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DECAY OF QUASI-STATIC POROUS-THERMO-ELASTIC WAVES

A. MAGAÑA∗ AND R. QUINTANILLA

Departament de Matemàtiques, UPC

C. Colom 11, 08222 Terrassa, Barcelona, Spain

Abstract: We study the behavior in time of the solutions to several systems of
equations for porous-thermo-elastic problems when one of the variables is consid-
ered to be quasi-static or, in other words, whose second time derivative can be
neglected. We analyze three di�erent situations using the classical Fourier law and
also the type II or type III Green-Naghdi heat conduction models.

Keywords: types II/III thermoelasticity, quasi-static, exponential decay.

1. Introduction

Since the Cosserat brothers [3] proposed the micropolar elastic materials theory, many authors
have tried to generalize it to other kind of elastic materials. In the second half of the past century
new proposals were made following and according to the axioms of thermomechanics. Goodman
and Cowin [13] set the foundations of a continuum theory for granular materials with interstitial
voids. The basic idea lies in writing the bulk density as the product of the density matrix by the
volume fraction. Later, Cowin and Nunziato [4, 5, 32] developed the theory of elastic solids with
voids aiming to model the behavior of materials with pores or small voids distributed within them.
Their theory has been extended to situations where the heat a�ects also the materials [18, 19, 20].

On the other hand, there are several theories in the literature describing the heat conduction. Green
and Naghdi [14, 15, 16], for example, proposed three di�erent models for thermoelastic materials.
They just called these theories as type I, II and III. The type I coincides with the classical Fourier
theory. In types II and III a new variable, the thermal displacement, is contemplated. These two
theories are being deeply studied nowadays. We are convinced that a lot of interesting new results
can be found using the type II and type III Green-Naghdi models because in them there are some
couplings among the �eld equations that were not present in the classical Fourier formulation.
Determine the consequences of these couplings is one of our aims.

In our opinion, it is quite important to know how the solutions to the porous-thermo-elasticity
problems behave with respect to the time variable depending on the damping mechanisms present
in the system and on the considered theory used to describe the situation that is being analyzed.
In fact, in the last twenty years a great e�ort has been made to know this behavior [1, 2, 9, 10,
11, 12, 23, 33, 35, 36, 37, 38]. As a matter of example, let us recall that for the Fourier heat
conduction, generically, a dissipative mechanism in�uencing the pores microstructure is needed
to obtain the exponential decay. However, it has been recently proved that the same behavior is
obtained for the type II and type III theories without any alternative damping [21, 29, 30]. Even
more, if the type III with microtemperatures is considered, the exponential decay can be proved
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also in the three dimensional case [26, 27]. This fact is relevant because for the classical Fourier
theory the decay is, generically, slow in the two and in the three dimensional cases.

Mosconi [31] proposed the concept of quasi-static for the situation in which the deformations of
the microvoids are so small that their second time derivative can be neglected. One can consider
this idea for the other variables present in the problem and, hence, we can speak of quasi-static
displacement or quasi-static temperature, for example. In all these situations, the second time
derivative of the quasi-static variable is supposed to be approximately zero.

Magaña and Quintanilla [25] studied the porous-elasticity situation with quasi-static microvoids.
Recently, Magaña et al. [28] analyzed the type II porous-thermo-elaticity supposing again that the
quasi-static variable was the voids' deformation. In this work we want to go further: we impose
the quasi-static hypothesis in the displacement, in the volume fraction again but supposing a new
damping mechanism in the system, and also in the temperature.

The plan of the paper is as follows. In Section 2 we set the problem and write the general system
of equations we want to work with. Then we analyze di�erent cases of the problem considering
that one of the variables is quasi-static: the displacement in Section 3, the microvoids in Section
4, and the temperature in Section 5. For each case we study two di�erent systems of equations
and compare the behavior of the solutions. We summarize our results in Section 6.

2. Basic equations

First of all, we describe the problem. We will use the standard notation: a subscript of a function
means its derivative with respect to the variable indicated in the subscript and a superposed dot (or
dots) means time derivative (of �rst or second order). We try to state the more general situation
and later we restrict our attention to the speci�c cases we want to analyze.

We consider the theory of thermo-porous-elastic materials when the heat conduction is described by
the Green-Naghdi type III model that is the more general. In this model, the evolution equations
for the one-dimensional situation are given by

(2.1)
ρü = tx
JΦ̈ = hx + g
ρη̇ = qx

Variable u represents the displacement, Φ denotes the volume fraction, η the entropy, t the stress,
h the equilibrated stress, g the equilibrated body force and q the heat �ux. As usual, parameters
ρ and J stand for the mass density and for the product of the mass density by the equilibrated
inertia, respectively, and they are supposed to be positive.

The constitutive equations are the following (see [6]):

(2.2)

t = µux + bΦ− βθ + µ∗u̇x
h = δΦx + lαx + δ∗Φ̇x + l∗1α̇x
g = −bux − ξΦ +mθ
ρη = βux + cθ +mΦ

q = kαx + lΦx + k∗α̇x + l∗2Φ̇x

We recall that in the type II/III models, α denotes the thermal displacement and θ the relative
temperature. Both variables are related in the following way

(2.3) α(x, t) = α0(x) +

∫ t

0
θ(x, s) ds.
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Substituting the constitutive equations into the evolution equations we obtain the following system
of �eld equations:

(2.4)


ρü = µuxx + bΦx − βθx + µ∗u̇xx
JΦ̈ = δΦxx + lαxx − bux − ξΦ +mθ + δ∗Φ̇xx + l∗1α̇xx
cθ̇ = lΦxx + kαxx − βu̇x −mΦ̇ + l∗2Φ̇xx + k∗α̇xx

We distinguish between the basic conservative coe�cients J , ρ, µ, b, β, δ, l, ξ, m, c and k and the
dissipation coe�cients: µ∗, δ∗, k∗, l∗1 and l∗2. As we said, we assume that J , ρ and c are positive.
For the other basic constitutive coe�cients we also suppose that

(2.5) µ > 0, δ > 0, µξ > b2, δk > l2.

And for the dissipation coe�cients it is commonly assumed that

(2.6) µ∗ ≥ 0, 4k∗δ∗ ≥ (l∗1 + l∗2)2.

The above assumptions are quite standard in the thermomechanical context. Conditions (2.5)
are related with the elastic stability of the system. On the other hand, notice that if dissipation
coe�cients δ∗ and k∗ satisfy δ∗k∗ = 0, therefore it must be l∗1 = l∗2 = 0 to guarantee the dissipative
structure. In fact, it would be possible to consider a dissipative case even when δ∗k∗ = 0 but
l∗1 = −l∗2. However, we restrict our analysis to the situations where Onsager's postulate applies
(see, for example, [8], page 55). Following Onsager, it must be l∗1 = l∗2 and, therefore, l∗i = 0
whenever δ∗k∗ = 0.

It is quite obvious that this system, with all the dissipation mechanisms introduced, is exponentially
stable. But a natural question arises: will this behavior remain if only one damping mechanism is
taken into account and one of the variables is considered to be quasi-static?

In this work, we will study some di�erent cases of system (2.4) depending on the assumptions over
the dissipation terms, on the variable which is assumed to be quasi-static and on the model used
to describe how the temperature behaves. Actually, we are mainly interested in the behavior of
the solutions for three possible scenarios, the ones obtained by assuming the following hypotheses
over the quasi-static variable and the damping coe�cients:

(1) ü ≈ 0, µ∗ > 0.

(2) Φ̈ ≈ 0, δ∗ > 0.

(3) θ̇ ≈ 0, k∗ > 0.

We study system (2.4) in B × T , where B = [0, π] and T = [0,∞). To have a well posed problem
we need to impose boundary and initial conditions. Nevertheless, we will use di�erent boundary
conditions depending on the case we want to study in order to simplify the analysis. Hence, we
will set them for each case.

3. Case 1: Quasi-static displacement

We start our analysis supposing that the displacement is small enough to be neglected (ü ≈ 0).
In fact, to emphasize the important results we study two di�erent systems: �rst we consider the
type I heat conduction theory and later we analyze the type II model.
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3.1. The classical porous-thermo-elasticity. Let us take the classical system of displacement,
porosity and temperature when this last variable is modeled using the Fourier law. We assume
that there are two damping mechanisms in the system: viscoelasticity and thermal dissipation.
Therefore, the system of equations is given by

(3.1)


0 = µuxx + bΦx − βθx + µ∗u̇xx
JΦ̈ = δΦxx − bux − ξΦ +mθ

cθ̇ = −βu̇x −mΦ̇ + k∗θxx

The above system can be obtained from (2.4) by imposing k = l = δ∗ = 0 (and ü ≈ 0). As we said
before, in this case it is also clear that l∗1 = l∗2 = 0. We suppose that µ∗ and k∗ are positive.

We will see that the decay of the solutions is slow. This behavior coincides with the one observed
for the non quasi-static case (see [24]). Nevertheless, the results we obtain here are by no means
trivially derived from the previous ones. In fact, the system of equations changes signi�cantly
because in the normal case it is composed of two second order in time partial di�erential equations
plus one of �rst order while now we have two of �rst order and one of second order.

To make the analysis easier, we propose appropriate boundary and initial conditions. In this case,
as to the boundary conditions we take

(3.2) ux(0, t) = ux(π, t) = Φ(0, t) = Φ(π, t) = θ(0, t) = θ(π, t) = 0.

As for the initial conditions we consider

(3.3) u(x, 0) = u0(x), Φ(x, 0) = Φ0(x), Φ̇(x, 0) = ϕ0(x), θ(x, 0) = θ0(x).

To avoid the possibility of having solutions uniform in the variable x which do not damp in time
we assume that ∫ π

0
u0(x) dx = 0.

Let us suppose that there exists a solution to system (3.1) with the above boundary and initial
conditions of the form

(3.4) u = Aeωt cos(nx), Φ = Beωt sin(nx), θ = Ceωt sin(nx),

such that Re(ω) > −ε for all positive ε small enough. This fact implies that a solution ω as
near as desired to the imaginary axis can be found, and, hence, it is impossible to have uniform
exponential decay on the solutions to problem (3.1)�(3.3).

Imposing that u, Φ and θ in system (3.1) are as above, we obtain the following homogeneous
system on the unknowns A, B and C:

(3.5)

 nµ+ nωµ∗ −b β
bn −δn2 − Jω2 − ξ m
−nβω mω k∗n2 + cω

 A
B
C

 =

 0
0
0

 .

This linear system has nontrivial solutions if and only if the determinant of the coe�cients matrix
is zero. In that case, ω would be a root of the following fourth degree polynomial:

(3.6) p(z) = a0z
4 + a1z

3 + a2z
2 + a3z + a4
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where

a0 = cJµ∗n
a1 = Jn

(
β2 + cµ+ k∗µ∗n2

)
a2 = µ∗n

(
c
(
δn2 + ξ

)
+m2

)
+ Jk∗µn3

a3 = −b2cn− 2bβmn+ cδµn3 + cµξn+ δk∗µ∗n5 + k∗µ∗ξn3 + µm2n+ β2δn3 + β2ξn
a4 = k∗n3

(
µδn2 + µξ − b2

)
We want to prove that there are roots of p(z) as near to the complex axis as desired. Equivalently,
we would prove that for any ε > 0 there are roots located on the right side of the vertical line
Re(z) = −ε. So, it will be su�cient to show that there exists a root with positive real part for
polynomial p(z − ε). We use the Routh-Hurwitz theorem to show it (see, for example, Dieudonné
[7]). It says that, if a0 > 0, then all the roots of polynomial p(z) have negative real part if and
only if a4 and all the leading diagonal minors of matrix

(3.7)


a1 a0 0 0
a3 a2 a1 a0

0 a4 a3 a2

0 0 0 a4


are positive. Let Λi for i = 1, 2, 3, 4 be the leading diagonal minors of matrix (3.7) corresponding
to polynomial p(z − ε).
Direct calculations prove that there exists n large enough that makes Λ3 < 0. In fact, this minor
is an eleventh degree polynomial with respect to n of the form

Λ3 = −2δJ2 (k∗)3 (µ∗)3 ε n11 + q9(n),

where q9(n) is a ninth degree polynomial. Notice that the main coe�cient of Λ3 is negative.

This argument proves that a uniform rate of decay of exponential type cannot be obtained for all
the solutions and, hence, the decay of the solutions is slow.

3.2. Type II with quasi-static displacement. We still suppose that ü ≈ 0. However, we use
now the Green-Naghdi type II model to describe the thermal behavior. In this model, the thermal
displacement α plays an essential role. As to the dissipation, we take δ∗ = k∗ = 0 and µ∗ > 0 in
(2.4). That means that we are considering the usual viscoelastic dissipation. Hence, we obtain the
following system of equations:

(3.8)


0 = µuxx + bΦx − βθx + µ∗u̇xx
JΦ̈ = δΦxx + lαxx − bux − ξΦ +mθ

cθ̇ = kαxx + lΦxx − βu̇x −mΦ̇

We consider Neumann boundary conditions for the displacement u and Dirichlet conditions for
the volume fraction Φ and the thermal displacement α:

(3.9) ux(0, t) = ux(π, t) = Φ(0, t) = Φ(π, t) = α(0, t) = α(π, t) = 0.

As for the initial conditions we consider

(3.10) u(x, 0) = u0(x), Φ(x, 0) = Φ0(x), Φ̇(x, 0) = ϕ0(x), α(x, 0) = α0(x), α̇(x, 0) = θ0(x).

Assumptions (3.9) implies that the stress is null at the boundary. This is a quite reasonable
condition from a mechanical point of view.

We want to prove that the problem given by (3.8)�(3.10) has a unique solution which is exponen-
tially stable with respect to the time variable. To do so, we use the semigroup arguments.
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Integrating the �rst equation with respect to x, and taking into account (3.9), we obtain

−µ∗u̇x = µux + bΦ− βθ.
We introduce the symbol ∆−1 to denote the inverse of the Laplacian operator with Neumann
boundary conditions. As we are considering boundary conditions (3.9), ∆−1 is a homeomor�sm
from L2

∗ onto H
2∩L2

∗∩{f : fx(0, t) = fx(π, t) = 0}, where, as usual in the literature, L2
∗ is de�ned

by

L2
∗ =

{
f ∈ L2 :

∫ π

0
f(x) dx = 0

}
.

Therefore, we can write system (3.8) in the following way:

(3.11)


µ∗u̇ = −∆−1 [µuxx + bΦx − βθx]

JΦ̈ = δΦxx + lαxx − bux − ξΦ +mθ

cθ̇ = kαxx + lΦxx −mΦ̇ + β
µ∗ (µux + bΦ− βθ)

To study this system, we introduce suitable notation and consider an appropriate Hilbert space.
Let us write ϕ = Φ̇. With the aforementioned notation, system (3.11) can be written as:

(3.12)



u̇ = − 1
µ∗∆

−1
[
µD2u+ bDΦ− βDθ

]
Φ̇ = ϕ
ϕ̇ = 1

J

(
δD2Φ + lD2α− bDu− ξΦ +mθ

)
α̇ = θ

θ̇ = 1
c

[
lD2Φ + kD2α−mϕ+ β

µ∗ (µDu+ bΦ− βθ)
]

We will analyze this system in the Hilbert space H = H1
∗×H1

0×L2×H1
0×L2, where H1

∗ = H1∩L2
∗.

Let us de�ne an inner product in H which is equivalent to the usual one. Given two elements of
H, U = (u,Φ, ϕ, α, θ) and U∗ = (u∗,Φ∗, ϕ∗, α∗, θ∗), its inner product is de�ned by
(3.13)

〈U,U∗〉 =

∫ π

0

(
µuxu

∗
x+Jϕϕ∗+cθθ

∗
+δΦxΦ

∗
x+ξΦΦ

∗
+b(uxΦ

∗
+u∗xΦ)+l(Φxα

∗
x+Φ

∗
xαx)+kαxα

∗
x

)
dx,

where a bar over a variable denotes its complex conjugate.

The following step consists in analyze system (3.12), with its corresponding boundary and initial
conditions, in the Hilbert space H using the matrix operator

(3.14) A =


− µ
µ∗∆

−1D2 − b
µ∗∆

−1D 0 0 β
µ∗∆

−1D

0 0 I 0 0

− b
JD

δ
JD

2 − ξ
J I 0 l

JD
2 m

J I
0 0 0 0 I

µβ
cµ∗D

l
cD

2 + βb
cµ∗I −m

c I
k
cD

2 − β2

cµ∗I

 .

In matrix A the symbol I denotes the identity.

Using matrix A, the problem that we want to study can be stated as

(3.15)
dU

dt
= AU, with U0 = (u0,Φ0, ϕ0, α0, θ0).

The domain of A, that we will denote by D(A), is the set

D(A) = {U ∈ H : Φ ∈ H2, ϕ ∈ H1
0 , α ∈ H2, θ ∈ H1

0}.
It is dense in the Hilbert space H.
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Lemma 3.1. The operator A is dissipative. This means that for any U ∈ D(A), <〈AU,U〉 ≤ 0.

Proof. It is not di�cult to see that

<〈AU,U〉 = − 1

µ∗

∫ π

0
|µux + bΦ− βθ|2dx.

�

Lemma 3.2. The resolvent of A contains the origin of the complex plane (sometimes, to shorten,
this is written as 0 ∈ %(A)).

Proof. For any F = (f1, f2, f3, f4, f5) ∈ H, we have to �nd U ∈ H such that AU = F . In other
words, we have to prove that the following system of equations has a solution:

(3.16)

− 1
µ∗∆

−1
[
µD2u+ bDΦ− βDθ

]
= f1

ϕ = f2

1
J

(
δD2Φ + lD2α− bDu− ξΦ +mθ

)
= f3

θ = f4

1
c

[
lD2Φ + kD2α−mϕ+ β

µ∗ (µDu+ bΦ− βθ)
]

= f5


To obtain the solution we will consider the development of fi for i = 1, ..., 5 in Fourier series.
Taking into account the Hilbert space H, we know that

f1 =
∑

f1
n cosnx, and fj =

∑
f jn sinnx, for j = 2, 3, 4, 5,

with

(3.17)
∑

n2(f in)2 <∞, for i = 1, 2, 4 and
∑

(f in)2 <∞, for i = 3, 5.

We want to �nd the solution written also as Fourier series:

u =
∑

un cosnx, Φ =
∑

φn sinnx, ϕ =
∑

ϕn sinnx, α =
∑

αn sinnx, θ =
∑

θn sinnx.

We want to �nd coe�cients un, φn, ϕn, αn and θn in terms of the f in. Notice that from the second
and fourth equations of system (3.16) it follows that ϕn = f2

n and θn = f4
n for all n. Hence, system

(3.16) becomes

(3.18)

µD2u+ bDΦ = −µ∗D2f1 + βDf4

δD2Φ + lD2α− bDu− ξΦ = Jf3 −mf4

lD2Φ + kD2α+
β

µ∗
(µDu+ bΦ) = mf2 +

β2

µ∗
f4 + cf5


Replacing each variable by its Fourier series and simplifying, we obtain the following system for
each n:

(3.19)

−µn2un + bnφn = µ∗n2f1
n + βnf4

n

bnun −
(
δn2 + ξ

)
φn − ln2αn = Jf3

n −mf4
n

−βµnun +
(
βb− lµ∗n2

)
φn − kµ∗n2αn = µ∗mf2

n + β2f4
n + cµ∗f5

n
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The solution to that system is given by

un =
n3µ∗(δk − l2)f1

n + r2(n)

n
(
n2µ(δk − l2) + (µξ − b2)k

)
φn =

n (bkµ∗ + lβµ) f1
n + s0(n)

n2µ(δk − l2) + (µξ − b2)k

αn =
−n3 (blµ∗ + βδµ) f1

n + t2(n)

n2
(
n2µ(δk − l2) + (µξ − b2)k

)
where r2(n) and t2(n) are polynomials of degree two whose coe�cients involve the system co-
e�cients and also f in for i = 1, ..., 5 and s0 is a constant involving the same parameters. The
denominators in the above fractions are strictly positive for all n from the hypotheses over the
constitutive coe�cients. Moreover, from the obtained values and from assumptions (3.17), it is
not di�cult to see that

∑
n2(un)2 < ∞,

∑
n4(φn)2 < ∞ and

∑
n4(αn)2 < ∞, and, hence, they

are in the domain of the operator. Regularity conditions can also be checked.

Finally, in view of the obtained results, it is also clear that there exists a real number K such that
‖U‖ ≤ K‖F‖ and this implies that the inverse of A is continuous. �

The existence and uniqueness of the solutions is a consequence of the previous lemmas together
with the Lumer�Phillips theorem. We summarize this fact in the following theorem.

Theorem 3.3. The operator A generates a C0-semigroup of contractions S(t) = {eAt}t≥0 in
H. Therefore, for each U0 ∈ D(A), there exists a unique solution U(t) ∈ C1([0,∞),H) ∩
C0([0,∞),D(A)) to problem (3.15).

We focus now on the stability of the solutions. We have to add another hypothesis to the consti-
tutive coe�cients: lβ 6= 0.

We will use the characterization given by Huang [17] or Prüss [34]. In order to make this paper
self-contained, we recall it bellow.

Theorem 3.4. Let S(t) = {eAt}t≥0 be a C0-semigroup of contractions on a Hilbert space. Then

S(t) is exponentially stable if and only if iR ⊂ %(A) and lim
|λ|→∞

‖(iλI − A)−1‖L(H) <∞.

Two conditions should to be shown. Let us prove them in two di�erent lemmas.

Lemma 3.5. Let A be the matrix operator de�ned before. The resolvent of A contains the imagi-
nary axis of the complex plane (in short: iR ⊂ %(A)).

Proof. The �rst part of the proof is related with general properties of the operator A, it is quite
standard and we prefer to omit it here in order to not enlarge the paper too much. The second
part (see [22], page 25) begins by supposing that the intersection of the imaginary axis and the
spectrum is non-empty. This part is speci�c for each particular system we analyze and we believe
that is the part that deserves to be proved in detail. We suppose then that there exist a sequence
of real numbers λn with λn → $, |λn| < |$| and a sequence of vectors Un = (un,Φn, ϕn, αn, θn)
in D(A) and with unit norm such that ‖(iλnI − A)Un‖ → 0.
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If we write the above expression term by term, we obtain the following conditions:

iµ∗λnun + ∆−1
(
µD2un + bDΦn − βDθn

)
→ 0, in H1(3.20)

iλnΦn − ϕn → 0, in H1(3.21)

iJλnϕn − δD2Φn − lD2αn + bDun + ξΦn −mθn → 0, in L2(3.22)

iλnαn − θn → 0, in H1(3.23)

icλnθn − lD2Φn − kD2αn +mϕn −
β

µ∗
(
µDun + bΦn − βθn

)
→ 0, in L2(3.24)

Selecting the real part of the product 〈(iλnI − A)Un, Un〉 and taking into account Lemma 3.1, it
is clear that

(3.25) µDun + bΦn − βθn → 0, in L2.

Hence, from (3.20), it follows that

(3.26) λnun → 0 in H1,

and, in particular, un → 0 in H1, which yields Dun → 0.

Notice that (3.25) reduces to bΦn − βθn → 0, in L2, or, analogously, θn ≈ b
βΦn in L2.

Now we remove from (3.24) the term that tends to zero, substitute θn by b
βΦn and ϕn by iλnΦn,

divide all by λn and multiply the resulting expression by Φn:

(3.27) 〈icλn
b

β
Φn,Φn〉+ l〈DΦn, DΦn〉 − k〈D2αn,Φn〉+m〈iλnΦn,Φn〉 → 0 in L2.

It is clear that the �rst and fourth terms of the above expression have null real part. Let us
concentrate in the third one:

(3.28) 〈D2αn,Φn〉 = 〈αn, D2Φn〉 = 〈θn
i
,
D2Φn

λn
〉 = 〈bΦn

iβ
,
D2Φn

λn
〉 = −〈bDΦn

iβ
,
DΦn

λn
〉.

We have used integration by parts, expression (3.23) and, again, θn ≈ b
βΦn. Moreover, if we divide

expressions (3.22) and (3.24) by λn and, after that, multiply both by Φn it is clear that D2Φn
λn

is

bounded because being δk > l2 it can be obtained as a linear combination of other bounded terms.

Hence, the only real part in (3.27) is l〈DΦn, DΦn〉 and, in consequence, DΦn tends to 0. Therefore,
θn → 0 in L2.

Removing in (3.22) the terms that go to zero amb multiplying then by αn we get

(3.29) 〈iJϕn, λnαn〉 − δ〈D2Φn, αn〉 − l〈D2αn, αn〉 −m〈θn, αn〉 → 0.

Using integration by parts, taking into account (3.23) and the fact that 〈iJϕn, λnαn〉 tends to
zero, we can rewrite the above expression as

(3.30) δ〈DΦn, Dαn〉+ l〈Dαn, Dαn〉 −m〈iλnαn, αn〉 → 0,

which yields Dαn → 0 because the �rst and the third terms tend to zero.

Finally, to prove that ϕn tends to 0 it is enough to multiply (3.22) by Φn.

This argument proves that vector Un cannot be of unit norm and, hence, we arrive a contradiction.
�

Lemma 3.6. The operator A satis�es that lim
|λ|→∞

‖(iλI − A)−1‖L(H) <∞.
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Proof. If the statement of the lemma was not satis�ed, therefore a sequence of real numbers λn
exists such that |λn| → ∞ and expressions (3.20)�(3.24) hold. With this assumption, following
the same arguments used to prove Lemma 3.5, we arrive also a contradiction. Notice that the
arguments we have used work when λn does not tend to zero and, hence, will work also when λn
tends to any other real number or even if it tends to in�nity. Notice also that from expression
(3.23) λnαn is bounded even though λn is not (moreover, λnαn → 0 in L2). �

Theorem 3.7. The C0-semigroup S(t) = {eAt}t≥0 is exponentially stable. That is, there exist two
positive constants M and p such that ‖S(t)‖ ≤M‖S(0)‖e−pt.

Proof. The proof is a direct consequence of Lemma 3.5, Lemma 3.6 and Theorem 3.4. �

It is worth noting that we have used lβ 6= 0. Therefore, an interesting question remains to be
answered: how is the behavior of the solutions when one of these coe�cients is zero? Following an
argument analogous to the one developed for the �rst system of this section, it can be shown that
the decay of the solutions is, generically, slow in both cases. A �fth degree polynomial appears in
each case. To be precise:

• When β = 0, the second leading diagonal minor of the corresponding matrix is negative
for some n. In fact, if we denote this minor by Λ2, direct calculations give

Λ2 = −2cJε (µ∗)2 (cδ + Jk)n4 + q2(n),

where q2(n) is a second degree polynomial in n involving the coe�cients of the system.
Notice that Λ2 < 0 independently of l.
• When l = 0 (and β 6= 0) the fourth diagonal minor of the corresponding matrix is negative
for some n. Following the same notation, it can be seen that

Λ4 = −2Jkδε (µ∗)3 (Jk − cδ)2
(
β2 − 2cεµ∗

)
n12 + q10(n).

In this case, Λ4 < 0 provided that Jk 6= cδ. This is the reason why we said that the
solutions decay generically in a slow way. For the speci�c case Jk = cδ several calculations
seem to suggest the exponential decay, but a proof is needed (we prefer to focus on other
results rather than enlarge the paper studying this particular case).

Finally, let us point out that replacing the type II Green-Naghdi heat conduction theory by the
type III, the decay of the solutions will be also exponential because, therefore, we still have the
same coupling but a stronger dissipation.

4. Case 2: Quasi-static microvoids

We now consider that the microvoids are quasi-static or, mathematically, that Φ̈ ≈ 0. As before,
we study two di�erent systems: the classical isothermal system and the type II model.

4.1. The classical isothermal case with quasi-static microvoids. We will see that the
isothermal waves for porous-elasticity when the fraction volume is quasi-static decay in a slow
way or, in other words, that a uniform exponential decay cannot be found. To this end we also
use the Routh-Hurtwitz arguments.

The system that we have to study is given by

(4.1)

{
ρü = µuxx + bΦx

0 = δΦxx − bux − ξΦ + δ∗Φ̇xx
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In this case, we set

(4.2) u(0, t) = u(π, t) = Φx(0, t) = Φx(π, t) = 0.

As for the initial conditions we consider

(4.3) u(x, 0) = u0(x), u̇(x, 0) = v0(x), Φ(x, 0) = Φ0(x).

The solutions to problem (4.1)�(4.3) decay in a slow way. We repeat the arguments (and even the
notation) we have used in Section 3 but writing only the main results. Imposing that u and Φ are
of the form

u = Aeωt sin(nx), Φ = Beωt cos(nx)

we obtain a 2 by 2 linear homogeneous system of equations:

(4.4)

(
µn2 + ρω2 −bn
−bn δn2 + ωδ∗n2 + ξ

)(
A
B

)
=

(
0
0

)
.

Direct calculations show that exists n large enough such that Λ2 < 0 because

Λ2 = −2 (δ∗)2 εµρn6 + q4(n).

4.2. Type II with quasi-static microvoids. Let us introduce in the above situation the de-
scription of the heat transmission given by the Green-Naghdi type II model. Notice that the
equation of the temperature is conservative. Nevertheless, we will see that, without any any other
dissipation mechanism beyond the one that is already present in the classical porous-elasticity we
have just analyzed, the solutions decay exponentially. This fact is quite remarkable.

The system of equations that we have to study can be obtained from system (2.4) when Φ̈ ≈ 0,
δ∗ > 0 and µ∗ = k∗ = 0. It reduces to

(4.5)


ρü = µuxx + bΦx − βθx
0 = δΦxx + lαxx − bux − ξΦ +mθ + δ∗Φ̇xx

cθ̇ = kαxx + lΦxx − βu̇x −mΦ̇

In this case, we set

(4.6) u(0, t) = u(π, t) = Φx(0, t) = Φx(π, t) = αx(0, t) = αx(π, t) = 0.

As for the initial conditions we consider

(4.7) u(x, 0) = u0(x), u̇(x, 0) = v0(x), Φ(x, 0) = Φ0(x), α(x, 0) = α0(x), α̇(x, 0) = θ0(x).

Let us emphasize that this system is di�erent from the one studied in [28]. The di�erence lies in
the considered kind of dissipation. Here we suppose δ∗ > 0, which means that there is a strong
dissipation in the stress tensor while in the previous work the dissipation was weaker and appeared
in the equilibrated body force.

As usual, we look for solutions that satisfy∫ π

0
Φ0(x)dx =

∫ π

0
α0(x)dx =

∫ π

0
θ0(x)dx = 0.
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We denote by v = u̇. Therefore, with the same notation used in Section 3, the system can be
written as

(4.8)


u̇ = v
v̇ = 1

ρ

(
µD2u+ bDΦ− βDθ

)
Φ̇ = − 1

δ∗Ψ
α̇ = θ

θ̇ = 1
c

(
lD2Φ + kD2α− βDv + m

δ∗Ψ
)

where

Ψ = ∆−1
[
δD2Φ + lD2α− bDu− ξΦ +mθ

]
.

It is noteworthy that

Ψx = δΦx + lαx − b u− ξ
∫ x

0
Φds+m

∫ x

0
θds.

We abuse a little bit the notation and denote again by H the Hilbert space where we are going to
work in and by U its elements. In this case, we have H = H1

0 × L2 ×H1
∗ ×H1

∗ × L2
∗.

Let U = (u, v,Φ, α, θ) and U∗ = (u∗, v∗,Φ∗, α∗, θ∗) be two elements of H. We de�ne the following
inner product in H:

〈U,U∗〉 =

∫ π

0

(
ρvv∗ + cθθ

∗
+ µuxu

∗
x + δΦxΦ

∗
x + ξΦΦ

∗
+ b(uxΦ

∗
+ u∗xΦ)

+ l(Φxα
∗
x + Φ

∗
xαx) + kαxα

∗
x

)
dx,

(4.9)

From this system we get the following matrix operator
(4.10)

B =


0 I 0 0 0

µ
ρD

2 0 b
ρD 0 −β

ρD
b
δ∗∆

−1D 0 − δ
δ∗∆

−1D2 + ξ
δ∗∆

−1 − l
δ∗∆

−1D2 −m
δ∗∆

−1

0 0 0 0 I
−mb
cδ∗∆

−1D −β
cD

l
cD

2 + mδ
cδ∗∆

−1D2 − mξ
cδ∗∆

−1 k
cD

2 + ml
cδ∗∆

−1D2 m2

cδ∗∆
−1

 .

The domain of this operator is

D(B) = {U ∈ H : v ∈ H1
0 , θ ∈ H1

∗ , µD
2u− βDθ ∈ L2, lD2Φ + kD2α ∈ L2}.

Lemma 4.1. The operator B is dissipative: for any U ∈ D(B), <〈BU,U〉 ≤ 0.

Proof. It is not di�cult to see that

<〈BU,U〉 = − 1

δ∗

∫ π

0
|Ψx|2dx.

�

Lemma 4.2. 0 ∈ %(B).
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Proof. If F = (f1, f2, f3, f4, f5) ∈ H we have to prove that the following system has a solution

(4.11)

v = f1

1
ρ

(
µD2u+ bDΦ− βDθ

)
= f2

− 1
δ∗Ψ = f3

θ = f4

1
c

(
lD2Φ + kD2α− βDv + m

δ∗Ψ
)

= f5


We consider the development of fi for i = 1, ..., 5 in Fourier series. Taking into account the Hilbert
space H, we know that

fi =
∑

f1
n sinnx for i = 1, 2 and fj =

∑
f jn cosnx, for j = 3, 4, 5,

with

(4.12)
∑

n2(f in)2 <∞, for i = 1, 3, 4 and
∑

(f in)2 <∞, for i = 2, 5.

We want to �nd

u =
∑

un sinnx, v =
∑

vn sinnx, Φ =
∑

φn cosnx, α =
∑

αn cosnx, θ =
∑

θn cosnx

in terms of the f in.

Notice that from the �rst and fourth equations of system (4.11) if follows that vn = f1
n and θn = f4

n

for all n. Hence, system (4.11) becomes

(4.13)

µD2u+ bDΦ = ρf2 + βDf4

Ψ = −δ∗f3

lD2Φ + kD2α = cf5 + βDf1 +mf3


Taking into account what Ψ is and substituting each term by its Fourier series we obtain a system
of equations for each n. The solution of which is

un =
n3
(
(δk − l2)βf4

n + bkf3
nδ
∗)+ r2(n)

n4µ(δk − l2) + n2(µξ − b2)k

φn =
−n3f3

nkδ
∗µ+ s2(n)

n3µ(δk − l2) + n(µξ − b2)k

αn =
n4f3

nlδ
∗µ+ t3(n)

n4µ(δk − l2) + n2(µξ − b2)k

where r2(n), s2(n) and t3(n) are polynomials of degree two and three (the subindex indicates the
degree) whose coe�cients involve the system coe�cients and also f in for i = 1, ..., 5.

It is worth noting that µD2u− βDθ ∈ L2 because for each n we have

µD2un − βDθn = −µn2n
3
(
(δk − l2)βf4

n + bkf3
nδ
∗)+ r2(n)

n4µ(δk − l2) + n2(µξ − b2)k
+ βnf4

n =
−µn3bkf3

nδ
∗ + r′2(n)

n2µ(δk − l2) + (µξ − b2)k
,

where r′2(n) is a second degree polynomial on n. On the other hand, taking into account the
expressions of s2(n) and t3(n) (which can be found by direct computation), it can be seen that

lD2φn + kD2αn =
(l2 − δk)βµf1

nn
3 + s′2(n)

n2µ(δk − l2) + (µξ − b2)k
,

and, therefore, it is clear that lD2Φ + kD2α ∈ L2. �
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The above argument proves that system (4.5) has a unique solution. Let us prove now that it is
exponentially stable.

Lemma 4.3. iR ⊂ %(B).

Proof. We follow the same reasoning we have used in Lemma 3.5, but we focus in the essential
part. Let Un = (un, vn,Φn, αn, θn) be a sequence of vectors in D(B) with unit norm such that
‖(iλnI − B)Un‖ → 0. We want to arrive a contradiction. We write the stated condition term by
term:

iλnun − vn → 0, in H1(4.14)

iρλnvn − µD2un − bDΦn + βDθn → 0, in L2(4.15)

iδ∗λnΦn + Ψn → 0, in H1(4.16)

iλnαn − θn → 0, in H1(4.17)

icλnθn − lD2Φn − kD2αn + βDvn −
m

δ∗
Ψn → 0, in L2(4.18)

From Lemma 4.1 it is clear that

DΨn = δDΦn + lDαn − bun − ξ
∫ x

0
Φnds+m

∫ x

0
θnds→ 0 in L2.

Therefore, from (4.16) we obtain λnDΦn → 0.

Let us multiply DΨn by Dαn, which is bounded. Taking into account that DΦn → 0, performing
an integration by parts and substituting θn by iλnαn we obtain

(4.19) l‖Dαn‖2 − b〈un, Dαn〉 − iλnm‖αn‖2 → 0.

On the other hand, multiplying (4.18) by αn and replacing vn by iλnun we get

〈icλnθn, αn〉+ k‖Dαn‖2 − iβλn〈un, Dαn〉 → 0,

or, equivalently, using (4.17)

−c‖θn‖2 + k‖Dαn‖2 − iβλn〈un, Dαn〉 → 0.

From this relation we see that the real part of 〈un, Dαn〉 → 0 and, hence, from (4.19) Dαn → 0.

Multiplying again (4.18) by αn, applying the previous results and integrating by parts, we see that

−c‖θn‖2 − β〈vn, Dαn〉 → 0,

which means θn → 0 because vn is bounded.

Finally, let us multiply (4.18) by Dun
λn

:

〈lDΦn + kDαn,
D2un
λn
〉+ iβ‖Dun‖2 → 0.

As D
2un
λn

is bounded (it can be seen dividing (4.15) by λn), it must beDun → 0 and, in consequence,
vn → 0, which �nishes the proof. �

Lemma 4.4. lim
|λ|→∞

‖(iλI − B)−1‖L(H) <∞.
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The arguments used to prove of Lemma 4.3 can be adapted easily to prove also this case, but we
omit the details to shorten the paper.

The above results imply that the solutions to system (4.5) decay exponentially. We state this
result in a formal way.

Theorem 4.5. The C0-semigroup S(t) = {eBt}t≥0 is exponentially stable.

As in the end of the previous section, we notice that the cases β = 0 or l = 0 deserve special
attention. In both cases the decay of the solutions is, generically, slow. Direct calculation leads to
the following results.

• When l = 0, the second leading diagonal minor is

Λ2 = −2c (δ∗)2 ρ
(
cµ+ kρ+ β2

)
εn6 + q4(n).

• When β = 0, the fourth minor is

Λ4 = −2c (δ∗)3 εµρ(cµ− kρ)2
(
l2 − 2kδ∗ε

)
n16 + q14(n).

5. Case 3: type III with quasi-static thermal displacement

We also study two di�erent systems of equations. The �rst one is the quasi-static situation for
the classical thermo-porous-elasticity. The second corresponds to the same situation but using the
type III Green-Naghdi theory to model the behavior of the temperature. We will see that the
solutions for the �rst system decay slowly while for the second are exponentially stable.

5.1. Classical porous-thermo-elasticity. The �rst system is given by

(5.1)


ρü = µuxx + bΦx − βθx
JΦ̈ = δΦxx − bux − ξΦ +mθ

0 = −βu̇x −mΦ̇ + k∗α̇xx

with the following boundary and initial conditions:

(5.2) u(0, t) = u(π, t) = Φx(0, t) = Φx(π, t) = θx(0, t) = θx(π, t) = 0,

and

(5.3) u(x, 0) = u0(x), u̇(x, 0) = v0(x), Φ(x, 0) = Φ0(x), Φ̇(x, 0) = ϕ0.

To prove the slow decay we repeat the method used before. Let us suppose that

(5.4) u = Aeωt sin(nx), Φ = Beωt cos(nx), θ = Ceωt cos(nx),

therefore we obtain a 3 by 3 homogeneous system of linear equations: µn2 + ρω2 bn −nβω
bn δn2 + Jω2 + ξ −mω
nβ m n2k∗

 A
B
C

 =

 0
0
0

 .

Direct calculations prove that there exists n large enough that, generically, makes Λ3 < 0. In fact,
this minor is a tenth degree polynomial with respect to n of the form

Λ3 = −2J (k∗)2 ε(Jµ− δρ)2
(
β2 − 2k∗ερ

)
n10 + q8(n),

where q8(n) is an eighth degree polynomial. The main coe�cient of Λ3 is negative whenever
Jµ 6= δρ.
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5.2. Type III with quasi-static temperature. The last case that we study comes from (2.4)

when θ̇ ≈ 0, k∗ > 0 and µ∗ = δ∗ = 0. The new system is given by:

(5.5)


ρü = µuxx + bΦx − βθx
JΦ̈ = δΦxx + lαxx − bux − ξΦ +mθ

0 = kαxx + lΦxx − βu̇x −mΦ̇ + k∗α̇xx

In this case, we set

(5.6) u(0, t) = u(π, t) = Φx(0, t) = Φx(π, t) = αx(0, t) = αx(π, t) = 0.

As for the initial conditions we consider

(5.7) u(x, 0) = u0(x), u̇(x, 0) = v0(x), Φ(x, 0) = Φ0(x), Φ̇(x, 0) = ϕ0, α(x, 0) = α0(x).

As usual, we look for solutions that satisfy∫ π

0
Φ0(x)dx =

∫ π

0
ϕ0(x)dx =

∫ π

0
α0(x)dx = 0.

We denote by v = u̇. From the third equation we get α̇ = − 1

k∗
Ω, where

Ω = ∆−1
[
lΦxx + kαxx − βu̇x −mΦ̇

]
.

Notice that

Ωx = lΦx + kαx − βu̇−m
∫ x

0
Φ̇ds.

We set Φ̇ = ϕ. Therefore, with the same notation used before, the system can be written as

(5.8)



u̇ = v

v̇ = 1
ρ

(
µD2u+ bDΦ + β

k∗DΩ
)

Φ̇ = ϕ

ϕ̇ = 1
J

(
δD2Φ + lD2α− bDu− ξΦ− m

k∗Ω
)

α̇ = − 1
k∗Ω

We abuse the notation again (for the last time) and denote by H the corresponding Hilbert space
and by U its elements. In this case, we have H = H1

0 × L2 ×H1
∗ × L2

∗ ×H1
∗ .

Let U = (u, v,Φ, ϕ, α) and U∗ = (u∗, v∗,Φ∗, ϕ∗, α∗) be two elements of H. We de�ne the following
inner product in H:

〈U,U∗〉 =

∫ π

0

(
ρvv∗ + µuxu

∗
x + Jϕϕ∗ + δΦxΦ

∗
x + ξΦΦ

∗
+ b(uxΦ

∗
+ u∗xΦ)

+ l(Φxα
∗
x + Φ

∗
xαx) + kαxα

∗
x

)
dx,

(5.9)

The corresponding matrix operator is

(5.10) C =



0 I 0 0 0
µ
ρD

2 − β2

ρk∗I
b+l
ρ D − βm

ρk∗D∆−1 βk
ρk∗D

0 0 0 I 0

− b
JD

βm
Jk∗∆

−1D δ
JD

2 − ml
Jk∗∆

−1D2 − ξ
J I

m2

Jk∗∆
−1 l

JD
2 − mk

Jk∗∆
−1D2

0 β
k∗∆

−1D − l
k∗∆

−1D2 m
k∗∆

−1 − k
k∗∆

−1D2

 .
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The domain of this operator is

D(C) = {U ∈ H : u ∈ H2, v ∈ H1
0 , δD

2Φ + lD2α ∈ L2
∗, ϕ ∈ H1

∗}.
Lemma 5.1. The operator C is dissipative: for any U ∈ D(C), <〈CU,U〉 ≤ 0.

Proof. It is not di�cult to see that

<〈CU,U〉 = − 1

k∗

∫ π

0
|Ωx|2dx.

�

Lemma 5.2. 0 ∈ %(C).

Proof. As in the proof of Lemma 4.2 we have to prove that the following system has a solution:

(5.11)

v = f1

µD2u+ bDΦ + β
k∗DΩ = ρf2

ϕ = f3

δD2Φ + lD2α− bDu− ξΦ− m
k∗Ω = f4

Ω = −k∗f5


The above system reduces to

(5.12)

µD2u+ bDΦ = ρf2 + βDf5

δD2Φ + lD2α− bDu− ξΦ = f4 −mf5

Ω = −k∗f5


We recall that this is a system of equations for each n. In this case the solution is given by

un =
n3
(
(δk − l2)β + blk∗

)
f5
n + r2(n)

n4µ(δk − l2) + n2(µξ − b2)k

φn =
n3f5

nk
∗lµ+ s2(n)

n3µ(δk − l2) + n(µξ − b2)k

αn =
n4f5

nk
∗δµ+ t3(n)

n4µ(δk − l2) + n2(µξ − b2)k

Notice that u ∈ H2 and ϕ ∈ H1
∗ . �

Lemma 5.3. iR ⊂ %(C).

Proof. Let Un = (un, vn,Φn, ϕn, αn) be a sequence of vectors in D(C) with unit norm such that
‖(iλnI − C)Un‖ → 0. We write the stated condition term by term:

iλnun − vn → 0, in H1(5.13)

iρλnvn − µD2un − bDΦn −
β

k∗
DΩn → 0, in L2(5.14)

iλnΦn − ϕn → 0, in H1(5.15)

iJλnϕn − δD2Φn − lD2αn + bDun + ξΦn +
m

k∗
Ω→ 0, in L2(5.16)

ik∗λnαn + Ωn → 0, in H1(5.17)
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From Lemma 5.1 it is clear that

DΩn = lDΦn + kDαn − βvn −m
∫ x

0
ϕnds→ 0 in L2.

Therefore, from (5.17) we obtain λnαn → 0 in H1, which means Dαn → 0.

Let us multiply DΩn by DΦn, which is bounded. We obtain

(5.18) l‖DΦn‖2 + k〈Dαn, DΦn〉 − β〈iλnun, DΦn〉 −m〈
∫ x

0
ϕnds,DΦn〉 → 0.

Notice that we have used (5.13) and have changed vn by iλnun. As Dαn tends to zero, we can
remove the second term. Moreover, using integration by parts and (5.15) we can rewrite the above
expression in the following way:

(5.19) l‖DΦn‖2 − iλnβ〈un, DΦn〉+ iλnm‖Φn‖2 → 0.

We multiply now (5.16) by Φn and perform and integration by parts:

iJλn〈ϕn,Φn〉+ δ‖DΦn‖2 + l〈Dαn, DΦn〉+ b〈Dun,Φn〉+ ξ‖Φn‖2 → 0.

Removing what tends to 0 and using (5.15) we get

−J‖ϕn‖2 + δ‖DΦn‖2 − b〈un, DΦn〉+ ξ‖Φn‖2 → 0.

From this expression we deduce that 〈un, DΦn〉 should be real and, therefore, looking back at
(5.19), it must be DΦn → 0. This implies also that ϕn → 0 in L2. And, hence, from the fact
that DΩ→ 0 we obtain that vn → 0. Finally, to prove that Dun tends to zero, we multiply what
remains in (5.14) after removing the terms that tend to zero by un:

iρλn〈vn, un〉 − µ〈D2un, un〉 → 0

or, equivalently, −ρ‖vn‖2 + µ‖Dun‖2 → 0, which gives Dun → 0. �

Lemma 5.4. lim
|λ|→∞

‖(iλI − C)−1‖L(H) <∞.

The arguments used to prove Lemma 5.3 can be adapted to prove also this case.

The above results imply that the solutions to system (5.5) decay exponentially.

Theorem 5.5. The C0-semigroup S(t) = {eCt}t≥0 is exponentially stable.

For β = 0 or l = 0 the decay of the solutions is again, generically, slow.

• When l = 0 the fourth leading diagonal minor is

Λ4 = −2J (k∗)3 δεµ(Jµ− δρ)2
(
β2 − 2k∗ερ

)
n16 + q14(n).

• When β = 0, the fourth leading diagonal minor is

Λ4 = −2J (k∗)3 εµρ(Jµ− δρ)2
(
l2 − 2k∗δε

)
n16 + q14(n).

• When β = l = 0 the second leading diagonal minor is

Λ2 = −2J (k∗)2 ερ(Jµ+ δρ)n6 + q4(n).
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6. Conclusions

We think that it is interesting to sort out the properties of the solutions to the systems of equations
determined by porous-thermo-elastic materials depending on the heat conduction theory used to
model the behavior of the temperature. It is quite surprising that while for the Fourier model the
waves decay slowly and two well-combined dissipation mechanisms are needed to obtain exponential
decay, for the type II and III Green-Naghdi theories only one damping mechanism su�ces to get
it. In this work we have gone deeper into these questions and we have shown that a similar
solutions' behavior appears when the movement of one of the variables is supposed to be quasi-
static. Speci�cally, we have proved the following facts:

(1) If the displacement is quasi-static and we impose viscoelasticity and thermal dissipation
for the Fourier model, then the solutions decay slowly. However, if only viscoelasticity is
imposed for the type II model (which is conservative) the solutions decay exponentially.

(2) In the isothermal case, when the deformation of the voids is quasi-static and we impose
strong viscoporosity the decay of the solutions is slow. However, if we add the conservative
mechanism established by the type II heat conduction model the decay is exponential.

(3) Finally, the same contrast is obtained for the Fourier and the type III Green-Naghdi models
when the temperature is supposed to be quasi-static.

We want to highlight that, from a mathematical point of view, the kinds of systems we have studied
in this work are very di�erent from the ones needed to study the non quasi-static cases.
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