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Université Grenoble Alpes, 38000, Grenoble, France 
g Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway 
h Vytauto Didziojo Universitetas (VDU), Kaunus, Lithuania 
i Center for Brain and Cognition, Department of Technology, Universitat Pompeu Fabra, Roc Boronat 138, 08018, Barcelona, Catalonia, Spain 
j Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece 
k Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA 
l Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia 
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A B S T R A C T   

Epidemiological studies mostly focus on single environmental exposures. This study aims to systematically assess 
associations between a wide range of prenatal and childhood environmental exposures and cognition. The study 
sample included data of 1298 mother-child pairs, children were 6–11 years-old, from six European birth cohorts. 
We measured 87 exposures during pregnancy and 122 cross-sectionally during childhood, including air pollu-
tion, built environment, meteorology, natural spaces, traffic, noise, chemicals and life styles. The measured 
cognitive domains were fluid intelligence (Raven’s Coloured Progressive Matrices test, CPM), attention (Atten-
tion Network Test, ANT) and working memory (N-Back task). We used two statistical approaches to assess as-
sociations between exposure and child cognition: the exposome-wide association study (ExWAS) considering 
each exposure independently, and the deletion-substitution-addition algorithm (DSA) considering all exposures 
simultaneously to build a final multiexposure model. Based on this multiexposure model that included the 
exposure variables selected by ExWAS and DSA models, child organic food intake was associated with higher 
fluid intelligence (CPM) scores (beta = 1.18; 95% CI = 0.50, 1.87) and higher working memory (N-Back) scores 
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(0.23; 0.05, 0.41), and child fast food intake (− 1.25; − 2.10, − 0.40), house crowding (− 0.39; − 0.62, − 0.16), and 
child environmental tobacco smoke (ETS) (− 0.89; − 1.42, − 0.35), were all associated with lower CPM scores. 
Indoor PM2.5 exposure was associated with lower N-Back scores (− 0.09; − 0.16, − 0.02). Additional associations 
in the unexpected direction were found: Higher prenatal mercury levels, maternal alcohol consumption and child 
higher perfluorooctane sulfonic acid (PFOS) levels were associated with better cognitive performance; and higher 
green exposure during pregnancy with lower cognitive performance. This first comprehensive and systematic 
study of many prenatal and childhood environmental risk factors suggests that unfavourable child nutrition, 
family crowdedness and child indoor air pollution and ETS exposures adversely and cross-sectionally associate 
with cognitive function. Unexpected associations were also observed and maybe due to confounding and reverse 
causality.   

1. Introduction 

Human cognitive function is influenced by environmental exposures 
(Grandjean and Landrigan, 2014). A brain during growth and matura-
tion is particularly sensitive to changes in physical, biological, and social 
environments due to the activation of many biological mechanisms 
related to neurodevelopment. Most of these processes occur during 
uterine life and childhood (Grandjean and Landrigan, 2014; Heyer and 
Meredith, 2017). At these stages, the brain is not yet fully developed at 
the cellular and neuroanatomical level for efficient detoxification and 
defence against hazardous environmental chemicals, even when the 
exposure levels are low and do not necessarily represent a risk to a 
healthy matured brain (Grandjean and Landrigan, 2014; Heyer and 
Meredith, 2017). 

Human global populations are exposed to a long list of potentially 
neurotoxic industrial chemicals (Grandjean and Landrigan, 2014; Vrij-
heid et al., 2014). Epidemiological studies on developmental neuro-
toxicity have shown that biomarkers of metals, such as mercury (Debes 
et al., 2016) and lead (Braun et al., 2012), persistent organic pollutants, 
such as organochlorine (OC) (Forns et al., 2012) and brominated com-
pounds (Roze et al., 2009), organophosphate pesticides (OPs) (van 
Wendel de Joode et al., 2016), and cotinine (Hsieh et al., 2008), are 
associated with adverse child cognitive functions, with particular brain 

vulnerability at early-life exposure periods, such as pregnancy and early 
childhood. The epidemiological evidence is less clear for exposures of 
perfluoroalkyl substances (Forns et al., 2015), and non-persistent 
chemicals, such as phthalate metabolites (Olesen et al., 2017), and 
phenols (Braun et al., 2017). Additionally, exposure to ambient air 
pollutants (Sunyer et al., 2015) and road traffic noise (Weyde et al., 
2017) during childhood have been reported to be adversely associated 
with neurodevelopment. Further, there are many other environmental 
factors associated with cognitive improvements, including living closer 
to green spaces (Dadvand et al., 2017) and in neighbourhoods with more 
facilities including parks and recreation centres (Bitsko et al., 2016), 
consuming a healthy diet (Cohen et al., 2016), and living within socio-
economically advantaged families and parents with higher education 
(Pearce et al., 2016). 

Currently, most of the studies on environmental neuroepidemiology 
are based on single exposures (e.g., mercury) or exposure families (e.g., 
metals) (Debes et al., 2016; Braun et al., 2012; Forns et al., 2012; Roze 
et al., 2009; van Wendel de Joode et al., 2016; Hsieh et al., 2008; Forns 
et al., 2015; Olesen et al., 2017; Braun et al., 2017; Sunyer et al., 2015; 
Weyde et al., 2017; Dadvand et al., 2017). However, human cognitive 
development interacts concurrently with hundreds of environmental 
determinants during the lifespan (Grandjean and Landrigan, 2014). 
Indeed, the study of single exposures may increase selective reporting 
and be limited by co-exposure confounding (Vrijheid et al., 2014). 
Recently, a new approach is being developed in environmental 
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epidemiology toward the concept of the human exposome, the totality of 
environmental exposure analogous to the genome. Thus, the exposome 
analytical approach aims to study a wide range of environmental ex-
posures of an individual and to analyse the role of such environmental 
factors as multi-factorial risk factors of child neurodevelopment (Vrij-
heid et al., 2014). A few recent studies on child cognitive development 
used this new approach with a modest number of exposures (Steer et al., 
2015; Calamandrei et al., 2020). In this study, the exposures were 
selected at the start of the HELIX project, because they were of concern 
for more than one of the health outcomes under study in the entire 
project (fetal and child growth, obesity and cardiometabolic outcomes, 
neurodevelopment, and respiratory outcomes) and because population 
exposure was widespread. Several statistical models were tested 
following simulation proceedings (Agier et al., 2016), and 
exposome-wide association study (ExWAS) analysis in combination with 
’deletion-substitution-addition’ (DSA) algorithm were the best fitted 
models to find relevant exposure determinants with a balanced type I 
and II statistical errors. 

The present study aims to analyse simultaneously a set of 87 prenatal 
and 122 childhood exposures in relation to the cognitive function of 
1298 children from six European birth cohorts (Vrijheid et al., 2014; 
Tamayo-Uria et al., 2019; Maitre et al., 2018; Haug et al., 2018). We 
used specific cross-culturally validated neuropsychological tests to 
assess fluid intelligence, attention function and working memory. 

2. Methods 

2.1. Study participants 

Mother-child pairs were selected from six European birth cohorts 
included in the Human Early-Life Exposome (HELIX) project (Tam-
ayo-Uria et al., 2019): BiB (Born in Bradford; United Kingdom), EDEN 
(Étude des Déterminants pré et postnatals du développement et de la 
santé de l’Enfant; France), INMA (INfancia y Medio Ambiente; Spain), 
KANC (Kaunus Cohort; Lithuania), MoBa (Norwegian Mother, Father 
and Child Cohort Study; Norway) and Rhea (Greece). A sub-cohort 
sample was selected to include 1298 children (BiB, n = 204; EDEN, n 
= 198; INMA, n = 221; KANC, n = 204; MoBa, n = 272; Rhea, n = 199) 
according to the following criteria of eligibility: a) primary school ages 
(6–11 years), b) stored pregnancy blood and urine samples available, c) 
complete address history, and d) no serious child health problems that 
may affect the clinical testing or the child safety (Maitre et al., 2018). 
The 1298 mother-child pairs were assessed by trained personnel ac-
cording to the same harmonized protocol. The assessment included a 
maternal computer-based questionnaire, child computer-based cogni-
tive tests and clinical examination. The mothers also completed a 
computer-based cognitive test. Biological samples from the child were 
also collected. The ethics committee for each cohort approved the con-
sent form. We obtained written informed consent for all participants, 
signed by the parent. 

2.2. Exposure measurements 

The HELIX project aimed to assess the early-life exposome and a wide 
range of exposures were evaluated during pregnancy and childhood. In 
the present study, 87 maternal prenatal exposures and 122 childhood 
exposures (6–11 years old) were included. The complete exposome 
variable list with abbreviated names is shown in Supplementary Annex 
1, Table A1.1.A; extended information with corresponding categories, 
and, with a summary description along with missing values (%) out of 
1298 mother-child pairs, is shown in Supplementary Annex 1, 
Table A1.1.B. There are publications regarding chemical assessment 
(Haug et al., 2018), questionnaires and general cohort description 
(Maitre et al., 2018) and correlations between exposure and time period 
(Tamayo-Uria et al., 2019). 

In summary, we used cohorts’ stored samples to measure chemical 

exposure during pregnancy. The chemicals were measured in cord 
blood, maternal serum, plasma, whole blood and urine. For the child-
hood chemical exposures, we newly collected child samples of serum, 
plasma, whole blood and urine following a common protocol in the 
involved cohorts (Haug et al., 2018). The chemicals measured in both 
periods (pregnancy and childhood) included organochlorines (poly-
chlorinated biphenyls [PCBs] and organochlorine pesticides), poly-
brominated diphenyl ethers (PBDEs), perfluorinated alkylated 
substances (PFAS), metals, phthalate metabolites, phenols, organo-
phosphate pesticide metabolites, and cotinine. When appropriate, the 
concentrations were standardized for lipids or creatinine (Haug et al., 
2018). 

The urban exposome was estimated after geo-coding the home 
address for the pregnancy period and the home and school addresses for 
the childhood period. Methods are fully described elsewhere (Tam-
ayo-Uria et al., 2019; Robinson et al., 2018). The urban exposures were 
air pollution (e.g. PM2.5, NO2), natural spaces in the living area (green 
and blue spaces), meteorological conditions (outdoor temperature, at-
mospheric pressure, and humidity), markers of the built environment (e. 
g., population and facility densities and street connectivity) and road 
traffic and traffic noise. Additional exposures assessed at the home 
address by predictive modelling include water disinfection by-products 
(Nieuwenhuijsen et al., 2009) (for pregnancy only) and indoor pollut-
ants (for childhood period only, based on questionnaire and in-house 
sensor data). 

Life style factors were collected by questionnaires and included 
maternal smoking habits and alcohol use during pregnancy, maternal 
and child diet, child physical activity, child sleep and family social and 
economic capital during childhood. Prenatal life style variables were 
harmonized from previously collected data during pregnancy. Child-
hood life style variables were collected when children aged 6–11 years 
following the same protocol and questionnaires among cohorts, and 
were referring to the child’s habits during the last year. 

2.3. Cognitive measurements 

Trained fieldwork technicians measured three cognitive domains in 
children using a battery of computer-based tests: fluid intelligence 
(Raven Coloured Progressive Matrices Test [CPM]), attention function 
(Attention Network Test [ANT]) and working memory (N-Back task). 
Complete outcome descriptions are provided in Supplementary Annex 2. 
The CPM comprised a total of 36 items and we used the total number of 
correct responses as the outcome. A higher CPM scoring indicates better 
fluid intelligence. Fluid intelligence is the ability to solve novel 
reasoning problems and depends only minimally on prior learning 
(Raven, 1998). For ANT, we used the outcome of hit reaction time 
standard error (HRT-SE), a measure of response speed consistency 
throughout the test. A high HRT-SE indicates highly variable reaction 
time during the attention task and is considered a measure of inatten-
tiveness (Forns et al., 2014). As the main parameter of N-Back, we used 
d prime (d′), a measure derived from signal detection theory calculated 
by subtracting the z-score of the false alarm rate from the z-score of the 
hit rate. A higher d′ indicates more accurate test performance, i.e. better 
working memory (Forns et al., 2014). The N-Back task was also 
completed by the mothers. All examiners were previously trained 
following a standardized assessment protocol by the study expert psy-
chologist. Furthermore, during the pilot phase, a coordinator visited 
each cohort site and checked for any potential error committed by the 
previously trained examiners. We used all the outcomes as cognitive 
gross scores and we adjusted them by child age in the regression models. 

2.4. Data pre-processing 

Exposures not assessed in more than 2 cohorts, or exposures with 
more than 70% of missing overall, were excluded. Finally, for sets of 
exposures that measure a very similar thing and that exhibit correlations 

J. Julvez et al.                                                                                                                                                                                                                                   



Environmental Pollution 284 (2021) 117404

4

higher than 0.9, only one exposure representative of the group was 
included, as they were considered to measure the same thing and it is 
very difficult to separate the effect of one or the other. This concern 
variables of the outdoor environment calculated at different time point 
or different buffers. Time-varying exposures including air pollution and 
meteorology were averaged within different intervals: the whole preg-
nancy, the 1st, 2nd, and 3rd trimesters of pregnancy, the first year of life, 
and the year, the month, or the day before the measurement of cognitive 
functioning. The built environment and natural spaces were measured 
within different buffers: 100 m, 300 m, or 500 m. For each variable, the 
optimal transformation to approach normality was applied, or the var-
iable was categorized if normality could not be achieved. Missing data 
for all exposures and confounders were imputed using the method of 
chained equations. A total of 20 imputed datasets were generated and 
used in all the analyses mentioned hereafter. Rubin’s rule was used to 
aggregate the results from the 20 imputed datasets (White et al., 2011). 
For exposure biomarkers, values under the limit of detection were then 
imputed using single imputation distribution-based method (Jin et al., 
2011). More details on the transformation used for each variable and its 
missing rate are provided in Supplementary Annex 1, Table A1.1.B. 

2.5. Statistical analyses 

The statistical methods were identified a priori through a series of 
simulation studies mimicking as closely as possible the situation ex-
pected with HELIX data (Agier et al., 2016). First, as a screening method, 
an exposome-wide association study (ExWAS) analysis was performed to 
obtain exposure-by-exposure estimations of the associations with 
cognitive function (CPM correct responses, ANT HRT-SE and N-Back d’ 
scores), using multivariable linear regressions adjusting for confounders 
(Agier et al., 2016). A family wise error rate correction was used to 
account for multiple comparisons (5% divided by the effective number 
of tests, determined according to the correlation structure of the data) 
leading to corrected p-values equal to 0.001 and 0.0007 for the prenatal 
and childhood analyses respectively (Li et al., 2012). With a sample size 
of 1,200, the agnostic EWAS analysis with control for multiple testing 
has a power of 80% to detect a 3-point difference in a continuous 
outcome variable with a standard deviation of 15 (as in common neu-
rodevelopment indexes). Then, we applied the iterative model search 
‘deletion-substitution-addition’ (DSA) algorithm, a method that selects 
the exposures that are jointly associated with the outcome of interest 
(Sinisi and van der Laan, 2004). DSA uses cross-validation, which is 
subject to sampling error. Therefore, DSA was run 50 times, with no 
polynomial or interaction terms allowed, adjusting for confounders, and 
all the exposures that were selected in at least 5% of the runs were 
included in a final linear regression model (i.e., called thereafter ‘mul-
ti-exposures model’). The 5% cut-off was arbitrary and a priori selected 
with the aim of reducing false positive findings. DSA was shown to 
provide a lower proportion of false positive associations than ExWAS 
(Agier et al., 2016). In conclusion, DSA was used in order to build the 
final multi-exposure regression models. 

Both statistical methods (ExWAS and DSA) were performed sepa-
rately for the prenatal and the childhood exposomes and were adjusted 
for potential confounders identified from a Directed Acyclic Graph 
drawn using DAGitty (Textor et al., 2011). For both time periods, the 
selected confounders included the cohort of inclusion (BiB, EDEN, 
INMA, KANC, MoBa, Rhea), maternal age (continuous), maternal edu-
cation level (low, middle, high) as a proxy of socio-economic factors, 
trimester of the year of child conception (categorical variable), child age 
at cognitive examination (continuous) and child sex (Supplementary 
Annex 3). Other important health factors such as maternal obesity and 
diabetes during pregnancy were excluded due to the fact they were 
consider potential intermediate factors of the exposome and child 
neurodevelopment. 

The estimates reported for continuous variables are expressed as an 
increase in interquartile range. 

All analyses were run under R3.4.0 (The R Project for Statistical 
Computing, Vienna, Austria). 

2.6. Sensitivity analyses 

Several sensitivity analyses were performed for the multi-exposure 
models including: 1) complete case analyses, 2) analyses stratified by 
cohort, 3) analyses stratified by maternal education level, 4) analyses 
additionally adjusted for maternal perceived stress (Lee et al., 2015), 
maternal working memory (N-Back d’ scores) (Forns et al., 2014) and 
maternal seafood intake. 

3. Results 

The mean child age was 8 years and varied by cohort (BiB = 6.6, 
EDEN = 10.8, INMA = 8.8, KANC = 6.5, MoBa = 8.5, Rhea = 6.5). There 
were more male children (54.7%) than female children. 1011 children 
completed the three tests, the CPM and the ANT were completed by 
1275, the CPM and the N-back were completed by 1013, and finally, 
1017 participants completed the ANT and the N-back. The cognitive 
scores are presented by maternal and child characteristics in Table 1. 
Generally, we observed better scores among EDEN, INMA and MoBa 
children and among children of older and highly educated mothers. 
Older children obtained better scores on all the cognitive tests (CPM 
correct responses [fluid intelligence], ANT HRT-SE [attention function 
or inattentiveness], N-Back d’ [working memory]). Furthermore, boys 
performed better than girls on ANT HRT-SE. The cohort differences in 
the raw scores of the tests are basically attributed to cohort age differ-
ences (data not shown). 

Exposome-wide associations (ExWAS) between prenatal and 

Table 1 
Child neuropsychological scores by selected confounders.   

CPM, number 
of correct 
responses (fluid 
intelligence, 
Range: 9 to 36) 

ANT, HRT-SE 
(inattentiveness, 
Range: 81 to 676) 

3-Back, d’ 
(working 
memory, 
Range: 1.57 to 
3.92)  

N Median N Median N Median 

Cohorts       
BiB, UK 203 21* 201 355.1* 176 0.78* 
EDEN, France 195 33 187 237.7 184 1.90 
INMA, Spain 220 30 219 256.5 217 1.39 
KANC, Lithuania 204 23 204 367.7 – – 
MoBa, Norway 272 31 272 248.7 263 1.39 
Rhea, Greece 198 20 198 340.9 179 0.80 
Maternal education       
Low 181 23* 178 330.0* 153 0.84* 
Middle 441 26 436 305.1 345 1.39 
High 670 29 667 291.3 521 1.39 
Maternal age (years)       
<27 326 24* 322 339.3* 216 1.03* 
≥27 & <31 322 28 319 291.4 256 1.39 
≥31 & <34 321 29 319 280.5 272 1.29 
≥34 323 28 321 294.1 275 1.39 
Trimester of conception       
Jan–March 415 27 415 305.1 331 1.39 
April–June 261 27 259 302.2 217 1.12 
July–Sept 280 26 279 298.0 201 1.39 
Oct–Dec 336 28 328 294.1 270 1.29 
Child age (years)       
<6.5 325 21* 325 370.5* 171 0.80* 
≥6.5 & <8 318 24 316 332.7 221 0.80 
≥8 & <9 320 30 320 260.8 311 1.39 
≥9 329 32 320 233.7 316 1.71 
Child sex       
Male 707 27 703 293.5* 564 1.17 
Female 585 27 578 309.7 455 1.39 

Data are medians. Kruskal-Wallis equality-of-populations rank tests. * P- 
value<0.10. 
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childhood exposures and CPM scores are shown in Table 2. This method 
gave us a first picture of the association patterns observed with all the 
exposures analysed independently. Child organic food consumption and 
childhood house crowding passed the p-value correction threshold. 
Table 3 and Table 4 show the ExWAS results of the ANT HRT-SE and N- 
Back d’ scores, and no exposure association passed the p-value correc-
tion threshold. Fig. 1 gives a graphic representation of the same ExWAS 
results, all the exposures with a p-value below 0.05 are labelled. 

We further applied DSA analyses for exposure variable selection 
based on jointly association patterns. Tables 2–4 also show the results of 
the DSA analyses. In Table 2, prenatal mercury was selected by DSA on 
6% of the runs (minimum condition was set to 5% of the runs), although 
higher exposure was associated with higher CPM scores in the single 
regression model shown in the same table. Child organic food con-
sumption was selected by DSA on 94% of the runs and higher intake was 
associated with higher CPM scores. Childhood house crowding was 
selected by DSA (66%) and higher crowding showed a reduction of CPM 
scores. DSA method also selected child fast-food intake (58%), PFOS 
concentration (20%), and ETS exposure (44%). Increments of all of 
them, except PFOS, were associated with a reduction of CPM scores. 

In relation to ANT HRT-SE (Table 3), prenatal maternal alcohol 
consumption (yes/no) and green space exposure according to Normal-
ized Difference Vegetation Index (NDVI) were selected by DSA, 26% and 
46%, respectively. However, prenatal alcohol consumption was associ-
ated with lower inattentiveness scores and more green space exposure 
was associated with higher inattentiveness scores. Prenatal DMTP con-
centration (organophosphate pesticide) was selected by 6% of DSA runs. 
No childhood exposures were selected by DSA in Table 3. 

For N-Back d’ scores (Table 4), child indoor air pollution (indoor 
PM2.5) was selected by DSA with a small percentage of the runs (6%), 
and the association showed a score reduction. Finally, organic food 
intake was also selected (12%) and the association showed an increase of 

the N-Back d’ score. No prenatal exposures were selected by DSA. 
Table 5 presents a multi-exposure regression model per each 

outcome and keeping prenatal and childhood exposures in separate 
models. This model included all the exposure variables selected in at 
least 5% of the DSAs. The association coefficients were similar to the 
previous single exposure models shown in Tables 2–4, and all the 
selected exposure variables, except DMTP, retained their statistically 
significant associations with the CPM, ANT and N-Back outcomes. Child 
organic food intake was the only exposure associated with two outcomes 
(CPM scores and N-Back d’) at the same time. 

In the sensitivity analyses, repeating the multi-exposure models with 
complete cases (Supplementary Table A4.1.A. and Table A4.1.B.) or 
adjusting models for maternal perceived stress (Supplementary 
Table A4.2.) and maternal N-Back d’ scores (Supplementary 
Table A4.3.), we did not observe differences with the previous findings. 
All the exposure variables tended to show a similar association patterns 
by cohort (Supplementary Figures A4.1. and A4.2.), with the exception 
of child PFOS concentrations which showed some heterogeneity in the 
association with CPM (Supplementary Figure A4.2.). In relation to the 
exposures with ‘un-expected’ association directions, we stratified the 
final models by maternal education (high and medium-low). Alcohol 
consumption and PFOS concentration only were associated with child 
cognitive outcomes in the high education group, meanwhile prenatal 
green space exposure (NDVI-100) association only occurred in lower 
education. However, prenatal mercury and DMTP exposures showed 
similar coefficients in both education groups (Supplementary 
Table A4.4.). All these variables tended to show higher exposure levels 
in the higher maternal education group (data not shown). The findings 
with mercury exposures were unchanged after adjusting for maternal 
seafood intake (data not shown). 

Finally, we tested the linearity of the multi-exposure associations by 
plotting the residuals versus the predicted values and we repeated the 

Table 2 
Single-exposure associationsa between early life exposures and fluid intelligence (CPM) as assessed by the ExWAS or DSA approaches. Only exposures with uncorrected 
p-values<0.05 or selected from DSA are shown.   

ExWAS DSA  

p Adjusted coefficient (95% CI) Significant after p-value correction? Frequency (%) of selection 

Prenatal Exposome     TEF¼0.001  
Facility density (300 m) 0.013 0.509 (0.109 0.910) No 2 
Mercury 0.014 0.611 (0.122 1.099) No 6 
PFOA 0.024 0.451 (0.061 0.842) No – 
PFhXS 0.039 0.381 (0.019 0.743) No – 
NDVI (100 m) 0.044 − 0.722 (− 1.424 − 0.021) No – 
Childhood Exposome     TEF¼ 0.0007  
Organic food intake <0.001 NA NA NA Yes 94 
2nd tertile vs. 1st tertile <0.001 1.255 (0.632 1.878) – – 
3rd tertile vs. 1st tertile <0.001 1.332 (0.642 2.022) – – 
House crowding 0.001 − 0.412 (− 0.646 − 0.178) Yes 66 
Fastfood intake 0.002 NA NA NA No 58 
2nd tertile vs. 1st tertile 0.729 0.095 (− 0.444 0.635) – – 
3rd tertile vs. 1st tertile 0.001 − 1.434 (− 2.294 − 0.575) – – 
Lead 0.003 − 0.436 (− 0.724 − 0.149) No 2 
ETS 0.003 − 0.816 (− 1.354 − 0.279) No 44 
PFOS 0.006 0.501 (0.143 0.860) No 20 
Soda intake 0.022 NA NA NA No – 
2nd tertile vs. 1st tertile 0.061 − 0.530 (− 1.083 0.023) – – 
3rd tertile vs. 1st tertile 0.007 − 0.859 (− 1.486 − 0.231) – – 
Indoor benzene 0.014 − 0.438 (− 0.789 − 0.087) No – 
Arsenic 0.018 0.515 (0.088 0.942) No – 
PCB 180 0.031 0.509 (0.047 0.972) No – 
DETP 0.034 0.419 (0.031 0.806) No – 
PFOA 0.036 0.348 (0.023 0.674) No – 
PCB 170 0.037 0.456 (0.028 0.884) No – 
OXBE 0.039 − 0.334 (− 0.651 − 0.016) No – 
KIDMED score 0.040 0.301 (0.014 0.588) No – 
HCB 0.040 0.360 (0.017 0.702) No – 
Population density (school) 0.043 0.350 (0.010 0.690) No – 
PFhXS 0.048 0.446 (0.005 0.887) No –  

a Linear regression models adjusted for cohort, maternal education, maternal age, child age, sex, and trimester of conception. 
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regression models excluding the outliers, all with acceptable results 
(data not shown). We did not find any collinearity between the inde-
pendent variables, with the exception of child age and cohort site. The 
collinearity between both variables is moderate and is likely to have 
little impact on the main findings as strengthened by their concordance 
with the results stratified by cohort (Supplementary Figures A4.1. and 
A4.2.). 

4. Discussion 

This is the first study to use a systematic association analysis of many 
environmental exposures, including lifestyle factors, urban and chemi-
cal exposures during pregnancy and childhood periods, and school-age- 
child neuropsychological development. The study was geographically 
diverse since six European country-specific birth cohorts participated. 
Child organic food intake was associated with higher fluid intelligence 
(CPM) and working memory (N-Back d’) scores, and child fast food 

Table 3 
Single-exposure associationsa between early life exposures and ANT HRT-SE (inattentiveness) as assessed by the ExWAS or DSA approaches. Only exposures with 
uncorrected p-values<0.05 or selected from DSA are shown.   

ExWAS DSA 

p Adjusted coefficient (95% CI) Significant after p-value correction? Frequency (%) of selection 

Prenatal Exposome     TEF¼0.001  
Alcohol intake 0.002 − 14.572 (− 23.930 − 5.214) No 26 
NDVI (100 m) 0.013 15.523 (3.247 27.800) No 46 
DMTP 0.075 − 5.276 (− 11.095 0.543) No 6 
Childhood Exposome     TEF¼0.0007  
MEHP 0.006 7.800 (2.271 13.328) No – 
MiBP 0.010 8.663 (2.096 15.230) No – 
UV – Vitamin D (day) 0.015 9.260 (1.804 16.717) No – 
MEHHP 0.017 7.005 (1.243 12.767) No – 
Family affluence score 0.057 NA NA NA No – 
Middle vs. Low 0.020 − 17.529 (− 32.351 − 2.707) – – 
High vs. Low 0.125 − 12.049 (− 27.430 3.332) – – 
MEOHP 0.023 6.832 (0.964 12.699) No – 
Breastfeeding duration (days) 0.053 NA NA NA No – 
2nd tertile (10.8–34.9) vs. 1st tertile (<10.8) 0.025 12.868 (1.591 24.146) – – 
3rd tertile (>34.9) vs. 1st tertile (<10.8) 0.673 2.595 (− 9.477 14.668) – – 
Bread intake 0.029 NA NA NA No – 
2nd tertile vs. 1st tertile 0.221 5.992 (− 3.614 15.599) – – 
3rd tertile vs. 1st tertile 0.080 − 10.178 (− 21.578 1.222) – – 
OH-MiNP 0.035 5.354 (0.375 10.333) No – 
Sweets intake 0.077 NA NA NA No – 
2nd tertile vs. 1st tertile 0.039 − 10.491 (− 20.472 − 0.510) – – 
3rd tertile vs. 1st tertile 0.821 − 1.218 (− 11.785 9.348) – – 
DEHP (sum of metabolites) 0.042 6.202 (0.223 12.181) No – 
Molybdenum 0.042 3.546 (0.125 6.967) No – 
Walkability index 0.045 − 6.522 (− 12.903 − 0.142) No – 
Meat intake 0.114 NA NA NA No – 
2nd tertile vs. 1st tertile 0.049 − 10.254 (− 20.444 − 0.064) – – 
3rd tertile vs. 1st tertile 0.754 − 1.561 (− 11.337 8.214) – –  

a Linear regression models adjusted for cohort, maternal education, maternal age, child age, sex, and trimester of conception. 

Table 4 
Single-exposure associationsa between early life exposures and N-Back d’ (working memory) as assessed by the ExWAS or DSA approaches. Only exposures with 
uncorrected p-values<0.05 or selected from DSA are shown.   

ExWAS DSA  

p Adjusted coefficient (95% CI) Significant after p-value correction? Frequency (%) of selection 

Prenatal Exposome     TEF ¼ 0.001  
Inverse distance to nearest road 0.017 0.101 (0.018 0.183) No – 
Childhood Exposome     TEF¼0.0007  
Organic food intake 0.006 NA NA NA No 12 
2nd tertile vs. 1st tertile 0.977 − 0.002 (− 0.160 0.155) – – 
3rd tertile vs. 1st tertile 0.009 0.240 (0.061 0.418) – – 
Indoor PM2.5 0.006 − 0.095 (− 0.164 − 0.027) No 6 
DDE 0.009 0.130 (0.032 0.227) No 2 
Vegetables intake 0.038 NA NA NA No – 
2nd tertile vs. 1st tertile 0.011 0.219 (0.050 0.389) – – 
3rd tertile vs. 1st tertile 0.494 0.050 (− 0.093 0.192) – – 
KIDMED score 0.018 0.089 (0.015 0.163) No – 
DDT 0.020 0.124 (0.020 0.229) No – 
NO2 (year) 0.026 − 0.220 (− 0.414 − 0.026) No – 
MnBP 0.027 − 0.097 (− 0.183 − 0.011) No – 
Indoor PMabsorbance 0.036 − 0.073 (− 0.142 − 0.005) No – 
Total fat intake 0.116 NA NA NA No – 
2nd tertile vs. 1st tertile 0.276 0.094 (− 0.075 0.263) – – 
3rd tertile vs. 1st tertile 0.039 0.192 (0.010 0.373) – –  

a Linear regression models adjusted for cohort, maternal education, maternal age, child age, sex, and trimester of conception. 
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intake and house crowding were associated with lower fluid intelligence 
scores. Child ETS and indoor PM2.5 exposures were associated with 
lower fluid intelligence and lower working memory scores, respectively. 
Finally, maternal mercury exposure at higher levels, alcohol consump-
tion, low degree of near-home greenness during pregnancy and child’s 
higher PFOS serum concentration were associated with better fluid in-
telligence scores or lower inattentiveness (ANT HRT-SE) scores; how-
ever, the association directions were unexpected based on previous 
research of single exposures (Grandjean and Landrigan, 2014). 

There are only two previous studies analysing a range of potential 
risk factors using statistical agnostic methods among cognitive outcomes 
(Steer et al., 2015; Calamandrei et al., 2020). In one study, the authors 
used ExWAS to identify prenatal risk factors associated with communi-
cation impairments in 9-year-old children from the ALSPAC cohort. 
They used questionnaire-based data that included health of the parents, 
child development, and socio-demographic characteristics. Nineteen 
variables, related to these domain factors were associated with the 
outcome in the combined multivariable regression model. They detected 

Fig. 1. Exposome-wide associations with child cognitive functions (single-exposure models). On the left panel are the results as volcano plots for the prenatal 
exposome and the right panel the cross-sectional childhood exposome. The horizontal line across the plots represents the multiple testing threshold correction (based 
on effective number of tests). Any exposures above this line are considered significant. All the exposures with a p-value below 0.05 are labelled. 
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an adverse outcome association with processed food intake during 
pregnancy. We obtained similar findings with child fast food intake and 
positive associations with child organic food intake (Steer et al., 2015). 
In the other study, they used a multiple regression analyses to study the 
effect of a limited number of prenatal exposome variables, mainly life-
style factors, and a few metal biomarkers. They found a detrimental 
effect of lead and, Selenium and mercury, showed positive associations 
with two-year-old neurodevelopment using Bayley-III Scales (Cala-
mandrei et al., 2020). Furthermore, a recent study based on HELIX 
project data and child behavioural problems (n = 708), using Strengths 
and Difficulties Questionnaire (SDQ), explored 47 exposure biomarkers 
from eight chemical families during pregnancy. This study used an 
adjusted least absolute shrinkage and selection operator (LASSO) and 
ExWAS and added evidence on deleterious effects of prenatal exposure 
to bisphenol A (BPA) and mono-n-butyl phthalate (MnBP) on child 
behavior (Jedynak et al., 2021). More recently, we published a HELIX 
paper using the same exposome and sub-sample, but in relation to ADHD 
symptoms and externalizing and internalizing problems based on Child 
Behavior Check List (CBCL). We observed several prenatal environ-
mental contaminants (indoor air pollution and smoking) and child 
lifestyle habits (diet, sleep and family social capital) were associated 
with behavioural problems in children (Maitre et al., 2021). One of the 
strengths in this previous study on behavioural problems and in our 
study here on cognition, is that we systematically analysed a much 
larger range of exposure biomarkers in blood and urine to determine the 
internal levels in the model, and, we analysed prenatal and childhood 
exposure variables. 

Environmental exposure to methylmercury during pregnancy has 
been reported to be adversely associated with child cognitive outcomes 
(Debes et al., 2016). Mercury or methylmercury is considered an 
important neurotoxic pollutant, particularly during prenatal neuro-
development (Grandjean and Landrigan, 2014). However, some studies, 
as ours, reported no adverse associations (Llop et al., 2017). This is 
probably due to the fact that methylmercury is highly related to fish 
consumption, which in turn may be negatively confounding the asso-
ciation between methymercury and cognitive scores (Debes et al., 2016; 
Llop et al., 2017). However, when we adjusted for maternal seafood 
intake, the results with fluid intelligence scores were unchanged. Pre-
natal alcohol consumption was associated with lower inattentiveness 
(low ANT HRT-SE). This finding is not consistent with previous studies 
(Scott-Goodwin et al., 2016). However, a recent cohort study reported 
that moderate alcohol intake during pregnancy was not associated with 
child cognitive development at 12 months (McCormack et al., 2018). 
Data in the European cohorts of this study, showed that moderate 

alcohol consumption was more prevalent among highly educated 
mothers and the reported association was basically driven by this group. 
Indeed, there may be some misreporting due to social rejection. These 
two factors could partly explain the un-expected findings described in 
this study. In relation to greenness exposure, a recent study about 
life-long exposure (including greenness at birth) found a longitudinal 
association between higher greenness exposure and lower scores of child 
inattentiveness (ANT HRT-SE). The association was partly explained by 
a reduction of ambient air pollution (Dadvand et al., 2017). The 
inconsistency between our result with inattentiveness (ANT HRT-SE) 
and this previous finding may be driven by the low maternal educa-
tion group in some European countries according to our stratified re-
sults. Furthermore, this variable does not account for accessibility to 
green spaces and this factor could mediate the association between the 
exposure and the outcome, particularly, in poorer neighbourhoods with 
high greenness exposures (Dadvand et al., 2017; Pearce et al., 2016). 

In relation to childhood exposome analyses, there is little previous 
research specifically analysing child organic food and fast food intakes 
and cognitive function. However, fast food intake has been associated 
with a reduction of child academic development success (Purtell and 
Gershoff, 2015). Furthermore, some studies reported positive associa-
tions between children’s healthy diet composites and executive function 
scores (Cohen et al., 2016). Similarly, we found better scores in fluid 
intelligence and working memory with higher organic food intake and 
lower fast food intake. Healthy diets (including organic food) are richer 
than fast food on brain necessary nutrients, such as fatty acids, vitamins 
and antioxidant substances, and may altogether enhance child cognitive 
function (Cohen et al., 2016). ETS and home indoor air pollution ex-
posures are recently suspected as potentially hazardous agents affecting 
cognitive function through enhancing pro-inflammatory reactions in the 
brain (Grandjean and Landrigan, 2014; Hsieh et al., 2008). The present 
findings, with the inclusion of participant samples from several Euro-
pean countries, contribute to assume this as a global health concern. 
House crowding is an indicator of family poverty which includes less 
healthy life style behaviours than the ones observed in more advanta-
geous social groups, which in turn may affect child cognitive scores 
(Bitsko et al., 2016). Finally, PFOS is considered an endocrine disruptor 
that may alter thyroid function and influence cognitive development; 
however, the epidemiological findings are not consistent (Forns et al., 
2015). There may be some potential residual confounding by family 
social class or education due to some of the exposure sources come from 
packaged foods and in typical high SES products. Our findings, reporting 
a positive association between childhood PFOS exposure and cognitive 
function, add more controversy to this point. 

Table 5 
Multiple-exposure associationsa including the exposures selected in at least 5% of the implementations of DSA.   

CPM (fluid intelligence) ANT HRT-SE (inattentiveness) N-Back d’ (working memory) 

Coefficient 95% CI p Coefficient 95% CI p Coefficient 95% CI p 

Lower Upper Lower Upper Lower Upper 

Prenatal Exposome             
Mercury 0.611 (0.122 1.099) 0.014         
Alcohol intake     − 14.925 (− 24.248 − 5.602) 0.002     
NDVI (100 m)     16.368 (4.153 28.584) 0.009     
DMTP     − 5.168 (− 10.936 0.600) 0.079     
Childhood Exposome             
Organic food intake (2nd 

tertile) 
1.200 (0.582 1.817) <0.001     − 0.011 (− 0.167 0.146) 0.895 

Organic food intake (3rd 
tertile) 

1.184 (0.502 1.866) 0.001     0.228 (0.050 0.406) 0.012 

House crowding − 0.392 (− 0.624 − 0.160) 0.001         
Fastfood intake (2nd tertile) 0.170 (− 0.363 0.703) 0.532         
Fastfood intake (3rd tertile) − 1.250 (− 2.098 − 0.402) 0.004         
ETS (exposure) − 0.886 (− 1.419 − 0.353) 0.001         
PFOS 0.454 (0.099 0.808) 0.012         
Indoor PM2.5         − 0.093 (− 0.161 − 0.024) 0.008 

aLinear regression models adjusted for cohort, maternal education, maternal age, child age, sex, and trimester of conception. 
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This study is the first to analyse prenatal and childhood exposome 
associations with child cognitive outcomes using ‘State of the Art’ ho-
listic and agnostic statistical approaches on cohort sub-samples of six 
European countries representing different geographical areas. This re-
gion variability adds more external validity or generalizability of the 
present findings. However, this factor also adds difficulties in our sta-
tistical analyses, since participants were from cross-culturally different 
cohorts, it may influence the exposure levels and cognitive outcomes 
and the association patterns. Moreover, we reported similar neuropsy-
chological scores to those observed in other population-based studies 
with children at similar ages, this fact increases the external validity of 
the present study’s findings (Smirni, 2020; Rivas et al., 2019). The sta-
tistics applied here may reduce false positive associations (Li et al., 
2012), although they can still be present; however, they do not prevent 
us from potential confounding generated by adverse exposures closely 
related to beneficial socio-demographic characteristics, neither from 
reverse causality in childhood exposures, specifically those exposures 
related with lifestyle factors17,18,19,20. Indeed, cross-sectional examina-
tion of environmental factors with child cognitive development does not 
provide an etiologically relevant period of exposure to affect brain 
development, unless we rely on a strong assumption that exposures were 
persistent and stable across all childhood. This assumption may be valid 
in some cases, such as stable life style factors (nutrition) and persistent 
organic compounds (organochlorine compounds), but less likely in 
others such as none persistent chemical exposures (bisphenol A, 
organophosphate pesticides). Also, we should acknowledge that, in the 
ExWAS and the DSA analyses, we did not consider non-linear associa-
tions between exposure and outcome, nor interaction between expo-
sures, to reduce the risk of false positives. However, we had acceptable 
results, after we tested the linearity of the multi-exposure associations 
by plotting the residuals versus the predicted values and we repeated the 
regression models excluding the outliers. Finally, the statistical power of 
this study was limited, nevertheless, the power calculation showed 
sufficient results for this sample size. 

A strength of this study is its originality to explore a large range of 
human exposures and select the main cognitive determinants based on 
data driven approach. Furthermore, our approach of reporting all as-
sociations is more transparent than usual studies, which may be affected 
by selective reporting of results. It also shows the complexity of the 
human exposome and that the association with child cognitive devel-
opment is challenging. Furthermore, we need innovative scientific ap-
proaches in order to understand its nature. 

For the first time in this study, we analysed systematically many 
prenatal and childhood exposures (including chemical biomarkers) and 
their association with school-age neuropsychological development (as 
child’s cognitive functioning). The findings describe a priority list of 
exposures susceptible to be strongly associated with European child 
cognitive functioning. This is clinically important for future environ-
mental interventions to target specific risk factors of mental health 
development. Child organic and fast food diets, family crowdedness, 
indoor air pollution and ETS were the main determinants of fluid in-
telligence and/or working memory. However, a limitation is that these 
associations are cross-sectional and confounding and reverse causation 
cannot be plenty avoided. Furthermore, the conflicting results observed 
with other exposures, such as prenatal mercury, home greenness, 
maternal alcohol consumption and child PFOS levels need further 
investigation in order to understand their complexity in the association 
patterns. 
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Valentín, A., de Keijzer, C., Fernández-Somoano, A., Lertxundi, N., Rodriguez- 
Dehli, C., Gascon, M., Guxens, M., Zugna, D., Basagaña, X., Nieuwenhuijsen, M.J., 
Ibarluzea, J., Ballester, F., Sunyer, J., 2017. Lifelong residential exposure to green 
space and attention: a population-based prospective study. Environ. Health Perspect. 
125 (9), 097016. 

Debes, F., Weihe, P., Grandjean, P., 2016. Cognitive deficits at age 22 years associated 
with prenatal exposure to methylmercury. Cortex 74, 358–369. 

Forns, J., Lertxundi, N., Aranbarri, A., Murcia, M., Gascon, M., Martinez, D., Grellier, J., 
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