Fuzzy-Token: An Adaptive MAC Protocol for Wireless-Enabled Manycores

Antonio Franques”, Sergi Abadal’, Haitham Hassanieh”, and Josep Torrellas”

*University of lllinois at Urbana-Champaign

Y Universitat Politecnica de Catalunya

franque2 @illinois.edu, abadal@ac.upc.edu, {haitham, torrella} @illinois.edu

Abstract—Recent computer architecture trends herald the arrival
of manycores with over one hundred cores on a single chip. In this
context, traditional on-chip networks do not scale well in latency or
energy consumption, leading to bottlenecks in the execution. The
Wireless Network-on-Chip (WNoC) paradigm holds considerable
promise for the implementation of on-chip networks that will enable
such highly-parallel manycores. However, one of the main challenges
in WNoCs is the design of mechanisms that provide fast and efficient
access to the wireless channel, while adapting to the changing traffic
patterns within and across applications. Existing approaches are either
slow or complicated, and do not provide the required adaptivity.

In this paper, we propose FUZZY TOKEN, a simple WNoC protocol
that leverages the unique properties of the on-chip scenario to deliver
efficient and low-latency access to the wireless channel irrespective
of the application characteristics. We substantiate our claim via
simulations with a synthetic traffic suite and with real application
traces. FUZZY TOKEN consistently provides one of the lowest packet
latencies among the evaluated WNoC MAC protocols. On average,
the packet latency in FUZzZy TOKEN is 4.4x and 2.6x lower than
in a state-of-the art contention-based WNoC MAC protocol and in a
token-passing protocol, respectively.

Index Terms—Manycore, Wireless NoC, MAC protocol

1. INTRODUCTION

In recent years, processor manufacturers have steadily increased
the number of cores integrated on a processor chip. Currently,
Ampere’s Altra processor [2] integrates up to 80 ARM cores, AMD’s
EPYC 7742 processor [1] supports up to 64 cores, and Intel’s Xeon
Platinum 9282 processor [3] hosts up to 56 cores. It is conceivable
that the core count will continue to increase past one hundred.

To serve inter-core traffic, processor chips use Networks-on-Chip
(NoCs) [9, 15]. Typically, manycore NoCs are packet-switched
networks composed of routers and links arranged in a 2D grid. While
this design is more scalable and efficient than buses, the latency and
energy consumption of NoCs start to become a problem at these core
counts [21, 22]. In particular, messages that need to be broadcasted or
traverse a high number of routers before arriving to the intended desti-
nation are problematic [14]. The high latency may stall cores as they
wait for a response or to synchronize, which throttles execution. Slow-
downs of 2-3x have been estimated in processors with several tens
of cores [14, 27] and worse effects are expected at higher core counts.

To improve the scalability of NoCs to high core counts, emerging
interconnect technologies such as 3D [10], nanophotonics [7],
and wireless [6, 28] have been proposed. Among them, wireless
technology has shown promise due to its inherent broadcast nature
and very low latency for chip-wide transmissions, which is lower
than that of conventional NoCs by an order of magnitude [6].
Moreover, no wiring infrastructure is needed, which provides a
flexibility that is unattainable with other technologies [13].

The wireless approach is enabled by recent advances in CMOS
RF technology, which have allowed the integration of millimeter-
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wave antennas and transceivers on chip [8, 28]. Based on these,
multiple Wireless Network-on-Chip (WNoC) designs have been
proposed. Using simulations, these designs are shown to achieve
substantial network-level improvements with respect to conventional
NoCs [6, 16, 20], and help manycores attain substantial execution
speedups and reduced energy consumption [4, 13]. These estimations
have assumed wireless bandwidths of a few tens of GHz and low-
order modulations, which are both feasible with current technology.

To fully realize the potential of WNoCs, however, it is necessary
to build Medium Access Control (MAC) mechanisms that are
able to cope with the heterogeneity and performance requirements
of the multiprocessor scenario [5]. MAC protocols need to adapt
to wide and fast changes in the on-chip traffic, while incurring
little to no delay in the transmission. Unfortunately, existing
efforts [4, 13, 16, 18, 19] are unable to capture such fast variations,
resulting in execution time slowdowns and energy waste.

In this paper, we present FUzZZY TOKEN, a new MAC protocol
capable of dynamically adapting to the traffic demands of the
application, minimizing transmission latency and increasing network
throughput. The Fuzzy TOKEN algorithm combines the strengths
of token passing and contention-based MAC protocols [24] and,
with a few simple rules, adapts to different types of workloads. The
algorithm is evaluated using both a synthetic traffic model [23], and
a set of real application traces. Our simulation-based evaluation
shows that FUzZY TOKEN consistently provides one of the lowest
packet latencies of the evaluated WNoC MAC protocols. On average,
the packet latency in Fuzzy TOKEN is 4.4 and 2.6 x lower than
in a state-of-the art contention-based WNoC MAC protocol and in
a token-passing protocol, respectively.

1I. BACKGROUND

Traditionally, wired NoC architectures use a packet-switched
network with each processor connected to a router as shown in Fig. 1.
Each router has several pipeline stages for enqueuing, computing the
route, arbitration, and dequeuing packets [22]. Data packets move
from source to destination via multiple hops, with each hop incurring
delays and energy consumption. A mesh is a typical topology for
manycores due to its simple layout and low inter-router link length
[22]. However, the average hop count scales with /N, where N
is the number of cores. Several works [6, 14, 27] have shown
that execution suffers significant slowdowns as a result of high
communication latency. In response to this, high-radix topologies
have been proposed that reduce the network diameter, but at the cost
of non-trivial router chip area and energy consumption.

Wireless technology can reduce the latency of a chip-wide
communication to a few clock cycles regardless of the size of the
chip or the number of cores. To that end, one antenna and transceiver
are co-integrated in each core or cluster of cores, as shown in Fig.
1. Information coming from the cores is modulated and the resulting
signals propagated through the chip package, bouncing off the
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metallic heat sink and reaching the receivers. Propagation causes
signals to be attenuated a few tens of dBs, mainly due to spreading
loss and the relatively high transmission loss in the bulk silicon [25].
These losses, on the other hand, prevent the enclosing package from
acting as a reverberation chamber.
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Fig. 1: Wired NoC mesh within a conventional flip-chip package, aug-
mented with one vertical monopole antenna and transceiver per core.
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Antennas are either variants of planar integrated dipoles [8] or
vertical monopoles implemented with vias that are drilled through
the silicon die [25]. In both cases, the operating frequency is chosen
within the mm-wave and sub-THz spectrum to minimize antenna
size and avoid undesired near-field coupling. The link budget is
generally determined by targeting a Bit Error Rate (BER) similar
to that of on-chip wires, this is, below 107 For the typical channel
attenuation values seen in the on-chip environment, it has been
shown that simple modulations such as On-Off Keying (OOK) are
able to minimize power consumption (toward 1 pJ/bit/cm) and chip
area (toward 0.1 mm? per transceiver) while maintaining relatively
high speeds (10+ Gb/s) [28]. This is because these modulations avoid
power-hungry components such as Phase-Locked Loops (PLLs).

From the MAC design perspective, WNoCs are a very demanding
scenario. Chip traffic is highly heterogeneous, meaning that the
injection rate, burstiness (temporal injection distribution) and
hotspotness (spatial injection distribution) of the network vary across
and within applications [23]. These characteristics are generally
detrimental to performance [5]. On the other hand, the WNoC
scenario has some good traits. For instance, the number of nodes
is fixed and known beforehand, and due to the enclosed nature of the
on-chip scenario, all nodes are within the same transmission range.
Therefore, the hidden/exposed terminal effects can be avoided and
collisions can be detected [4].

III. THE Fuzzy TOKEN PROTOCOL

Fig. 2 illustrates the basic operation of FUzzy TOKEN. It has
two operation modes: focused token mode and fuzzy token mode.
During a focused period, only the token holder can transmit. If the
token holder transmits, it is guaranteed to suffer no collision. If the
token holder does not transmit, then the protocol switches to fuzzy
mode. During a fuzzy period, the token holder can not transmit, but
the nodes within what we call the Fuzzy Area can transmit. If only
one of these nodes attempts to transmit, it succeeds. If more than
one of these nodes attempts to transmit, a collision is detected using
the NACK mechanism from [4]. In this case, the protocol switches
to focused mode. By switching between the two modes, the protocol
aims to take advantage of the capabilities of a fair and collision-free

token passing protocol (focused mode), which works well for high,
bursty, and all-core (i.e., uniformly distributed in space) traffic; and
of a contention-based protocol (fuzzy mode) that performs better for
low and few-core (i.e., hotspot) traffic.

Collision AND
(fuzzyArea < thr,)

Silence OR
Transmission OR
(fuzzyArea > thr,)

Transmission OR
(fuzzyArea < thry)

Silence AND
(fuzzyArea > thr,)

Fig. 2: Basic state diagram of FUzzy TOKEN.

The amount of contention during a fuzzy period is controlled with
the fuzzy area. The fuzzy area includes the nodes around the token
holder that may be able to transmit during the period. The idea is to
increase the fuzzy area when the load is low to give rapid access to the
few nodes that want to transmit, and decrease it otherwise to minimize
collisions. To this end, we always increase the fuzzy area when a
silence is detected and decrease it when there is a collision. Note that
a switch in mode involves a change in the size of the fuzzy area.

Fig. 3 (left side) shows the three areas of FUzzy TOKEN
operation, as a function of the fuzzy area size and the load. When the
fuzzy area size is between two given thresholds #hry and thr,, Fuzzy
TOKEN follows the state diagram of Fig. 2 (ignore the conditions
in parenthesis). We call this area Normal in the figure. However,
in extreme cases, it is advisable to remain in one of the modes.
Specifically, when, after many collisions, the fuzzy area is below
thry, the network benefits from remaining in the focused mode. On
the contrary, when, after many silences, the fuzzy area is over thr,,
the load is low enough for the network to remain in the fuzzy mode.
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Fig. 3: Transitions (left) and extreme cases (right) of FUzZY TOKEN.

Fuzzy TOKEN ensures fairness by circulating the token around
the virtual ring. In more detail, the token is passed implicitly at every
event (silence, collision, or successful transmission) regardless of the
protocol mode. This is important because multithreaded applications
generally run as slow as the slowest of the threads. Thus, latency tails
generated by unfair access will significantly slow down computation,
even if they are infrequent. It is worth noting that, thanks to the
unique characteristics of the on-chip scenario, all nodes have a
consistent view of all events. This allows Fuzzy TOKEN to pass
the token implicitly and to update the fuzzy area position and size
without explicit messages or centralized control.

A. Algorithm

The algorithm is divided into steps. In each step, all the nodes in
the chip are in the same mode (focused or fuzzy), and one node is
the token holder. A step lasts for the duration of an event (silence,
collision, or successful transmission). On termination of the step, the
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Fig. 4: Fuzzy TOKEN protocol example. It assumes the protocol starts in a fuzzy mode step and its initial fuzzy area size is 5.

next node in the virtual ring becomes the token holder, the fuzzy area
changes in position and maybe in size, and the mode may change.

The algorithm is executed in each of the nodes of the chip. First,
the node checks whether the mode is fuzzy or focused. To this end,
there is a bit called periodMode that tells the mode of the step. Based
on the mode, the operation of the node is as follows:

Fuzzy mode. In fuzzy mode, if the node is in the fuzzy area
and has a ready packet, it considers transmitting it with a certain
probability. The fuzzy area is encoded with set bits in a vector with
as many entries as nodes in the chip. The vector also contains the
transmission probability p; for each node i. If the node decides to
transmit, a variant of the BRS protocol [4] is used: the node first
sends the preamble and then senses the channel. If the token holder
detects a collision of preambles from multiple nodes, it sends a
NACK. When a sender senses the NACK, it cancels the transmission;
otherwise, it proceeds with the rest of the transfer. By using this
mechanism, FUZZY TOKEN reduces the time and energy penalty
of collisions, as it avoids the unnecessary transmission of the whole
message. The protocol differs slightly from that of [4]: here, it is the
token holder the one that sends the NACK, saving energy — in BRS,
all idle nodes detect the collision and send NACKSs concurrently. For
this to work, however, the token holder cannot try to send a packet.

After the packet is sent (C cycles), or the collision is detected (2
cycles), or no packet transmission is even attempted (1 cycle), the al-
gorithm starts a new step. Since the packet size and wireless bitrate are
known and static, all nodes are synchronized and proceed in lockstep.

Focused mode. The focused token mode is simpler, as it is based
on a conventional token protocol. The token holder is stored in the
variable tokenID, which is updated at the end of each step. In this
mode, the node checks whether it is the token holder and whether
it has a packet ready to transmit. If both conditions are true, the node
transmits the packet; otherwise, it remains idle. After the C cycles
of a successful transmission or 1 cycle of silence, a new step starts.

Housekeeping. At the end of each step, the variables rokenlD
and fuzzy area are updated, and periodMode may be updated. The
tokenlID is incremented by one modulo the number of nodes in the
ring. The fuzzy area is rotated one position as well. In addition, the
fuzzy area size is increased if a silence occurred and decreased if a
collision occurred. If a successful transmission occurred, we choose
not to change the fuzzy area size, as it may be close to the optimal
value. Finally, the periodMode bit may be updated according to the
state machine rules shown in Fig. 2.

B. Design Decisions

Fuzzy TOKEN involves several design decisions, and includes
a set of parameters that determine how aggressive the protocol is

— e.g., how eagerly it changes the fuzzy area size. In this section, we
discuss these design decisions. Default values are given in Sec. IV.

Probability of transmission. In fuzzy mode, the probability of
transmitting may be a function of the fuzzy area size and the distance
to the token holder.

Fuzzy area size update. FUzzy TOKEN uses an additive-
increase-multiplicative-decrease (AIMD) approach to update the
fuzzy area size. This approach increases the fuzzy area size slowly
when the load decreases and reduces it abruptly when collisions are
detected. This is because collisions are more harmful than lost oppor-
tunities to transmit. Such AIMD approach has been shown to lead to
high performance and stability in common protocols. In our scheme,
we update the fuzzy area immediately after silence or collision events
occur. This is in contrast to protocols that modify their behavior after
collecting metrics during an observation epoch (see Sec. VI).

Activation thresholds. In the extremes, FUZZY TOKEN becomes
purely driven by the token passing protocol (focused mode) or the
contention-based protocol (fuzzy mode). Fig. 3 (right side), shows an
example of the two extremes. The figure assumes that #hr; is 3 nodes
and thr, is all the nodes in the chip minus 3. In this case, the chart
where the fuzzy area includes all the nodes minus 2 is operating in
fuzzy mode only. The chart where the fuzzy area includes only two
nodes is operating in focused mode only. By setting the #Ar, and thr,
thresholds, we affect how often the protocol stays in either extreme
mode.

Token passing order. A statically-ordered virtual ring is just
one of the possible ways of ordering the passing of the token. In
any ordering, two hotspot nodes placed close together may lead
to multiple collisions and multiple silences. To alleviate this, the
token passing order can be changed at runtime, possibly in a
pseudo-random way and at every collision. To ensure that all nodes
agree on the same order without having to exchange messages, a
synchronized random number generator seed can be assumed.

C. Walkthrough Example

Fig. 4 shows an example of FUZZY TOKEN’s operation. Fig. 4(a)
shows the node numbering, that Node 0 is the token holder, and that
Nodes 2, 3, 8 and 11 want to transmit. We assume an initial fuzzy
area of 5 and that the protocol is in a fuzzy mode step. Fig. 4(b)
shows the operation in the step. Nodes 3 and 8 are outside the fuzzy
area, whereas Nodes 2 and 11 are in and could contend for the
channel. Assume that only Node 11 proceeds to transmit. Because
the transmission is successful, the next step will start with the same
fuzzy area size and, following Fig. 2, in fuzzy mode. Fig. 4(c) shows
the next step, where the token is owned by Node 1 and the fuzzy area
has rotated. Both Nodes 2 and 3 are within the fuzzy area. Assume
that both proceed to transmit and therefore collide. As a result, the



fuzzy area size will decrease in the next step. We use an AIMD
approach that sets FA,.,, = [ FA,4/2], where FA is the fuzzy area size.
Assume that the new fuzzy area size is less than thr,. As a result, the
next step will start with a fuzzy area size of 3 and, following Fig. 2,
in focused mode. Fig. 4(d) shows the operation in the step. The token
holder (Node 2) transmits successfully. As a result, both the fuzzy
area size and the focused mode remain unchanged. Fig. 4(e) shows
the operation of the next step, where Node 3 is the token holder. In
this step, Node 3 transmits successfully.

IV. SIMULATION ENVIRONMENT

We compare through simulations the average packet latency and
throughput of three different protocols: BRS [4], token passing,
and Fuzzy TOKEN. For a fair comparison, we optimize the token
passing protocol with the same assumption as in FUZZY TOKEN,
namely, that all nodes have a consistent view of the wireless channel.
Thus, the passing of the token is done implicitly, with zero delay.

Evaluations are carried out with the cycle-level Multi2sim [26]
architecture simulator. We augmented Multi2sim with wireless
on-chip communication modules that model collisions and MAC
protocols. Multi2sim admits synthetic traffic and multithreaded
applications. The architecture parameters are summarized in Table
I. A wireless transfer can be performed in four clock cycles: one for
the preamble and three for the payload. BRS [4] and the fuzzy mode
of FUzzy TOKEN use one extra cycle to detect a potential NACK.

A. Traffic Patterns

1) Synthetic Traffic Model: Each of the cores acts as a generator
that injects packets into the network. Typically, NoCs are evaluated
with synthetic traffic models that have, as the main parameter, the
injection rate A in packets/cycle. Common models assume a Poisson
process with the same average injection rate for all cores. However,
in parallel applications, packet injections show a clear self-similarity

caused by the data dependencies between threads of the application.

Moreover, common memory patterns such as producer-consumer
lead to some cores transmitting more often than others. Our traffic
model takes these aspects into account.

To account for the effect of self-similarity, we model a heavy-tailed
distribution of traffic via a Pareto distribution [17]. The value
of the Hurst exponent is H € [0.5,1), which leads to increasing
degrees of self-similarity when approaching 1 [23]. Moreover,
to model an uneven injection of traffic across nodes, we make
use of the hotspotness parameter o proposed in [23]. There,
it was demonstrated that the spatial injection distribution can
be approximated as a Gaussian process where the value of o
represents the standard deviation. Low values of o represent higher
concentrations of traffic around a few selected nodes.

2) Real Applications: We model a wireless architecture in
Multi2sim. This allows us to obtain the latency statistics of the

three MAC protocols when executing multithreaded applications.
Table I shows the details of the manycore architecture modeled.

We model Replica [13] due to (1) its large speedups with respect
conventional architectures, and (2) the relatively high load that it puts
on the wireless network. The NoC and memory parameters are in
line with the state of the art in manycore processor design. We run
a selection of shared-memory multithreaded applications from the
Splash2, Parsec, and Crono benchmark suites, which are suited to
the characteristics of WNoCs.

TABLE I: Simulated architecture.

Architecture

Processor chip 64 cores, x86 ISA, 1 GHz, 22-nm tech
L1 I+D private, 32-KB, 2-way, 64B lines, 2 cycles
L2 shared, 512-KB/core, 8-way, 6 cycles
Coherence MOESI directory + Replica [13]
Off-chip memory 4 controllers, 100 cycles delay
NoC 2D Mesh, 2 cycles/hop, 128-bit links

WNoC Parameters
Network 64 nodes, 80-bit packets (preamble: 20 bits)
MAC protocols BRS [4], Token, FUzZY TOKEN
PHY layer OOK, 20 Gb/s, power: 39 mW (TX), 39 mW (RX) [13]

B. Performance Metrics

The MAC protocols are evaluated on the basis of packet latency
and throughput. Latency is defined as the time between the launching
of a packet into the WNoC and its correct reception at all the intended
destinations, measured in clock cycles. Throughput is measured in
transmitted bits per clock cycle. Another important metric is the
energy consumed per transmitted bit, which may increase due to
collisons. We calculate the energy per transmitted bit Ey;; as

Eyi=Eok (1+LLWNre), Eoxk=Erx+(N—1)Egx, (1)
X

where L, and L, are the length of the preamble and of the
complete packet, respectively, and N,, is the average number of
re-transmissions per successfully transmitted packet. Epg is the
energy per bit of a non-colliding packet. It can be found as a function
of the energy per bit of the transmitting and receiving part of the
wireless transceiver (E7x and Egy, respectively), and the number
of cores N. In turn, if Prx and Pgx are the power consumed by
the wireless transmitter and receiver, respectively, and R is the
transmission speed, we compute Ery = P7x /R and Egy = Py /R.

V. EVALUATION
A. Evaluation with Synthetic Traffic

We start by comparing the protocols with synthetic traffic. By
default, arrivals are distributed Poisson and the injection process is
equidistributed across all cores. The default FUZzY TOKEN config-
uration is: equal 1/k probability of transmission for all the k nodes
inside the fuzzy area, increment the fuzzy area by 1 in each silence,
decrement the fuzzy area to half (with ceiling) in each collision, thr;
= 0.1 x N, thr, = 0.9 x N, and static token ring. In all cases, we
repeat the simulations 10 times and obtain the geometric mean of all
runs. Although we performed a sensitivity analysis for many different
combinations of these parameters, including a Gaussian probability
of transmission function, a wide range of fuzzy area increase/decrease
factors, several pairs of thresholds, and a pseudo-random ring
ordering, the choices shown in this section were found to be optimal.
Due to space constraints, we do not show the sensitivity analyses.

Fig. 5 shows the packet latency (a), packet throughput (b), and en-
ergy per bit and core (c) for the different MAC protocols as the load in-
creases. Fig. 5(a) shows that FUZzYy TOKEN is able to deliver the low
latency of BRS at low loads and almost match the latency of Token
at high loads. At intermediate loads, FUzZY TOKEN can outperform
both BRS and Token thanks to its intelligent management of con-
tention. In Fig. 5(b), we see that FUzzY TOKEN achieves the same
throughput as Token, leaving BRS behind. In fact, at very high loads,
Fuzzy TOKEN ends up converging to Token by design. We finally
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Fig. 5: Performance and energy comparison for different MAC protocols over increasing load.

note that, as Fig. 5(c) illustrates, FUZZY TOKEN achieves high perfor-
mance with only a moderate energy overhead over Token (less than
12%). The overhead is mainly due to collisions at intermediate loads.

Energy-wise, it is also worth noting that the energy consumption
of Token is not affected by the load, since the token is passed
implicitly, and thus does not consume energy. This, however, comes
at the cost of high latency at low loads. In contrast, the energy of
BRS increases with the load because of increasing collisions, but
then decreases. This effect is due to the finite population of the chip
scenario: at very high loads, the backoff reaches high values and
reduces the probability of collisions at the expense of unacceptable
latency. FUZZY TOKEN attains the low-load latency of BRS while
avoiding its high energy consumption at higher loads.

Fig. 6 shows the latency distribution of the three protocols for
two different loads: a moderate one (A;=0.045 packets per cycle per
chip) and an intermediate one (A\,=0.110 packets per cycle per chip).
These loads are also shown in Fig. 5.

At A\=0.045 (Fig. 6(a)), most transmissions take less than 30
cycles with BRS, less than 60 with FUZzY TOKEN, and less than 90
with Token. However, due to collisions, 1.29% of the packets with
BRS take more than 500 cycles, with a worst-case of ~3400 cycles.
On the other hand, FuzzY TOKEN has a worst-case of ~330 cycles,
which is the best among the three protocols.

At A\=0.110 (Fig. 6(b)), BRS still delivers many packets within
the first 60 cycles. However, due to the high number of collisions,
28.9% of the packets take more than 500 cycles to be delivered,
with a worst-case of ~110,000 cycles. On the other hand, Fuzzy
TOKEN also delivers many packets within the first 60 cycles, while
providing a worst-case latency of ~390 cycles (again the best among
the three protocols). Overall, these plots show the difference between
BRS and Fuzzy TOKEN. At moderate loads, BRS does well but,
at intermediate loads, BRS generates a long tail. In contrast, FUzzy
TOKEN approaches the best of BRS and Token at all loads.
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Fig. 6: Latency cumulative distribution function for the protocols
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(b) Intermediate load, A\, =0.110.
Tail: 28.9% in BRS, 0% in others.

1) Hotspot Traffic: In hotspot workloads, a few processors
inject most of the traffic. In this situation, it has been shown that
contention-based protocols such as BRS outperform more rigid
collision-free alternatives such as Token [18]. To confirm the

hypothesis that FUzzy TOKEN approaches the best of the two types
of protocols, we increase the spatial concentration of the traffic via
the o parameter mentioned in Section IV-Al (i.e., low o means
more hotspot traffic). The inter-arrival time is kept exponential.

Figs. 7(a) and 7(b) show the latency for hotspot traffic with
different o values, at A\; =0.045 and A, =0.110 packets per cycle
per chip, respectively. With A; = 0.045, the load is moderate and
contention is low. We show that FUzzy TOKEN is just a couple
of cycles slower than BRS, which maintains a very low latency
regardless of the value of . This is because FUzzy TOKEN has a
large fuzzy area and, therefore, nodes can transmit as soon as they
generate the packets, irrespective of their location. Token has a high
latency, which worsens for low o because the few transmitting nodes
have to wait for their turn to issue a packet.

With A\; =0.110 (Fig. 7(b)), contention starts to become important.
In this case, BRS still benefits from a low number of contenders
at small o, as traffic becomes more concentrated. Token performs
poorly in such a situation because many clock cycles are wasted
passing the token between a few hotspot nodes. FUZzZY TOKEN is
capable of maintaining a low latency across all situations, outperform-
ing the two other protocols in nearly all cases. Similar tendencies
are observed for loads beyond X,, but are not shown for brevity.
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Fig. 7: Latency for hotspot traffic with different o values. Lower o
means that fewer nodes inject most of the traffic.

2) Bursty Traffic: We repeat the same set of experiments now
changing the temporal distribution of traffic, assuming o = 100.
Burstiness is modeled via the Hurst exponent H mentioned in Sec.
IV-A1l, with higher H values leading to longer bursts and longer
intervals between bursts.

Figs. 8(a) and 8(b) show the packet latency for different H values,
at A\; =0.045 and )\, =0.110 packets per cycle per chip, respectively.
‘We observe that burstiness is detrimental for most mechanisms,
especially for contention-based protocols like BRS. This is already
patent at low loads: bursty injections create collisions. The latency of
Token also increases, but its collision-free nature absorbs the bursts
better. FUzZY TOKEN is capable of achieving the best performance
at all burstiness levels. This is because the first collisions occurring
at the burst onset make FUZzZY TOKEN to become pure token
passing. As the burst is being served, the fuzzy area grows gradually
and allows the last nodes of the burst to access the channel earlier.



Fig. 8(b) serves to confirm that increasing the load leads to early
saturation, especially for BRS. Fuzzy TOKEN avoids contention
and converges to Token to better absorb the intense bursty traffic.
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B. Evaluation with Real Applications

Fig. 9 shows the average packet latency for different MAC
protocols normalized to that of FUZZY TOKEN in real applications.
This figure showcases the strengths of FUzzy TOKEN, which
consistently provides a latency that is among the lowest of the three
protocols. On average, FUzZY TOKEN’s latency is 4.4 x lower than
BRS’, and 2.6 x lower than Token’s.
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Fig. 9: Average packet latency normalized to FUZzZY TOKEN’s
latency for real applications.

Applications such as canneal and radiosity have a relatively low
load and, therefore, Token performs poorly. Other applications such
as water and CC are communication-intensive and inherently bursty.
As a result, BRS suffers an average latency that is two orders of
magnitude higher than that of FUZzY TOKEN. In cases such as
bodytrack and ocean-nc, Fuzzy TOKEN outperforms both BRS
and Token, since traffic alternates between different types of patterns
where FUZZY TOKEN is consistently better.

VI. RELATED WORK

Multiplexing: The first MAC protocols proposed for the
WNoC paradigm used time-, frequency-, or code-division
multiplexing [11, 16]. Those approaches, however, do not scale well
beyond a few cores due to the hardware overhead.

Token passing: Different ways of performing token arbitration
have been examined [6, 19]. They work well for distributed, high
loads, but not for heterogeneous or hotspot traffic. Also, the protocols
are not adaptive and do not scale. Mansoor ef al. attempt to minimize
these issues with a predictive scheme that estimates the optimal token
occupancy of each node [19]. Duraisamy et al. [12] propose a token-
like distributed arbitration protocol with single-bit concurrent probing.
However, the probing introduces unfeasible bit-level synchronization
requirements. FUZZY TOKEN does not need such complex hardware
while still leveraging the advantages of token passing at high loads.

Contention-based protocols: They have been explored for
WNoCs [4, 18] due to their low latency at low loads. At high loads,
however, they saturate early due to collisions. FUZZY TOKEN
borrows concepts from BRS-MAC [4], but builds a hybrid protocol
that reacts before collisions become too costly.

Hybrid approaches: In [13, 18], token/contention hybrid proto-
cols are proposed to leverage the benefits of both approaches. In [18],
utilization metrics are gathered and used to switch between token or
random access modes, whereas [13] decides which protocol to use
based on the load observed during the first thousands of execution
cycles of an application. Instead of working as two discrete protocols
connected by a controller, FUZZY TOKEN represents a continuous
solution that naturally adapts to the load, for all kinds of workloads.

VII. CONCLUSIONS

This paper has presented Fuzzy TOKEN, a MAC protocol
uniquely tailored to the particularities of the WNoC scenario. We
have shown that with a set of simple rules, FUZzY TOKEN can
achieve the low latency of contention-based protocols at low loads
and the high throughput of fair collision-free protocols such as
token passing at high loads. We have evaluated our protocol in a
variety of synthetic traffic patterns and with real application traces,
demonstrating 4.4x and 2.6x average reductions in packet latency
relative to other state-of-the-art protocols.

REFERENCES

[11 AMD Epyc 7742 Processor. https://www.amd.com/en/products/cpu/amd-epyc-7742.

[2] Ampere Altra 64-Bit Multi-Core ARM Processor. https://amperecomputing.com/altra/.

[3] Intel Xeon Platinum 9282 Processor. https://www.intel.com/content/www/us/en/products/
processors/xeon/scalable/platinum- processors/platinum-9282.html.

[4] S. Abadal, er al. WiSync: An Architecture for Fast Synchronization through On-Chip
Wireless Communication. In Proceedings of ASPLOS ’16, pages 3-17, 2016.

[5] S. Abadal, et al. Medium Access Control in Wireless Network-on-Chip: A Context

Analysis. IEEE Commun. Mag., 56(6):172-178, 2018.

S. Abadal, ef al. OrthoNoC: A Broadcast-Oriented Dual-Plane Wireless Network-on-Chip

Architecture. IEEE Trans. Parallel Distrib. Syst., 2018.

[7]1 J.L. Abellan, et al. Electro-Photonic NoC Designs for Kilocore Systems. ACM J. Emerg.
Tech. Com., 13(2), 2016.

[8] H. M. Cheema and A. Shamim. The Last Barrier: On-Chip Antennas. [EEE Microw.
Mag., 14(1):79-91, 2013.

[9]1 G. Chen, et al. A 340 mV-to-0.9 v 20.2 Tb/s Source-Synchronous Hybrid Packet/Circuit-
Switched 16 x 16 Network-on-Chip in 22 nm Tri-Gate CMOS. [EEE J. Solid-State
Circuits, 50(1):59-67, 2015.

[10] S. Das, et al. Optimizing 3D NoC Design for Energy Efficiency: A Machine Learning
Approach. In Proceedings of ICCAD ’15,2015.

[11] D.DiTomaso, et al. A-WiNoC: Adaptive Wireless Network-on-Chip Architecture for Chip
Multiprocessors. IEEE Trans. Parallel Distrib. Syst., 2015.

[12] K. Duraisamy, ef al. Enhancing Performance of Wireless NoCs with Distributed MAC
Protocols. In Proceedings of ISQED 15, 2015.

[13] V. Fernando, er al. Replica: A Wireless Manycore for Communication-Intensive and
Approximate Data. In Proceedings of ASPLOS ’19, 2019.

[14] T. Krishna, et al. Towards the Ideal On-chip Fabric for 1-to-Many and Many-to-1
Communication. In Proceedings of MICRO-44,2011.

[15] H. Kwon, et al. A Communication-Centric Approach for Designing Flexible DNN
Accelerators. IEEE Micro, 38(6):25-35, 2018.

[16] S.-B. Lee, et al. A Scalable Micro Wireless Interconnect Structure for CMPs. In
Proceedings of MOBICOM °09, 2009.

[17] W. E. Leland, er al. On the Self-Similar Nature of Ethernet Traffic.
Transactions on Networking, 2(1):1-15, 1994.

[18] N. Mansoor and A. Ganguly. Reconfigurable Wireless Network-on-Chip with a Dynamic
Medium Access Mechanism. In Proceedings of NOCS 15, 2015.

[19] N. Mansoor, et al. A Demand-Aware Predictive Dynamic Bandwidth Allocation
Mechanism for Wireless Network-on-Chip. In Proceedings of SLIP ’16, 2016.

[20] H. Mondal, et al. Interference-Aware Wireless Network-on-Chip Architecture using
Directional Antennas. IEEE Trans. Multi-Scale Comput. Syst., 2017.

[21] G. P. Nychis, ef al. On-Chip Networks from a Networking Perspective: Congestion and
Scalability in Many-Core Interconnects. In Proceedings of SIGCOMM 12, 2012.

[22] D. Sanchez, et al. An Analysis of On-Chip Interconnection Networks for Large-Scale
Chip Multiprocessors. ACM T. Archit. Code Op., 7(1), 2010.

[23] V. Soteriou, H. Wang, and L. Peh. A Statistical Traffic Model for On-Chip Interconnection
Networks. In Proceedings of MASCOTS 06, 2006.

[24] K. Terplan and P. A. Morreale. The Telecommunications Handbook. CrC Press, 2018.

[25] X. Timoneda, ef al. Engineer the Channel and Adapt to it: Enabling Wireless Intra-Chip
Communication. IEEE Transactions on Communications, 68(5):3247-3258, 2020.

[26] R. Ubal, et al. Multi2Sim: A Simulation Framework for CPU-GPU Computing. In
Proceedings of PACT ’12, 2012.

[27] X. Xiang, et al. A Model for Application Slowdown Estimation in On-Chip Networks and
Its Use for Improving System Fairness and Performance. In /CCD ’16, 2016.

28] X. Yu, et al. Architecture and Design of Multi-Channel Millimeter-Wave Wireless
Network-on-Chip. IEEE Design & Test, 31(6):19-28, 2014.

[6

IEEE/ACM



