Liu, A. Jutan, and S. Rohani, “Almost disturbance decoupling
with different phenomena including prescribed performances

(5],

[16], constrained network resources [10], [36] and timgy,

delays [37], [45]. The learning mechanism [38], [39] can be

also envisaged to be embedded in the framework developed
in this paper.
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