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ABSTRACT Multinational companies frequently work with manufacturers that receive large orders for
different products (or product varieties: size, shape, color, texture, material), to serve thousands of different
final destinations (e.g., shops) requesting a combination of different quantities of each product. It is not
the manufacturers’ task to create the individual shipments for each final destination. But manufacturers can
deliver part of their production in so-called cross-docking boxes (or other containers) of a few (say, three)
types, each type containing a given assortment, i.e., different quantities of different products. At a logistics
center, the shipments for each destination are then made of cross-docking boxes plus additional ‘‘picking’’
units. The expensive part is the picking, since cross-docking boxes require little or no manipulation. The
problem we solve in this paper is, given a large set of orders for each destination, to design the cross-docking
box types in order to minimize picking. We formally define a variant of this problem and develop a heuristic
method to solve it. Finally, we present extensive experimental results on a large set of real-world benchmarks
proving that our approach gives high-quality solutions (optimal or near optimal) in a very limited amount of
time.

INDEX TERMS Artificial intelligence, combinatorial optimization, heuristic algorithms, logistics.

I. INTRODUCTION
It is widely accepted that the logistics industry plays a
major role in today’s economy [1]. Both in emerging
markets and in advanced economies well-designed logis-
tic processes may give important competitive advantages to
companies or regions [2]. Cross-docking is one of these
important processes in logistics that should be particularly
well-designed [3].

Products rarely travel directly from the manufacturer to
their final destination. Logistic centers are intermediate des-
tinations where products are stored and combined in order
to be later distributed. However, the ideal situation is one
where pallets or boxes in which incoming products have been
packed do not have to be stored or opened, but instead can be
directly sent to their final destinations. In order to maximize
the number of products that can be dispatched in this quick
and inexpensive way, the key ingredient is the design of
appropriate compositions of boxes where products are to be
packed. An alternative would be to design a huge number of
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different boxes, but unfortunately, most manufacturers only
accept to pack products in a very limited number of different
compositions.

A promising approach to finding a convenient set of
cross-docking boxes is to use Combinatorial Optimization
methods [4]. Combinatorial Optimization problems consist
in finding an optimal object from a finite set of objects.
Approaches to Combinatorial Optimal could be divided into
complete and incomplete methods. Given enough time, com-
plete methods always end up computing the optimal solution.
Hence, they somehow perform an exhaustive search. How-
ever, sometimes the search space is too large to be fully
explored and one has to resort to incomplete methods, that
do not always compute the optimal solution, but are expected
to give good solutions in a reasonable amount of time.

In order to obtain a complete method, one can design an
ad hoc algorithm for a concrete Combinatorial Optimiza-
tion problem. This has the drawback that all implementa-
tion work has to be done from scratch. In order to obtain
a competitive method, it will be necessary to spend a huge
amount of time improving the implementation and, if the
problem varies a little bit, it is very likely that most of this
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work on low-level implementation details will have to be
repeated again. An alternative to this scenario is to translate
our problem into a different one for which very efficient
implementations already exist. We want to highlight three
remarkable options with huge success stories behind them:
• Integer Linear Programming (ILP) [5]: given a set
of linear constraints and an objective function (a linear
expression), we search for an integer assignment to the
variables that satisfies all linear constraints and mini-
mizes the objective function.

• SAT [6]: given a Boolean formula, constructed over a
set of Boolean variables and connectives not (¬), and
(∧), or (∨), we search for a Boolean assignment to the
variables that satisfies the formula.
Even though this is a feasibility problem, one can solve,
e.g., minimization problems by constructing a series of
successive SAT problems Fk , where Fk expresses that
we look for a solution with cost at most k .

• Satisfiability Modulo Theories (SMT) [7]: we are
given a (quantifier-free) first-order formula and we have
to determine its satisfiability modulo a background
theory T . In this paper, T will be the theory of the
integers and formulas will be built from (non-)linear
constraints that will be combined via the Boolean
connectives ¬,∧,∨.

Regarding incomplete methods, a prominent example is
the one of metaheuristics [8]. As opposed to tailored local-
search approaches for a concrete problem, metaheuristics are
high-level independent algorithmic frameworks that can be
applied to a large variety of problems. Some metaheuris-
tic examples are: GRASP [9], Tabu Search [10], Simulated
Annealing [11], Variable Neighborhood Search [12] or Ant
Colony Optimization [13].

The goal of this paper is to solve the problem of designing
optimal cross-docking boxes using some of the methods we
have mentioned before. More precisely, its main contribu-
tions are:
• We precisely define the problem of designing optimal
cross-docking boxes.

• We introduce a non-linear integer programming formu-
lation of the problem.

• We present, at a sufficient level of detail, a Variable-
Neighborhood-Search-like metaheuristic for this
problem.

• We report experimental results on real-world bench-
marks. We study the impact of some decision designs
and evaluate the quality of our approach by comparing
it with an SMT-based complete approach.

The rest of the paper is organized as follows: in Section II
we study related work. In Section III we give formal
and informal presentations of the problem, and prove its
NP-hardness. After that, in Section IV we introduce an
incomplete metaheuristic-based approach for solving it.
Section V reports on exhaustive experimental results on a
very large set of real-world benchmarks and we conclude in
Section VI.

II. RELATED WORK
Existing research aimed at improving the effectiveness of
cross-docking in industry is both large and diverse. Since
providing an exhaustive list is out of the scope of this paper,
we will only mention some representative works in order to
get a grasp of the diversity of the problems studied and their
corresponding solving methods. Existing efforts on improv-
ing cross-docking can be classified according to three deci-
sion levels [14]. In the strategic level, long-term decisions
are taken, such as determining the locations and the amount
of cross-docking nodes. The seminal work of [15] explored
a mixed-integer linear programming model for determin-
ing the location and the number of cross-docks in a load-
driven system. In [16], again a mixed-integer programming
model is proposed in order to decide which warehouses and
cross-docks are opened. In this particular case, the suggested
solving method is based on Simulated Annealing. The use of
heuristic methods for these problems is not rare, and tech-
niques such as Tabu Search or Particle Swarm Optimization
are used in [17] and [18], for example.

The tactical level addresses problems with an impact on
the mid-term horizon. Most work on this level is devoted to
the design of the best layout in the cross-dock. This includes
defining the shape of the facility, the number of doors,
the material flow or the temporary storage area location. One
interesting work is [19], where a genetic algorithm is used
to minimize the labor workload and the lead time in a man-
ufacturing industry context. A different modeling paradigm
is used in [20], where determining the storage locations that
minimize the forklift trucks travel distances is modeled as a
minimum-cost-flow problem.

Finally, the operational level covers decisions in the short-
term planning horizon (days or weeks). Research in this level
can be divided into five areas [14]: scheduling, transshipment,
dock door assignment, product allocation and vehicle routing.
Scheduling is a very broad and prolific area, whose aim is
to define the sequence of inbound and outbound trucks at
a given set of dock doors. The case with one inbound and
one outbound truck is studied in [21], where a polynomial
approximation algorithm is given, as well as a branch-and-
bound algorithm that is suitable for middle-sized problems.
Transshipment, as defined by [22], answers four questions:
how much to ship, between which locations, at what times
and on which routes. The first study on dock door assignment
was [23], where a door assignment is sought that minimizes
forklifts travel distance. The solving technology they propose
is a microcomputer-based tool based on bilinear program-
ming. Some other works, such as [24], also model the prob-
lem as a non-linear program, but a heuristic method based
on a genetic algorithm is used. Product allocation is the least
studied of all five areas.Wewould like tomention [25], where
the problem is to determine which products or which percent-
age of a certain product should go through by cross-docking.
Finally, there are very few works about vehicle routing in the
context of cross-docking, probably due to the vast amount of
existing literature for general vehicle routing. One example
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is [26], where a tabu-search heuristic is presented to minimize
travel distance while respecting time-window constraints.

All in all, it is clear that cross-docking has been studied
from multiple perspectives. The derived problems are count-
less, as well as the solving methods being used. However,
to the best of our knowledge, the problem we will introduce,
which should be placed in the operational level, has not been
studied elsewhere.

III. PROBLEM DEFINITION
In this section, we first give an informal presentation of the
problem, with some illustrative examples. Then, we formally
define it by giving a non-linear integer programming model.
Finally, we prove the NP-hardness of the problem.

A. INFORMAL PRESENTATION
Let us consider a company that manufactures a certain finite
set of products. Periodically, customers place orders, indicat-
ing how many units of each product they request. In order to
dispatch the orders we are given a set of box templates, which
specify the minimum and maximum number of product units
and the mandatory products in each box.

For each template we need to construct a box: determine
the exact number of units of each product it will contain,
taking into account the minimum and maximum, and the
mandatory products. Each order should be exactly obtained
by choosing a set of boxes plus some additional products
that will be added manually, the so-called picking. Among
all possible boxes, we are generally interested in the ones that
allows us to minimize the picking.
Example 1: Let us consider the set of products {A,B,C,D}

and the following three orders:
A B C D

Order O1 1 2 3 1
Order O2 1 1 1 1
Order O3 3 4 7 2

If we have two box templates, both with a minimum of 4
units and a maximum of 20, and no mandatory product in
them, the boxes that minimize picking are

A B C D
Box B1 1 2 3 1
Box B2 1 1 1 1

Let us first compute the picking we can obtain with these
boxes. We can serve order O1 with one box B1, and no
picking is required. Similarly, O2 can be served with one box
B2, again with no picking. Finally, order O3 can be served
with two boxes B1, which gives a picking of 2 units: one unit
of product A and one unit of C . This is indeed the optimal
solution. �

However, in order to further reduce picking, we are allowed
to increase the number of units of products in the orders.More
concretely, for each order we know in how many units each
product can be incremented, and also the maximum amount
of increments across all products in this order. Globally, there

is an additional maximum amount of increments for each
product to be used among all orders.
Example 2: Let us consider our previous example and now

allow 1 unit of increment in all orders and products, at most
1 unit in each order and at most 2 units for each product
globally.

This allows us to increase 1 unit of C in O2 and 1 unit of
D in O3:

A B C D
Order O1 1 2 3 1
Order O2 1 1 2 1
Order O3 3 4 7 3

In this situation, the optimal boxes are
A B C D

Box B1 1 2 3 1
Box B2 1 1 2 1

since O1 can be served with B1, order O2 is served with B2
and O3 can be obtained with 1 box B1 and 2 boxes B2, hence
incurring in no picking at all. �

B. MATHEMATICAL FORMULATION
In order to give a precise mathematical formulation of our
problem, let us consider the following sets:

P: set of products
O: set of orders
T : set of box templates

and the following input data, with their type indicated below:

K : relative cost of one cross-docking box
(R) w.r.t. one unit of picking
unitsOrdero,p: number of units of product p in order o,
(N) for each o ∈ O, p ∈ P
minUnitst : minimum number of product units in
(N) template t , for each t ∈ T
maxUnitst : maximum number of product units in
(N) template t , for each t ∈ T
requiredt : set of products that should be present in
( set of (P) ) template t , for each t ∈ T
maxInco,p: maximum allowed increment for product
(N) p in order o, for each o ∈ O, p ∈ P
maxInco: maximum allowed increment in order o,
(N) for each o ∈ O
totalMaxIncp: maximum allowed increment in product
(N) p, for each p ∈ P

We will now introduce the following integer variables in
order to formally model our problem. As mentioned, for each
box template t ∈ T , we will have to specify a box that will
be referred to as a box of type t .

ν(o, t): number of boxes of type t assigned to
order o,

(N) for each o ∈ O, t ∈ T
β(t, p): number of units of product p in box of type t ,
(N) for each t ∈ T , p ∈ P
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π (o, p): picking resulting from product p in order o,
(N) for each o ∈ O, p ∈ P
δ(o, p): increment of product p in order o,
(N) for each o ∈ O, p ∈ P

Note that all variables are non-negative integers.
We can nowmodel our problem as the following non-linear

program:

min
∑
o∈O
p∈P

π (o, p)+ K ·
∑
o∈O
t∈T

ν(o, t)

subject to
∑
t∈T

(ν(o, t)·β(t, p))+π (o, p)

=unitsOrdero,p+δ(o, p) ∀o ∈ O, p ∈ P
(1)

minUnitst≤
∑
p∈P

β(t, p)≤maxUnitst ∀t ∈T

(2)

β(t, p) > 0 ∀t ∈ T , p ∈ requiredt (3)

δ(o, p) ≤ maxInco,p ∀o ∈ O, p ∈ P (4)∑
p∈P

δ(o, p) ≤ maxInco ∀o ∈ O (5)

∑
o∈O

δ(o, p) ≤ totalMaxIncp ∀p ∈ P (6)

The objective function considers the total picking and the
number of boxes assigned to orders. The constant K allows
one to express which is the relative cost of one cross-docking
box w.r.t. the cost of one unit of picking. If K = 0 then we
would model the cost of Example 1, where only picking was
considered. Otherwise, its semantics is thatK units of picking
have the same cost as one cross-docking box.

Equation 1 expresses that units in an order are split into
cross-docking boxes, increments and picking. Note that this
is the only non-linear component of themodel. Equations 2- 3
express that boxes should satisfy the requirements of the
templates w.r.t. minimum/maximum amount of units and
mandatory products. Equations 4-6 impose that the three
limitations on increments are fulfilled.

Note that, in general, non-linear integer programming is
an undecidable problem [27]. However, we can see that in
our case there is only one non-linear constraint, and the only
non-linear multiplications are of the form ν(o, t) · β(t, p).
Fortunately, variables β(t, p) are all upper and lower bounded
and this makes the problem decidable: we can build a finite
set of linear programs by instantiating these variables in all
possible ways and take the best solution among all programs.
Although this does not seem to be a practical approach,
we will see in Section V that it is the basis of a complete
method for this type of problems.

C. HARDNESS OF THE PROBLEM
Let us considerUnbounded Subset SumProblem (USSP) [28]:
given n different positive integers {a1, a2, · · · , an} and a

Algorithm 1 - Function VNS
1: Returns: <Boxes bestBoxes, Solution bestSol>
2: Identify identical orders and build set of orders O with multi-

plicity
3: Order O according to some criterion
4: bestSol.cost←∞
5: while not timeLimit do
6: B← generateBoxes()
7: Solution localSol← computeSol(B)
8: n1← 1; n2← 1; large← false
9: while not timeLimit do

10: <tmpBoxes,tmpSol>← bestNeighbor(n1,n2,B)
11: if tmpSol.cost < localSol.cost then
12: localSol← tmpSol; B← tmpBoxes
13: large← false;
14: n1← 1; n2← 1;
15: else if not large then
16: large← true
17: n1← 5; n2← 5;
18: else break
19: if localSol.cost < bestSol.cost then
20: bestSol← localSol; bestBoxes← B
21: return <bestBoxes,bestSol>

positive integer b, we want to determine whether there exist
integers xi ≥ 0 such that

∑n
i=1 aixi = b. This problem is

known to be NP-hard [28].
We will prove that the decision version of our problem,

where we ask for a zero-cost solution, is NP-hard by reducing
USSP to it. Given an instance of USSP, we will build the
following instance of our problem:
• P : {p} (one product)
• O : {o} (one order)
• T : {t1, t2, · · · , tn}
• K = 0
• unitsOrdero,p = b
• minUnitsti = ai, for all 1 ≤ i ≤ n
• maxUnitsti = ai, for all 1 ≤ i ≤ n
• requiredti = ∅, for all 1 ≤ i ≤ n
• maxInco,p = 0
• maxInco = 0
• totalMaxIncp = 0
Intuitively, since there are no increments available, and no

picking is allowed (because we look for a zero-cost solution),
we have to serve the order only with the boxes. Since we only
have one product, this amounts to obtain the integer t via a
non-negative linear combination of the ai’s.

IV. SOLVING METHOD
When solving hard combinatorial problems, it is impor-
tant to know how much time can we afford to solve them.
In problems such as designing the next-month schedule of the
employees of a company, the available solving time might be
of up to several hours. In other cases, thousands of problems
need to be solved every day and hence we can only spend
some seconds in each of them.

The real-world application that inspired this problem
requires a very short solving time. This, together with the fact
that the problem is NP-hard, led us to consider an incomplete
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Algorithm 2 - Function generateBoxes
1: Returns: Boxes boxes
2: for t ∈ T do
3: Box b;
4: for p ∈ t.required do b[p]← 1
5: unitsInBox← |t.required|
6: toPlace← rand(t.min,t.max) - unitsInBox
7: while toPlace > 0 do
8: p← randomly select one product
9: b[p]← b[p] + 1
10: toPlace← toPlace - 1
11: boxes← boxes ∪ {b}
12: return boxes

method, in which we may sacrifice quality solution in order
to obtain a quick response.

Among all incomplete optimization methods we have cho-
sen a metaheuristic, namely a variant of Variable Neighbor-
hood Search (VNS). Our overall approach can be explained
as a two-step process. In the first step, for each template t ∈ T
we build a box, thus giving a set of boxesB. In the second step,
an exhaustive search component is in charge of determining
how to serve all orders using boxes B. The VNS determines
how these two steps are interleaved.

In Algorithms 1-3 a high-level view of the method is
described. The main function is VNS in Algorithm 1, which
starts exploiting that it is very common that different cus-
tomers place the same orders. All these identical orders are
identified, and a new set of orders with their corresponding
multiplicities is created. After that, these new orders are
ordered according to some criterion. Details about which
criteria are useful will be discussed in Section V.
After this preprocessing, the search for a solution starts.

Apart from the selected boxes, a solution will contain the
cost and for each order: (i) the number of boxes of each type
assigned to the order, and (ii) the increments in the demand
of each product. The solution search starts by creating a
random set of boxes. Then, in Line 7, the exhaustive search
component is called, which returns a solution using these
boxes. After this initial step, better solutions are searched
by considering boxes in the neighborhood and the solutions
one can obtain with them. The parameters n1 and n2 specify
how large the neighborhood is. In Algorithm 1 the Boolean
variable large expresses whether to search in a small or a
large neighborhood, being the large one explored only if no
improvement is possible within the small one. This is done
until a certain time limit is exceeded.

In Algorithm 3 a detailed description of the function
exploring the neighborhood of a solution is given. The basic
idea is to improve the solution by slightly modifying the
boxes configuration. Three possibilities are considered:

• Select two boxes b1 and b2, two products p1 and p2
and then (i) decrement a certain amount of units of p1
in b1, and (ii) increment the same amount of units of
p2 in b2. The amount of units moved is upper bounded

Algorithm 3 - Function bestNeighbor
1: Input: int max1, int max2, Boxes B
2: Returns: <Boxes bestBoxes, Solution bestSol>
3: bestSol← computeSol(B)
4: bestBoxes← B
5: for b1 ∈ B, p1 ∈ P do F First type of neighbor
6: top← min(max1,b1[p1])
7: for chg ∈ 1. . . top do
8: for b2 ∈ B, p2 ∈ P do
9: b1[p1]← b1[p1] - chg

10: b2[p2]← b2[p2] + chg
11: if correct(b1) ∧ correct(b2) then
12: sol← computeSol(B)
13: if sol.cost < bestSol.cost then
14: bestSol← sol
15: bestBoxes← B;
16: b1[p1]← b1[p1] + chg
17: b2[p2]← b2[p2] - chg
18: for b ∈ B, p ∈ P do F Second type of neighbor
19: top← min(max2,b[p])
20: for chg ∈ 1. . . top do
21: b[p]← b[p] - chg
22: if correct(b) then
23: sol← computeSol(B)
24: if sol.cost < bestSol.cost then
25: bestSol← sol
26: bestBoxes← B;
27: b[p]← b[p] + chg
28: for b ∈ B, p ∈ P do F Third type of neighbor
29: for chg ∈ 1. . .max2 do
30: b[p]← b[p] + chg
31: if correct(b) then
32: sol← computeSol(B)
33: if sol.cost < bestSol.cost then
34: bestSol← sol
35: bestBoxes← B;
36: b[p]← b[p] - chg
37: return <bestBoxes,bestSol>

by max1. This is done for all boxes and products. Note
that b1 could be equal to b2 and hence we allow moving
units within the same box. Of course, the resulting boxes
are explored only if they meet the constraints of their
corresponding box templates.

• Select one box b and one product p and decrement
some units of these products. The amount of units decre-
mented is upper bounded by max2.

• Select one box b and one product p and increment some
units of these products. The amount of units decre-
mented is upper bounded by max2.

As we can see from Algorithm 3 all possibilities are
explored. Observe that by simply changing the parameters
max1 and max2 one can explore different neighborhoods.
This would allow us change the core loop of Algorithm 1
in order to explore not only two neighborhoods, as it is
done in this presentation, but rather an increasingly large
set of neighborhoods. Also, note that Algorithm 3 works in
a best-improvement manner. That is, it explores the whole
neighborhood and returns the best solution in it. We could
easily change it to work in a first-improvement way, stopping
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Algorithm 4 - Function computeSol
1: Input: Boxes B
2: Returns: Solution sol
3: sol.cost← 0 F Total cost
4: for o ∈ Orders do
5: maxIncO← min(

∑
p∈P maxInc[o][p], maxInc[o])

6: bestC←∞
7: optOrder(B,1,o,maxIncO,maxInc[o],assign,incP);
8: assiInc← bestA
9: incrs← bestI
10: cInc← bestC
11: nInc← o.multiplicity
12: for p ∈ P do
13: if nInc · bestI[p] > totMaxInc[p] then
14: nInc← b totMaxInc[p]/bestI[p] c
15: for p ∈ P do
16: totMaxInc[p] = totMaxInc[p] - nInc·bestI[p];
17: nNoInc← o.multiplicity - nInc;
18: if nNoInc 6= 0 then
19: bestC←∞
20: optOrder(B,1,o,0,maxInc[o],assign,incP)
21: assiNoInc← bestA
22: cNoInc← bestC
23: sol[o]← construct(nInc,assiInc,assiNoInc,incrs)
24: sol.cost← sol.cost + cInc·nInc + cNoInc·nNoInc
25: return sol

as soon as it finds a better solution. This possibility will be
evaluated in Section V.

Let us now focus on the most complex part of the algo-
rithm: the exhaustive part component described in Algo-
rithms 4 and 5. As we have done so far, we will present
the algorithms in a top-down way. Function computeSol
receives a set of boxes B and returns a solution using these
boxes. The first important remark is that this function might
not return the optimal way to use these boxes. However, as we
will see in the experiments, the solution quality is extremely
good.

The algorithm processes the orders one by one. For each
order, we compute maxIncO (the maximum number of unit
increments we can assign to this order) and use function
optOrder to make two computations. First of all, in line 7,
we compute the best way to serve this order using boxesB and
considering the increment limits maxIncO and maxInc[o],
which defines the maximum increment units for each product
in order o. Themeaning of the additional parameters 1, assign
and incP will be explained later. As a result of this call,
the best way to serve this order allowing increments will be
stored in global variables bestA (best assignment), bestI (best
increments) and bestC (best cost).

Note that this first computation ignores totalMaxInc, which
defines a global limit on the number of increments we can
assign to each product. To address this fact, we compute the
maximum number of orders of this type than can be served
with the computed increments (remember that the order has
a certain multiplicity). This is done in lines 12-14.

The remaining orders, as many as nNoInc (line 17), will
be assigned with no increments. This computation is done in
line 20. Finally, in line 23 these two ways to serve the order

are combined and stored in the solution. That is, the first
nInc orders will be served with the solution that considers
increments and the remaining ones with the solution with no
increments.

It is easy to see that this function might not compute the
best way to serve all orders using boxes B, since orders are
processed one by one, and the first orders will have more
possibilities to be served with increments than the last ones.
Obviously, this does not always correspond to the optimal
solution.

Let us finish the presentation of the algorithmwith function
optOrder. Given an order o, the maximum number of
unit increments available in total (maxIncO) and per product
(maxIncP), it computes the optimal way of serving order o
using boxes B. The algorithm performs an exhaustive search
starting with the first box type (this is why parameter bId
is 1 in the two calls to this function in Algorithm 4). All
options for serving part of the order with a certain number
of boxes of this type are considered, including the possibility
of incrementing the order. For each such option, the part of
the order which has not yet been served is dispatched with
the rest of the box types we have not used yet. Once all
options have been explored, the best possibility is stored.
Although non-recursive implementations of this idea are pos-
sible, we present a recursive pseudo-code that is as close
as possible to the code we have used for the experimental
evaluation in Section V.

This overall idea is presented in detail in Algorithm 5.
At any call to function optOrder, a partial solution con-
sidering boxes B[1 . . . bId − 1] is stored in assign (which
determines the number of boxes of each type that are used)
and in incP (which determines how many increments for
each product we have used in the partial solution we are
extending). Lines 7-24 consider the case in which bId does
not refer to the last box, whereas lines 26-46 consider the
last-box treatment. In the first case, lines 9-12 assign from
0 up to M boxes of type B[bId] and select the best of these
possibilities. After that, increments are considered in the loop
in lines 13-24. Note that when we exit the previous loop,
exactlyM + 1 boxes have been assigned, and hence there are
some products for which the order is now negative and should
be incremented. Line 15 checks whether incrementing these
products would violate some increment limits. If this is the
case, we stop considering increments (line 24). Otherwise,
lines 16-23 compute the cost of adding one additional box
and using the necessary increments. After that, one additional
box is assigned and we loop again.

The treatment of the last box follows along the same lines.
In lines 26-31, the situation in which no increments are used
is computed. Note that, since there are no more boxes left,
we only consider assigning the maximum number of possible
boxes of this type. We compute picking (line 27) and the
number of boxes used (line 28) in order to evaluate the
cost of this solution. If this improves upon the best solution
found so far, which is stored in global variables bestC (cost),
bestA (assignment) and bestI (increments), we update the
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Algorithm 5 - Function optOrder
1: Input: Boxes B, int bId, Order O, int maxIncO,
2: int maxIncP[p ∈ P], int assign[1. . .nBoxes]
3: int incP[p ∈ P]
4: Returns: int cost
5: Global: int bestC, int bestA[1. . .nBoxes], int bestI[p∈P]
6: M← num of boxes B[bId] that fit in order O
7: if bId < nBoxes then F Not last box
8: assign[bId]← 0; cost← inf
9: for k in 0 . . .M do

10: cost← min(cost,optOrder(B,bId+1,O,. . . ))
11: for (p ∈ P) O[p]← O[p] - B[bId][p]
12: assign[bId]← assign[bId] + 1
13: while true do
14: sumNegs←−

∑
p∈P with O[p]<0

O[p]

15: if
∧

p∈P with O[p]<0
(-O[p] ≤ maxIncP[p]) ∧ sumNegs≤maxIncO

then
16: maxIncO← maxIncO − sumNegs
17: for p ∈ P with O[p] < 0 do
18: incP[p]← incP[p] − O[p]
19: maxIncP[p]← maxIncP[p] + O[p]
20: O[p]← 0
21: cost← min(cost,optOrder(B,bId+1,O,. . . ))
22: for p ∈ P do O[p]← O[p] − B[bId][p]
23: assign[bId]← assign[bId] + 1
24: else break
25: else F Treat last box
26: assign[bId]←M
27: pick←

∑
p∈P (O[p] - M · B[bId][p])

28: boxes←
∑

1≤i≤nBoxes assign[i]
29: cost← pick + K·boxes
30: if cost < bestC then
31: bestC← cost; bestA← assign; bestI← incP
32: repeat← (maxIncO > 0); extra← 1;
33: while repeat do
34: for p ∈ P do
35: locIncP[p]← max(0,(M+extra)·B[bId][p]-O[p])
36: inc←

∑
p∈P

locIncP[p]

37: if
∧
p∈P

(locIncP[p]≤maxIncP[p])∧ inc ≤maxIncO) then

38: assign[bId]←M + extra
39: pick←

∑
p∈P

(O[p]+locIncP[p]-(M+extra)·B[bId][p]))

40: cost← min(cost,pick + K·
∑

1≤i≤nBoxes

assign[i])

41: for p ∈ P do fIncP[p]← incP[p] + locIncP[p]
42: if cost < bestC then
43: bestC← cost;bestA← assign; bestI← fIncP
44: repeat← (inc < maxIncO)
45: else repeat← false
46: extra← extra + 1
47: return cost;

information, as done in line 31. After that, we start exploring
the possibility of using increments in order to use extra boxes.
While this is possible, we compute the units to be incremented
(lines 35-36). If this does not exceed the maximum available
increments and for no product we exceed its increment limit
(checked in line 37) we assign one additional box, com-
pute the cost of this solution and update the necessary data
structures.

V. EXPERIMENTAL EVALUATION
We will start our experimental evaluation presenting some
data about the benchmarks we will use for the analysis. Then,
we will show the impact of different design decisions and
evaluate the quality of the solutions given by our approach.

A. BENCHMARKS
We have done our experimental evaluation on a set
of 11521 benchmarks that correspond to the problems gen-
erated by a logistics company over a certain period of time.
We consider that dealing with real-world benchmarks as
opposed to randomly generated ones is highly beneficial
because certain characteristics, such as the number of box
templates or the number of products definitely have an impact
on the performance of different solving methods.

Let us start examining some data about the benchmarks.
First of all, let us focus on the number of box templates:
5858 benchmarks only had 1 box template, 4899 had 3 tem-
plates, whereas 764 had 4 templates. Hence, we can see
that on the problems generated by this concrete company,
the number of box templates is relatively low.

Secondly, another important measure is the number of
orders. In 6077 benchmarks there are less than 50 orders.
The number of orders for the remaining benchmarks varies
a lot. The information is displayed in Figure 1, on the left
histogram.We can observe that, despite there aremore bench-
marks with around 100 orders, benchmarks with up to 1200
orders are not rare, and they can even go up to 1700.

Finally, we want to evaluate the number of products in each
benchmark. Numbers range from 1 to 8 and details can be
seen on the right histogram in Figure 1.We can see that almost
half of the benchmarks contain 4 different products.

B. RESULTS
In this section we will study the impact of some variants of
the algorithm presented in the previous section and evaluate
the quality of the solutions computed by our approach.

1) SORTING THE SET OF ORDERS
As we mentioned in Section IV, in our heuristic method iden-
tical orders are identified and a set of orders with multiplicity
is created. Then, this set of orders is sorted according to some
criteria. In the following we evaluate the impact of changing
the sorting criterion.

The first criterion we considered was to compute, for each
order, the product number_units ∗ multiplicity, and sort the
orders decreasingly w.r.t. this measure. The idea is that we
want to use the available increments for orders that account
for a large number of product units and hence these should
be treated first. To start with, let us show that using such an
ordering is clearly superior to randomly sorting the orders.
We executed all benchmarks with a time limit of 10 seconds.
Results are reported in Figure 2, in the two top-most plots.
The left histogram shows that, in many benchmarks, sorting
the orders decreasingly w.r.t. the aforementioned product

122584 VOLUME 9, 2021



R. Nieuwenhuis et al.: Heuristic Approach to Design of Optimal Cross-Docking Boxes

FIGURE 1. On the left, histogram representing the number of benchmarks with a certain number of orders. On the right, the histogram represents
the number of benchmarks with a certain number of products.

allows us to obtain better-cost solutions within the time limit
of 10 seconds. For example, in 22 benchmarks an improve-
ment between 1 and 2% was obtained. The opposite case
never takes place, this is why we see no red column in the
histogram. Note that benchmarks for which the two methods
give same-quality solutions do not appear in the histogram.
They all appear in the right scatter plot, in which we show
the time taken by the two methods to obtain that solution.
A point (x, y) in the plot indicates that the decreasing product
approach took x seconds to compute the solution, whereas it
took y seconds when orders are sorted randomly. Again we
can see that sorting the orders decreasingly w.r.t. the product
is superior to doing it randomly.

The second criterion we tried was to sort the orders increas-
ingly w.r.t. the same product. Results comparing this with a
decreasing ordering can be seen in the following two plots in
Figure 2. Conclusions are again obvious: sorting the orders
decreasingly is better both in solution quality and in time.

Finally, we tried to sort the orders w.r.t. the ratio
number_units/multiplicity, and do it increasingly and
decreasingly. The last four plots in Figure 2 show the results.
Clearly, sorting them decreasingly w.r.t. this ratio (i.e. orders
with large number of units and small multiplicity first) is not a
good idea. This is not a big surprise because orders with large
multiplicities exist and it seems a good idea to treat them
first. What works very well in practice is to sort the orders
increasingly w.r.t. this ratio. This yields very similar results
to sorting them decreasingly w.r.t. the product. Note, for
example, that only in 12 of the 11521 different benchmarks
one method could give a better solution than the other within
the 10 seconds time limit.

2) BEST IMPROVEMENT VS. FIRST IMPROVEMENT
In this section we want to consider the possibility of
turning bestNeighbor, which was presented as a best-
improvement approach, into a first-improvement approach,
where one stops exploring the neighborhood as soon as she

finds a neighbor that improves the starting point. Again, there
are two dimensions that we want to explore: the quality of
the solution and the time needed to produce such a solu-
tion. Note that the following experiments are done using
the decreasing-product ordering and that the experiments in
the previous section were done using a best-improvement
approach.

Again, we executed all benchmarks with a time limit
of 10 seconds per instance, collecting the time needed to
output the best solution. The left histogram in Figure 3
represents the number of benchmarks for which the qual-
ity of the solution computed by each method improves
upon the other one for a certain percentage. For example,
the columns labeled with 2 indicate that in 148 benchmarks
best-improvement obtains a solution which is between 2 and
4% better than the one obtained by first-improvement. Sim-
ilarly, first-improvement is better with this percentage range
in 15 benchmarks. Overall, the histogram clearly shows that
best-improvement is superior in obtaining better solutions
within the 10 seconds time limit.

In order to evaluate how fast the two methods are in
obtaining solutions, we collected all benchmarks for which at
least one of the two methods took more than one second (i.e.
non-trivial problems), and for which they both gave the same
solution. The right histogram in Figure 3 represents the
number of benchmarks for which each method improves the
other one, in time, for a certain percentage. For example,
the columns labeled with 70 indicates that in 34 benchmarks,
best-improvement was faster by a percentage between 70 and
75%, whereas first-improvement was faster by the same per-
centage in 19 benchmarks. Again, best-improvement is the
winner in this comparison. Also, we want to remark that, very
surprising for us, in a very large number of benchmarks (137)
the improvement obtained by best-improvement is more than
95%.We want to point out that we did not use a scatter plot in
this occasion because the plot did not give an accurate enough
picture of the situation. In this case, the histogram was much
clearer.
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FIGURE 2. Plots comparing the behavior of sorting the orders using different criteria. On the left, histograms show the number
of benchmarks for which one ordering produces solutions that are better, in some percentage, than the other ordering. On the
right, scatter plots compare the time between two sorting criteria for benchmarks in which both gave solutions with the same
cost. We plot the time it takes them to compute such a solution.
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FIGURE 3. On the left, histogram representing the number of benchmarks for which best-improvement or first-improvement produce solutions that
are better, in some percentage, than the other alternative. On the right, a similar histogram focuses on problems for which the two alternatives
produce the same solution, but one of them is quicker, in some percentage, than the other.

3) SOLUTION QUALITY
One of the main drawbacks of metaheuristics is that they
do not give any guarantee about how far the solutions com-
puted are from the optimal solution. In order to evaluate how
good the solutions computed by the metaheuristic within the
10 seconds time limit are, we decided to use a complete
method, with the hope that it could compute optimal solutions
for at least a subset of the benchmarks.

As a complete method we wrote the mathematical for-
mulation of Section III-B for all benchmarks and ran our
Barcelogic SMT solver [29] on them. On non-linear integer
problems where integer variables appearing in non-linearities
are bounded, this SMT solver turns out to be a complete
method [30]. To achieve completeness, the formula is lin-
earized by considering all possible values that variables
appearing in non-linearities can take. However, instead of
doing that right from the beginning, a variety of techniques
are applied in order to do it incrementally. Other SMT solvers
like MathSAT [31], CVC [32] or Yices [33] can also deal
with this type of formulas but had worse performance on this
particular family of benchmarks.

Since on non-linear problems the Barcelogic SMT solver
can only check for feasibility, we collected the cost k of the
best solution that our metaheuristic approach could compute
and generate two formulas: one where solutions with cost at
most k are searched, and another one where only solutions
with cost at most k−1 are admitted. If the first formula turns
out to be satisfiable, and the second one unsatisfiable we can
state that our metaheuristic computed the optimal solution.

We executed all benchmarks with a time limit of 30 sec-
onds in each of the two formulas, and we could certify that on
5627 ourmetaheuristic computed the optimal solution. On the
remaining benchmarks, the SMT solver always exhausted the
time limit on the two formulas without giving an answer.
We repeated the experiment on 50 randomly chosen bench-
marks among these difficult ones, with a time limit of 30

minutes, and the SMT solver could never determine that the
second formula was satisfiable. This means that, even with a
30minute time limit, the SMT solver could never find a better
solution than the one given by our heuristic approach. In 2 of
the 50 benchmarks it could certify that the solution given by
our method was optimal.

All in all, we can conclude that the quality of the solutions
given by our approach is very good, in particular if we com-
pare it with a complete approach using an SMT solver for
non-linear integer arithmetic.

VI. CONCLUSION AND FUTURE WORK
We introduced the problem of designing optimal cross-
docking boxes. After giving an informal presentation, we
gave a precise mathematical definition of the problem via a
non-linear program.We presented a heuristic approach, based
on Variable Neighborhood Search, for solving it. On a large
set of real-world benchmarks we showed that our solving
method provides high-quality solutions in few seconds.

As future work, we plan to deal with further variants of this
problem and to study to which extent complete methods can
be of any use, either by finding solutions or computing lower
bounds.
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