
A Hybrid Search Agent in Pommerman
Hongwei Zhou

New York University
Brooklyn, New York
hz1101@nyu.edu

Yichen Gong
New York University
Brooklyn, New York
yichen.gong@nyu.edu

Luvneesh Mugrai
New York University
Brooklyn, New York
lm3300@nyu.edu

Ahmed Khalifa
New York University
Brooklyn, New York

ahmed.khalifa@nyu.edu

Andy Nealen
New York University
Brooklyn, New York
andy@nealen.net

Julian Togelius
New York University
Brooklyn, New York
julian@togelius.com

ABSTRACT
In this paper, we explore the possibility of search-based agents in
games with resource-intensive forward models. We implemented
a player agent in the Pommerman framework and put it against
the baseline agent to measure its performance. We implemented
a heuristic agent and improved it by enabling depth-limited tree
search in specific gameplay moments. We also compared different
node selection methods during depth-limited tree search. Our result
shows that depth-limited tree search is still viable when presented
with inefficient forward models and exploitation-driven selection
method is the most efficient in this specific domain.

CCS CONCEPTS
•Applied computing→Computer games; •Computingmethod-
ologies → Game tree search;

KEYWORDS
Pommerman, Tree Search, Monte Carlo Methods, State Machines
ACM Reference Format:
Hongwei Zhou, Yichen Gong, Luvneesh Mugrai, Ahmed Khalifa, Andy
Nealen, and Julian Togelius. 2018. A Hybrid Search Agent in Pommerman.
In Foundations of Digital Games 2018 (FDG18), August 7–10, 2018, MalmÃű,
Sweden. ACM, New York, NY, USA, Article 4, 4 pages. https://doi.org/10.
1145/3235765.3235812

1 INTRODUCTION
Various tree search algorithms, such as Monte Carlo Tree Search
(MCTS), assume and require the existence of forward models to
advance the state of the game. However, not all games support fast
computing forward modeling due to the factors such as complex
game rules that require heavy computation to advance to the next
state.

This paper tries to explore the potential of a high-performing
agent in a resource-intensive, high frame rate and adversarial game
environment. Specifically, we intend to search for a balanced so-
lution between using heuristics and tree search algorithms in the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FDG’18, August 7-10, 2018, Malmö, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6571-0/18/08.
https://doi.org/10.1145/3235765.3235812

Pommerman framework. We intend to enhance the agent’s per-
formance with tree search algorithms because certain problems
are clearer to express the goal rather than the strategies to reach
the goal. We want to present our approach with specification on
the algorithm and how we modify the tree search to address the
demand of the forward model as well as the selection strategy for
specifically MCTS that yields the best performance.

2 BACKGROUND
2.1 Pommerman Framework
Pommerman 1 is a variation to the game Bomberman (Hudson Soft,
1983). The game is played in a randomly generated 13x13 grid where
four agents are trying to eliminate each other. Each agent starts
in a separate corner with a single bomb and can choose one of six
actions: STOP, UP, LEFT, DOWN, RIGHT, BOMB. A STOP action
will be returned if no action is returned within 100 millisecond.
When an agent places a bomb and that bomb denotes cardinally,
the agent gains anther bomb to use. Once placed, a bomb takes
about 25 frames to explode and its explosion can eliminate agents
including its owner.

Figure 1: Example Game of Pommerman

Figure 1 shows a Pommerman level. In addition to the four agents
(red, blue, pink and green tiles), the map contains wooden (brown
tiles) and rigid walls (gray tiles) with a guaranteed accessible path
to each agent. Rigid walls are indestructible and impassible, while
wooden walls are impassible until destroyed by bombs. There is a
50% chance that destroying a wooden wall reveals a power up item.
The power ups are Extra Bomb (Increase agent’s ammo by one),
Increase Range (Increase agent’s blast length by one), Can Kick
(Allow agent to kick bombs in its moving direction), and Skull (A
random harmful power up).

While there exist other modes, for the empirical study we focus
on the Free For All mode, in which each agent goes against every
1https://github.com/MultiAgentLearning/playground

https://doi.org/10.1145/3235765.3235812
https://doi.org/10.1145/3235765.3235812
https://doi.org/10.1145/3235765.3235812

FDG’18, August 7-10, 2018, Malmö, Sweden H. Zhou et al.

other agent. In the case of the study our agent plays against 3
SimpleAgents since this framework and competition are relatively
new and no other agents are currently available.

2.2 Heuristic Agents
A heuristic agent utilizes the current state and configuration of
the fully/partial observable world to decide the next best action to
take [13]. It does not model the future state of the enemy agents
and rather treats them as other entities in the state. Every step a
set of conditions is used to produce specified outcomes.

One popular method to implement established rules is through
the model of a finite state machine [10]. A simple finite state ma-
chine consists of different states and the transition rules between
those states. Different from a game state, a state of the agent de-
scribes a set of behaviors that the agent follows. Traditional finite
statemachine is a popular technique in the video game industry [12]
as it is conceptually organized and manageable as the number of
states and their transitions grow [5].

2.3 Monte Carlo Methods
Monte Carlo Methods (MCM) [9] are referred as a class of algo-
rithms that aims to solve a problem by sampling random values and
approximating the mathematical property behind the said prob-
lem. It is widely adopted in a range of domains. Most notably this
technique is combined with tree search to form an algorithm called
Monte Carlo Tree Search (MCTS) [1]. MCTS finds the optimal deci-
sion in a given domain by randomly sampling the decision space
and building a search tree accordingly.

MCM have been used in playing games such as Go [2, 3, 6],
Chess [4], Super Mario Bros [7], Starcraft [11], Hearthstone [14],
etc. Pepel et al. experiments [8] show Flat Monte Carlo Search to
be a stronger technique in Phantom Go (a version of Go in which
opponent’s stones are not revealed) when compared to techniques
such as a Hybrid-MCTS and UCB-MCTS. Flat Monte Carlo Search
does not build a tree and only searches its immediate child notes.

3 METHODS
We designed a heuristic agent with rulesets to find the best possible
action at each step. Later in the section, we experimented with
replacing some of the heuristics with depth limited tree search. In
the following subsection, we explain the details of the agent and
variants used during our experiments.

3.1 Heuristic Search Agent
Our heuristic search agent has two essential components: the search
algorithm and a group of heuristics. As part of the heuristics, We
use Dijkstra algorithm to guide the agent through the physical
space towards the goal and the heuristics determine the goal for
the search algorithm. We use a finite state machine to manage
the current active heuristic. The Finite State Machine Agent is
divided into three separate states: Explore, Attack, and Evade.
The pseudocode for the agent is provided in Algorithm 1.

Exploration Heuristics are used when the agent is safe. It
determines if it should place a bomb near a wood block to make a
traversable path which helps in discovering power-ups, try to pick

Algorithm 1 Heuristic Search Agent

1: procedure GetAction
2: if EvadeCondition() then
3: EvadeHeuristic()
4: else if AttackEnemyCondition() then
5: AttackEnemyHeuristic()
6: else
7: ExplorationHeuristic()
8:
9: procedure EvadeCondition
10: for direction in [Stop,Le f t ,Riдht ,Up,Down] do
11: if InRangeOfBomb(direction, 5) then return True

return False
12:
13: procedure AttackEnemyCondition

return Agent.BombCount > 0 and EnemyWithinRange(6)
14:
15: procedure EvadeHeuristic
16: direction ⇐DirectionToSafeLocation()
17: if InRangeOfBomb(direction, 5) then

return heuristicAgentOrTreeSearchAgent(evade)
return direction

18:
19: procedure AttackEnemyHeuristic
20: if EnemyWithinRange(4) then

return heuristicAgentOrTreeSearchAgent(attack)
return directionToEnemy()

21:
22: procedure ExplorationHeuristic
23: if WoodTileOrPowerupExist() then

return heuristicAgent(explore)
return exploreLeastVisitedTiles()

up a positive power-up, or move to the least visited tile on the map
if there are no more wooden blocks or power-ups.

Evade Heuristic avoids bombs. Bombs are dangerous if its tick
count is less than the tick threshold: 5 + 2 × bomb_count , where
bomb_count is the number of bomb surrounding the agent. It filters
all passable positions and selects the closest position thats not under
threat as a target location to navigate toward.

Attack Enemy Heuristics are used when an enemy is in Man-
hattan distance of 6. The agent moves towards the enemy and tries
to place a bomb next to it.

Accidental Suicide Heuristics are embedded to avoid acciden-
tal suicidal actions. At any time, the agent want to place a bomb
in any of the previous states. It will only place it if all the follow-
ing conditions are satisfied: agent has enough ammo and it is able
to escape to a safe location that is connected at least two nearby
passable positions.

3.2 Heuristic Search Agent with Tree Search
On average, advancing a game by one clock tick takes 1 ms and
creating a new game node with a game state copy take 2 ms on an
i7-6700HQ CPU. Using a tree search algorithm won’t work as the
depth will be short and most of the rewards and actions in the game
are delayed. For example, a bomb takes about 25 ticks to explode.

A Hybrid Search Agent in Pommerman FDG’18, August 7-10, 2018, Malmö, Sweden

Given the restricted time to return a move, the tree search would
not produce a depth of 25 moves.

To kill the enemy, ideally we would want to trap them with
bombs. However, this can’t be coded easily since the enemy models
are unknown. Similar to bomb evading, enemy actions such as
blocking the selected exit route are also hard to predict. As such we
use depth limited tree search to replace the attack/evade heuristics
for our agent, depth limited because of time constraints.

Figure 2: An example of evade score function. Bombs are rep-
resented by black circles with their ticks before exploding.
The agent is currently in the way of two bombs with lower
than 10 clock ticks.

Evader Score Function is a score function used by the tree
search during the evade state and is as follows:

Sevade = 100 −
∑
i
pi · 25 ·

11 − ticki
10

(1)

where i denotes each bomb, pi evaluates if bomb i can reach the
agent and has clock tick less than 10 and returns 1 if so and 0
otherwise, ticki denotes the tick rate of bomb i . The score starts as
100 and only considers bombs with clock ticks under 10 and with
explosions that will hurt the agent. The lower the clock tick of a
bomb, the greater the deduction to the score. Figure 2 demonstrates
the evader score function.

Attacker Score Function is a score function used by the tree
search in the attack state. Each tree search only focuses on one
single enemy as the target. The target enemy ismodeled as a random
agent taking random moves during each step. The goal is defined
as the target enemy is surrounded by impassible objects such as
rigid, woods, bombs or agents so that it’s less likely to escape the
explosion. The state evaluation starts with 0 score and accesses the
target’s surroundings by the following:

Sattack = 100 · (1 − emptySaf eArea

f loodFillArea
) (2)

where f loodFillArea is calculated using flood fill algorithm from
the target position and emptySaf eArea is traversable tiles not in
range of bombs. Figure 3 demonstrates how the score function
works. In this figure, there are total of 4 tiles that are safe(white
squares in figure 3d), while the total area is 13 (white squares in
figure 3b). The final score for the state is 100 · (1 − 4

13) ≈ 69.
We used a Breadth First Search as a base line to show that a

guided search has an advantage over uninformed tree search. For
all tree searches, we limit the available moves for observation by
removing moves that lead to immediate death or no change in the
agent’s current game state. For example, we remove moving left if
the left of the agent is a block. In all tree search methods, the final
action is that which leads to the best score.

Breadth First Search (BFS) is an uniformed search algorithm
as it does not exploit the states of the board when expanding its

tree. The BFS agent follows a standard approach of starting at the
root node, denoted by the current state of the board, and explores
all the neighbor nodes before moving to the next level of neighbors.
If at any time the search reaches the capped maximum time, it will
end the search and select the best action corresponds to the best
node in the frontier.

Monte Carlo Tree Search (MCTS) is a stochastic tree search
algorithm that utilizes Monte Carlo Simulations to approximate
the value for the nodes in the tree [1]. MCTS consists of 4 steps:
selection, expansion, simulation and backpropagation. During the
selection phase, the agent uses the UCB1 function to select the
next node in the tree. The following equation explains the UCB1
equation,

UCB1i = Xi +C

√
2 ∗ lnNp

i
Ni

(3)

where Xi is the exploitation term of the equation and

√
2∗lnN p

i
Ni

is
the exploration term. The exploitation term is the average of the
simulated scores. In exploration term, Np

i is the parent visit count,
Ni is the current node visit count. C is a constant. Through testing
we found that a C value of 25 results in the best performing agent,
as the exploitation term ranges [40, 100] while the exploration
term ranges [0.6, 2.4]. During the expansion phase, MCTS creates
a new node and add it to the tree. During the simulation phase,
MCTS executes random actions for length between [1,3] or till
reach a termination condition. During backpropagation, the score
of simulation is used to update the exploitation terms of the current
node and all of its ancestors.

FlatMonte Carlo Search (FMCS) only expands the root node’s
immediate children and doesn’t allow tree growth compared to
MCTS [1]. We perform simulated play on the immediate children
and aggregate the current child’s score with the simulated play
score. We tested FMCS with four selection functions: Random
selection selects child randomly for the simulations, UCB1 se-
lection uses UCB1 equation shown in equation 3 with C equal to
25, Exploitation selection uses the exploitation only, and Explo-
ration selection uses the exploration term only.

4 RESULTS
In this section, we show the results for the experiments performed
on the two agents with all their variants in the Pommerman FFA
mode. It should be noted that the framework’s base line agent,
the SimpleAgent, has roughly a 21.67% win ratio against 3 Sim-
pleAgents. SimpleAgent operates on heuristics set by the author
of Pommerman framework. Figure 4 displays the results of each
agent playing 300 games against 3 SimpleAgents. From the figure,
it is clear that using a tree search is better on average than using
heuristic or uninformed search such as BFS, Explore, or Random
Selection. The only edge case is the MCTS algorithm, we think
that the tree growth with performing simulation wasted some of
the time that was used for more evaluations as only tree growth
(in BFS) performs better and only simulations (in FMCS) performs
better.

To compare the result between different agents, we conducted
Binomial test between each pair of agents. We fixed the seed for
all the agent for each run in the 300 runs and compared number of

FDG’18, August 7-10, 2018, Malmö, Sweden H. Zhou et al.

(a) Current game state
with walls(gray squares),
bomb(black circle) and
agent

(b) All tiles within 2 spaces,
total area of 13

(c) Black squares indicate
unreachable tiles due to
walls

(d) Grey squares indicate
reachable tiles in range of
bomb

Figure 3: A scenario for the attack score function.

Figure 4: Win, Loss and Tie rates for each agent out of 300
game experiments

Table 1: Thewin rate of the row agent over the column agent.
* means the p-value is less than 0.05, while ** means the p-
value is less than 0.01.

Exploit Explore UCB1 Random Heuristic BFS MCTS Simple
Exploit - 58.0%* 48.9% 56.5% 64.1%** 62.7%* 76.3%** 95.9%**
Explore - - 40.3%* 45.8% 54.1% 50.9% 64.5%** 90.6%**
UCB1 - - - 54.9% 63.8%** 60.4%* 73.7%** 94.9%**

Random - - - - 57.9%* 55.3% 68.3%** 94.1%**
Heuristic - - - - - 47.3% 64.3%* 90.2%**

BFS - - - - - - 63.8%* 92.3%**
MCTS - - - - - - - 87.5%**

times each agent won over the three SimpleAgent while the other
agents didn’t. Table 1 shows the percentage of wins where the row
agent has won over the column agent. From the table, it is clear
that all our agents performed well above the SimpleAgent, while
the Exploit Agent on average out performed all the other agents.

5 CONCLUSION
This paper has investigated possible tree search techniques inte-
grated as the attack and evade state within a finite state machine,
in which the other states are modeled to perform using heuristic
functions. We experimented with several search methods such as
BFS, MCTS, and FMCS. Our result shows that our agents performs
significantly better than the provided SimpleAgent and that using
depth-limited tree search for attack/evade states slightly outper-
form hand-made heuristics.

As for future work, we propose an investigation of comparing
agent performance in a partially observable world; the agent’s view
of the board would be limited to a small surrounding radius. We
should also test the level of agents against agents other than the
SimpleAgent to analyze and measure the performance of our agents
on a global scale. One further possible improvement is to learn the
score function using a neural network instead of hand designing.

ACKNOWLEDGEMENTS
Ahmed Khalifa acknowledges the financial support from NSF grant
(Award number 1717324 - "RI: Small: General Intelligence through
Algorithm Invention and Selection.").

REFERENCES
[1] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. 2012. A survey of monte carlo tree search methods.
IEEE Transactions on Computational Intelligence and AI in games 4, 1 (2012), 1–43.

[2] Christopher Clark and Amos Storkey. 2015. Training deep convolutional neural
networks to play go. In International Conference on Machine Learning. 1766–1774.

[3] Markus Enzenberger, Martin Muller, Broderick Arneson, and Richard Segal. 2010.
FuegoâĂŤan open-source framework for board games and Go engine based on
Monte Carlo tree search. IEEE Transactions on Computational Intelligence and AI
in Games 2, 4 (2010), 259–270.

[4] Hilmar Finnsson and Yngvi Björnsson. 2011. Game-tree properties and MCTS
performance. In IJCAI, Vol. 11. 23–30.

[5] Edmond S L Ho and Taku Komura. 2010. A finite state machine based on topology
coordinates for wrestling games. Computer Animation and Virtual Worlds 22, 5
(2010), 435–443.

[6] Shih-Chieh Huang and Martin Müller. 2013. Investigating the limits of Monte-
Carlo tree search methods in computer Go. In International Conference on Com-
puters and Games. Springer, 39–48.

[7] Emil Juul Jacobsen, Rasmus Greve, and Julian Togelius. 2014. Monte mario:
platforming with mcts. In Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation. ACM, 293–300.

[8] Tom Pepels, Tristan Cazenave, and Mark HM Winands. 2015. Sequential halving
for partially observable games. In Computer Games. Springer, 16–29.

[9] Christian P Robert. 2004. Monte carlo methods. Wiley Online Library.
[10] John E Savage. 1998. Models of computation. Vol. 136. Addison-Wesley Reading,

MA.
[11] Dennis Soemers. 2014. Tactical planning using MCTS in the game of StarCraft.

Ph.D. Dissertation. MasterâĂŹs thesis, Department of Knowledge Engineering,
Maastricht University.

[12] Mark Oude Veldhuis. 2010. Artificial Intelligence techniques used in First-Person
Shooter and Real-Time Strategy games.. In Human Media Seminar: Designing
Entertainment Interaction, Vol. 2011. Citeseer.

[13] Vincent Vidal and others. 2004. A Lookahead Strategy for Heuristic Search
Planning.. In ICAPS. 150–160.

[14] Shuyi Zhang and Michael Buro. 2017. Improving hearthstone AI by learning
high-level rollout policies and bucketing chance node events. In Computational
Intelligence and Games (CIG), 2017 IEEE Conference on. IEEE, 309–316.

	Abstract
	1 Introduction
	2 Background
	2.1 Pommerman Framework
	2.2 Heuristic Agents
	2.3 Monte Carlo Methods

	3 Methods
	3.1 Heuristic Search Agent
	3.2 Heuristic Search Agent with Tree Search

	4 Results
	5 Conclusion
	References

