Hb G-PHILADELPHIA IN ASSOCIATION WITH Hb S AND α-THALASSEMIA-2 <u>Felice, A.E.</u>, Ozdonmez, R. Headlee, M.E. and Huisman, T.H.J. Comprehensive Sickle Cell Center, Department of Cell and Molecular Biology, Medical . College of Georgia and Medical Research Service, Veterans Administration Medical Center, Augusta, Georgia.

The proportion of some α chain variants in the peripheral blood of heterozygotes has been a most useful marker for the number and activity of the α chain genes of human hemoglobin. Among these, Hb G-Philadelphia (or α_2 68Lys β_2) has been found in association with a heterozygous or a homozygous α -thal-2, a β -thal trait (AGABIH) or a Hb S heterozygosity (ASAG) and a Hb S homozygosity (SSG). Hb G-Philadelphia heterozygotes differ in the proportion of Hb G, MCV and MCH values and $\Sigma\alpha/non-\alpha$ biosynthetic ratios. Two categories have been noted in our laboratories among adult heterozygotes. Those with Hb G % = 33.9 ± 3.4 (SD, n = 68), MCV = 82 fl ± 5.4 (SD), MCH = 25.7 pg ± 1.5 (SD) and $\Sigma\alpha/non-\alpha$ = 0.86 ± 0.04 (SD) are considered to have an α -thal-2 heterozygosity in cis, i.e. the $\alpha^0 \alpha^0 / \alpha \alpha$ genotype. Those heterozygotes with Hb G % = 46.5 ± 1.0 (SD, n = 22), MCV = 74 fl ± 7.7 (SD), MCH = 22.0 pg ± 1.1 (SD) and $\Sigma\alpha/non-\alpha$ = 0.63 ± 0.08 (SD) are considered to be α -thal-2 homozygotes ($\alpha^0 \alpha^0 \alpha^0 \alpha$). Studies with restriction endonucleases (a) a I, Hpa I, Bgl II and Hind III confirmed these assumed genotypes and showed an association between the Hb G-Philadelphia mutation and a specific deletion of the 5 'a chain gene by crossingover to the right side between misaligned chromosomes with the single α^G gene remaining intact and active. Similar observations have been made among some families with the AGAB^{TH} and AGAS conditions. The higher proportion of Hb G was associated with the $\alpha^0 \alpha^{G} / \alpha^0 \alpha$ genotype by restriction endonuclease studies and resulted in milder features of the β -thalassemia or decreased levels of Hb S (Hb G: 47%; Hb S: 28%). The third category of Hb G heterozygotes with Hb G levels of about 25% has only been noted by us among newborn babies (n = 4). It is likely that this arose from a defect of the α^{G} chains to form α_{eY}^{G} dimers rather than from the presence of the $\alpha^G \alpha / \alpha \alpha$ genotype. A Hb S homozygote with an associated Hb G heterozygosity had Hb G = 47%, MCV = 67 fl, MCH = 21.7 pg, $\Sigma\alpha/\text{non}-\alpha$ =0.5 (5'min incubation). The $\alpha^0 \alpha^G / \alpha^0 \alpha$; β^S / β^S genotype was confirmed with restriction endonuclease mapping of the Hb genes, <u>i.e.</u> she had an Hb G heterozygosity in association with α -thal-2 and Hb S homozygosities. These studies contri-bute to an understanding of the occurrence of atypical hematological features among persons with β chain heterozygosities and homozygosities which could result from a variability in the number of active α chain genes due to the inheritance of α -thal-2 determinants.

* * * * * *

Abstract Annual Muting of the Comprehensive Sickh like Center and Sickle Cell Scrunning and Education clivites Dec: 2=4,1981; Hilton Had, S.C.